JP3173049B2 - Anion exchange resin for ultrapure water production and ultrapure water production method using the same - Google Patents

Anion exchange resin for ultrapure water production and ultrapure water production method using the same

Info

Publication number
JP3173049B2
JP3173049B2 JP20831991A JP20831991A JP3173049B2 JP 3173049 B2 JP3173049 B2 JP 3173049B2 JP 20831991 A JP20831991 A JP 20831991A JP 20831991 A JP20831991 A JP 20831991A JP 3173049 B2 JP3173049 B2 JP 3173049B2
Authority
JP
Japan
Prior art keywords
exchange resin
ultrapure water
water
anion exchange
water production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20831991A
Other languages
Japanese (ja)
Other versions
JPH0549948A (en
Inventor
純哉 渡辺
育幸 坂田
龍二 永谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP20831991A priority Critical patent/JP3173049B2/en
Publication of JPH0549948A publication Critical patent/JPH0549948A/en
Application granted granted Critical
Publication of JP3173049B2 publication Critical patent/JP3173049B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は超純水の製造用陰イオン
交換樹脂及びそれを用いた超純水製造方法に関するもの
である。詳しくは、被処理水中に存在する微生物、土壌
成分、金属酸化物等の微粒子を効果的に吸着除去するこ
とにより、例えば半導体製造工程のウエハーの洗浄用と
して好適な超純水製造用陰イオン交換樹脂及びそれを用
いた超純水の製造方法に関するものである。
The present invention relates to an anion exchange resin for producing ultrapure water and a method for producing ultrapure water using the same. More specifically, anion exchange for ultrapure water production suitable for cleaning semiconductor wafers, for example, by effectively adsorbing and removing microparticles such as microorganisms, soil components, and metal oxides present in the water to be treated. The present invention relates to a resin and a method for producing ultrapure water using the same.

【0002】[0002]

【従来の技術】近年、超純水は半導体工業、医薬品工業
等の広い分野に使用されており、特に半導体工業におい
ては、主力製品である半導体素子がIC,LSI,VL
SIへとその集積度、いわゆるビット数が経年的に上昇
し、このため極めて高純度の超純水が要求されるように
なった。
2. Description of the Related Art In recent years, ultrapure water has been used in a wide range of fields such as the semiconductor industry and the pharmaceutical industry. In the semiconductor industry, in particular, semiconductor devices, which are the main products, are IC, LSI and VL.
The degree of integration, that is, the number of bits, in SI has been increasing over time, and therefore ultrapure water of extremely high purity has been required.

【0003】半導体素子の製造工程におけるウエハーの
洗浄用に使用される超純水の純度の管理指標としては、
電気伝導率(又は比抵抗)はもとより、その他の管理指
標として全有機炭素、生菌数、微粒子数、溶存酸素量等
にまで及んでいる。特に超純水中に存在する微生物、土
壌成分、金属酸化物等により構成される微粒子数を極力
微量化することは、半導体素子製造における製品歩留り
向上の大きな要因となるため、微粒子数が極めて少な
い、例えば粒径0.1μm以上の粒子として数個〜数+
個/ml程度までの超純水を製造することが望まれてい
る。
As a control index of the purity of ultrapure water used for cleaning a wafer in a semiconductor device manufacturing process,
Not only the electric conductivity (or specific resistance) but also other management indexes such as total organic carbon, viable cell count, fine particle count, dissolved oxygen content, and the like. In particular, minimizing the number of microparticles composed of microorganisms, soil components, metal oxides, and the like present in ultrapure water as much as possible is a major factor in improving the product yield in semiconductor device manufacturing, so the number of microparticles is extremely small. For example, several to several + as particles having a particle size of 0.1 μm or more.
It has been desired to produce ultrapure water up to about pieces / ml.

【0004】従来、超純水を製造するには、被処理水と
して上水、河川水、地下水等を使用し、これらを、凝集
濾過器、2床2塔式乃至2床3塔式のイオン交換塔及び
混床式イオン交換塔等のイオン交換装置、逆浸透膜及び
精密濾過膜等の膜装置から構成される一次純水系システ
ムと、紫外線殺菌器、イオン交換塔、限外濾過膜及び逆
浸透膜等の膜装置から構成される二次純水系システムと
からなる超純水製造システムにより処理し、被処理水中
のイオン性不純物、及び微生物、土壌成分、金属酸化物
等の微粒子、並びに溶存酸素等の不純物を極限近くまで
除去する方法が採用されている。
Conventionally, in order to produce ultrapure water, tap water, river water, groundwater, etc. are used as the water to be treated, and these are treated with a coagulation filter, a two-bed two-column type or a two-bed three-column type A primary pure water system consisting of an ion exchange device such as an exchange tower and a mixed bed type ion exchange tower, and a membrane device such as a reverse osmosis membrane and a microfiltration membrane, and an ultraviolet sterilizer, an ion exchange tower, an ultrafiltration membrane and a reverse Treated by an ultrapure water production system consisting of a secondary pure water system composed of membrane devices such as osmosis membranes, and ionic impurities and microparticles such as microorganisms, soil components and metal oxides in the water to be treated, and dissolved A method of removing impurities such as oxygen to the limit is adopted.

【0005】この方法では、被処理水中のイオン性不純
物は主としてイオン交換塔で除去され、有機物、微生
物、土壌成分、金属酸化物等の微粒子は主として逆浸透
膜、限外濾過膜等の膜装置により除去される。このた
め、イオン交換塔から流出する処理水については、専ら
処理水中に漏出するイオン性不純物が注目され、処理水
の純度管理の指標としては主として電気伝導率が採用さ
れており、処理水中に同伴して漏出する微粒子について
は全く考慮されていないのが実状である。イオン交換塔
には、陽イオン交換樹脂及び陰イオン交換樹脂が充填さ
れるが、イオン交換容量及び操作の容易さから、例えば
陰イオン交換樹脂としては、架橋度が6%以上の強塩基
性陰イオン交換樹脂が採用されている。
In this method, ionic impurities in the water to be treated are mainly removed by an ion exchange tower, and fine particles such as organic substances, microorganisms, soil components and metal oxides are mainly removed by a membrane device such as a reverse osmosis membrane or an ultrafiltration membrane. To be removed. For the treated water flowing out of the ion-exchange tower, ionic impurities leaking into the treated water are attracting attention, and electric conductivity is mainly used as an index for controlling the purity of the treated water. In fact, no consideration is given to fine particles that leak out. The ion exchange tower is filled with a cation exchange resin and an anion exchange resin. From the viewpoint of the ion exchange capacity and the ease of operation, for example, as an anion exchange resin, a strongly basic anion having a degree of crosslinking of 6% or more is used. An ion exchange resin is employed.

【0006】イオン交換塔から流出する処理水中に微粒
子が漏出すると、イオン交換塔に後続する膜装置の負荷
が増大し、結果として、最終的に得られる超純水中に漏
出する微粒子が増加することになる。また、漏出した微
粒子により膜装置が閉塞するのを阻止するために、膜装
置を定期的に洗浄又は交換することが必要であるが、こ
れにより、超純水の供給が中断されるという不都合を生
じる。
When the fine particles leak into the treated water flowing out of the ion exchange tower, the load on the membrane device following the ion exchange tower increases, and as a result, the fine particles leak into the finally obtained ultrapure water increase. Will be. Further, in order to prevent the membrane device from being blocked by the leaked fine particles, it is necessary to periodically clean or replace the membrane device, but this causes a disadvantage that the supply of ultrapure water is interrupted. Occurs.

【0007】[0007]

【発明が解決しようとする課題】本発明は、従来技術に
よる上述の問題点を解決し、イオン交換塔から流出する
処理水への微粒子の漏出を極力制御することにより、微
粒子の漏洩による支障を生ずることのない超純水製造プ
ロセスに適した陰イオン交換樹脂を提供することを目的
とするものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art and controls the leakage of the fine particles into the treated water flowing out of the ion exchange tower as much as possible, thereby preventing the problems caused by the leakage of the fine particles. An object of the present invention is to provide an anion exchange resin suitable for an ultrapure water production process that does not occur.

【0008】[0008]

【課題を解決するための手段】本発明者は、上記の目的
を達成するために、超純水製造システムにおける不純物
の挙動、特にイオン交換塔周辺の微粒子の挙動について
検討した結果、強塩基性陰イオン交換樹脂については、
13C核磁気共鳴吸収測定による4級アンモニウム基中の
アルキル基またはアルカノール基の炭素の吸収スペクト
ルがシャープであるものが優れた微粒子吸着能力を有す
ることを見い出し本発明を達成した。即ち、本発明の要
旨は、モノビニル芳香族化合物とポリビニル芳香族化合
物との架橋共重合体を母体とする4級アンモニウム基を
有する強塩基陰イオン交換樹脂であって、重水懸濁状態
での13Cの核磁気共鳴吸収測定による前記4級アンモニ
ウム基のアルキル基またはアルカノール基の炭素の吸収
スペクトルの半値幅が7.5ppm以下であることを特
徴とする超純水製造用陰イオン交換樹脂及びそれを用い
て水を処理する超純水の製造方法に存する。
Means for Solving the Problems To achieve the above object, the present inventor studied the behavior of impurities in an ultrapure water production system, particularly the behavior of fine particles around an ion exchange column. For anion exchange resin,
The present inventors have found that those having a sharp absorption spectrum of carbon of an alkyl group or an alkanol group in a quaternary ammonium group by 13 C nuclear magnetic resonance absorption measurement have excellent fine particle adsorption ability, and achieved the present invention. That is, the gist of the present invention, the monovinyl aromatic compound and cross-linked copolymer of polyvinyl aromatic compound and a strong base anion exchange resin having quaternary ammonium groups as a matrix, 13 in the heavy water suspension An anion exchange resin for producing ultrapure water, wherein the half value width of the carbon absorption spectrum of the alkyl group or alkanol group of the quaternary ammonium group measured by nuclear magnetic resonance absorption measurement of C is 7.5 ppm or less, and The present invention resides in a method for producing ultrapure water in which water is treated by using water.

【0009】以下に本発明を超純水の製造について詳細
に説明する。超純水の製造システムとしては、種々の方
式が検討されているが、代表的な超純水製造システムの
一例のフローチャートを図1に示す。図1の製造システ
ムは、凝集濾過器、2床3塔式イオン交換塔、逆浸透膜
装置及び混床式イオン交換塔から構成される一次系純水
システムと、一次系純水システムによる処理水を更に高
純度化するための、紫外線殺菌器、混床式イオン交換塔
及び限外濾過膜装置から構成される二次系純水システム
とからなる。本発明は図1に示す超純水製造システムに
適用されるが、他の如何なるシステムにも適用すること
ができる。
Hereinafter, the present invention will be described in detail with respect to the production of ultrapure water. Various methods have been studied as a system for producing ultrapure water. FIG. 1 shows a flowchart of an example of a typical ultrapure water production system. The production system of FIG. 1 includes a primary pure water system composed of a coagulation filter, a two-bed three-column ion exchange tower, a reverse osmosis membrane device, and a mixed-bed ion exchange tower, and treated water by the primary pure water system. And a secondary pure water system comprising an ultraviolet sterilizer, a mixed-bed type ion exchange tower and an ultrafiltration membrane device for further purifying the water. The present invention is applied to the ultrapure water production system shown in FIG. 1, but can be applied to any other system.

【0010】図1の超純水製造システムにおける2床3
塔式イオン交換塔は、陽イオン交換樹脂充填塔、脱炭酸
塔及び陰イオン交換樹脂充填塔からなり、また混床式イ
オン交換塔には、陽イオン交換樹脂と陰イオン交換樹脂
とが混合状態で充填されている。本発明の特徴とすると
ころは、上記のイオン交換塔に使用する陰イオン交換樹
脂として特定の物性、即ち、13Cの核磁気共鳴吸収測定
をした際に、樹脂の4級アンモニウム基のアルキル基ま
たはアルカノール基の炭素の吸収スペクトルがシャープ
な強塩基性陰イオン交換樹脂を使用することである。
Two beds 3 in the ultrapure water production system of FIG.
The tower type ion exchange tower consists of a cation exchange resin packed tower, a decarbonation tower and an anion exchange resin packed tower, and the mixed bed type ion exchange tower has a mixed state of cation exchange resin and anion exchange resin. Filled with. The feature of the present invention is that the specific properties of the anion exchange resin used in the above-mentioned ion exchange tower, namely, when the 13 C nuclear magnetic resonance absorption measurement is performed, the alkyl group of the quaternary ammonium group of the resin is used. Alternatively, a strong basic anion exchange resin having a sharp absorption spectrum of carbon of the alkanol group is used.

【0011】強塩基性陰イオン交換樹脂は、モノビニル
芳香族化合物とポリビニル芳香族化合物との共重合体を
母体とし、これをハロアルキル化し、次いでアミノ化す
ることにより製造されているが、代表的なものは、スチ
レンとジビニルベンゼンを懸濁共重合して得られる架橋
共重合体粒子をクロロメチル化し、さらにアミン類でア
ミノ化することにより得られている。そして、これら製
造プロセスの反応条件をかえることにより、交換容量、
水分、膨潤収縮性、見かけ密度等種々の特性を与えるこ
とができることが知られている。
The strongly basic anion exchange resin is produced by using a copolymer of a monovinyl aromatic compound and a polyvinyl aromatic compound as a base, haloalkylating the copolymer, and then aminating the copolymer. These are obtained by subjecting a crosslinked copolymer particle obtained by suspension copolymerization of styrene and divinylbenzene to chloromethylation and further amination with amines. By changing the reaction conditions of these manufacturing processes, the exchange capacity,
It is known that various properties such as moisture, swelling / shrinking property, and apparent density can be provided.

【0012】例えば、モノビニル化合物としてのスチレ
ンとポリビニル化合物としてのジビニルベンゼンの混合
比率をかえることにより、最終的に製造される陰イオン
交換樹脂の水分量をかえることができる。また、重合開
始剤の量、重合時の温度、或いは、クロロメチル化反応
時の触媒量、反応温度、反応時間等により、最終的に製
造される陰イオン交換樹脂の種々の特性もかえることが
できる。
For example, by changing the mixing ratio of styrene as the monovinyl compound and divinylbenzene as the polyvinyl compound, the water content of the finally produced anion exchange resin can be changed. Further, depending on the amount of the polymerization initiator, the temperature at the time of polymerization, or the amount of the catalyst at the time of the chloromethylation reaction, the reaction temperature, the reaction time, etc., various characteristics of the finally produced anion exchange resin can be changed. it can.

【0013】超純水製造に用いられる陰イオン交換樹脂
は、特に処理水中の微粒子の捕捉性能が問題となるが、
この陰イオン交換樹脂の表面に関する特性をこれら製造
条件の因子の組合せにより達成しうることを見出した。
本発明の樹脂の製造に使用しうるポリビニル芳香族化合
物としては、芳香環にビニル基が2個以上置換した化合
物が用いられ、芳香環は炭素数1〜3のアルキル基で置
換されていてもよい。例えば、ジビニルベンゼン、ジビ
ニルトルエン等の芳香族ポリビニル化合物が用いられ
る。特にジビニルベンゼンが好ましい。モノビニル芳香
族化合物としては、スチレン、ビニルトルエン、ビニル
ナフタリン、エチルビニルベンゼン等が用いられ、特に
スチレンが好ましい。
The anion exchange resin used in the production of ultrapure water has a problem particularly in the performance of capturing fine particles in treated water.
It has been found that the surface properties of the anion exchange resin can be achieved by a combination of these manufacturing condition factors.
As the polyvinyl aromatic compound that can be used in the production of the resin of the present invention, a compound in which two or more vinyl groups are substituted on an aromatic ring is used, and the aromatic ring may be substituted with an alkyl group having 1 to 3 carbon atoms. Good. For example, aromatic polyvinyl compounds such as divinylbenzene and divinyltoluene are used. Particularly, divinylbenzene is preferable. As the monovinyl aromatic compound, styrene, vinyl toluene, vinyl naphthalene, ethyl vinyl benzene and the like are used, and styrene is particularly preferable.

【0014】微粒子捕捉性能に影響を与える条件の一つ
にモノビニル芳香族化合物とポリビニル芳香族化合物の
割合が挙げられ、ポリビニル化合物の全混合モノマーに
対する比率を減少させることにより、陰イオン交換樹脂
の表面の微粒子捕捉能力を向上させることが出来る。例
えば、スチレンとジビニルベンゼンの場合、その混合比
率としては、スチレン−ジビニルベンゼン全モノマー中
のジビニルベンゼンの仕込比率が6重量%以下であるこ
とが好ましい。
One of the conditions affecting the fine particle trapping performance is the ratio of the monovinyl aromatic compound to the polyvinyl aromatic compound. By reducing the ratio of the polyvinyl compound to the total mixed monomers, the surface of the anion exchange resin can be reduced. Can improve the ability to capture fine particles. For example, in the case of styrene and divinylbenzene, it is preferable that the mixing ratio of the divinylbenzene in all the styrene-divinylbenzene monomers is 6% by weight or less.

【0015】重合反応は、通常、重合開始剤の存在下行
われ、重合開始剤としては過酸化ジベンゾイル、過酸化
ラウロイル、t−ブチルハイドロパーオキサイド、アゾ
イソブチロニトリル等が用いられる。重合開始剤の量と
しては重合時の全モノマー重量に対して0.05%から
2%の範囲が好ましい。重合時の温度としては開始剤の
種類、架橋度等により最適化されるものであるが一般に
50〜100℃の範囲が用いられる。重合反応時の温度
をより急激に高温とすることにより、微粒子捕捉能力が
減少する傾向にあるので、重合の温度は一定温度で定時
間保持するあるいは逐次的に温度を上昇させる方法が目
的に応じて用いられる。一般に高温での重合では共重合
ポリマーの重合率が増加し、微粒子除去能力は低下する
傾向にある。
The polymerization reaction is usually carried out in the presence of a polymerization initiator, such as dibenzoyl peroxide, lauroyl peroxide, t-butyl hydroperoxide, azoisobutyronitrile and the like. The amount of the polymerization initiator is preferably in the range of 0.05% to 2% with respect to the total monomer weight at the time of polymerization. The temperature at the time of polymerization is optimized depending on the type of the initiator, the degree of crosslinking, and the like, but is generally in the range of 50 to 100 ° C. As the temperature during the polymerization reaction increases more rapidly, the ability to capture fine particles tends to decrease.Therefore, depending on the purpose, the method of maintaining the temperature of the polymerization at a constant temperature for a fixed time or increasing the temperature sequentially depends on the purpose. Used. In general, polymerization at a high temperature tends to increase the degree of polymerization of the copolymer and decrease the ability to remove fine particles.

【0016】このようにして得られた架橋共重合体に触
媒の存在下ハロアルキル化剤を反応させハロアルキル化
する。ハロアルキル化、例えばクロロメチル化の反応時
の触媒としては、塩化アルミニウム、塩化第二鉄、酸フ
ッ化ほう素、塩化亜鉛、四塩化エタン、塩化第二スズ、
臭化アルミニウム等が用いられる。触媒量としてはクロ
ロメチル反応に用いるスチレン−ジビニルベンゼン共重
合体の全重量に対して一般に0.02〜2.0重量倍の
範囲で用いられる。
The crosslinked copolymer thus obtained is reacted with a haloalkylating agent in the presence of a catalyst to effect haloalkylation. Catalysts for the reaction of haloalkylation, for example, chloromethylation, include aluminum chloride, ferric chloride, boron oxyfluoride, zinc chloride, ethane tetrachloride, stannic chloride,
Aluminum bromide or the like is used. The amount of the catalyst is generally in the range of 0.02 to 2.0 times the total weight of the styrene-divinylbenzene copolymer used in the chloromethyl reaction.

【0017】クロロメチル化反応時における触媒の量を
減少することにより、微粒子捕捉能力を向上できるの
で、触媒量は少ないほど、得られる陰イオン交換樹脂の
微粒子捕捉能力は向上する。反応温度及び反応時間は、
それぞれ、30℃から60℃までの範囲で、2時間から
20時間の範囲で用いられるが、反応の進行をさまたげ
ない最低限の反応条件以上の条件で、温度が高いほど、
また時間が長いほど微粒子捕捉能力が低下する傾向があ
る。
By reducing the amount of the catalyst during the chloromethylation reaction, the ability to capture fine particles can be improved. Therefore, the smaller the amount of the catalyst, the more the ability of the resulting anion exchange resin to capture fine particles. The reaction temperature and reaction time are
Each is used in the range of 30 ° C. to 60 ° C. and in the range of 2 hours to 20 hours. Under the conditions of the minimum reaction condition or more that does not hinder the progress of the reaction, the higher the temperature,
Also, the longer the time, the lower the ability to capture fine particles tends to be.

【0018】クロロメチル化スチレン−ジビニルベンゼ
ン共重合体のアミノ化に際しては、炭素数1〜4のアル
キルアミン或はアルカノールアミンが用いられ具体的に
は、トリメチルアミン、ジメチルエタノールアミン等の
三級アミン類が用いられる。その使用比率は導入される
クロロメチル化スチレン−ジビニルベンゼン中のクロル
基のモル数に対して、等モルから30倍モル量の範囲で
用いられる。
In the amination of the chloromethylated styrene-divinylbenzene copolymer, an alkylamine or alkanolamine having 1 to 4 carbon atoms is used. Specifically, tertiary amines such as trimethylamine and dimethylethanolamine are used. Is used. The use ratio is in the range of from equimolar to 30 times the molar number of the chloro group in the chloromethylated styrene-divinylbenzene to be introduced.

【0019】本願発明の強塩基性陰イオン交換樹脂は、
上記のような各製造工程の最適条件を組合せて製造さ
れ、微粒子の捕捉性能にすぐれているが、その捕捉性能
は、樹脂の表面付近の陰イオン交換基を構成する4級ア
ンモニウム塩部分の自由運動性と相関関係があることが
予想された。そして陰イオン交換樹脂の13Cの核磁気共
鳴吸収測定を行なったところ、4級アンモニウム塩のア
ルキル基またはアルカノール基の吸収スペクトルがシャ
ープな樹脂、すなわち、該4級アンモニウム塩の部分の
自由運動性が高いと判断される樹脂の方が微粒子捕捉能
力が優れていることを知得するに至った。本発明では上
記各製造工程の各条件を調整し、4級アンモニウム塩の
アルキル基またはアルカノール基の吸収スペクトルの半
値幅が7.5ppm以下、好ましくは7.0ppm以下
と調整する。
The strongly basic anion exchange resin of the present invention comprises:
It is manufactured by combining the above-mentioned optimum conditions of each manufacturing process, and is excellent in the capturing performance of fine particles, but the capturing performance is free of the quaternary ammonium salt portion constituting the anion exchange group near the surface of the resin. Correlation with motility was expected. When 13 C nuclear magnetic resonance absorption measurement was performed on the anion exchange resin, the resin having a sharp absorption spectrum of the alkyl group or alkanol group of the quaternary ammonium salt, that is, the free mobility of the quaternary ammonium salt portion It has been found that the resin judged to be higher has a better ability to capture fine particles. In the present invention, the conditions of each of the above production steps are adjusted to adjust the half-value width of the absorption spectrum of the alkyl group or alkanol group of the quaternary ammonium salt to 7.5 ppm or less, preferably 7.0 ppm or less.

【0020】核磁気共鳴吸収測定用の装置としては、水
素核種を基準とした場合に270MHz以上の共鳴周波
数を有していることが好ましい。例えば、270MH
z,400MHz,500MHz等である。一方、27
0MHz未満では、S/N比が低いため、明確なスペク
トルが得にくい。超純水製造システムにおける陰イオン
交換樹脂として上記の強塩基性陰イオン交換樹脂を使用
すると、そのメカニズムは明かではないが、被処理水中
に存在する陰イオン性不純物と共に微粒子をも効率よく
吸着除去することができる。
The apparatus for measuring nuclear magnetic resonance absorption preferably has a resonance frequency of 270 MHz or more on the basis of a hydrogen nuclide. For example, 270MH
z, 400 MHz, 500 MHz, and the like. On the other hand, 27
Below 0 MHz, it is difficult to obtain a clear spectrum because the S / N ratio is low. When the above-mentioned strong basic anion exchange resin is used as the anion exchange resin in the ultrapure water production system, the mechanism is not clear, but the fine particles are efficiently adsorbed and removed together with the anionic impurities present in the water to be treated. can do.

【0021】なお、この樹脂の使用に際しては、特別の
操作を要するものでなく、陰イオン交換樹脂の再生処理
の常法によりアルカリ水溶液で再生したものをイオン交
換塔に充填し被処理水の通液に供すればよい。一方、強
酸性陽イオン交換樹脂としては、前記スチレンとジビニ
ルベンゼンとの架橋共重合体をスルホン化して得られる
市販の強塩基性陰イオン交換樹脂が挙げられ、特にイオ
ン交換容量が大きく機械的強度の優れたものが好まし
い。強酸性陽イオン交換樹脂の具体例としては、ダイヤ
イオン(三菱化成(株)登録商標)SK1B、SK11
0、SKNが挙げられる。
When this resin is used, no special operation is required. The resin which has been regenerated with an aqueous alkali solution by an ordinary method for regenerating an anion-exchange resin is filled in an ion exchange tower and the water to be treated is passed through. The solution may be provided. On the other hand, examples of the strongly acidic cation exchange resin include commercially available strong basic anion exchange resins obtained by sulfonating the crosslinked copolymer of styrene and divinylbenzene, and in particular, have a large ion exchange capacity and a high mechanical strength. Are preferred. Specific examples of the strongly acidic cation exchange resin include Diaion (registered trademark of Mitsubishi Kasei Corporation) SK1B and SK11.
0 and SKN.

【0022】本発明方法を実施するには、上記超純水製
造システムにおけるイオン交換塔に、夫々上記の陽イオ
ン交換樹脂及び陰イオン交換樹脂を充填して常法により
再生した後、被処理水を通液する。被処理水の流通を継
続するにつれて、イオン交換樹脂のイオン交換能及び微
粒子の吸着能が漸次低下し、イオン交換塔から流出する
処理水中のイオン性不純物と共に微粒子数も漸次増加す
るので、微粒子数が所定の値に達した時点で通液を停止
する。
In order to carry out the method of the present invention, the ion exchange tower in the ultrapure water production system is filled with the cation exchange resin and the anion exchange resin, respectively, and regenerated by a conventional method. Through. As the flow of the water to be treated is continued, the ion exchange capacity of the ion exchange resin and the adsorption capacity of the fine particles gradually decrease, and the number of fine particles gradually increases together with the ionic impurities in the treated water flowing out of the ion exchange tower. When the value reaches a predetermined value, the liquid supply is stopped.

【0023】この際、イオン交換塔から流出する処理水
中に漏出してくる微粒子は、イオン性不純物よりも先行
して漏出してくるので、従来の電気伝導率の測定による
水質管理では漏出する微粒子数を把握することができな
い。従って、イオン交換塔の出口付近に微粒子計を設置
して、流出水中の微粒子数をチェックし、流出水中の微
粒子数が所定の値に達した時点で通水を停止するのがよ
い。微粒子計としては、例えばPLCA−310(堀場
製作所製)、ZRV(富士電機社製)、TK−200
(日本錬水社製)等の市販品が使用される。
At this time, the fine particles leaking into the treated water flowing out of the ion exchange tower leak prior to the ionic impurities. Therefore, the fine particles leaking in the conventional water quality control by measuring the electric conductivity are used. I can't keep track of the number. Therefore, it is preferable to install a fine particle meter near the outlet of the ion exchange tower, check the number of fine particles in the effluent, and stop the flow when the number of fine particles in the effluent reaches a predetermined value. Examples of the fine particle meter include PLCA-310 (manufactured by Horiba, Ltd.), ZRV (manufactured by Fuji Electric Co., Ltd.), and TK-200.
Commercial products such as (Nippon Rensui) are used.

【0024】被処理水の通液を停止した後、機能の低下
したイオン交換樹脂を再生する。再生には、通常の超純
水製造システムにおけるイオン交換樹脂の再生処理が適
用される。カートリッジ式のイオン交換塔の場合は、予
め再生済のイオン交換樹脂を充填したカートリッジと交
換すればよい。再生処理後のイオン交換塔は、処理水で
充分に洗浄した後、再び超純水の製造に供される。
After stopping the passage of the water to be treated, the ion-exchange resin having a reduced function is regenerated. For the regeneration, a regeneration treatment of an ion exchange resin in a normal ultrapure water production system is applied. In the case of a cartridge-type ion exchange tower, it may be replaced with a cartridge filled with regenerated ion exchange resin in advance. The ion-exchange tower after the regeneration treatment is sufficiently washed with treated water, and then supplied to the production of ultrapure water again.

【0025】[0025]

【実施例】次に本発明を実施例により更に詳細に説明す
るが、本発明はその要旨を超えない限り、以下の実施例
に限定されるものではない。 製造例1 クロロメチル化時の触媒量の影響 重量%が4.0%になるように工業用ジビニルベンゼン
(純度55%)とスチレン100重量部に対して、0.
5重量部のベンゾイルパーオキサイドを溶解した。懸濁
剤としてポリビニルアルコール0.5重量部を溶解した
脱塩水400重量部中に攪はん下、該重合モノマー相を
添加した。攪はんを1時間行い、モノマー相が充分に液
滴分散したのち、系を加熱し、80℃にて、8時間反応
を続けた。得られた重合体を冷却後、充分に水洗し、分
散剤を取り除いた後、50℃で5時間真空乾燥した。こ
のようにして架橋度4%のスチレン−ジビニルベンゼン
重合体を得た。
EXAMPLES Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist. Production Example 1 Influence of amount of catalyst at the time of chloromethylation: 0.1% by weight of industrial divinylbenzene (purity: 55%) and 100 parts by weight of styrene such that the weight% becomes 4.0%.
5 parts by weight of benzoyl peroxide were dissolved. The polymerization monomer phase was added to 400 parts by weight of demineralized water in which 0.5 part by weight of polyvinyl alcohol was dissolved as a suspending agent while stirring. Stirring was performed for 1 hour, and after the monomer phase was sufficiently dispersed in droplets, the system was heated and the reaction was continued at 80 ° C. for 8 hours. After cooling the obtained polymer, it was sufficiently washed with water to remove the dispersant, and then dried under vacuum at 50 ° C. for 5 hours. Thus, a styrene-divinylbenzene polymer having a degree of crosslinking of 4% was obtained.

【0026】得られた樹脂50重量部を250重量部の
クロロメチルメチルエーテル中に添加し、無水状態で室
温で1時間、膨潤させた。充分に膨潤させた後、塩化亜
鉛20重量部を加え、50℃に加熱し、10時間反応を
行った。反応後、脱塩水500重量部を5時間をかけて
滴下し、過剰のクロロメチルメチルエーテルを分解し
た。得られたクロロメチル化共重合体をろ過後、水洗
し、残存する反応副生成物を除去した。
50 parts by weight of the obtained resin was added to 250 parts by weight of chloromethyl methyl ether, and the mixture was allowed to swell under anhydrous conditions at room temperature for 1 hour. After sufficient swelling, 20 parts by weight of zinc chloride was added, and the mixture was heated to 50 ° C. and reacted for 10 hours. After the reaction, 500 parts by weight of demineralized water was added dropwise over 5 hours to decompose excess chloromethyl methyl ether. The resulting chloromethylated copolymer was filtered and washed with water to remove remaining reaction by-products.

【0027】このようにして得られたクロロメチル化共
重合体全量を2mol/lに調整したトリメチルアミン
水溶液200重量部中に懸濁し、攪はん下、50℃に加
熱し、8時間反応させた。反応後、得られた陰イオン交
換樹脂をろ過しカラム中に充填し充分に水洗した。この
ようにして、得られた陰イオン交換樹脂は以下のような
性質を有していた。
The total amount of the chloromethylated copolymer thus obtained was suspended in 200 parts by weight of an aqueous trimethylamine solution adjusted to 2 mol / l, heated to 50 ° C. with stirring, and reacted for 8 hours. . After the reaction, the obtained anion exchange resin was filtered, packed in a column, and sufficiently washed with water. Thus, the obtained anion exchange resin had the following properties.

【0028】水分 56.8% 交換容量 4.04m
eq/g 1.22meq/mlこの樹脂をサンプルA
とする。サンプルAとクロロメチル化時の塩化亜鉛量を
20重量部から50重量部にすることのみ変更し、全く
同一の手順により、得られた陰イオン交換樹脂をサンプ
ルBとする。サンプルBは以下のような一般物性を有し
ていた。水分 49.9% 交換容量 4.07meq
/g 1.43meq/ml
Water 56.8% Exchange capacity 4.04m
eq / g 1.22 meq / ml
And The anion-exchange resin obtained was designated as Sample B by exactly the same procedure as Sample A except that the amount of zinc chloride during chloromethylation was changed from 20 parts by weight to 50 parts by weight. Sample B had the following general physical properties. Moisture 49.9% exchange capacity 4.07 meq
/ G 1.43 meq / ml

【0029】製造例2 重合時加熱条件の影響 製造例1のサンプルAの架橋度を4.0%から3.7%
にする点、及び重合時の加熱条件を80℃で8時間保持
するのに対して、70℃で13時間保持しその後、10
0℃まで2時間で昇温し2時間保持すること以外は製造
例1のサンプルAと同様の方法によりサンプルCを得
た。サンプルCの一般物性は以下のとうりであった。水
分 54.4% 交換容量 4.23meq/g 1.
36meq/ml
Production Example 2 Effect of Heating Conditions During Polymerization The degree of crosslinking of sample A of Production Example 1 was from 4.0% to 3.7%.
And heating conditions at the time of polymerization are kept at 80 ° C. for 8 hours, while kept at 70 ° C. for 13 hours,
Sample C was obtained in the same manner as in Sample A of Production Example 1, except that the temperature was raised to 0 ° C in 2 hours and maintained for 2 hours. The general physical properties of Sample C were as follows. Moisture 54.4% Exchange capacity 4.23 meq / g
36 meq / ml

【0030】サンプルCの重合時の温度条件を70℃で
13時間保持しその後、100℃まで2時間で昇温し2
時間保持するのに対して、70℃で13時間保持しその
後、80℃まで2時間で昇温し、2時間保持し、さらに
100℃まで2時間で昇温し、2時間保持することを除
いてはサンプルCと同様な方法により、サンプルDを得
た。サンプルDの一般物性は以下のとうりであった。水
分 58.3% 交換容量 4.24meq/g 1.
28meq/ml
The temperature condition during the polymerization of Sample C was maintained at 70 ° C. for 13 hours, and then the temperature was raised to 100 ° C. in 2 hours.
Except for holding at 70 ° C. for 13 hours, then raising the temperature to 80 ° C. for 2 hours, holding for 2 hours, further raising the temperature to 100 ° C. for 2 hours, and holding for 2 hours. In the same manner as in Sample C, Sample D was obtained. The general physical properties of Sample D were as follows. Moisture 58.3% Exchange capacity 4.24 meq / g 1.
28 meq / ml

【0031】製造例3 製造例1のサンプルAの架橋度を4.0%から2.0%
にする点以外はサンプルAと同様の方法によりサンプル
Eを得た。サンプルEの一般物性は以下のとうりであっ
た。水分 72.8% 交換容量 4.63meq/g
0.83meq/ml
Production Example 3 The degree of crosslinking of Sample A of Production Example 1 was from 4.0% to 2.0%.
Sample E was obtained in the same manner as in Sample A, except that The general physical properties of Sample E were as follows. Water 72.8% Exchange capacity 4.63 meq / g
0.83 meq / ml

【0032】実施例1 サンプルの核磁気共鳴吸収測定 サンプルA、B、C、D、EおよびダイヤイオンSA1
0Aをそれぞれクロル形として、下記の方法により13
−核磁気共鳴吸収測定を行った。 機種: 日本電子製 GX−27
0 共鳴周波数: 13C 67.8MHz 測定モード: コンプリートデカップリ
ング ブロードニングファクター: 30Hz 待ち時間: 1秒 サンプル: 重水に懸濁、膨潤させた
状態で測定 プローブ: 10Φ
Example 1 Measurement of Nuclear Magnetic Resonance Absorption of Samples Samples A, B, C, D, E and Diaion SA1
0A each as chlor form, 13C by the following method
-A nuclear magnetic resonance absorption measurement was performed. Model: JEOL GX-27
0 Resonant frequency: 13 C 67.8 MHz Measurement mode: Complete decoupling Broadening factor: 30 Hz Waiting time: 1 second Sample: Measured while suspended and swollen in heavy water Probe: 10Φ

【0033】得られたシグナルは、それぞれ4級アンモ
ニウム塩のメチル基の炭素のみであった。各シグナルの
半値幅を測定図から読み取り13C−NMRの共鳴周波数
(Hz単位)で割ることによりppm単位に換算した値
を用いた。結果を表1に示す。また、サンプルAの核磁
気共鳴吸収測定図のシグナル部分を図2に示す。
The signals obtained were respectively only the carbon of the methyl group of the quaternary ammonium salt. The half-value width of each signal was read from the measurement diagram, and the value converted to ppm was used by dividing by the resonance frequency (in Hz) of 13 C-NMR. Table 1 shows the results. FIG. 2 shows a signal portion of the nuclear magnetic resonance absorption measurement diagram of Sample A.

【0034】表1 各サンプルのシグナルの半値幅 A 5.6 ppm B 8.1 ppm C 6.1 ppm D 5.0 ppm E 2.3 ppm ダイヤイオン SA10A 8.7 ppmTable 1 Half width of signal of each sample A 5.6 ppm B 8.1 ppm C 6.1 ppm D 5.0 ppm E 2.3 ppm Diamond ion SA10A 8.7 ppm

【0035】実施例2 サンプルの微粒子除去機能評価 直径80mm、長さ1500mmのカラムに7000mlの
強酸性陽イオン交換樹脂ダイヤイオンSKNを充填し、
このカラムに被処理水として横浜市上水に亜硫酸ナトリ
ウムを添加して残留塩素を除去した次の表2に示す組成
を有する水を流速30m/hrで通水し、その流出水を
タンクに貯蔵した。
Example 2 Evaluation of the function of removing fine particles from a sample A column having a diameter of 80 mm and a length of 1500 mm was filled with 7000 ml of strongly acidic cation exchange resin Diaion SKN.
Water having the composition shown in Table 2 below, in which sodium sulfite was added to the city water to remove residual chlorine as water to be treated, was passed through the column at a flow rate of 30 m / hr, and the effluent was stored in a tank. did.

【0036】 表2 横浜市上水の分析値 項目 水質 電機伝導率(25℃) 120μS/cm 全陽イオン 57mg−CaCO3 /1 全陰イオン 75mg−CaCO3 /1 微粒子数(≧0.1μm) 590,000個/ml 一方、直径30mm、長さ2000mmのカラムを6本用意
し、夫々のカラムに、サンプルA、B、C、D、Eおよ
びダイヤイオンSA10Aを別個に充填して、6個の陰
イオン交換塔を形成した後、夫々の塔を苛性ソーダ水溶
液で常法により再生した。
[0036] Table 2 Analytical values Attribute water electric conductivity of Yokohama tap water (25 ℃) 120μS / cm total cation 57mg-CaCO 3/1 total anionic 75mg-CaCO 3/1 Number of particles (≧ 0.1 [mu] m) 590,000 / ml On the other hand, six columns each having a diameter of 30 mm and a length of 2,000 mm were prepared, and each column was separately filled with samples A, B, C, D, E and Diaion SA10A, and each column was filled with six columns. After the formation of the anion exchange towers, each of the towers was regenerated with a sodium hydroxide aqueous solution by a conventional method.

【0037】前期のタンクに貯蔵した陽イオン交換樹脂
により処理した処理水を、上記6本の陰イオン交換塔に
夫々の流速40m/hrで別個に通水し、各陰イオン交
換塔から流出した処理水中に存在する粒径0.1μm以
上の微粒子数を、微粒子計(堀場製作所製 PLCA−
310)を用いて測定し、処理水中に漏出する該微粒子
数が10000個/mlに達するまでの通水を継続した
後、通水を停止し、それまでの水量を採取した。その結
果を表3に示す。表3は、使用した強塩基性陰イオン交
換樹脂の種類および採取水量との関係を示している。
The treated water treated with the cation exchange resin stored in the tank in the previous period was separately passed through the above-mentioned six anion exchange towers at a flow rate of 40 m / hr, and flowed out of each anion exchange tower. The number of fine particles having a particle size of 0.1 μm or more present in the treated water was measured using a fine particle meter (PLCA- manufactured by Horiba, Ltd.).
310), the water flow was continued until the number of the fine particles leaking into the treated water reached 10,000 / ml, then the water flow was stopped, and the amount of water up to that time was collected. Table 3 shows the results. Table 3 shows the relationship between the type of the strongly basic anion exchange resin used and the amount of collected water.

【0038】表3 各サンプルによる通水量の影響 A 430 (1/1−R) B 150 (1/1−R) C 320 (1/1−R) D 450 (1/1−R) E 520 (1/1−R) ダイヤイオン SA10A 120Table 3 Effect of water flow rate by each sample A 430 (1 / 1-R) B 150 (1 / 1-R) C 320 (1 / 1-R) D 450 (1 / 1-R) E 520 (1 / 1-R) Diamond ion SA10A 120

【0039】[0039]

【発明の効果】本発明は、水中の微粒子の除去機能を有
する陰イオン交換樹脂に関するものであり、超純水シス
テムにおける陰イオン交換塔に充填する陰イオン交換樹
脂として、本発明の陰イオン交換樹脂を用いることによ
り、被処理水中のイオン性不純物と共に微粒子を効率よ
く除去することができ、このため後続する膜装置の負荷
を軽減し、高純度の超純水をえることができる。また、
膜装置の洗浄または交換の頻度を低減することができる
ので超純水の工業的製造に寄与するところは大きい。
The present invention relates to an anion exchange resin having a function of removing fine particles in water. The anion exchange resin of the present invention is used as an anion exchange resin to be packed in an anion exchange tower in an ultrapure water system. By using a resin, fine particles can be efficiently removed together with ionic impurities in the water to be treated, so that the load on the subsequent membrane device can be reduced and high-purity ultrapure water can be obtained. Also,
Since the frequency of cleaning or replacement of the membrane device can be reduced, it greatly contributes to industrial production of ultrapure water.

【0040】また、本発明による陰イオン交換樹脂の利
用分野は、微粒子除去を必要とする各種応用分野、例え
ば、原子力、電力、一般工業用水製造、医薬品製造用純
水製造、化粧品製造用純水製造、食品精製等に広く利用
できるものである。
The fields of application of the anion exchange resin according to the present invention include various application fields which require the removal of fine particles, for example, nuclear power, electric power, general industrial water production, pharmaceutical production pure water, cosmetics production pure water. It can be widely used for production, food refining, etc.

【図面の簡単な説明】[Brief description of the drawings]

【図1】超純水製造システムの一例のフローチャートFIG. 1 is a flowchart of an example of an ultrapure water production system.

【図2】製造例1で得たサンプルAの核磁気共鳴吸収測
定図、図中横軸は吸収周波数(Hz)
FIG. 2 is a diagram showing a nuclear magnetic resonance absorption of sample A obtained in Production Example 1, where the horizontal axis is an absorption frequency (Hz).

フロントページの続き (72)発明者 永谷 龍二 東京都千代田区丸の内三丁目2番3号 日本錬水株式会社内 (56)参考文献 特開 平1−176491(JP,A) 特開 平3−181385(JP,A) 特開 平4−108588(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 39/00 - 49/02 C02F 1/42 Continuation of the front page (72) Inventor Ryuji Nagatani 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Nippon Rensui Co., Ltd. (56) References JP-A-1-176491 (JP, A) JP-A-3-181385 (JP, A) JP-A-4-108588 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B01J 39/00-49/02 C02F 1/42

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 モノビニル芳香族化合物とポリビニル芳
香族化合物との架橋共重合体を母体とする4級アンモニ
ウム基を有する強塩基性陰イオン交換樹脂であって、重
水懸濁状態での13Cの核磁気共鳴吸収測定による前記4
級アンモニウム基のアルキル基またはアルカノール基の
炭素の吸収スペクトルの半値幅が7.5ppm以下であ
ることを特徴とする超純水製造用陰イオン交換樹脂。
1. A strongly basic anion exchange resin having a quaternary ammonium group based on a crosslinked copolymer of a monovinyl aromatic compound and a polyvinyl aromatic compound, the resin comprising 13 C The above 4 based on nuclear magnetic resonance absorption measurement
An anion exchange resin for producing ultrapure water, wherein the half value width of the absorption spectrum of carbon of an alkyl group or an alkanol group of a quaternary ammonium group is 7.5 ppm or less.
【請求項2】 超純水製造システムにおけるイオン交換
装置に請求項(1)記載の陰イオン交換樹脂を用いて水
を処理することを特徴とする超純水の製造方法。
2. A method for producing ultrapure water, comprising treating water with the anion exchange resin according to claim 1 in an ion exchange device in the ultrapure water production system.
JP20831991A 1991-08-20 1991-08-20 Anion exchange resin for ultrapure water production and ultrapure water production method using the same Expired - Lifetime JP3173049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20831991A JP3173049B2 (en) 1991-08-20 1991-08-20 Anion exchange resin for ultrapure water production and ultrapure water production method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20831991A JP3173049B2 (en) 1991-08-20 1991-08-20 Anion exchange resin for ultrapure water production and ultrapure water production method using the same

Publications (2)

Publication Number Publication Date
JPH0549948A JPH0549948A (en) 1993-03-02
JP3173049B2 true JP3173049B2 (en) 2001-06-04

Family

ID=16554294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20831991A Expired - Lifetime JP3173049B2 (en) 1991-08-20 1991-08-20 Anion exchange resin for ultrapure water production and ultrapure water production method using the same

Country Status (1)

Country Link
JP (1) JP3173049B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008129984A1 (en) * 2007-04-19 2008-10-30 Kurita Water Industries Ltd. Method for producing anion exchange resin, anion exchange resin, method for producing cation exchange resin, cation exchange resin, mixed bed resin, and method for producing ultra-pure water for cleaning electronic device/material
JP5589261B2 (en) * 2007-04-19 2014-09-17 栗田工業株式会社 Method for producing anion exchange resin, method for producing anion exchange resin, mixed bed resin, and ultrapure water for cleaning electronic parts and materials
JP5499433B2 (en) * 2007-11-06 2014-05-21 栗田工業株式会社 Ultrapure water manufacturing method and apparatus, and electronic component member cleaning method and apparatus
CN101939262A (en) * 2007-11-06 2011-01-05 栗田工业株式会社 Process and apparatus for producing ultrapure water, and method and apparatus for cleaning electronic component members

Also Published As

Publication number Publication date
JPH0549948A (en) 1993-03-02

Similar Documents

Publication Publication Date Title
CA2199497C (en) Water treatment process
US5518627A (en) Method for treating water or an aqueous solution
US5292439A (en) Method for preparing ultrapure water
EP0585898B1 (en) Process for the production and use of an anion exchange resin
MXPA00008359A (en) Method for producing monodispersed anion exchangers.
CA1095190A (en) Method for removing a weak acid from an aqueous solution
CA1262300A (en) Interface beads for mixed-bed ion exchange resins
JP3173049B2 (en) Anion exchange resin for ultrapure water production and ultrapure water production method using the same
CA1221499A (en) Alkylaminophosphonic chelating resins, their preparation and use in purifying brines
JP3594492B2 (en) Condensate desalination equipment
JPH11352283A (en) Condensate processing method and condensate demineralization device
US3875053A (en) Process for carrying out ion exchange and adsorption processes using a countercurrent vessel
JP2002102719A (en) Mixed bed type ion exchange resin bed and anion exchange resin used in the same
JP3248205B2 (en) Ion exchange resin for ultrapure water production, method for producing the same, and method for producing ultrapure water using the same
JPH0468980B2 (en)
KR100454093B1 (en) Ion exchange textile for electrodeionization process
IL28070A (en) Removal of colloidal materials from aqueous liquids
EP0497632A1 (en) Ion exchange apparatus and process
JPH03232528A (en) Adsorbent and method for removing suspended impurities
JPH04108588A (en) Production of ultrapure water
US3409566A (en) Method of grinding strong base ion exchange resins in the hydroxide form
JPH0771669B2 (en) Ultrapure water production method
JP2003230881A (en) Method for treating condensed water
JPH0623282A (en) Tower packed with ion exchange fiber
JPH0714489B2 (en) Anion exchange resin

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090330

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090330

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 11