JP3248205B2 - Ion exchange resin for ultrapure water production, method for producing the same, and method for producing ultrapure water using the same - Google Patents

Ion exchange resin for ultrapure water production, method for producing the same, and method for producing ultrapure water using the same

Info

Publication number
JP3248205B2
JP3248205B2 JP30800191A JP30800191A JP3248205B2 JP 3248205 B2 JP3248205 B2 JP 3248205B2 JP 30800191 A JP30800191 A JP 30800191A JP 30800191 A JP30800191 A JP 30800191A JP 3248205 B2 JP3248205 B2 JP 3248205B2
Authority
JP
Japan
Prior art keywords
exchange resin
water
compound
anion exchange
ultrapure water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30800191A
Other languages
Japanese (ja)
Other versions
JPH054051A (en
Inventor
高光 森田
純哉 渡辺
豊和 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27168996&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3248205(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP30800191A priority Critical patent/JP3248205B2/en
Priority claimed from CA002058002A external-priority patent/CA2058002A1/en
Publication of JPH054051A publication Critical patent/JPH054051A/en
Application granted granted Critical
Publication of JP3248205B2 publication Critical patent/JP3248205B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は超純水製造用イオン交換
脂を用いた、純水の製造法に関するものである。特に
本発明は超LSIの製造工程で使用する洗浄水など電子
工業で用いるのに好適な非常に高純度の純水、いわゆる
超純水製造用イオン交換樹脂を用いた超純水の製造法に
関するものである。
The present invention relates to relates to ultrapure water production for using ion-exchange <br/> resins, pure water production process. In particular, the present invention is suitable very high purity deionized water, preparation of ultrapure water using a so-called ultrapure water production for ion-exchange resins for use in the washing water and electronic industry for use in ultra-LSI manufacturing process It is about.

【0002】[0002]

【従来の技術】純水の製造法はいくつも知られている。
代表的な例では、原水に凝集濾過を施して懸濁物を除去
し、次いでイオン交換樹脂で処理して存在するイオン性
物質の大部分を除去した脱イオン水とする。脱イオン水
は次いで紫外線を照射して有機物を酸化分解する工程、
減圧下で溶存ガスを除去する工程、強酸性陽イオン交換
樹脂と強塩基性陰イオン交換樹脂との混合床で溶存する
イオン性物質を除去する工程、逆浸透膜で溶存物を除去
する工程などを経て純水とする。このようにして得られ
る純水の水質は、よいものでは比抵抗が18MΩ・cm
以上、全有機体炭素含有量10ppb以下に達してい
る。
2. Description of the Related Art There are many known methods for producing pure water.
In a typical example, raw water is subjected to coagulation filtration to remove suspended matter, and then treated with an ion exchange resin to obtain deionized water in which most of the ionic substances present are removed. Deionized water is then irradiated with ultraviolet light to oxidatively decompose organic matter,
Steps of removing dissolved gases under reduced pressure, steps of removing ionic substances dissolved in a mixed bed of a strongly acidic cation exchange resin and a strongly basic anion exchange resin, steps of removing dissolved substances with a reverse osmosis membrane, etc. And purified water. The quality of the pure water obtained in this way is a good one having a specific resistance of 18 MΩ · cm.
As described above, the total organic carbon content has reached 10 ppb or less.

【0003】この純水を更に精製すると超純水となる。
代表的な例では、純水に短波長の紫外線を照射して含有
されている有機物を炭酸ないしはカルボン酸に分解す
る。次いで照射処理を経た純水を強塩基性陰イオン交換
樹脂で処理し、更に強酸性陽イオン交換樹脂と強塩基性
陰イオン交換樹脂との混合床で処理して照射により生成
したイオン性物質などを除去する。最後に限外濾過膜で
処理してコロイド状物質など極微量含まれている懸濁物
を除去して超純水とする。
When this pure water is further purified, it becomes ultrapure water.
In a typical example, pure water is irradiated with short-wavelength ultraviolet rays to decompose organic substances contained therein into carbonic acid or carboxylic acid. Then, the pure water that has been subjected to the irradiation treatment is treated with a strongly basic anion exchange resin, and further treated with a mixed bed of a strongly acidic cation exchange resin and a strongly basic anion exchange resin. Is removed. Finally, the suspension is treated with an ultrafiltration membrane to remove a very small amount of a suspended substance such as a colloidal substance to obtain ultrapure water.

【0004】[0004]

【発明が解決しようとする課題】全有機体炭素の含有量
が10ppb以下のような高純度の純水ないし超純水の
製造に際しては、装置を構成している材料から水中に混
入する不純物が最終的に得られる純水ないし超純水の水
質に大きく影響する。特にイオン交換樹脂は小粒径の粒
子であり、イオン交換樹脂床はその体積に比較して極め
て大きな樹脂表面積を有しているので、イオン交換樹脂
から溶出する不純物による汚染は得られる純水ないし超
純水に対し無視できない影響を及ぼす。すなわちイオン
交換樹脂床に通水すると、水中の不純物がイオン交換樹
脂に吸着されて除去されると同時に、イオン交換樹脂か
ら微量の不純物が溶出してくるので、得られる水の純度
は或る値以上には上昇しない。このイオン交換樹脂から
の溶出を低減させる対策の一つとして、使用前に予じめ
イオン交換樹脂塔に長時間通水して樹脂中の溶出物を除
去することが行なわれているが、これは製品である水の
一部を製造プロセス内で消費してしまうことであり、プ
ロセスの効率を低下させるものである。従って、通水に
際しての不純物の溶出の少ないイオン交換樹脂が望まれ
ている。
In the production of high-purity pure water or ultrapure water having a total organic carbon content of 10 ppb or less, impurities mixed into the water from the material constituting the apparatus are required. It has a great effect on the quality of pure or ultrapure water that is finally obtained. In particular, the ion exchange resin is a particle having a small particle size, and the ion exchange resin bed has an extremely large resin surface area in comparison with its volume. Has a non-negligible effect on ultrapure water. That is, when water is passed through the ion-exchange resin bed, impurities in the water are adsorbed and removed by the ion-exchange resin, and at the same time, a small amount of impurities are eluted from the ion-exchange resin. It does not rise above that. As one of the measures to reduce the elution from the ion exchange resin, it has been carried out to remove the eluate in the resin by passing water through the ion exchange resin tower for a long time before use. Means that part of the product water is consumed in the manufacturing process, which reduces the efficiency of the process. Therefore, an ion exchange resin with less elution of impurities when passing water is desired.

【0005】一般にスルホン酸型の陽イオン交換樹脂に
比して4級アンモニウム型の陰イオン交換樹脂は通水に
より溶出を低減させるのが困難なので、溶出物の少ない
4級アンモニウム型の陰イオン交換樹脂が特に望まれて
いる。本発明者らはモノビニル芳香族化合物とポリビニ
ル化合物との共重合体を母体とするイオン交換樹脂につ
いて、このイオン交換樹脂を再生型として50℃の温水
中で振とうしたときの溶出物について検討した結果、溶
出物のうち分子量が3000未満のものは逆符号のイオ
ン交換樹脂、すなわち塩基性陰イオン交換樹脂からの溶
出物ならばスルホン酸型の酸性陽イオン交換樹脂に吸着
され易いが、分子量が3000以上のものは逆符号のイ
オン交換樹脂に吸着され難いこと、及びこの現象は塩基
性陰イオン交換樹脂からの溶出物において特に著るしい
ことを見出した。従って分子量が3000以上の溶出物
が実質的に無い陽イオン交換樹脂及び陰イオン交換樹脂
から成る混合床イオン交換塔に通水すると、溶出物が極
めて少ない超純水が得られる。超純水の製造に際して
は、最後にカートリッジ式の混合床イオン交換塔に通水
するのが一般的なので、この知見は超純水製造用のイオ
ン交換樹脂、特に塩基性陰イオン交換樹脂は、溶出物が
無くなるまで徹底的に洗浄せずとも、分子量が3000
以上の溶出物が実質的に無くなるまで洗浄すればよいこ
とを意味する。また、洗浄も分子量が3000以上の溶
出物が効率的に除去されるような洗浄方法で行なえばよ
い。
In general, quaternary ammonium type anion exchange resins are more difficult to reduce elution by passing water than sulfonic acid type cation exchange resins. Resins are particularly desired. The present inventors have studied the ion-exchange resin based on a copolymer of a monovinyl aromatic compound and a polyvinyl compound as a base, and eluted when the ion-exchange resin was used as a regenerative type and shaken in warm water at 50 ° C. As a result, the eluate having a molecular weight of less than 3000 is easily adsorbed to an ion exchange resin having an opposite sign, that is, if it is eluted from a basic anion exchange resin, is easily adsorbed to a sulfonic acid type cation exchange resin. It was found that those having 3,000 or more were hardly adsorbed to the ion exchange resin having the opposite sign, and that this phenomenon was particularly remarkable in the eluate from the basic anion exchange resin. Therefore, when water is passed through a mixed-bed ion exchange column composed of a cation exchange resin and an anion exchange resin having substantially no eluate having a molecular weight of 3000 or more, ultrapure water with very little eluate can be obtained. In the production of ultrapure water, it is general that water is finally passed through a cartridge-type mixed-bed ion exchange tower, so this finding is that ion exchange resins for ultrapure water production, especially basic anion exchange resins, Even without thorough washing until the eluate disappears, the molecular weight is 3000
This means that washing may be performed until the above-mentioned eluate is substantially eliminated. Further, the washing may be performed by a washing method such that an elute having a molecular weight of 3000 or more is efficiently removed.

【0006】[0006]

【課題を解決するための手段】本発明はこのような知見
に基づいて達成されたもので、その目的は超純水製造用
のイオン交換樹脂を用いて超純水を製造する方法にあ
る。
The present invention SUMMARY OF] has been achieved based on these findings, it is an object of the present invention a method of producing ultra pure water had use of ion exchange resin for ultrapure water production.

【0007】本発明の目的は、用いるイオン交換樹脂か
らの溶出物による汚染の少ない純水ないし超純水の製造
法を提供することにある。本発明の他の目的は全有機体
炭素含有量の著るしく少ない純水ないし超純水の製造法
を提供することにある。本発明の更に他の目的はイオン
交換樹脂からの溶出物により水を汚染することの著るし
く少ない混合床を用いる純水ないしは超純水の製造法を
提供することにある。
An object of the present invention is to provide a method for producing pure water or ultrapure water which is less contaminated by leaching from the ion exchange resin used. Another object of the present invention is to provide a method for producing pure water or ultrapure water having a remarkably low total organic carbon content. Still another object of the present invention is to provide a method for producing pure water or ultrapure water using a mixed bed having extremely low contamination of water by the eluate from the ion exchange resin.

【0008】本発明によれば、モノビニル脂肪族化合物
を含んでいてもよいモノビニル芳香族化合物とポリビニ
ル化合物との共重合体を母体とする強塩基性陰イオン交
換樹脂であって、50℃の温水中に7日間浸漬したとき
に分子量3000未満の有機化合物は溶出するが、分子
量3000以上の有機化合物は実質的に溶出しないもの
と、強酸性陽イオン交換樹脂との混合床に、水を流通さ
せて水中に溶存する微量のイオン性の不純物を吸着除去
することにより、極めて高純度の純水ないしは超純水を
得ることができる。
According to the present invention, there is provided a strongly basic anion exchange resin based on a copolymer of a monovinyl aromatic compound and a polyvinyl compound, which may contain a monovinyl aliphatic compound, and comprising a hot water at 50 ° C. When immersed in water for 7 days, organic compounds having a molecular weight of less than 3000 elute, but organic compounds having a molecular weight of 3000 or more do not substantially elute, and water is passed through a mixed bed with a strongly acidic cation exchange resin. By removing a small amount of ionic impurities dissolved in water by adsorption, pure water or ultrapure water of extremely high purity can be obtained.

【0009】好ましくは混合床を構成する強塩基性陰イ
オン交換樹脂と強酸性陽イオン交換樹脂の双方が、モノ
ビニル脂肪族化合物を含んでいてもよいモノビニル芳香
族化合物とポリビニル化合物との共重合体を母体とする
ものであって、50℃の温水中に7日間浸漬したときに
分子量3000未満の有機化合物は溶出するが、分子量
3000以上の有機化合物は実質的に溶出しないもので
ある。更に好ましくは、混合床を構成する強塩基性陰イ
オン交換樹脂又は強塩基性陰イオン交換樹脂と強酸性陽
イオン交換樹脂の双方に、分子量2000以上の有機化
合物が実質的に溶出しないものを用いる。
Preferably, both the strongly basic anion exchange resin and the strongly acidic cation exchange resin constituting the mixed bed are copolymers of a monovinyl aromatic compound and a polyvinyl compound which may contain a monovinyl aliphatic compound. The organic compound having a molecular weight of less than 3000 elutes when immersed in warm water at 50 ° C. for 7 days, but the organic compound having a molecular weight of 3000 or more is not substantially eluted. More preferably, a strongly basic anion exchange resin or a strongly basic anion exchange resin and a strongly acidic cation exchange resin constituting the mixed bed, in which an organic compound having a molecular weight of 2,000 or more does not substantially elute, is used. .

【0010】本発明で用いる超純水製造用のイオン交換
樹脂は、モノビニル芳香族化合物とポリビニル化合物と
の共重合体を母体とするイオン交換樹脂であって、50
℃の温水中に浸漬したときに分子量3000未満の有機
化合物は溶出するが、分子量3000以上の有機化合物
は実質的に溶出しないことを特徴とするものである。こ
こで分子量2000以上の有機化合物が実質的に溶出し
ないものである方がさらに好ましい。
The ion-exchange resin for producing ultrapure water used in the present invention is an ion-exchange resin having a copolymer of a monovinyl aromatic compound and a polyvinyl compound as a base material.
Organic compounds having a molecular weight of less than 3000 elute when immersed in warm water at a temperature of ℃, but organic compounds having a molecular weight of 3000 or more are not substantially eluted. Here, it is more preferable that the organic compound having a molecular weight of 2,000 or more does not substantially elute.

【0011】本発明で用いる超純水製造用イオン交換樹
脂は分子量3000未満の溶出物は含有していてもよい
が、このような溶出物といえども量が多いと水質を悪化
させるので、その量は後記する溶出物の測定法により測
定して、有機炭素として300ppm以下であるのが好
ましい。溶出物の除去に際しての洗浄効率を考慮する
と、溶出物は有機炭素として300ppm以下、特に1
00ppm以下の範囲にあるのが好ましい。また溶出物
は中程度の分子量であるのが好ましく、溶出物の90%
以上は分子量2000未満、特に100〜1000の範
囲にあるのが好ましい。
[0011] The ion exchange resin for producing ultrapure water used in the present invention may contain an eluate having a molecular weight of less than 3000. However, even if such an eluate is used in a large amount, the water quality deteriorates. The amount is preferably 300 ppm or less as organic carbon as measured by a method for measuring an eluted material described below. Considering the washing efficiency when removing the eluted material, the eluted material is 300 ppm or less as organic carbon, particularly 1 ppm.
It is preferably in the range of 00 ppm or less. The eluate preferably has a medium molecular weight, and 90% of the eluate
The molecular weight is preferably less than 2,000, particularly preferably in the range of 100 to 1,000.

【0012】本発明で用いる超純水製造用イオン交換樹
脂は公知の方法に従ってモノビニル芳香族化合物とポリ
ビニル化合物とを共重合させ、これにイオン交換基を導
入し、最後に水および水よりも膨潤力の大きい有機溶媒
で洗浄して分子量3000以上、好ましくは分子量20
00以上の溶出物を実質的に全て除去することにより製
造することができる。
The ion exchange resin for producing ultrapure water used in the present invention is obtained by copolymerizing a monovinyl aromatic compound and a polyvinyl compound according to a known method, introducing an ion exchange group into the copolymer, and finally swelling more than water and water. After washing with a strong organic solvent, the molecular weight is 3000 or more, preferably 20
It can be produced by removing substantially all of the eluate of 00 or more.

【0013】モノビニル芳香族化合物としては芳香環に
1〜3のアルキル基もしくはハロゲン原子を置換基とし
て有していてもよいモノビニル芳香族化合物が挙げら
れ、一般的にはスチレン、α−メチルスチレン、エチル
スチレン、クロルスチレン、ビニルトルエン、ビニルキ
シレン、ビニルナフタレンなどの他の芳香族化合物を用
いることができるが好ましくはスチレンである。また、
所望ならば、これらにモノビニル脂肪族化合物を少量併
用することもできる。
Examples of the monovinyl aromatic compound include monovinyl aromatic compounds which may have, as a substituent, 1 to 3 alkyl groups or halogen atoms in an aromatic ring, and generally, styrene, α-methylstyrene, Other aromatic compounds such as ethylstyrene, chlorostyrene, vinyltoluene, vinylxylene and vinylnaphthalene can be used, but styrene is preferred. Also,
If desired, these may be used in combination with a small amount of a monovinyl aliphatic compound.

【0014】ポリビニル化合物としてはジもしくはトリ
ビニル芳香族化合物又はジもしくはトリビニル脂肪族化
合物から選ばれるものであり、好ましくはジビニルベン
ゼン、トリビニルベンゼン、ジビニルトルエン、ジビニ
ルキシレン、ジビニルナフタレン、エチレングリコール
ジ(メタ)アクリレート、ジビニルケトン、ジビニルス
ルホン、ジアリルフタレート、ジアリルフマレート、ジ
アリルアジペートなどが用いられる。特に好ましくはジ
ビニルベンゼンである。
The polyvinyl compound is selected from di- or trivinyl aromatic compounds or di- or trivinyl aliphatic compounds, and is preferably divinylbenzene, trivinylbenzene, divinyltoluene, divinylxylene, divinylnaphthalene, ethylene glycol di (meth ) Acrylate, divinyl ketone, divinyl sulfone, diallyl phthalate, diallyl fumarate, diallyl adipate and the like are used. Particularly preferred is divinylbenzene.

【0015】ポリビニル化合物は、ビニル化合物全体の
2%(重量)という少量でもよいが、通常は4%以上、
好ましくは6%以上となるように用いる。周知のように
ポリビニル化合物の比率が多くなるにつれて生成するイ
オン交換樹脂は水中では膨潤し難くなり、従って洗浄に
より溶出物を除去するのが困難になる。また、ポリビニ
ル化合物は生成するイオン交換樹脂中において疎水性部
分を構成しているので、親水性部分であるイオン交換基
の量が一定ならば、ポリビニル化合物の量が多いほど一
般に水よりも有機溶媒に膨潤し易くなる。
The polyvinyl compound may be a small amount of 2% (by weight) of the whole vinyl compound, but is usually 4% or more.
Preferably, it is used so as to be at least 6%. As is well known, as the ratio of the polyvinyl compound increases, the formed ion exchange resin hardly swells in water, and thus it becomes difficult to remove the eluted material by washing. Further, since the polyvinyl compound constitutes a hydrophobic part in the ion exchange resin to be produced, if the amount of the ion exchange group, which is a hydrophilic part, is constant, the larger the amount of the polyvinyl compound is, the more the organic solvent is generally used rather than water. Swells easily.

【0016】モノビニル芳香族化合物とポリビニル化合
物からの共重合体の製造は、一般に懸濁重合法によって
行なわれ、水性媒体中あるいはモノ及びポリビニル化合
物は溶解するが共重合体を溶解しない溶媒中で重合開始
剤の存在下に共重合される。これにより使用に際し最も
好ましい形状であるビーズ状の共重合体が得られる。一
般に前者の水性媒体中ではゲル型、後者の溶媒中ではポ
ーラス型の形状の樹脂が得られる。重合触媒としては、
ベンゾイルパーオキサイド、ターシャリーブチルパーオ
キサイド、ラウロイルパーオキサイド、アゾビスイソブ
チロニトリル等が用いられる。重合反応の温度は、触媒
の種類にもよるが、通常は50〜100℃の範囲であ
る。
The production of a copolymer from a monovinyl aromatic compound and a polyvinyl compound is generally carried out by a suspension polymerization method, and is carried out in an aqueous medium or in a solvent in which the mono and polyvinyl compounds are dissolved but the copolymer is not dissolved. It is copolymerized in the presence of an initiator. Thereby, a bead-like copolymer which is the most preferable shape for use is obtained. Generally, a gel-shaped resin is obtained in the former aqueous medium, and a porous resin is obtained in the latter solvent. As the polymerization catalyst,
Benzoyl peroxide, tertiary butyl peroxide, lauroyl peroxide, azobisisobutyronitrile and the like are used. The temperature of the polymerization reaction is usually in the range of 50 to 100 ° C., though it depends on the type of the catalyst.

【0017】得られた共重合体には公知の方法でスルホ
ン酸基、アミノ基などのイオン交換基を導入する。アミ
ノ基の導入には、先ず共重合体に公知の方法によりハロ
アルキル化剤を作用させてハロアルキル化した共重合体
とする。ハロアルキル化剤としてはクロロメチルメチル
エーテル、クロロエチルメチルエーテル、クロロメチル
エチルエーテル、ブロモメチルメチルエーテル、ブロモ
エチルメチルエーテル、ブロモメチルエチルエーテルな
どが用いられる。ハロアルキル化の触媒としては、塩化
亜鉛、無水塩化アルミニウム、塩化スズ、塩化鉄などが
用いられる。触媒は共重合体に対し1〜100 (重量)
%の割合で用いられ、同一の共重合体に対してはこの使
用比率を増減させることによりハロアルキル化の程度を
制御することができる。また、同一のハロアルキル化率
を達成するには、ポリビニル化合物の比率の多い共重合
体ほど触媒の使用量を多くする。
An ion exchange group such as a sulfonic acid group or an amino group is introduced into the obtained copolymer by a known method. In introducing an amino group, first, a haloalkylating agent is allowed to act on the copolymer by a known method to obtain a haloalkylated copolymer. As the haloalkylating agent, chloromethyl methyl ether, chloroethyl methyl ether, chloromethyl ethyl ether, bromomethyl methyl ether, bromoethyl methyl ether, bromomethyl ethyl ether and the like are used. As a catalyst for haloalkylation, zinc chloride, anhydrous aluminum chloride, tin chloride, iron chloride and the like are used. The catalyst is 1 to 100 (weight) based on the copolymer.
%, And for the same copolymer, the degree of haloalkylation can be controlled by increasing or decreasing the use ratio. Further, in order to achieve the same haloalkylation ratio, the amount of the catalyst used increases as the copolymer has a higher ratio of the polyvinyl compound.

【0018】また、別法として塩酸、メタノール、クロ
ロ硫酸、塩化スルフリル、塩化チオニル、アシルクロラ
イド、三塩化リン、五塩化リン、塩化アルミニウム等か
ら選ばれる塩素含有試薬及びホルマリン又はパラホルム
アルデヒド、トリオキサン等の反応中にホルマリンを生
成する物質から成る溶液を用いてハロアルキル化を行な
うこともできる。
Alternatively, a chlorine-containing reagent selected from hydrochloric acid, methanol, chlorosulfuric acid, sulfuryl chloride, thionyl chloride, acyl chloride, phosphorus trichloride, phosphorus pentachloride, aluminum chloride and the like, and formalin or paraformaldehyde, trioxane, etc. Haloalkylation can also be performed using a solution consisting of a substance that produces formalin during the reaction.

【0019】反応は通常、共重合体を膨潤させる有機溶
媒、例えばエチレンジクロライド、プロピレンジクロラ
イド、ベンゼン、トルエン等の存在下に行なわれるが、
多量のハロアルキル化剤を用いて膨潤溶媒を兼ねること
もできる。反応は通常40〜60℃の温度で数時間ない
し1日程度行なわれる。ハロアルキル化した共重合体に
トリメチルアミン、ジメチルエタノールアミンをはじめ
各種のアミンを反応させることにより、アミンの種類に
応じた特性の塩基性アニオン交換樹脂が得られる。
The reaction is usually carried out in the presence of an organic solvent which swells the copolymer, for example, ethylene dichloride, propylene dichloride, benzene, toluene, etc.
A large amount of haloalkylating agent can be used as a swelling solvent. The reaction is usually carried out at a temperature of 40 to 60 ° C for several hours to one day. By reacting the haloalkylated copolymer with various amines such as trimethylamine and dimethylethanolamine, a basic anion exchange resin having characteristics according to the type of amine can be obtained.

【0020】特に3級アミンを反応させれば強塩基性の
樹脂が得られる。3級アミンとしては炭素数1〜4のア
ルキル基又はアルカノール基よりなるトリアルキルアミ
ン、ジアルキル−(モノ)アルカノールアミンから選ば
れる。このようにして得られた塩基性アニオン交換樹脂
は、残存するアミンを除去したのち十分に水洗し、次い
で水酸化ナトリウム水溶液で再生型として更に水洗す
る。イオン交換樹脂は再生型とすると膨潤するが、本発
明において用いる陰イオン交換樹脂は、通常、Cl型に
対して再生型の方が110%以上の体積を有している。
再生型の方が120%以上の体積となるイオン交換樹脂
がさらに好ましい。再生型としての水洗が終了したイオ
ン交換樹脂は、次いで、有機溶媒で洗浄して分子量が3
000以上、好ましくは2000以上の溶出物を実質的
に完全に除去する。有機溶媒での洗浄を効率よく行なう
には、イオン交換樹脂が再生型において水中よりもメタ
ノール中での方がより大きく膨潤するものであるのが好
ましい。
Particularly when a tertiary amine is reacted, a strongly basic resin can be obtained. The tertiary amine is selected from trialkylamines comprising an alkyl group having 1 to 4 carbon atoms or alkanol groups, and dialkyl- (mono) alkanolamines. The basic anion exchange resin thus obtained is thoroughly washed with water after removing the remaining amine, and then further washed with an aqueous sodium hydroxide solution as a regeneration type. The ion-exchange resin swells when it is of the regenerative type, but the anion-exchange resin used in the present invention usually has a volume of 110% or more of the Cl-type anion-exchange resin.
An ion exchange resin having a volume of 120% or more is more preferable for the regeneration type. The ion-exchange resin that has been washed with water as a regeneration type is then washed with an organic solvent to have a molecular weight of 3
Eluents of 000 or more, preferably 2000 or more are substantially completely removed. In order to efficiently perform washing with an organic solvent, it is preferable that the ion exchange resin swells more largely in methanol than in water in the regeneration type.

【0021】有機溶媒としてはメタノールが好んで用い
られるが、所望ならばエタノール、プロパノール、ブタ
ノール等のアルコール類、アセトン、メチルエチルケト
ン等のケトン類、アセトニトリル、N,N−ジメチルホ
ルムアミド等を用いてもよい。これらの有機溶媒は、少
くとも60(重量)%以上の濃度の水溶液として用いる
のが好ましい。更に好ましくは80%以上、特に90%
以上の濃度で用いるのが更に好ましい。いずれにしても
洗浄に用いる有機溶媒は、再生型のイオン交換樹脂に対
して、水中におけるよりも大きな膨潤を与えるものであ
ることが必要である。特に再生型のイオン交換樹脂に対
して、水中での体積よりも4%以上大きな体積を与える
有機溶媒で洗浄するのが好ましい。
As an organic solvent, methanol is preferably used. If desired, alcohols such as ethanol, propanol and butanol, ketones such as acetone and methyl ethyl ketone, acetonitrile, N, N-dimethylformamide and the like may be used. . These organic solvents are preferably used as an aqueous solution having a concentration of at least 60% (by weight) or more. More preferably 80% or more, especially 90%
It is more preferable to use the above concentration. In any case, it is necessary that the organic solvent used for washing gives the regenerated ion exchange resin greater swelling than in water. In particular, it is preferable to wash the regenerated ion exchange resin with an organic solvent that gives a volume 4% or more larger than the volume in water.

【0022】イオン交換樹脂の水中及び有機溶媒中での
膨潤は、ポリビニル化合物の種類や量、イオン交換基の
導入量などにより変化するので、対象とするイオン交換
樹脂に応じて洗浄溶媒を選択するのが好ましい。また逆
に有機溶媒による洗浄の容易なイオン交換樹脂とするた
めに、母体に占めるポリビニル化合物の比率を多くした
り、イオン交換基の導入量を制限して疎水性を高めるこ
とも考慮すべきである。例えばイオン交換基の導入量は
交換容量として4.0meg/g以下とするのが好まし
い。洗浄は、イオン交換樹脂をカラムに充填し、これに
有機溶媒を下向流または上向流で通液し、次いで超純水
を通水することにより行なうのが好ましい。有機溶媒の
使用量は再生型イオン交換樹脂の体積の1倍量以上であ
る。通常は2倍量以上、好ましくは4倍量以上用いる。
超純水は有機溶媒が完全に除かれるまで通水する。ま
た、洗浄時のカラム温度は有機溶媒の種類により、危険
性、洗浄効率を考慮して決定されるが、できる限り高温
にする方が洗浄効率が高い場合が多い。
The swelling of the ion-exchange resin in water and in an organic solvent varies depending on the type and amount of the polyvinyl compound, the amount of ion-exchange groups introduced, and the like. Is preferred. On the other hand, in order to make the ion exchange resin easy to wash with an organic solvent, it is necessary to consider increasing the ratio of the polyvinyl compound in the matrix or increasing the hydrophobicity by limiting the amount of ion exchange groups introduced. is there. For example, the amount of ion-exchange groups introduced is preferably set to 4.0 meg / g or less as an exchange capacity. Washing is preferably performed by filling the column with an ion exchange resin, passing an organic solvent through the column in a downward or upward flow, and then passing ultrapure water through the column. The amount of the organic solvent used is at least one time the volume of the regenerative ion exchange resin. Usually, it is used in an amount of 2 times or more, preferably 4 times or more.
Ultrapure water is passed until the organic solvent is completely removed. The column temperature at the time of washing is determined in consideration of the danger and the washing efficiency depending on the type of the organic solvent, and the washing efficiency is often higher when the temperature is as high as possible.

【0023】洗浄は後記する測定法により、分子量30
00以上、好ましくは2000以上の有機化合物が実質
的に検出されなくなるまで行なう。なお、本明細書にお
いて実質的に検出されないとは、後記する方法に従って
有機化合物を溶出させ、溶出量とその分子量分布を測定
したときに、有機炭素として3ppm以下、好ましくは
1ppm以下であることを意味する。なお、計算に際し
ては、分子中に占める炭素の比率は分子量の如何にかか
わらず一定とする。分子量3000未満の有機化合物は
多少残存していても差支えない。これを完全に除去する
には洗浄を過度に反復しなければならず効率的でない
し、且つ多少残存していても水質に及ぼす悪影響が少な
いからである。通常は有機炭素としての溶出量が後記す
る溶出物の測定法で測定して300ppm以下、特に1
00ppm以下になるまで洗浄を行なうのが好ましい。
Washing is carried out according to a measuring method described later, with a molecular weight of 30.
The process is performed until no more than 00, preferably no more than 2000 organic compounds are substantially not detected. In the present specification, "substantially not detected" means that an organic compound is eluted according to a method described later, and when the eluted amount and its molecular weight distribution are measured, it is 3 ppm or less as organic carbon, preferably 1 ppm or less. means. In the calculation, the ratio of carbon in the molecule is fixed regardless of the molecular weight. Some organic compounds having a molecular weight of less than 3000 may be left. In order to completely remove this, the washing must be repeated excessively, which is not efficient, and even if some remains, the adverse effect on water quality is small. Usually, the amount of organic carbon dissolved is 300 ppm or less, particularly 1
It is preferable to carry out the washing until the concentration becomes 00 ppm or less.

【0024】本発明においては、上述の如くして不純物
を低減させた陰イオン交換樹脂を陽イオン交換樹脂と組
合せて混合床を構成する。この陽イオン交換樹脂も上述
の如くして不純物を低減させたものであるのが好ましい
が、より不純物の多いものを用いることもできる。何故
ならば陽イオン交換樹脂から溶出する分子量3000以
上の有機化合物は、主にイオン交換樹脂の母体を製造す
る際に生成したオリゴマーがスルホン化されたものであ
り、共存する陰イオン交換樹脂により捕捉され易いから
である。
In the present invention, a mixed bed is formed by combining the anion exchange resin, whose impurities have been reduced as described above, with the cation exchange resin. The cation exchange resin is also preferably one having reduced impurities as described above, but a resin having more impurities can also be used. The reason is that the organic compounds having a molecular weight of 3000 or more eluted from the cation exchange resin are mainly those produced by sulfonating oligomers produced when the base of the ion exchange resin is produced, and are captured by the coexisting anion exchange resin. This is because it is easy to be done.

【0025】このようにして構成した混合床に、予じめ
精製して不純物の大部分を除去した水を流通させて純水
ないしは超純水とする。所望ならば、この純水ないしは
超純水を更に限外濾過膜などの膜精製手段を通してもよ
い。本発明においては、上述の混合床を通過した水は更
にイオン交換樹脂で処理することなく、ユースポイント
に運ばれる。すなわち本発明で用いる溶出物を極微量し
か含有しないイオン交換樹脂は、純水ないしは超純水の
製造の最終段階で用いられるものであり、通常は現場で
イオン交換樹脂の再生を行なわないカートリッジタイプ
のイオン交換樹脂床として用いられる。従ってこの樹脂
床に流通させる水は予め不純物の大部分を除去しておか
なければならない。通常は比抵抗が12MΩ・cm以上
または全有機体炭素含有量が30ppb以下に精製され
た水をこのイオン交換樹脂床で処理する。
Water, which has been purified in advance and most of the impurities have been removed, is circulated through the mixed bed thus constituted to make pure water or ultrapure water. If desired, the pure or ultrapure water may be passed through a membrane purification means such as an ultrafiltration membrane. In the present invention, the water that has passed through the above-mentioned mixed bed is carried to the point of use without being further treated with the ion exchange resin. That is, the ion exchange resin containing only a trace amount of the eluate used in the present invention is used in the final stage of the production of pure water or ultrapure water, and is usually a cartridge type in which the ion exchange resin is not regenerated on site. Used as an ion exchange resin bed. Therefore, most of the impurities must be removed beforehand from the water flowing through the resin bed. Usually, water purified to a specific resistance of 12 MΩ · cm or more or a total organic carbon content of 30 ppb or less is treated with this ion exchange resin bed.

【0026】例えば本発明の代表的な例では、イオン交
換樹脂処理、減圧脱ガス、逆浸透膜処理などの処理を経
て比抵抗12MΩ・cm以上、全有機体炭素含有量30
ppb以下に精製された純水を、本発明に係る強塩基性
陰イオン交換樹脂で構成した混合床に流通させ、更に紫
外線照射により微生物を殺菌したのち限外濾過膜などの
膜分離装置で懸濁物を除去して超純水とする。また他の
代表的な例では上述の純水に、短波長の紫外線、例えば
185nmの紫外線を照射して含有されている有機物を
カルボン酸ないしは炭酸にまで分解し、次いで本発明に
係る強塩基性陰イオン交換樹脂で構成した混合床を流通
させて超純水とする。混合床の前に本発明に係る強塩基
性陰イオン交換樹脂の床を通過させたり、混合床を通過
した水を限外濾過膜で処理するようにすると更に好まし
い。
For example, in a typical example of the present invention, a specific resistance of 12 MΩ · cm or more and a total organic carbon content of 30 through treatments such as ion exchange resin treatment, degassing under reduced pressure, and reverse osmosis membrane treatment.
Pure water purified to ppb or less is passed through a mixed bed composed of the strongly basic anion exchange resin according to the present invention, and the microorganisms are further sterilized by irradiation with ultraviolet light and then suspended by a membrane separation device such as an ultrafiltration membrane. Remove turbid matter to make ultrapure water. In another typical example, the above-mentioned pure water is irradiated with short-wavelength ultraviolet rays, for example, ultraviolet rays of 185 nm, to decompose organic substances contained therein into carboxylic acids or carbonic acids, and then decompose the strongly basic acid according to the present invention. The mixed bed composed of an anion exchange resin is circulated to make ultrapure water. It is further preferred that the water is passed through a bed of the strongly basic anion exchange resin according to the present invention before the mixed bed, or the water passed through the mixed bed is treated with an ultrafiltration membrane.

【0027】[0027]

【実施例】以下に実施例により本発明を更に詳細に説明
する。但し、本発明はこれら実施例によっては何ら限定
されない。本発明において、イオン交換樹脂の膨潤体積
並びに温水浸漬時の有機炭素の溶出量及びその分子量は
下記の方法により測定した。
The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited at all by these examples. In the present invention, the swelling volume of the ion exchange resin, the amount of organic carbon eluted during immersion in warm water, and the molecular weight thereof were measured by the following methods.

【0028】膨潤体積の測定法Cl型の樹脂を予め水を
入れた10mlメスシリンダーに入れ、正確に10.0
ml計りとる。これをカラムに入れ、1規定の水酸化ナ
トリウム水溶液をSV=5で1時間通液し、次いで脱塩
水で十分に洗浄して再生型とする。この樹脂を25ml
メスシリンダーに入れ、その体積を測定して再生型樹脂
の膨潤体積とする。また、上記で得た再生型樹脂をカラ
ムに入れ、メタノールをSV=1で4時間通液する。次
いでこの樹脂を25mlメスシリンダーに入れ、その体
積を測定してメタノール中での膨潤体積とする。他の有
機溶媒の場合も全く同様にして測定する。
Measurement method of swelling volume A Cl-type resin is placed in a 10 ml measuring cylinder pre-filled with water, and is precisely adjusted to 10.0 volume.
Measure ml. This was put into a column, and a 1N aqueous solution of sodium hydroxide was passed at SV = 5 for 1 hour, and then sufficiently washed with demineralized water to obtain a regeneration type. 25 ml of this resin
Put in a measuring cylinder and measure the volume to obtain the swelling volume of the reclaimable resin. Further, the regenerated resin obtained above is put into a column, and methanol is passed through at SV = 1 for 4 hours. The resin is then placed in a 25 ml graduated cylinder and its volume measured to give the swelling volume in methanol. The measurement is performed in exactly the same manner for other organic solvents.

【0029】有機炭素の溶出量:起純水中で十分に膨潤
させた再生型のイオン交換樹脂を水と一緒に100ml
のメスシリンダーに注ぎ、水及び樹脂の上面を100m
lの標線に一致させる。濾過して樹脂粒子間の水を除去
したのち、樹脂を500mlのフラスコに移しさらに起
純水100mlを加える。50℃のウォーターバス中に
フラスコを浸漬し、振とう数100回/分で7日間、す
なわち168時間振とうする。振とう終了後、イオン交
換樹脂を0.45μのミリポア社製テフロンフィルター
を用いて濾別する。
Elution amount of organic carbon: 100 ml of regenerated ion exchange resin sufficiently swollen in pure water together with water
Pour into a graduated cylinder of 100m
Match with the marked line of l. After filtration to remove water between the resin particles, the resin is transferred to a 500 ml flask, and 100 ml of pure water is added. The flask is immersed in a water bath at 50 ° C. and shaken at a shaking frequency of 100 / min for 7 days, that is, for 168 hours. After completion of the shaking, the ion exchange resin is filtered off using a 0.45 μm Teflon filter manufactured by Millipore.

【0030】濾液20μlを(株)島津製作所製の全有
機炭素分析計TOC−10Bに注入し、検出ピークの高
さを測定して濾液中の全有機炭素濃度に換算して表示す
る。換算の検量線は、フタル酸水素カリウムを標準物質
とし、炭素濃度40ppm、100ppm、200pp
m及び400ppmの溶液に基づいて作成する。溶出物
の分子量:上記で得た濾液を、ゲルパーミエーションク
ロマトグラフィー(GPC)により下記の条件で分析す
る。
20 μl of the filtrate is injected into a total organic carbon analyzer TOC-10B manufactured by Shimadzu Corporation, the height of the detection peak is measured, and the result is converted into the total organic carbon concentration in the filtrate and displayed. The calibration curve for conversion was obtained by using potassium hydrogen phthalate as a standard substance and carbon concentrations of 40 ppm, 100 ppm, and 200 pp.
Make based on m and 400 ppm solution. Molecular weight of eluate: The filtrate obtained above is analyzed by gel permeation chromatography (GPC) under the following conditions.

【0031】カラム:水系GPC用カラム(旭化成工業
(株)のアサヒパックG310とG510とを直列につ
ないで使用) 展開液:0.01N−HCl 流 速:0.5ml/min 温 度:25℃ 検 出:UV240nm 注入量:200μl
Column: Column for aqueous GPC (using Asahi Pack G310 and G510 of Asahi Kasei Kogyo Co., Ltd. connected in series) Developing solution: 0.01N-HCl Flow rate: 0.5 ml / min Temperature: 25 ° C. Detection: UV 240 nm Injection volume: 200 μl

【0032】〔比較例1〕スチレン94.6(重量)
部、ジビニルベンゼン(純度55.8%)5.4 (重
量)部、ジベンゾイルパーオキサイド0.5(重量)部
をよく混合し、これをポリビニルアルコール0.5 (重
量)部を溶解した水300 (重量)部中に混合した。8
0℃で10時間攪拌しながら懸濁重合を行なったのち水
洗、乾燥して粒状の共重合体を得た。重合収率は原料モ
ノマーに対し95 (重量)%であった。
Comparative Example 1 Styrene 94.6 (weight)
Parts, 5.4 parts by weight of divinylbenzene (purity 55.8%) and 0.5 parts by weight of dibenzoyl peroxide were mixed well, and this was mixed with water in which 0.5 parts by weight of polyvinyl alcohol was dissolved. 300 parts by weight. 8
The suspension polymerization was carried out with stirring at 0 ° C. for 10 hours, followed by washing with water and drying to obtain a granular copolymer. The polymerization yield was 95 (by weight)% based on the starting monomer.

【0033】共重合体100(重量)部にクロルメチル
メチルエーテル500(重量)部を加えて室温で1時間
攪拌し、次いでこれに塩化亜鉛10 (重量)部を添加
し、50℃で10時間反応させてクロルメチル化を行な
った。反応終了後、反応物を冷却し、水を添加して残存
している試薬を分解した。得られたクロルメチル化共重
合体は十分に水洗したのち、トリメチルアミンの10
(重量)%水溶液300 (重量)部中に投入し、50℃
で10時間保持してアミノ化した。
To 100 parts by weight of the copolymer, 500 parts by weight of chloromethyl methyl ether was added, and the mixture was stirred at room temperature for 1 hour. Then, 10 parts by weight of zinc chloride was added thereto. The reaction was performed to effect chloromethylation. After completion of the reaction, the reaction product was cooled and water was added to decompose the remaining reagent. The obtained chloromethylated copolymer is thoroughly washed with water and then trimethylamine 10
(Weight)
And aminated for 10 hours.

【0034】アミノ化終了後、加温して残存しているト
リメチルアミンを気化させて除き、さらに十分に水洗し
て塩基性陰イオン交換樹脂(I)を得た。この陰イオン
交換樹脂をカラムに詰め、5容量倍の1N−NaOH水
溶液をSV=5で通液し、引続き脱塩水を通液して洗浄
し、再生型の陰イオン交換樹脂(A)を得た。
After completion of the amination, the remaining trimethylamine was removed by vaporization by heating, and further thoroughly washed with water to obtain a basic anion exchange resin (I). This anion exchange resin was packed in a column, and a 5 volume-fold 1N aqueous solution of NaOH was passed through at SV = 5, followed by washing with deionized water to obtain a regenerated anion exchange resin (A). Was.

【0035】〔実施例1〕比較例1で得た塩基性陰イオ
ン交換樹脂(I)をカラムに詰め、5容量倍の1N−N
aOH水溶液をSV=5で通液に引続いて脱塩水を温度
25℃で通液して洗浄したのち、4容量倍の100%メ
タノールをSV=1で通液し、脱塩水で十分に洗浄し
て、再生型の陰イオン交換樹脂(B)を得た。
Example 1 The basic anion-exchange resin (I) obtained in Comparative Example 1 was packed in a column, and 5 times the volume of 1N-N
After passing an aOH aqueous solution at SV = 5 and then washing by passing demineralized water at a temperature of 25 ° C., pass 4% by volume of 100% methanol at SV = 1 and wash thoroughly with demineralized water. Thus, a regeneration type anion exchange resin (B) was obtained.

【0036】〔実施例2〕スチレン87.4 (重量)
部、ジビニルベンゼン(純度55.6%)12.6(重
量)部、ジベンゾイルパーオキサイド0.5 (重量)部
を用いた以外は比較例1及び実施例1と全く同様にして
再生型の陰イオン交換樹脂(C)を得た。
Example 2 87.4 styrene (weight)
Parts, 12.6 parts by weight of divinylbenzene (purity: 55.6%) and 0.5 parts by weight of dibenzoyl peroxide were used in the same manner as in Comparative Example 1 and Example 1, except that An anion exchange resin (C) was obtained.

【0037】〔実施例3〕スチレン85.6 (重量)
部、ジビニルベンゼン(純度55.6%)14.4(重
量)部、イソオクタン70 (重量)部、ジベンゾイルパ
ーオキサイド1 (重量)部をよく混合した。ポリビニル
アルコール0.7 (重量)部を溶解した水400 (重
量)部に上記の混合物を加え、攪拌しながら80℃で1
0時間懸濁重合を行なった。
Example 3 Styrene 85.6 (weight)
Parts, 14.4 parts by weight of divinylbenzene (purity 55.6%), 70 parts by weight of isooctane, and 1 part by weight of dibenzoyl peroxide were mixed well. The above mixture was added to 400 parts by weight of water in which 0.7 parts by weight of polyvinyl alcohol was dissolved, and 1 part of the mixture was stirred at 80 ° C. while stirring.
The suspension polymerization was performed for 0 hours.

【0038】反応終了後、イソオクタンと水との共沸蒸
留により除去し、更に水洗・乾燥して粒状の共重合体を
得た。重合収率は原料モノマーに対し92 (重量)%で
あった。共重合体100 (重量)部にエチレンジクロラ
イド200 (重量)部、クロロメチルメチルエーテル3
00 (重量)部を加えて室温で1時間攪拌し、次いで塩
化亜鉛50 (重量)部を添加し、50℃で10時間反応
させてクロルメチル化を行なった。
After the completion of the reaction, isooctane and water were removed by azeotropic distillation, followed by washing and drying to obtain a granular copolymer. The polymerization yield was 92% by weight based on the starting monomer. 100 parts by weight of copolymer, 200 parts by weight of ethylene dichloride, chloromethyl methyl ether 3
Then, 00 (part by weight) was added, and the mixture was stirred at room temperature for 1 hour. Then, 50 (part by weight) of zinc chloride was added, and the mixture was reacted at 50 ° C. for 10 hours to perform chloromethylation.

【0039】反応終了後、反応物を冷却し、水を添加し
て残存している試薬を分解した。得られたクロルメチル
化共重合体は十分に水洗したのち、トリメチルアミンの
10(重量)%水溶液400 (重量)部中に投入し、5
0℃で10時間保持してアミノ化した。アミノ化終了
後、加温して残存しているトリメチルアミンを気化させ
て除き、さらに十分に水洗して塩基性陰イオン交換樹脂
を得た。
After completion of the reaction, the reaction product was cooled and water was added to decompose the remaining reagent. The obtained chloromethylated copolymer was thoroughly washed with water, and then charged into 400 parts (by weight) of a 10% (by weight) aqueous solution of trimethylamine to obtain 5%.
Amination was carried out at 0 ° C. for 10 hours. After completion of the amination, the remaining trimethylamine was removed by vaporization by heating, and further thoroughly washed with water to obtain a basic anion exchange resin.

【0040】この陰イオン交換樹脂をカラムに詰め、5
容量倍の1N−NaOH水溶液をSV=5で通液し、引
続き脱塩水を通液して洗浄した。更に2容量倍の100
%エタノールをSV=1で通液したのち脱塩水で十分に
洗浄して再生型の陰イオン交換樹脂(D)を得た。この
ようにして得られた陰イオン交換樹脂の、イオン交換容
量、水中、100%メタノール及び100%エタノール
中での膨潤体積並びに全溶出有機炭素量を第1表に示
す。また、これら比較例及び実施例1〜3で製造したイ
オン交換樹脂に超純水を通水してGPCで測定した溶出
物の分子量分布を図1〜図4にそれぞれ示す。
This anion exchange resin is packed in a column,
Washing was carried out by passing a 1-fold volume of 1N-NaOH aqueous solution at SV = 5 and subsequently passing demineralized water. 100 times that of twice the capacity
% Ethanol was passed at SV = 1, and then sufficiently washed with deionized water to obtain a regenerated anion exchange resin (D). Table 1 shows the ion exchange capacity, the swelling volume in 100% methanol and 100% ethanol in water, and the total amount of eluted organic carbon of the anion exchange resin thus obtained. In addition, the molecular weight distribution of the eluate measured by GPC after passing ultrapure water through the ion exchange resins produced in these comparative examples and Examples 1 to 3 is shown in FIGS. 1 to 4, respectively.

【0041】[0041]

【表1】 [Table 1]

【0042】〔試験例1〕スチレン−ジビニルベンゼン
共重合体をスルホン化したのち十分に洗浄して溶出物を
極度に低減させた原子力用の再生型陽イオン交換樹脂ダ
イヤイオンSKNUPA(ダイヤイオンは三菱化成
(株)の登録商標)370mlと陰イオン交換樹脂とし
て比較例1および実施例1〜3で得られた陰イオン交換
樹脂A〜Dそれぞれ630mlとをよく混合して、内径
50mmのカラムに充填し混合床を形成した。この混合
床に25℃の超純水(全有機炭素3ppb)をSV=3
0で通水し、カラム流出水の電気電導度および全有機炭
素量を測定した。結果を図5および図6に示す。
Test Example 1 A regenerated cation exchange resin for nuclear power, SKNUPA, which is obtained by sulfonating a styrene-divinylbenzene copolymer and then sufficiently washing it to reduce the amount of eluted material extremely (Diaion is Mitsubishi 370 ml of a registered trademark of Kasei Co., Ltd. and 630 ml of each of the anion exchange resins A to D obtained in Comparative Example 1 and Examples 1 to 3 as anion exchange resins were mixed well and packed into a column having an inner diameter of 50 mm. A mixed bed was formed. Ultrapure water (total organic carbon: 3 ppb) at 25 ° C. was added to the mixed bed by SV = 3.
Water was passed at 0, and the electric conductivity and total organic carbon content of the column effluent were measured. The results are shown in FIGS.

【0043】〔実施例4〕実施例2において、再生型の
陰イオン交換樹脂を4倍量のメタノールをSV=1で流
すかわりに、以下の条件による濃度のメタノール水溶液
をSV=1で4倍量通液した。また、通液時のカラムの
温度はすべて、40℃に保持した。それぞれのメタノー
ル濃度において、得られた樹脂をそれぞれ下記の様にサ
ンプルE〜Iとした。また、メタノールで処理しない樹
脂のサンプルをJとした。
Example 4 In Example 2, instead of flowing the regenerated anion exchange resin at 4 times the amount of methanol at SV = 1, the aqueous methanol solution having the following concentration was quadrupled at SV = 1. The volume was passed. In addition, all column temperatures during the passage of the liquid were kept at 40 ° C. At each methanol concentration, the resulting resins were designated as Samples EI as described below. A sample of the resin not treated with methanol was designated as J.

【0044】[0044]

【表2】 メタノール溶媒中の再生 メタノール濃度 サンプル 型での樹脂体積(ml) 100% E 10.7 80% F 10.6 60% G 10.5 40% H 10.4 20% I 10.2 未処理 J 10.0Table 2 Regeneration in methanol solvent Methanol concentration Resin volume in sample type (ml) 100% E 10.80% F 10.6 60% G 10.5 40% H 10.4 20% I 10.2 Unprocessed J 10.0

【0045】〔試験例2〕試験例1において、サンプル
E,F,G,H,I,Jを用いた以外は同様の方法によ
り、通水試験を実施した。全有機炭素量を測定した結果
を図7にしめす。
Test Example 2 A water flow test was performed in the same manner as in Test Example 1, except that Samples E, F, G, H, I, and J were used. FIG. 7 shows the result of measuring the total amount of organic carbon.

【0046】[0046]

【発明の効果】本発明によれば超純水製造用のイオン交
換樹脂を容易に製造することができ、またこれを用いて
容易に超純水を製造することができる。
According to the present invention, an ion exchange resin for producing ultrapure water can be easily produced, and ultrapure water can be produced easily using the ion exchange resin.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で製造した陰イオン交換樹脂Bの溶出
物の分子量分布を示すグラフである。
FIG. 1 is a graph showing a molecular weight distribution of an eluate of an anion exchange resin B produced in Example 1.

【図2】実施例2で製造した陰イオン交換樹脂Cの溶出
物の分子量分布を示すグラフである。
FIG. 2 is a graph showing a molecular weight distribution of an eluate of an anion exchange resin C produced in Example 2.

【図3】実施例3で製造した陰イオン交換樹脂Dの溶出
物の分子量分布を示すグラフである。
FIG. 3 is a graph showing a molecular weight distribution of an eluate of an anion exchange resin D produced in Example 3.

【図4】比較例1で製造した陰イオン交換樹脂(A)の
溶出物の分子量分布を示すグラフである。
FIG. 4 is a graph showing the molecular weight distribution of the eluate of the anion exchange resin (A) produced in Comparative Example 1.

【図5】比較例1および実施例1〜3で製造した陰イオ
ン交換樹脂とダイヤイオン(登録商標)SKNUPAと
から成る混合床に超純水を通水したときの、通水量と流
出水の比抵抗との関係を示すグラフである。
FIG. 5 shows the flow rate and effluent when ultrapure water is passed through a mixed bed composed of the anion exchange resin and Diaion (registered trademark) SKNUPA produced in Comparative Example 1 and Examples 1 to 3. It is a graph which shows the relationship with specific resistance.

【図6】比較例1および実施例1〜3で製造した陰イオ
ン交換樹脂とダイヤイオン(登録商標)SKNUPAと
から成る混合床に超純水を通水したときの、通水量と流
出水中の全有機炭素濃度との関係を示すグラフである。
FIG. 6 shows the amount of water flow and the amount of effluent water when ultrapure water is passed through a mixed bed composed of the anion exchange resin and Diaion (registered trademark) SKNUPA produced in Comparative Example 1 and Examples 1 to 3. It is a graph which shows the relationship with the total organic carbon concentration.

【図7】実施例4で製造した陰イオン交換樹脂サンプル
E〜I及び比較のためのサンプルJとダイヤイオン(登
録商標)SKNUPAとから成る混合床に超純水を通水
したときの通水量と流出水中の全有機炭素濃度との関係
を示すグラフである。
FIG. 7 shows the flow rate when ultrapure water is passed through a mixed bed composed of the anion exchange resin samples E to I produced in Example 4 and Sample J for comparison and Diaion (registered trademark) SKNUPA. 4 is a graph showing the relationship between the concentration of the organic solvent and the total organic carbon concentration in the effluent.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C08J 5/20 C08J 5/20 (56)参考文献 特開 昭63−291645(JP,A) 特開 昭60−102950(JP,A) 特公 平2−15258(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C02F 1/42 B01J 39/00 - 49/02 ──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 7 Identification symbol FI C08J 5/20 C08J 5/20 (56) References JP-A-63-291645 (JP, A) JP-A-60-102950 (JP) , A) Japanese Patent Publication No. 2-15258 (JP, B2) (58) Field surveyed (Int. Cl. 7 , DB name) C02F 1/42 B01J 39/00-49/02

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 モノビニル脂肪族化合物を含んでいても
よいモノビニル芳香族化合物とポリビニル化合物との共
重合体を母体とするイオン交換樹脂であって、50℃の
温水中に7日間浸せきしたときに分子量3000未満の
有機化合物は溶出するが、分子量3000以上の有機化
合物は実質的に溶出しない塩基性アニオン交換樹脂を、
カチオン交換樹脂と混合して、超純水製造プロセスの混
合床イオン交換塔に用いることを特徴とする超純水の製
造法。
1. An ion-exchange resin based on a copolymer of a monovinyl aromatic compound and a polyvinyl compound which may contain a monovinyl aliphatic compound, which is immersed in warm water at 50 ° C. for 7 days. the organic compound having a molecular weight of less than 3000 elutes but a molecular weight of 3,000 or more organic compounds substantially eluted such have basic anion exchange resin,
Mix with cation exchange resin to mix in ultrapure water production process
Production of ultrapure water characterized by use in a bed ion exchange column
Construction method.
【請求項2】 塩基性アニオン交換樹脂が、50℃の温
水中に7日間浸せきしたときの溶出物が、有機炭素とし
て、10〜300ppmである、請求項1に記載の超純
水の製造法。
2. A basic anion exchange resin, the eluate when immersed for 7 days in a 5 0 ° C. hot water, as organic carbon, Ru 10~300ppm der ultrapure of claim 1
Water production method.
【請求項3】 塩基性アニオン交換樹脂が、溶出する有
機化合物の90重量%以上が分子量2000未満の範囲
にある、請求項1または2に記載の純水の製造法。
3. A basic anion exchange resin, area by the near 90% by weight or more of molecular weight less than 2000 of the organic compound to elute, the preparation of pure water according to claim 1 or 2.
【請求項4】 塩基性アニオン交換樹脂が、母体をハロ
アルキル化した後、アミノ化してなるものである、請求
項1〜3のいずれかに記載の超純水の製造法。
4. The basic anion exchange resin, after haloalkylated mother body, Ru der made aminated, wherein
Item 4. The method for producing ultrapure water according to any one of Items 1 to 3.
【請求項5】 塩基性アニオン交換樹脂が、水中でのC
l型樹脂の体積を100%とするとき、水中での再生型
樹脂の体積が110%以上であり、かつメタノール中で
の再生型樹脂の体積が水中での再生型樹脂の体積よりも
大きいものである、請求項1〜4のいずれかに記載の超
純水の製造法。
5. The method according to claim 1, wherein the basic anion exchange resin is C
When the volume of the l-type resin is 100%, the volume of the regenerated resin in water is 110% or more, and the volume of the regenerated resin in methanol is smaller than the volume of the regenerated resin in water. /> is a large cast, ultra according to any one of claims 1 to 4
Pure water production method.
【請求項6】 アニオン交換樹脂が、モノビニル脂肪族
化合物を含んでいてもよいモノビニル芳香族化合物とポ
リビニル化合物との共重合体を母体とする塩基性アニオ
ン交換樹脂を再生型とし、これを水よりも膨潤力の大き
い有機溶媒で洗浄し、ついで水洗して該有機溶媒を除去
ることにより得られるものである、請求項1〜5のい
ずれかに記載の超純水の製造法。
6. anion exchange resin, motor Nobiniru aliphatic compound include good monovinyl aromatic optionally compound copolymer of a polyvinyl compound and a basic anion exchange resin regeneration type as a matrix, which water washed with a large organic solvent swelling power than, then washed with water is obtained by Rukoto be removed <br/> the organic solvent, claims 1-5 Neu
The method for producing ultrapure water described in any of the above.
【請求項7】 再生型アニオン交換樹脂に対して、水中
におけるよりも、4%以上大きな体積を発現させる有機
溶媒で洗浄する、請求項6に記載の超純水の製造法。
Relative 7. A playback type anion exchange resin, than in water, in the wash with an organic solvent to express a large volume of 4% or more, the preparation of ultra-pure water according to claim 6.
【請求項8】 混合床イオン交換塔を通過させる前に、
モノビニル脂肪族化 合物を含んでいてもよいモノビニル
芳香族化合物とポリビニル化合物との共重合体を母体と
するイオン交換樹脂であって、50℃の温水中に7日間
浸せきしたときに分子量3000未満の有機化合物は溶
出するが、分子量3000以上の有機化合物は実質的に
溶出しない塩基性アニオン交換樹脂の床を通過させる、
請求項1〜7のいずれかに記載の超純水の製造法。
8. Prior to passing through the mixed bed ion exchange column,
Good monovinyl also include monovinyl aliphatic of compound
A copolymer of an aromatic compound and a polyvinyl compound is used as a base.
Ion-exchange resin that is kept in warm water at 50 ° C for 7 days
Organic compounds with a molecular weight of less than 3000 when immersed
However, organic compounds having a molecular weight of 3000 or more are substantially
Passing through a bed of non-eluting basic anion exchange resin,
The method for producing ultrapure water according to claim 1.
【請求項9】 少なくとも一次系と二次系とから成り、
一次系で得られた純水を二次系以降で更に精製して超純
水とする超純水の製造方法において、モノビニル脂肪族
化合物を含んでいてもよいモノビニル芳香族化合物とポ
リビニル化合物との共重合体を母体とするイオン交換樹
脂であって、50℃の温水中に7日間浸せきしたときに
分子量3000未満の有機化合物は溶出するが、分子量
3000以上の有機化合物は実質的に溶出しない塩基性
アニオン交換樹脂を、二次系以降のアニオン交換塔、ま
たは混合床イオン交換塔の少なくとも1つに用いること
を特徴とする超純水の製造法。
9. A system comprising at least a primary system and a secondary system,
In a method for producing ultrapure water, in which pure water obtained in the primary system is further purified in the secondary system and thereafter to ultrapure water, a monovinyl aliphatic
Monovinyl aromatic compounds which may contain
Ion-exchange tree based on a copolymer with a vinyl compound
Fat, when soaked in warm water at 50 ° C for 7 days
Organic compounds having a molecular weight of less than 3000 are eluted,
3000 or more organic compounds substantially eluted without salt group anion exchange resin, production of ultrapure water, which comprises using at least one secondary system and subsequent anion exchange column, or mixed bed ion exchange column Law.
【請求項10】 イオン交換を含む処理をして、無機塩
類、有機物質、微粒子、微生物よりなる不純物を除去し
た超純水を製造する方法において、該イオン交換処理の
少なくとも混合床イオン交換処理に使用するイオン交換
樹脂が、モノビニル脂肪族化合物を含んでいてもよいモ
ノビニル芳香族化合物とポリビニル化合物との共重合体
を母体とするイオン交換樹脂であって、50℃の温水中
に7日間浸せきしたときに分子量3000未満の有機化
合物は溶出するが、分子量3000以上の有機化合物は
実質的に溶出しない塩基性アニオン交換樹脂であること
を特徴とする超純水の製造方法。
10. A method for producing ultrapure water from which impurities including inorganic salts, organic substances, fine particles, and microorganisms are removed by performing a treatment including ion exchange, wherein at least the mixed bed ion exchange treatment of the ion exchange treatment is performed. The ion exchange resin to be used may be a resin which may contain a monovinyl aliphatic compound.
Copolymer of novinyl aromatic compound and polyvinyl compound
Is an ion exchange resin whose base is
Of molecular weight less than 3000 when immersed in water for 7 days
The compound elutes, but organic compounds with a molecular weight of 3000 or more
A method for producing ultrapure water, which is a basic anion exchange resin that does not substantially elute .
JP30800191A 1990-11-22 1991-11-22 Ion exchange resin for ultrapure water production, method for producing the same, and method for producing ultrapure water using the same Expired - Lifetime JP3248205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30800191A JP3248205B2 (en) 1990-11-22 1991-11-22 Ion exchange resin for ultrapure water production, method for producing the same, and method for producing ultrapure water using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2-318286 1990-11-22
JP31828690 1990-11-22
JP30800191A JP3248205B2 (en) 1990-11-22 1991-11-22 Ion exchange resin for ultrapure water production, method for producing the same, and method for producing ultrapure water using the same
CA002058002A CA2058002A1 (en) 1990-11-22 1991-12-18 Ion exchange resin, process for producing the same, and method for removing impurities from condensate

Publications (2)

Publication Number Publication Date
JPH054051A JPH054051A (en) 1993-01-14
JP3248205B2 true JP3248205B2 (en) 2002-01-21

Family

ID=27168996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30800191A Expired - Lifetime JP3248205B2 (en) 1990-11-22 1991-11-22 Ion exchange resin for ultrapure water production, method for producing the same, and method for producing ultrapure water using the same

Country Status (1)

Country Link
JP (1) JP3248205B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101525635B1 (en) * 2007-11-06 2015-06-03 쿠리타 고교 가부시키가이샤 Process and apparatus for producing ultrapure water, and method and apparatus for cleaning electronic component members

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09127918A (en) * 1995-11-06 1997-05-16 Fujitsu Ltd Drive circuit for liquid crystal display device, liquid crystal display device and driving method therefor
JP5329013B2 (en) 2001-04-12 2013-10-30 旭硝子株式会社 Method for producing high strength tetrafluoroethylene polymer
JP2008231082A (en) * 2007-03-16 2008-10-02 Dr Aqua Co Ltd Cosmetic
CN101663094B (en) * 2007-04-19 2013-03-13 栗田工业株式会社 Method for producing anion exchange resin, anion exchange resin, method for producing cation exchange resin, cation exchange resin, mixed bed resin, and method for producing ultra-pure water for cleaning electronic parts/or materials
JP5499433B2 (en) * 2007-11-06 2014-05-21 栗田工業株式会社 Ultrapure water manufacturing method and apparatus, and electronic component member cleaning method and apparatus
JP5556046B2 (en) * 2009-03-31 2014-07-23 栗田工業株式会社 Treatment liquid for purification of crude ion exchange resin
JP6834131B2 (en) * 2016-01-15 2021-02-24 昭和電工マテリアルズ株式会社 Separator and column
GB202005155D0 (en) * 2020-04-07 2020-05-20 Enapter S R L Ion exchange membrane and method of manufacturing an ion exchange membrane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101525635B1 (en) * 2007-11-06 2015-06-03 쿠리타 고교 가부시키가이샤 Process and apparatus for producing ultrapure water, and method and apparatus for cleaning electronic component members

Also Published As

Publication number Publication date
JPH054051A (en) 1993-01-14

Similar Documents

Publication Publication Date Title
US5292439A (en) Method for preparing ultrapure water
JP3248205B2 (en) Ion exchange resin for ultrapure water production, method for producing the same, and method for producing ultrapure water using the same
BR112018012297A2 (en) purification process for hydrophilic organic solvent
JPH0242542B2 (en)
EP0142126B1 (en) A method for separating boron isotopes
US20090107918A1 (en) Amphoteric ion exchangers
JP2002102719A (en) Mixed bed type ion exchange resin bed and anion exchange resin used in the same
JPH11352283A (en) Condensate processing method and condensate demineralization device
KR100621945B1 (en) Gel-type copolymer beads and ion exchange resins made therefrom
JP6024416B2 (en) Ultrapure water production method and ultrapure water production apparatus
JP2000046992A (en) Condensate demineralization device
JP3087905B2 (en) Adsorbent and method for removing suspended impurities
IL28070A (en) Removal of colloidal materials from aqueous liquids
JPH0714489B2 (en) Anion exchange resin
JP3330483B2 (en) Condensate desalination equipment
JP3221001B2 (en) Purification method of basic anion exchange resin for water treatment
JP6164803B2 (en) Strongly basic anion exchange resin and production method thereof, condensate demineralization method and condensate demineralization apparatus
JPH05192592A (en) Treatment of strongly basic anion exchange resin
JP3173049B2 (en) Anion exchange resin for ultrapure water production and ultrapure water production method using the same
EP3474985A1 (en) Removing colloidal cobalt from an aqueous composition
EP3475320A1 (en) Vinyl aromatic resin
EP3475319A1 (en) Treating vinyl aromatic resin
JPH02298395A (en) Production of ultrapure water using ion exchange resin composition
JP3902799B2 (en) Hydrogen ion type strongly acidic cation exchange resin
KR20230163544A (en) Purification method and purification device for nasal sap, and manufacturing method and pretreatment device for ion exchange resin