JP3902799B2 - Hydrogen ion type strongly acidic cation exchange resin - Google Patents

Hydrogen ion type strongly acidic cation exchange resin Download PDF

Info

Publication number
JP3902799B2
JP3902799B2 JP24485694A JP24485694A JP3902799B2 JP 3902799 B2 JP3902799 B2 JP 3902799B2 JP 24485694 A JP24485694 A JP 24485694A JP 24485694 A JP24485694 A JP 24485694A JP 3902799 B2 JP3902799 B2 JP 3902799B2
Authority
JP
Japan
Prior art keywords
exchange resin
water
mωcm
cation exchange
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24485694A
Other languages
Japanese (ja)
Other versions
JPH0889818A (en
Inventor
安居院渡
蒲原弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm and Haas Co
Original Assignee
Rohm and Haas Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm and Haas Co filed Critical Rohm and Haas Co
Priority to JP24485694A priority Critical patent/JP3902799B2/en
Publication of JPH0889818A publication Critical patent/JPH0889818A/en
Application granted granted Critical
Publication of JP3902799B2 publication Critical patent/JP3902799B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は実質的に水素イオン形以外の不純物陽イオン形を含まない強酸性陽イオン交換樹脂とその製造方法に関する。本発明にかかる強酸性陽イオン交換樹脂により、特に半導体製造用、原子力発電用や火力発電所の復水脱塩処理用等に要求されている、水素イオン以外の不純物陽イオンを含まない超純水を得ることができる。
【0002】
【従来技術とその課題】
従来、市水、地下水、工水等の原水から種々の不純物陽イオンおよび陰イオンを除去した超純水を製造するには、種々の方法が工業化されている。最近の半導体製造用超純水製造システムはその最も進んだ技術といえよう。これは基本的には、前処理システム、一次純水製造システム、および二次純水製造システムから構成されている。前処理システムは、凝集、濾過、活性炭吸着等で構成される。一次純水製造システムは、1基又は2基の逆浸透膜分離装置および混床式イオン交換装置、あるいは、イオン交換純水装置および逆浸透膜分離装置で構成され、また二次純水製造システムは紫外線酸化分解装置、混床式イオン交換装置および限外濾過膜分離装置で構成される。原水はこれらのシステムにより各種不純物イオンを極限まで除去し、電気比抵抗18.24MΩcmの理論純水に近いレベルまで精製される。
【0003】
原子力発電用供給水もまた、上記超純水なみの水質を要求されており、これは上記超純水製造システムに準じた逆浸透膜分離製造およびイオン交換純水装置を多用したシステムにより原水を処理することにより製造されている。原子力発電所プラントの安全確保の観点から復水は高純度の水質を維持する必要があり、その為に強酸性陽イオン交換樹脂(SACER)と強塩基性陰イオン交換樹脂(SBAER)を混床とした復水脱塩装置が設けられ、これにより不純物イオンを除去している。
【0004】
従来、これら産業用の超純水を製造するために使用されるSACERおよびSBAERは、高度に再生され、精製処理された樹脂、すなわち、樹脂内に含まれる微量有機性不純物および微量イオン性不純物を低減させた樹脂で、これを単床又は混床で使用する。超純水製造用イオン交換樹脂の再生処理のレベルは水処理メーカー各社がそれぞれの値を定めており、たとえば強酸性陽イオン交換樹脂の再生率、すなわち水素イオン形転換率については99%以上、強塩基性陰イオン交換樹脂の再生率、すなわち水酸イオン形転換率については95%以上のような数値が示されている。
これら高度に再生、精製処理した樹脂を混合して混床式イオン交換装置として使用する場合、特に半導体製造用超純水製造においてはボンベ型容器に再生型水素イオン形強酸性陽イオン交換樹脂と再生型水酸イオン形強塩基性陰イオン交換樹脂を混合して充填して使用する。一定期間使用された後は廃棄される。最近は資源保護のリサイクルの立場から、容器ごと交換して別途再生処理されて水質レベルの低い一次純水製造システムで再使用される場合もある。
【0005】
上記従来の再生型SACERではロットの違い等による樹脂の特性の差により、不純物陽イオンのリークが起こる場合があった。この不純物陽イオンのうちでも特にNaイオンは強酸性陽イオン交換樹脂の低い選択性、Na+<NH4 +<K+<Mg++<Ca++の問題から、リークが起こり易い。Naイオンは半導体製造においてウエハーの電気特性を悪化させる。不純物原子としてのNaの原子数とウエハー上での汚染特性の関係は明確ではないが、Naの原子数で数10億個/cm2ウェハーで、ウェハーの電気特性が悪化すると言われている。このSACERからの不純物陽イオンのリークを極限まで低減することが要求されている。この不純物陽イオン(M)の樹脂からのリークは強酸性陽イオン交換樹脂の再生不良によりR−M(M形樹脂)の加水分解が起こり、Mイオンが処理水中にリークするために起こるものと考えられている。この不純物陽イオンのリークを防ぐ為に前述した通り各社とも高度な再生処理に務めている訳である。この不純物Mイオンのリークはウエハーの汚染を起こしウエハーのイールドを低下させ問題となっている。
【0006】
上記のような問題点があるにも拘らず、陽イオン交換樹脂がNa形として供給されていたのは、Na形の方が体積が小さくなり、貯蔵安定性およびハンドリングの点で有利であったことと、水素イオン形で供給しても経時により汚染され、一部Na形に変化してしまうため、現実問題として水素イオン形で供給することに問題があるという理由によるものであった。本発明のような強酸性陽イオン交換樹脂は、理論上はNa形の樹脂を再生処理することにより製造可能であるが、図1の再生効率カーブに示されるように、再生剤を非常に多量に使わなければならず、現実にはこのように再生により、高度に水素イオン形に転換することは困難である。また、今日まで本発明の樹脂のようなレベルまで不純物陽イオンが低減された強酸性陽イオン交換樹脂はみられなかった。
【0007】
【本発明により解決される課題】
本発明は上記従来の課題を解決し、水素イオン以外の不純物陽イオンの量が著しく少なく、不純物陽イオンのリークの全く起こらない新規な水素イオン形強酸性陽イオン交換樹脂およびその製造方法を提供することを目的としている。
【0008】
【課題を解決するための手段】
前述した課題を解決するために発明者らは鋭意検討した結果不純物陽イオンを実質的に含まない水素イオン形強酸性陽イオン交換樹脂を開発することに成功し、本発明を完成した。
すなわち、本発明は、水素イオン以外の不純物陽イオンが、イオン交換樹脂の全交換当量の0.1当量%以下である水素イオン形強酸性陽イオン交換樹脂を提供するものである。好ましくは樹脂中の水素イオン以外の不純物陽イオンは、イオン交換樹脂の全交換当量の0.05当量%以下であり、最も好ましくは0.01%当量以下である。
【0009】
本明細書において、水素イオン以外の不純物陽イオンとは、たとえばナトリウム、カリウム、カルシウム、マグネシウム、およびアンモニウム等の陽イオンをいう。
また、本明細書において、イオン交換樹脂の全交換当量とは、総交換容量をいい、イオン交換樹脂が持つイオン交換反応にあずかる交換基の全量を示すもので、SACERの場合には、中性塩分解容量に相当するものと実質的に考えて良い。これらの測定は通常当業界で行われている交換容量の測定に従う。また本発明の当量%は樹脂の総交換容量に対する不純物陽イオン形の当量の値より計算される。
【0010】
また本発明は上記の水素イオン形強酸性陽イオン交換樹脂の製造方法を提供する。すなわち、本発明の水素イオン形強酸性陽イオン交換樹脂は、1)架橋重合体を製造する工程、2)スルホン化試薬の存在下に前記架橋重合体をスルホン化する工程、および3)25℃の電気比抵抗で5MΩcm以上を示す水で、または希釈硫酸に引き続いて25℃の電気比抵抗で5MΩcm以上を示す水で水和する工程を含む方法により製造することができる。
本発明で使用される架橋共重合体は、公知の原料および方法により製造することができる。
【0011】
架橋共重合体を構成する単量体としては、モノビニル単量体とポリビニル単量体が挙げられる。モノビニル単量体としては、スチレン、メチルスチレン、クロルスチレン、クロルメチルスチレン、エチルスチレン、ビニルキシレン、ビニルトルエン、ビニルナフタレン等のモノビニル芳香族単量体が挙げられる。またこれらのモノビニル芳香族単量体と共重合可能な単量体としては、アクリル酸、メタクリル酸、アクリル酸エステル、メタクリル酸エステル、アクリロニトリル、メタクリロニトリル等のモノビニル脂肪族単量体が挙げられ、これらの一種以上を選択して共重合可能な量的範囲内おいて添加してモノビニル芳香族単量体と共重合させることができる。
【0012】
次に、架橋しえるポリビニル単量体としては、具体的には、ジビニルベンゼン、ジビニルトルエン、ジビニルキシレン、ジビニルナフタレン、トリビニルベンゼン、トリビニルキシレン等のポリビニル芳香族単量体、更にジ(メタ)アクリル酸エチレングリコールエステル、トリメチロールプロパン(メタ)アクリレート、ジ(メタ)アクリル酸ブチレングリコールエステル、マレイン酸ジアリル、アジピン酸ジアリル等のポリビニル脂肪族単量体等が挙げられる。
架橋剤とするポリビニル単量体の使用量は、全単量体、即ちモノビニル芳香族単量体更にはモノビニル脂肪族単量体を含む場合にはこれらモノビニル単量体とポリビニル単量体の合計量に対して、0.5ー60重量%の範囲内で用いられ、好ましくは、1.5−50重量%の範囲内である。
またモノビニル脂肪族単量体は、所望に応じて使用されるが目的とするSACERの性能などに変化を与えない範囲内の量で使用され、0.1−20重量%の範囲内である。
【0013】
本発明では、前述の単量体を公知の重合方法、例えば懸濁重合、乳化重合、塊状重合、溶液重合法等の方法で重合できるが、懸濁重合や乳化重合等が均一型の共重合体ビーズが得られるので特に好ましい。その一例として懸濁重合法による場合には、分散媒としては、通常は水などが使用でき、分散剤としては、ポリビニルアルコール、カルボキシメチルセルロース等の公知の重合方法に用いられているものが使用できる。また重合開始剤としては、過酸化ベンゾイル等の過酸化物、あるいは、アゾブチロニトリル等のアゾ化合物等の公知のものが使用できる。重合は、通常50−100℃の範囲内の温度にて2−30時間程度で実施され、その操作としては、水および分散剤等を仕込みこれに撹伴下に、重合開始剤を溶解した単量体を加え、懸濁状態下に所定温度において実施される。本発明で使用される架橋共重合体は、ゲル形と称せられる実質的に非多孔質架橋共重合体、更には重合の際に得られる架橋共重合体に多孔性を付与する公知の多孔質形成剤、例えば架橋共重合体を膨潤する性質を有する有機溶媒、非膨潤性の有機溶媒、単量体に溶解しえる線状重合体やこれらの混合物等を共存させて得られる多孔質架橋共重合体があげられる。
【0014】
このようにして得られた架橋共重合体をスルホン化してSACERが製造される。このスルホン化は、架橋共重合体をこの重合体を膨潤させる性質を有する有機溶媒の存在下または非存在下で実施される。この重合体を膨潤させる性質を有する有機溶媒は反応系中では不活性であるものであり、具体例としては、エチレンジクロライド、ニトロベンゼン、キシレン、トルエン、トリクロロエチレン、ベンゼン、プロピレンジクロライド、クロロベンゼン、四塩化炭素等が挙げられる。これらを使用する場合には、その使用量は、架橋共重合体に対して0.5−10倍重量の範囲内にて適宜選択される。これらの使用は、緩和された条件下にスルホン酸基を架橋共重合体へ円滑に均一に導入できるものと言われている。これらの有機溶媒の非存在下でも当然スルホン化を実施することができる。
スルホン化剤としては、硫酸、発煙硫酸、クロロスルホン酸等あるいはこれらの混合物等が挙げられ、これらによりスルホン酸基が架橋共重合体に導入される。典型的にはスルホン化の反応時間は0.3−20時間程度であり、反応温度は、40−130℃で実施される。
【0015】
このようなスルホン化工程を経て製造されたスルホン化体は、通常は水和し、ろ過、洗浄した後苛性ソーダや炭酸ナトリウムで中和し、水洗してNa形の強酸性陽イオン交換樹脂が製造される。しかるに本発明では、スルホン化工程を経て製造されたスルホン化体を特定の条件化で水和処理することにより、Naイオン形の強酸性陽イオン交換樹脂を製造することなく、水素イオン形以外の不純物イオンを含まない強酸性陽イオン交換樹脂が製造される。
スルホン化反応後の樹脂を、25℃の電気比抵抗で5MΩcm以上、好ましくは10MΩcm、より好ましくは15MΩcm、最も好ましくは18MΩcm以上の、実質的に水素イオン以外の不純物陽イオンを含まない水で水和し高度に精製処理することにより本発明の水素イオン形強酸性陽イオン交換樹脂を得ることができる。
【0016】
上記のような水で水和することにより、Naイオン等の陽イオンを外部からもたらすことなく、樹脂内に残存する未反応のスルホン化試薬を水と置換することができる。従来はNaイオン等を多量に含む工業用水で水和し、次いで苛性ソーダ、炭酸ナトリウム等で中和して樹脂を製造していた。そのため、前述のような再生処理が必要であるばかりでなく、かかる再生処理によっても本発明の樹脂のような低いレベルまで水素イオン以外の陽イオンの濃度を減少させることはきわめて困難であった。
またスルホン化後にスルホン化体に対して希釈硫酸を接触させ、引き続いて上述の実質的に水素イオン以外の不純物陽イオンを含まない水により水和する事もできる。この方法によれば、スルホン化後に上記の水で直接水和するよりも短時間で水和することができる。これは急激な変化が緩和され、また急激な膨潤収縮が避けられるためであると考えられる。
【0017】
本発明の水素イオン形強酸性陽イオン交換樹脂の製造の際に使用される原料について、通常使用されるものを使用することができる。しかし、不純物陽イオンの量が少ない方が好ましいことはいうまでもない。架橋共重合体中に存在する水素イオン以外の不純物陽イオンも少なければ少ないほど好ましく、たとえば、モノマー原料や界面活性剤などに含まれる不純物陽イオンも少ない方が好ましい。
本発明の強酸性陽イオン交換樹脂は、単床、またはこれと再生型強塩基性陰イオン交換樹脂との混床として使用され、超々純水を提供する。
ここで再生型強塩基性陰イオン交換樹脂とは、水酸イオン形強塩基性イオン交換樹脂である。
超純水の製造において、混床で使用する場合のSACERとSBAERとのそれぞれの割合は、体積比で10:1−1:10の範囲で使用可能であり、好ましくは1:2−5:1、より好ましくは1:2−2:1で使用される。
また、原子力発電所、火力発電所やボイラーの復水脱塩処理用の混床においては、陰イオン交換樹脂と陽イオン交換樹脂とのそれぞれの割合は、体積比で10:1−1:10の範囲で使用可能であり、好ましくは2:1−1:2である。
【0018】
通常SACERは市販のイオン形としてはNa形になっており、これを高純度塩酸や硫酸を通薬して水素イオン形樹脂に転換する場合とは全く異なり、本発明においては水素以外の不純物陽イオンの量を、イオン交換樹脂の全交換当量の0.1当量%以下、好ましくは0.05当量%以下、最も好ましくは0.01当量%以下に激減させることが可能となった。
こうして得られた新規な水素イオン形SACERは、単床または新規な水素イオン形SACERと再生型水酸イオン形SBAERの混床で、半導体用超純水製造システムの一次系システムの末端または二次系システム既存のカートリッジポリシャーの前後、又はこれらに代えて用いることができる。
【0019】
従来の超純水中の不純物陽イオンは通常数10pptレベルであるが、本発明の水素イオン形SACERを用いることにより、不純物陽イオンが10ppt以下、好ましくは1pptのレベルまで減少した超々純水を得ることができる。本発明により得られる超々純水は、次世代用の64メガビットまたはそれ以上のメモリーの製造に使用されるウェーハ洗浄水として好適に用いられる。
原子力発電所では原子炉冷却水用補給水の製造装置又は、復水脱塩装置に用いることにより脱塩能力は従来樹脂と同等又はそれ以上であり、かつ樹脂からの不純物陽イオンのリークが全くないので、処理水中に不純物陽イオンを実質的に含まない超々純水を製造することが可能となる。
以下において実施例に基づき本発明をより詳細に説明するが、かかる実施例は本発明の範囲を何等制限するものではない。
【0020】
実施例1
公知の方法によりスチレン406.8g、純度59%のジビニルベンゼン93.2gを重合開始剤の存在下、分散剤等を含む水性媒質中で重合し、515gの球状共重合体を製造した。次いでこの球状共重合体に、エチレンジクロリドを添加して球状共重合体を充分に膨潤させ、この膨潤共重合体に市販98%濃硫酸(日鉱亜鉛(株)製品)を加えて120℃で、5時間スルホン化を行った。反応終了後のスルホン化体を含む母液を1リットル四径丸底フラスコに4分し(スルホン化体として約400g含む)、(1)インラインで、18MΩcmの超純水をゆっくり撹伴しながら加え、液のpHがほぼ中性になるまでスルホン化体を水和させた。(2)インラインで、15.5MΩcmの脱イオン水をゆっくり撹伴しながら加え、液のpHがほぼ中性になるまでスルホン化体を水和させた。(3)インラインで、10.3MΩcmの脱イオン水をゆっくり撹伴しながら加え、液のpHがほぼ中性になるまでスルホン化体を水和させた。(4)初め(2)の脱イオン水で中和し、液の硫酸濃度が約25%になった後に、Naイオンとして9.6ppm、Mgイオンとして1.5ppm、Caイオンとして12.2ppm含む水道水を用い、ゆっくり撹伴しながら、液のpHがほぼ中性になるまで3回スルホン化体を水和させた。
【0021】
上記(1)から(4)の水和させた水素イオン形陽イオン交換樹脂の一定量20gを不純物陽イオンを含まない35%塩酸を超純水で希釈し、1N塩酸とし、その1リットルを通薬し、ろ液中の不純物陽イオンをフレーム光度法で定量した。
別途常法により求めたこの水素イオン形強酸性陽イオン交換樹脂の体積換算のイオン交換容量(2.19eq/リットル−樹脂)と見掛け密度(835g/リットル−樹脂)より以下に示す通り計算により求めた。
その結果は、下記の通りである。

Figure 0003902799
なお(1)を例として計算方法を以下に示す。
通薬した1N塩酸中のナトリウムの濃度:0.07mg/リットル(他の陽イオンは不検出であった。)
35%塩酸のブランク値(ナトリウム検出限界):0.05mg/リットル
従ってサンプル樹脂20g(23.95ml)より溶離したナトリウム濃度:0.07mg/リットル
1リットル樹脂中に含まれるナトリウムの当量:0.07x10-3x1000/23.95÷23=1.271x10-4 eq/リットル−樹脂
不純物陽イオンの当量%=1.271x10-4/2.19x100=0.006
【0022】
実施例2
実施例1の濃硫酸でスルホン化を行った。反応終了後のスルホン化体を含む母液を1リットル四径丸底フラスコに4分(スルホン化体として約400g含む)し、(5)インラインで、18MΩcmの超純水をゆっくり撹伴しながら加え、液のpHがほぼ中性になるまでスルホン化体を水和させた。(6)上記濃硫酸を約50%および25%に超純水(18MΩcm)で希釈し、初め約50%の希釈濃硫酸で1回水和させ、次いで約25%の希釈濃硫酸で2回、その後超純水で液のpHが中性になるまでスルホン化体を水和させた。(7)上記濃硫酸を超純水(18MΩcm)で希釈して得た硫酸濃度が約25%の硫酸を用い、母液の硫酸濃度が約30%になった後インラインで、7.5MΩcmの脱イオン水で液のpHがほぼ中性になるまでスルホン化体を水和させた。(8)上記濃硫酸を超純水(18MΩcm)で希釈して得た硫酸濃度が約20%の硫酸を用い、母液の硫酸濃度が約25%になるまで水和させた後、実施例1の水道水で液のpHがほぼ中性になるまで水和させた。
上記(5)から(8)の水和させた水素イオン形陽イオン交換樹脂の一定量20gを実施例1と同様の操作を行い、樹脂中の不純物陽イオンの当量%を求めた。その結果は、下記の通りである。
Figure 0003902799
【0023】
実施例3
実施例1および2の(1)、(2)、(4)、(7)で得られた樹脂、および実施例1の(1)の方法により得た水和工程終了後の樹脂を、常法により炭酸ナトリウムを加えNa形樹脂とし、これを1N塩酸を樹脂1リットル当たり10倍量通薬し、次いで超純水で樹脂中の再生剤残査を洗浄し、水素イオン形転換率99.5%の再生形SACER((9)樹脂)を得、以下の試験に供した。
脱イオン水を原水とする以下の実験室用超純水製造システム(180リットル/時で25℃の電気比抵抗18MΩcmの超純水を供給できる)を用いテストした。なおそのシステムの概略を図2に示す。
図2に示されたフロー中のカートリッジポリッシャー(5リットル)に前述の(1)、(2)、(4)、(7)、(9)の各樹脂それぞれと、1N水酸化ナトリウム溶液を樹脂1リットルあたり10倍量通薬して再生精製処理したSBAER(アンバーライトIRA−402BL、ローム アンド ハース カンパニー製)をSACER/SBAERの体積比で2/3(交換容量比でほぼ同当量混合となつている)にした各混床樹脂5リットルを入れ、混床樹脂に対してSV(Space Velocity)40 bed volume/時でシステムを作動させ、1時間後のユースポイントでの超純水(18MΩcm以上)中のNaイオンをイオンクロマトグラフィー(米国ダイオネックス社製)で定量(サンプル水20ミリリットルを装置に注入)した。
その結果は、下記の通りである。
Figure 0003902799
【0024】
実施例4
図2に示したフローにおいて、(2)の樹脂を単独で5リットルカートリッジポリッシャーボンベに詰め単床とし、(9)の樹脂を用いた実施例1に示した混床の5リットルカートリッジポリッシャーの後に直列で付け、システムを作動させ1時間後のユースポイントでの超純水(18MΩcm)中のNaイオン濃度をイオンクロマトグラフィー(米国ダイオネックス社製)で定量した。その結果Naイオン濃度は、2pptとなった。
【0025】
実施例5
図2に示した一次系末端混床イオン交換樹脂塔には再生形SACER(アンバーライトIR−124、ローム アンド ハース カンパニー製)(再生による水素イオン形転換率91.0%)と再生形SBAER(アンバーライトIRA−402BL、再生による水酸イオン形転換率80.0%)の混床(SACER/SBAERの混合比1/2、70リットル)により作られている。この混床SACERを(2)の樹脂に代えた混床に通水したところ、3時間後Naイオンのリーク量が約100pptから約3pptに減少した。
【図面の簡単な説明】
【図1】図1は従来の強酸性陽イオン交換樹脂の再生効率カーブを示す図である。
【図2】図2は実施例4で使用された実験室用超純水製造システムの概略フローを示す図である。[0001]
[Industrial application fields]
The present invention relates to a strongly acidic cation exchange resin substantially free of impurity cation forms other than hydrogen ion form and a method for producing the same. By using the strongly acidic cation exchange resin according to the present invention, ultrapure materials that do not contain impurity cations other than hydrogen ions, which are particularly required for semiconductor manufacturing, nuclear power generation and condensate desalination treatment of thermal power plants, etc. You can get water.
[0002]
[Prior art and its problems]
Conventionally, various methods have been industrialized in order to produce ultrapure water from which various impurity cations and anions are removed from raw water such as city water, groundwater, and industrial water. The latest ultrapure water manufacturing system for semiconductor manufacturing is the most advanced technology. This basically comprises a pretreatment system, a primary pure water production system, and a secondary pure water production system. The pretreatment system includes aggregation, filtration, activated carbon adsorption, and the like. The primary pure water production system is composed of one or two reverse osmosis membrane separation devices and mixed-bed ion exchange devices, or ion exchange pure water devices and reverse osmosis membrane separation devices, and also a secondary pure water production system Consists of an ultraviolet oxidative decomposition apparatus, a mixed bed type ion exchange apparatus and an ultrafiltration membrane separation apparatus. Raw water is purified to a level close to theoretical pure water with an electrical specific resistance of 18.24 MΩcm by removing various impurity ions to the limit by these systems.
[0003]
The supply water for nuclear power generation is also required to have the same water quality as the above-mentioned ultrapure water. This is because the raw water is fed by a system that uses reverse osmosis membrane separation and ion exchange deionized water equipment similar to the above ultrapure water production system. Manufactured by processing. From the viewpoint of ensuring the safety of nuclear power plant, the condensate needs to maintain high purity water quality. For that purpose, a strongly acidic cation exchange resin (SACER) and a strongly basic anion exchange resin (SBAER) are mixed. The condensate demineralizer as described above is provided to remove impurity ions.
[0004]
Conventionally, SACER and SBAER used to produce these ultrapure water for industrial use are highly regenerated and purified resins, that is, trace organic impurities and trace ionic impurities contained in the resin. Reduced resin, used in single or mixed bed. The level of regeneration treatment of ion exchange resin for ultrapure water production is determined by each water treatment manufacturer. For example, the regeneration rate of strongly acidic cation exchange resin, that is, the conversion rate of hydrogen ions is 99% or more, A numerical value such as 95% or more is shown for the regeneration rate of the strongly basic anion exchange resin, that is, the hydroxide ion form conversion rate.
When these highly regenerated and refined resins are mixed and used as a mixed-bed ion exchanger, especially in the production of ultrapure water for semiconductor production, a recyclable hydrogen ion type strongly acidic cation exchange resin and A regenerated hydroxyl ion type strongly basic anion exchange resin is mixed and used. Discarded after a certain period of use. Recently, from the standpoint of resource conservation recycling, containers may be replaced and recycled separately to be reused in a primary pure water production system with a low water quality level.
[0005]
In the above conventional regenerative type SACER, the leakage of impurity cations may occur due to the difference in resin characteristics due to the difference in lots. Among these impurity cations, Na ions are particularly susceptible to leakage due to the low selectivity of strongly acidic cation exchange resins and the problem of Na + <NH 4 + <K + <Mg ++ <Ca ++ . Na ions deteriorate the electrical properties of the wafer in semiconductor manufacturing. Although the relationship between the number of Na atoms as impurity atoms and the contamination characteristics on the wafer is not clear, it is said that the electrical characteristics of the wafer deteriorate when the number of Na atoms is several billion / cm 2 wafer. It is required to reduce the leakage of impurity cations from the SACER to the limit. The leakage of the impurity cation (M) from the resin is caused by hydrolysis of RM (M-type resin) due to poor regeneration of the strongly acidic cation exchange resin, and M ions leak into the treated water. It is considered. In order to prevent leakage of this impurity cation, each company is working on advanced regeneration treatment as described above. The leakage of the impurity M ions causes a problem of contamination of the wafer and lowers the yield of the wafer.
[0006]
Despite the above-mentioned problems, the cation exchange resin was supplied in the Na form. The Na form had a smaller volume and was advantageous in terms of storage stability and handling. This is because even if it is supplied in the hydrogen ion form, it is contaminated with the passage of time and partially changes to the Na form, so that there is a problem in supplying the hydrogen ion form as a practical problem. The strong acid cation exchange resin as in the present invention can theoretically be produced by regenerating Na-type resin, but as shown in the regeneration efficiency curve of FIG. In reality, it is difficult to convert to the hydrogen ion form by regeneration in this way. Moreover, until now, no strongly acidic cation exchange resin in which the impurity cation has been reduced to the level of the resin of the present invention has been found.
[0007]
[Problems solved by the present invention]
The present invention solves the above-mentioned conventional problems, and provides a novel hydrogen ion type strongly acidic cation exchange resin in which the amount of impurity cations other than hydrogen ions is extremely small and no impurity cation leakage occurs, and a method for producing the same The purpose is to do.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the inventors have intensively studied and succeeded in developing a hydrogen ion type strongly acidic cation exchange resin substantially free of impurity cations, thereby completing the present invention.
That is, the present invention provides a hydrogen ion type strongly acidic cation exchange resin in which impurity cations other than hydrogen ions are 0.1 equivalent% or less of the total exchange equivalent of the ion exchange resin. Preferably, impurity cations other than hydrogen ions in the resin are 0.05 equivalent% or less, and most preferably 0.01% equivalent or less of the total exchange equivalent of the ion exchange resin.
[0009]
In this specification, impurity cations other than hydrogen ions refer to cations such as sodium, potassium, calcium, magnesium, and ammonium.
Further, in this specification, the total exchange equivalent of the ion exchange resin refers to the total exchange capacity, and indicates the total amount of exchange groups that participate in the ion exchange reaction of the ion exchange resin. It may be considered substantially equivalent to the salt decomposition capacity. These measurements usually follow the exchange capacity measurements made in the industry. Further, the equivalent percentage of the present invention is calculated from the value of the equivalent of the impurity cation form with respect to the total exchange capacity of the resin.
[0010]
The present invention also provides a method for producing the hydrogen ion type strongly acidic cation exchange resin. That is, the hydrogen ion type strongly acidic cation exchange resin of the present invention comprises 1) a step of producing a crosslinked polymer, 2) a step of sulfonating the crosslinked polymer in the presence of a sulfonation reagent, and 3) 25 ° C. It can be produced by a method comprising a step of hydrating with water having an electrical specific resistance of 5 MΩcm or more, or with dilute sulfuric acid and subsequently with water having an electrical specific resistance of 25 MC or more at 25 ° C.
The crosslinked copolymer used in the present invention can be produced by known raw materials and methods.
[0011]
Monomers that constitute the crosslinked copolymer include monovinyl monomers and polyvinyl monomers. Examples of the monovinyl monomer include monovinyl aromatic monomers such as styrene, methylstyrene, chlorostyrene, chloromethylstyrene, ethylstyrene, vinylxylene, vinyltoluene, and vinylnaphthalene. Monomers that can be copolymerized with these monovinyl aromatic monomers include monovinyl aliphatic monomers such as acrylic acid, methacrylic acid, acrylic acid ester, methacrylic acid ester, acrylonitrile, and methacrylonitrile. One or more of these can be selected and added within a copolymerizable quantity range to be copolymerized with the monovinyl aromatic monomer.
[0012]
Next, as the cross-linkable polyvinyl monomer, specifically, polyvinyl aromatic monomers such as divinylbenzene, divinyltoluene, divinylxylene, divinylnaphthalene, trivinylbenzene, trivinylxylene, and di (meta) ) Polyethylene aliphatic monomers such as ethylene glycol acrylate, trimethylolpropane (meth) acrylate, butylene glycol di (meth) acrylate, diallyl maleate, and diallyl adipate.
The amount of the polyvinyl monomer used as the cross-linking agent is the total of all the monomers, that is, the monovinyl aromatic monomer and further the monovinyl aliphatic monomer. It is used in the range of 0.5-60% by weight, preferably in the range of 1.5-50% by weight, based on the amount.
The monovinyl aliphatic monomer is used as desired, but is used in an amount within a range that does not change the performance of the target SACER and the like, and is within a range of 0.1-20% by weight.
[0013]
In the present invention, the above-mentioned monomer can be polymerized by a known polymerization method such as suspension polymerization, emulsion polymerization, bulk polymerization, solution polymerization method, etc. This is particularly preferred because coalesced beads are obtained. As an example, when the suspension polymerization method is used, water or the like can be usually used as the dispersion medium, and those used in known polymerization methods such as polyvinyl alcohol and carboxymethyl cellulose can be used as the dispersant. . As the polymerization initiator, known compounds such as peroxides such as benzoyl peroxide or azo compounds such as azobutyronitrile can be used. The polymerization is usually carried out at a temperature in the range of 50 to 100 ° C. for about 2 to 30 hours. As the operation, water and a dispersing agent are charged and the polymerization initiator is dissolved under stirring. The mass is added and carried out at a given temperature under suspension. The cross-linked copolymer used in the present invention is a substantially non-porous cross-linked copolymer referred to as a gel form, and a known porous material that imparts porosity to the cross-linked copolymer obtained during polymerization. A porous crosslinking copolymer obtained by coexisting a forming agent, for example, an organic solvent having a property of swelling a crosslinked copolymer, a non-swellable organic solvent, a linear polymer soluble in a monomer, or a mixture thereof. A polymer.
[0014]
The cross-linked copolymer thus obtained is sulfonated to produce SACER. This sulfonation is carried out in the presence or absence of an organic solvent having the property of causing the crosslinked copolymer to swell the polymer. The organic solvent having the property of swelling the polymer is inactive in the reaction system, and specific examples thereof include ethylene dichloride, nitrobenzene, xylene, toluene, trichloroethylene, benzene, propylene dichloride, chlorobenzene, carbon tetrachloride. Etc. When using these, the usage-amount is suitably selected within the range of 0.5-10 times weight with respect to a crosslinked copolymer. These uses are said to allow smooth and uniform introduction of sulfonic acid groups into the crosslinked copolymer under relaxed conditions. Naturally sulfonation can be carried out even in the absence of these organic solvents.
Examples of the sulfonating agent include sulfuric acid, fuming sulfuric acid, chlorosulfonic acid, and the like, or a mixture thereof. By these, the sulfonic acid group is introduced into the crosslinked copolymer. Typically, the reaction time for sulfonation is about 0.3 to 20 hours, and the reaction temperature is 40 to 130 ° C.
[0015]
The sulfonated product produced through such a sulfonation process is usually hydrated, filtered, washed, neutralized with sodium hydroxide or sodium carbonate, and washed with water to produce a strongly acidic cation exchange resin in Na form. Is done. However, in the present invention, the sulfonated product produced through the sulfonation step is hydrated under specific conditions, so that the Na ion type strongly acidic cation exchange resin is not produced, and other than the hydrogen ion type. A strongly acidic cation exchange resin free from impurity ions is produced.
The resin after the sulfonation reaction is washed with water having an electrical specific resistance of 25 ° C. of 5 MΩcm or more, preferably 10 MΩcm, more preferably 15 MΩcm, most preferably 18 MΩcm or more, and substantially free of impurity cations other than hydrogen ions. The hydrogen ion type strongly acidic cation exchange resin of the present invention can be obtained by adding and highly purifying treatment.
[0016]
By hydrating with water as described above, the unreacted sulfonation reagent remaining in the resin can be replaced with water without bringing a cation such as Na ion from the outside. Conventionally, a resin was produced by hydrating with industrial water containing a large amount of Na ions and the like, and then neutralizing with sodium hydroxide, sodium carbonate or the like. Therefore, not only the regeneration treatment as described above is necessary, but also by such regeneration treatment, it has been extremely difficult to reduce the concentration of cations other than hydrogen ions to a low level as in the resin of the present invention.
Further, diluted sulfuric acid can be brought into contact with the sulfonated product after sulfonation, and subsequently hydrated with water that does not substantially contain impurity cations other than hydrogen ions. According to this method, it is possible to hydrate in a shorter time than the above-mentioned direct hydration with water after sulfonation. This is thought to be because rapid changes are alleviated and rapid swelling and shrinkage are avoided.
[0017]
As the raw materials used in the production of the hydrogen ion type strongly acidic cation exchange resin of the present invention, those usually used can be used. However, it goes without saying that a smaller amount of impurity cations is preferable. The smaller the amount of impurity cations other than hydrogen ions present in the crosslinked copolymer, the better. For example, it is preferable that the amount of impurity cations contained in the monomer raw material, the surfactant, etc. is small.
The strongly acidic cation exchange resin of the present invention is used as a single bed or a mixed bed of this and a regenerated strong basic anion exchange resin to provide ultra-pure water.
Here, the regenerative strong basic anion exchange resin is a hydroxide ion type strongly basic ion exchange resin.
In the production of ultrapure water, the respective ratios of SACER and SBAER when used in a mixed bed can be used in a volume ratio of 10: 1-1: 10, preferably 1: 2-5: 1, more preferably 1: 2-2: 1.
In a mixed bed for condensate demineralization treatment of a nuclear power plant, a thermal power plant or a boiler, the ratio of each of the anion exchange resin and the cation exchange resin is 10: 1-1: 10 in volume ratio. Can be used in the range of 2: 1-1: 2.
[0018]
Normally, SACER is in the Na form as a commercially available ionic form, which is completely different from the case where it is converted into a hydrogen ion form resin by passing high-purity hydrochloric acid or sulfuric acid. In the present invention, impurity positive ions other than hydrogen are used. It became possible to drastically reduce the amount of ions to 0.1 equivalent% or less, preferably 0.05 equivalent% or less, and most preferably 0.01 equivalent% or less of the total exchange equivalent of the ion exchange resin.
The new hydrogen ion type SACER obtained in this way is a single bed or a mixed bed of the new hydrogen ion type SACER and the regenerative hydroxide ion type SBAER. The system can be used before or after the existing cartridge polisher, or in place of these.
[0019]
The impurity cation in conventional ultrapure water is usually several tens of ppt level. However, by using the hydrogen ion type SACER of the present invention, ultrapure water in which the impurity cation is reduced to a level of 10 ppt or less, preferably 1 ppt is obtained. Obtainable. The ultra-pure water obtained by the present invention is suitably used as wafer cleaning water used in the production of next-generation 64 megabit or higher memories.
At a nuclear power plant, the desalting capacity is equivalent to or higher than that of conventional resins by using it in the reactor cooling water make-up water production equipment or condensate desalination equipment, and there is absolutely no leakage of impurity cations from the resin. Therefore, ultra-pure water that does not substantially contain impurity cations in the treated water can be produced.
Hereinafter, the present invention will be described in more detail based on examples. However, the examples do not limit the scope of the present invention.
[0020]
Example 1
According to a known method, 406.8 g of styrene and 93.2 g of 59% pure divinylbenzene were polymerized in an aqueous medium containing a dispersing agent in the presence of a polymerization initiator to produce 515 g of a spherical copolymer. Next, ethylene dichloride was added to the spherical copolymer to sufficiently swell the spherical copolymer, and commercially available 98% concentrated sulfuric acid (Nikko Zinc Co., Ltd. product) was added to the swollen copolymer at 120 ° C. Sulfonation was performed for 5 hours. After completion of the reaction, the mother liquor containing the sulfonated product is placed in a 1 liter four-diameter round bottom flask for 4 minutes (containing approximately 400 g as the sulfonated product), and (1) 18 MΩcm ultrapure water is added in-line while slowly stirring. The sulfonated product was hydrated until the pH of the liquid became almost neutral. (2) Inline, 15.5 MΩcm of deionized water was added with slow stirring, and the sulfonated product was hydrated until the pH of the solution became almost neutral. (3) Inline, 10.3 MΩcm of deionized water was added with slow stirring, and the sulfonated product was hydrated until the pH of the solution became almost neutral. (4) Neutralize first with deionized water of (2), and after the sulfuric acid concentration of the liquid reaches about 25%, it contains 9.6 ppm as Na ions, 1.5 ppm as Mg ions, and 12.2 ppm as Ca ions Using the tap water, the sulfonated product was hydrated three times with slow stirring until the pH of the solution became almost neutral.
[0021]
A fixed amount of 20 g of the hydrated hydrogen ion cation exchange resin (1) to (4) above is diluted with ultrapure water containing 35% hydrochloric acid not containing an impurity cation to obtain 1N hydrochloric acid. The drug was passed through and the impurity cations in the filtrate were quantified by flame photometry.
The hydrogen ion-type strongly acidic cation exchange resin separately obtained by a conventional method is obtained by calculation as shown below from the ion exchange capacity in volume conversion (2.19 eq / liter-resin) and the apparent density (835 g / liter-resin). It was.
The results are as follows.
Figure 0003902799
The calculation method is shown below by taking (1) as an example.
Concentration of sodium in 1N hydrochloric acid passed through: 0.07 mg / liter (other cations were not detected)
Blank value of 35% hydrochloric acid (sodium detection limit): 0.05 mg / liter Therefore, the sodium concentration eluted from 20 g (23.95 ml) of sample resin: 0.07 mg / liter The equivalent of sodium contained in 1 liter resin: 0.00 07 × 10 −3 × 1000 / 23.95 ÷ 23 = 1.271 × 10 −4 eq / liter—equivalent% of resin impurity cation = 1.271 × 10 −4 /2.19×100=0.006
[0022]
Example 2
Sulfonation was carried out with the concentrated sulfuric acid of Example 1. After completion of the reaction, the mother liquor containing the sulfonated product is added to a 1-liter four-diameter round bottom flask for 4 minutes (containing approximately 400 g as the sulfonated product), and (5) inline, 18 MΩcm ultrapure water is added with slow stirring. The sulfonated product was hydrated until the pH of the liquid became almost neutral. (6) The concentrated sulfuric acid is diluted to about 50% and 25% with ultrapure water (18 MΩcm), first hydrated once with about 50% diluted concentrated sulfuric acid, and then twice with about 25% diluted concentrated sulfuric acid. Thereafter, the sulfonated product was hydrated with ultrapure water until the pH of the solution became neutral. (7) Using sulfuric acid having a sulfuric acid concentration of about 25% obtained by diluting the concentrated sulfuric acid with ultrapure water (18 MΩcm), and removing the 7.5 MΩcm in-line after the sulfuric acid concentration of the mother liquor has reached about 30%. The sulfonated product was hydrated with ionic water until the pH of the solution became almost neutral. (8) Using sulfuric acid having a sulfuric acid concentration of about 20% obtained by diluting the concentrated sulfuric acid with ultrapure water (18 MΩcm), hydrating until the sulfuric acid concentration of the mother liquor is about 25%, then Example 1 Was hydrated with tap water until the pH of the liquid became almost neutral.
The same operation as in Example 1 was performed on 20 g of the hydrated hydrogen ion type cation exchange resin of (5) to (8) above, and the equivalent percentage of the impurity cation in the resin was determined. The results are as follows.
Figure 0003902799
[0023]
Example 3
The resins obtained in (1), (2), (4) and (7) of Examples 1 and 2 and the resin after completion of the hydration step obtained by the method of (1) in Example 1 are usually used. Sodium carbonate was added by the method to form a Na-type resin, and this was passed 10 times the amount of 1N hydrochloric acid per liter of the resin, and then the regenerant residue in the resin was washed with ultrapure water. 5% regenerated SACER ((9) resin) was obtained and subjected to the following test.
The following laboratory ultrapure water production system using deionized water as raw water (which can supply ultrapure water with an electric specific resistance of 18 MΩcm at 25 ° C. at 180 liters / hour) was tested. An outline of the system is shown in FIG.
Each of the resins (1), (2), (4), (7) and (9) described above and a 1N sodium hydroxide solution are added to the cartridge polisher (5 liters) in the flow shown in FIG. SBAER (Amberlite IRA-402BL, manufactured by Rohm and Haas Company), which was regenerated and purified by 10 times the amount per liter, was mixed at a volume ratio of SACER / SBAER to 2/3 (almost the same equivalent mixture at the exchange capacity ratio). 5 liters of each mixed-bed resin, and the system is operated with SV (Space Velocity) 40 bed volume / hour against the mixed-bed resin, and ultrapure water at the point of use after 1 hour (18 MΩcm or more) ) Quantitative determination of Na ions in ion chromatography (Dionex, USA) ) It was.
The results are as follows.
Figure 0003902799
[0024]
Example 4
In the flow shown in FIG. 2, the resin of (2) is singly packed into a 5-liter cartridge polisher cylinder to form a single bed, and after the mixed-bed 5-liter cartridge polisher shown in Example 1 using the resin of (9). It was attached in series, the system was operated, and the Na ion concentration in ultrapure water (18 MΩcm) at the point of use after 1 hour was quantified by ion chromatography (manufactured by Dionex, USA). As a result, the Na ion concentration was 2 ppt.
[0025]
Example 5
The primary terminal mixed-bed ion exchange resin tower shown in FIG. 2 has a regenerated SACER (Amberlite IR-124, manufactured by Rohm and Haas Company) (hydrogen ion form conversion 91.0% by regeneration) and a regenerated SBAER ( Amberlite IRA-402BL, which is a mixed bed (SACER / SBAER mixing ratio of 1/2, 70 liters) of hydroxyl ion form conversion rate by regeneration (80.0%). When this mixed bed SACER was passed through the mixed bed replaced with the resin of (2), the leak amount of Na ions decreased from about 100 ppt to about 3 ppt after 3 hours.
[Brief description of the drawings]
FIG. 1 is a graph showing a regeneration efficiency curve of a conventional strongly acidic cation exchange resin.
FIG. 2 is a diagram showing a schematic flow of a laboratory ultrapure water production system used in Example 4;

Claims (3)

1)架橋重合体を製造する工程、2)スルホン化試薬の存在下に前記架橋重合体をスルホン化する工程、および3)25℃の電気比抵抗で7.5MΩcm以上を示す水で、または希釈硫酸に引き続いて25℃の電気比抵抗で7.5MΩcm以上を示す水で水和する工程を含む、水素イオン以外の不純物陽イオンが、イオン交換樹脂の全交換当量の0.1当量%以下である水素イオン形強酸性陽イオン交換樹脂の製造方法。  1) a step of producing a crosslinked polymer, 2) a step of sulfonating the crosslinked polymer in the presence of a sulfonation reagent, and 3) water having an electric resistivity of 25 ° C. of 7.5 MΩcm or more, or dilution Impurity cations other than hydrogen ions, including the step of hydrating with water showing 7.5 MΩcm or more with an electric specific resistance of 25 ° C. following sulfuric acid, is 0.1 equivalent% or less of the total exchange equivalent of the ion exchange resin. A method for producing a certain hydrogen ion type strongly acidic cation exchange resin. 1)架橋重合体を製造する工程、2)スルホン化試薬の存在下に前記架橋重合体をスルホン化する工程、および3)25℃の電気比抵抗で10MΩcm以上を示す水で、または希釈硫酸に引き続いて25℃の電気比抵抗で10MΩcm以上を示す水で水和する工程を含む、水素イオン以外の不純物陽イオンが、イオン交換樹脂の全交換当量の0.1当量%以下である水素イオン形強酸性陽イオン交換樹脂の製造方法。  1) a step of producing a cross-linked polymer, 2) a step of sulfonating the cross-linked polymer in the presence of a sulfonating reagent, and 3) water having an electric resistivity of 25 ° C. of 10 MΩcm or more, or diluted sulfuric acid A hydrogen ion form in which impurity cations other than hydrogen ions are not more than 0.1 equivalent% of the total exchange equivalent of the ion exchange resin, including a step of subsequently hydrating with water having an electrical resistivity of 25 ° C. and a water resistivity of 10 MΩcm or more A method for producing a strongly acidic cation exchange resin. 1)架橋重合体を製造する工程、2)スルホン化試薬の存在下に前記架橋重合体をスルホン化する工程、および3)25℃の電気比抵抗で10.3MΩcm以上を示す水で、または希釈硫酸に引き続いて25℃の電気比抵抗で10.3MΩcm以上を示す水で水和する工程を含む、水素イオン以外の不純物陽イオンが、イオン交換樹脂の全交換当量の0.05当量%以下である水素イオン形強酸性陽イオン交換樹脂の製造方法。1) a step of producing a cross-linked polymer, 2) a step of sulfonating the cross-linked polymer in the presence of a sulfonation reagent, and 3) water having an electric specific resistance of 25 ° C. of 10.3 MΩcm or more, or Impurity cations other than hydrogen ions include 0.05 eq% of the total exchange equivalent of the ion exchange resin, including a step of hydrating with diluted sulfuric acid followed by water having an electrical specific resistance of 25 ° C. of 10.3 MΩcm or more. The manufacturing method of the hydrogen ion type strong acidic cation exchange resin which is the following.
JP24485694A 1994-09-14 1994-09-14 Hydrogen ion type strongly acidic cation exchange resin Expired - Lifetime JP3902799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24485694A JP3902799B2 (en) 1994-09-14 1994-09-14 Hydrogen ion type strongly acidic cation exchange resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24485694A JP3902799B2 (en) 1994-09-14 1994-09-14 Hydrogen ion type strongly acidic cation exchange resin

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006243166A Division JP4511500B2 (en) 2006-09-07 2006-09-07 Hydrogen ion type strongly acidic cation exchange resin

Publications (2)

Publication Number Publication Date
JPH0889818A JPH0889818A (en) 1996-04-09
JP3902799B2 true JP3902799B2 (en) 2007-04-11

Family

ID=17125010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24485694A Expired - Lifetime JP3902799B2 (en) 1994-09-14 1994-09-14 Hydrogen ion type strongly acidic cation exchange resin

Country Status (1)

Country Link
JP (1) JP3902799B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5499433B2 (en) * 2007-11-06 2014-05-21 栗田工業株式会社 Ultrapure water manufacturing method and apparatus, and electronic component member cleaning method and apparatus

Also Published As

Publication number Publication date
JPH0889818A (en) 1996-04-09

Similar Documents

Publication Publication Date Title
US8362182B2 (en) Process for producing cation exchangers
US4263145A (en) Recovery of ammonia or amine from a cation exchange resin
EP0844024B1 (en) Mixed bed ion exchange resin system and method of preparation
JP2018065726A (en) Method and apparatus purifying hydrogen peroxide aqueous solution
JP2001215294A (en) Condensate demineralizer
RU2293061C2 (en) Abstract
US20060199892A1 (en) Method for producing monodisperse gel-type ion exchangers
JP4511500B2 (en) Hydrogen ion type strongly acidic cation exchange resin
US3186941A (en) Water softening with fine cation exchange tubes
JP2002102719A (en) Mixed bed type ion exchange resin bed and anion exchange resin used in the same
JP3902799B2 (en) Hydrogen ion type strongly acidic cation exchange resin
JP6024416B2 (en) Ultrapure water production method and ultrapure water production apparatus
US3458440A (en) Demineralization of polar liquids
KR100621945B1 (en) Gel-type copolymer beads and ion exchange resins made therefrom
JP3248602B2 (en) Ultrapure water production method
JP4744494B2 (en) Thermostable anion exchanger
JPS6058401A (en) Extractable porogen resin
JP2730610B2 (en) Method for treating wastewater containing organic quaternary ammonium hydroxide
US3317424A (en) Demineralization of polar liquids, especially water
JPH054051A (en) Ion exchange resin for production of ultrapure water, its production and production of ultrapure water using same
US3359199A (en) Process for demineralization of polar liquids, especially water
US3975267A (en) Liquid treating system
US4478722A (en) Process for separating salts in aqueous streams
JPH11179218A (en) Ion exchange resin
US3458439A (en) Ion exchange process and regeneration of anion exchange resins

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050217

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20050517

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20050520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20060117

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060511

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060908

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060927

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070105

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term