JPH08168784A - Production of pure water - Google Patents

Production of pure water

Info

Publication number
JPH08168784A
JPH08168784A JP31647094A JP31647094A JPH08168784A JP H08168784 A JPH08168784 A JP H08168784A JP 31647094 A JP31647094 A JP 31647094A JP 31647094 A JP31647094 A JP 31647094A JP H08168784 A JPH08168784 A JP H08168784A
Authority
JP
Japan
Prior art keywords
water
raw water
oxidizing agent
stage
toc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31647094A
Other languages
Japanese (ja)
Other versions
JP3528287B2 (en
Inventor
Hiroshi Morita
博志 森田
Kashu Obata
嘉修 小畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP31647094A priority Critical patent/JP3528287B2/en
Publication of JPH08168784A publication Critical patent/JPH08168784A/en
Application granted granted Critical
Publication of JP3528287B2 publication Critical patent/JP3528287B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Physical Water Treatments (AREA)

Abstract

PURPOSE: To prevent an undesirable influence to a deionizing stage due to a residual oxidizing agent and to improve a production efficiency by subjecting a raw water to a deionizing treatment after heat treating a raw water under the presence of the oxidizing agent to decompose a TOC content in the raw water and removing a residual oxide in a heated water. CONSTITUTION: The pure water is produced by deionizing the raw water after decomposing the TOC content in the raw water by heat treating the raw water under the presence of the oxidizing agent and removing the residual oxide incorporated in a heat treated water. That is, a recovered water from a semiconductor washing stage and a water in which a replenishing water such as industrial water is mixed with the recovered water is used generally as the raw water. Flocculation and filtration, etc., are executed in response to the quality of the raw water at a pre-treating stage 1. Moreover, a heating temp. at a thermally decomposing stage 2 is kept >=70 deg.C, for example, and a packed column of activated carbon, etc., is used at an oxidizing agent removing stage 3. Then, an ion exchange column and a reverse osmosis membrane separating device, etc., are used in combination at a deionizing stage 4, and a sterilization, etc., by UV oxidation is applied at a post-treating stage 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は純水(超純水を含む。)
の製造方法に係り、特に製造される純水中のTOC(全
有機体炭素)を現状より大幅に低減化することができる
純水の製造方法に関する。
FIELD OF THE INVENTION The present invention is pure water (including ultrapure water).
In particular, the present invention relates to a method for producing pure water capable of significantly reducing TOC (total organic carbon) in pure water produced.

【0002】[0002]

【従来の技術及び先行技術】主に半導体基盤洗浄用に用
いられる超純水において、TOCの除去は他の不純物
(微粒子、イオンなど)の除去と同様に極めて重要であ
る。このため、目標水準にまでTOCを低減させた処理
水を得るべく、現在、2段逆浸透膜分離処理やイオン交
換塔を併用した低圧紫外線酸化処理などが行われている
が、いずれも装置建設及び運転に要する費用が高く、超
純水製造システム全体のコストアップの要因となってい
る。しかも、より一層のTOCの低減を図る場合、これ
らの手段では対応し得ないことも判明した。
2. Description of the Prior Art In ultrapure water mainly used for cleaning semiconductor substrates, removal of TOC is as important as removal of other impurities (fine particles, ions, etc.). For this reason, in order to obtain treated water with TOC reduced to the target level, currently two-stage reverse osmosis membrane separation treatment and low-pressure ultraviolet oxidation treatment combined with an ion exchange tower are being performed. In addition, the cost required for operation is high, which is a factor of increasing the cost of the entire ultrapure water production system. Moreover, it has been found that these means cannot be used to further reduce the TOC.

【0003】このような状況のもとに、本出願人は、先
に過硫酸塩などの酸化剤を添加して原水中のTOCを加
熱分解する方法を提案した(PCT/JP94/001
52。以下「先願」という。)。この方法によれば、原
水のTOC濃度に応じた適当量以上の酸化剤を添加する
ことにより、所定時間、所定温度の反応によってTOC
を1段階で5ppb以下にまで低減することができ、し
かも加熱工程を含むため、バイオファウリングも軽減す
ることができる。
Under these circumstances, the applicant of the present invention has previously proposed a method of thermally decomposing TOC in raw water by adding an oxidizing agent such as persulfate (PCT / JP94 / 001).
52. Hereinafter referred to as "first application". ). According to this method, by adding an appropriate amount or more of an oxidizing agent according to the TOC concentration of the raw water, the TOC can be obtained by a reaction at a predetermined temperature for a predetermined time.
Can be reduced to 5 ppb or less in one step, and since a heating step is included, biofouling can also be reduced.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記先願の加
熱分解法では、加熱分解処理水中に、添加した酸化剤が
残留する可能性があるという不具合があった。この残留
酸化剤をそのまま後段の処理工程に通水すると脱イオン
部のイオン交換樹脂や逆浸透膜等を酸化劣化させること
となり、劣化した樹脂の溶出でTOCが増加するなどの
問題が生じる。この酸化剤の残留を完全になくすために
は、反応器内の滞留時間(反応時間)を十分長くとるた
めに反応容器を大きくするか、或いは、反応温度を十分
高めに設定する必要があるが、反応容器の増大や反応温
度の上昇は工業上好ましいことではない。
However, the above-mentioned thermal decomposition method of the prior application has a problem that the added oxidizing agent may remain in the water for thermal decomposition treatment. If this residual oxidant is passed as it is to the subsequent treatment step, the ion exchange resin and the reverse osmosis membrane in the deionization part will be oxidatively deteriorated, and problems such as an increase in TOC due to the elution of the deteriorated resin will occur. In order to completely eliminate this oxidant residue, it is necessary to enlarge the reaction vessel in order to make the residence time (reaction time) in the reactor sufficiently long, or to set the reaction temperature sufficiently high. However, an increase in the number of reaction vessels and an increase in reaction temperature are not industrially preferable.

【0005】本発明は上記先願の問題点を解決し、原水
に酸化剤を添加して原水中のTOC成分を加熱分解除去
した後脱イオン処理する純水の製造方法において、酸化
剤の残留を防止して、後工程の脱イオン部への悪影響を
防止すると共に、加熱分解反応条件の緩和が可能な純水
の製造方法を提供することを目的とする。
The present invention solves the above-mentioned problems of the prior application, and in a method for producing pure water in which an oxidizing agent is added to raw water to thermally decompose and remove TOC components in the raw water and then deionized, residual oxidizing agent remains. It is an object of the present invention to provide a method for producing pure water capable of preventing the adverse effect on the deionization part in the subsequent step and relaxing the thermal decomposition reaction conditions.

【0006】[0006]

【課題を解決するための手段】本発明の純水の製造方法
は、原水を酸化剤存在下に加熱処理して原水中のTOC
成分を分解した後、加熱処理した水に含まれる残留酸化
剤を除去し、次いで脱イオン処理することを特徴とす
る。
In the method for producing pure water of the present invention, raw water is heat treated in the presence of an oxidant to obtain TOC in the raw water.
After the components are decomposed, the residual oxidant contained in the heat-treated water is removed, and then deionized.

【0007】以下に図面を参照して本発明を詳細に説明
する。
The present invention will be described in detail below with reference to the drawings.

【0008】図1は本発明の純水の製造方法の一実施例
方法を示す系統図である。
FIG. 1 is a system diagram showing a method of an embodiment of the method for producing pure water according to the present invention.

【0009】本実施例の方法においては、原水を前処理
工程1、加熱分解処理工程2、酸化剤除去工程3、脱イ
オン処理工程4及び後処理工程5で順次処理する。な
お、加熱分解処理工程2の流入側には、酸化剤添加手段
が設けられている。
In the method of this embodiment, raw water is sequentially treated in a pretreatment step 1, a heat decomposition treatment step 2, an oxidant removal step 3, a deionization treatment step 4 and a posttreatment step 5. An oxidant addition means is provided on the inflow side of the heat decomposition treatment step 2.

【0010】原水としては、一般に半導体洗浄工程から
の回収水及びこれに工水、市水、井水等の補給水を混合
したものが用いられ、半導体洗浄工程からの回収水につ
いては、適当な前処理工程を経た後、加熱分解処理工程
に導入するのが好ましい。
As the raw water, generally, water recovered from the semiconductor cleaning process and a mixture of this with supplemental water such as industrial water, city water, and well water are used. After the pretreatment step, it is preferably introduced into the heat decomposition treatment step.

【0011】前処理工程1としては、原水水質に応じて
任意の手段を設けることができ、例えば、凝集、濾過、
浮上、吸着、イオン交換などの手段を採用することがで
きる。具体的な前処理工程としては、次の〜が挙げ
られる。特に、半導体洗浄工程からの回収水について
は、下記の前処理により、活性炭吸着塔で含有される
22 を除去した後、強アニオン交換塔でフッ素の除
去を行って加熱分解処理工程に導入するのが好ましい。
As the pretreatment step 1, any means can be provided depending on the quality of raw water, for example, flocculation, filtration,
Means such as levitation, adsorption and ion exchange can be adopted. The following are examples of specific pretreatment steps. In particular, with respect to the water recovered from the semiconductor washing step, H 2 O 2 contained in the activated carbon adsorption tower is removed by the following pretreatment, and then fluorine is removed in the strong anion exchange tower to the thermal decomposition treatment step. It is preferably introduced.

【0012】 凝集・加圧浮上・濾過装置 イオン交換塔 活性炭吸着塔→アニオン交換塔 本発明において、加熱分解処理に当り、原水に添加する
酸化剤としては、パーオキシ二硫酸ナトリウム(Na2
28 )、パーオキシ二硫酸カリウム(K22
8 )等の過硫酸塩や過酸化水素(H22 )が挙げられ
るが、Na228 ,K228 などの過硫酸塩が
好適である。
Coagulation / Pressure Flotation / Filtration Device Ion Exchange Tower Activated Carbon Adsorption Tower → Anion Exchange Tower In the present invention, sodium peroxydisulfate (Na 2
S 2 O 8 ), potassium peroxydisulfate (K 2 S 2 O
Examples thereof include persulfates such as 8 ) and hydrogen peroxide (H 2 O 2 ), and persulfates such as Na 2 S 2 O 8 and K 2 S 2 O 8 are preferable.

【0013】酸化剤の添加量は、原水水質や要求される
処理水水質に応じて任意に決定されるが、本発明におい
ては、加熱分解処理工程2の後段に酸化剤除去工程3を
設けるため、酸化剤添加量を多くすることもでき、酸化
剤添加量を多くすることにより、加熱分解処理条件の緩
和、即ち、加熱分解処理温度の低下を図ることもでき
る。通常の場合、酸化剤は、原水中のTOC1重量部当
り、S28 2- として50〜300重量部程度添加する
のが好ましい。
The amount of the oxidizing agent added is arbitrarily determined according to the raw water quality and the required treated water quality. In the present invention, however, the oxidizing agent removing step 3 is provided after the thermal decomposition treatment step 2. It is also possible to increase the amount of the oxidizing agent added, and by increasing the amount of the oxidizing agent added, it is possible to alleviate the thermal decomposition treatment conditions, that is, to lower the thermal decomposition treatment temperature. In the usual case, it is preferable to add about 50 to 300 parts by weight of S 2 O 8 2− per 1 part by weight of TOC in the raw water.

【0014】加熱分解処理工程2における加熱温度は、
70℃以上、好ましくは90〜170℃、より好ましく
は110〜150℃或いは95〜100℃とする。加熱
温度を110〜150℃とした場合にはTOCの分解除
去効率が高く、また、加熱温度を95〜100℃とした
場合には、常圧で処理可能であるという利点がある。
The heating temperature in the heat decomposition treatment step 2 is
The temperature is 70 ° C or higher, preferably 90 to 170 ° C, more preferably 110 to 150 ° C or 95 to 100 ° C. When the heating temperature is 110 to 150 ° C., the TOC decomposition and removal efficiency is high, and when the heating temperature is 95 to 100 ° C., there is an advantage that the treatment can be performed at normal pressure.

【0015】この加熱分解処理の反応時間は、加熱温度
や酸化剤の添加量によっても異なるが、通常の場合1〜
15分、特に、加熱温度を110〜150℃とした場合
には1〜6分、加熱温度を95〜100℃とした場合に
は2〜15分とするのが好ましい。
The reaction time of this thermal decomposition treatment varies depending on the heating temperature and the addition amount of the oxidizing agent, but usually 1 to
It is preferably 15 minutes, particularly 1 to 6 minutes when the heating temperature is 110 to 150 ° C., and 2 to 15 minutes when the heating temperature is 95 to 100 ° C.

【0016】この加熱分解処理に際しては、触媒として
白金担持触媒、白金メッキ触媒等の白金系の酸化触媒に
接触させても良い。
In this heat decomposition treatment, a platinum-based oxidation catalyst such as a platinum-supported catalyst or a platinum plating catalyst may be brought into contact as a catalyst.

【0017】本発明において、酸化剤除去工程3として
は、活性炭及び/又は適当な触媒を充填した充填塔を採
用することができる。
In the present invention, as the oxidizing agent removing step 3, a packed column packed with activated carbon and / or a suitable catalyst can be adopted.

【0018】活性炭としては、粒状、粉状、繊維状のい
ずれでも良いが、特に粒状か繊維状のものが通水効率の
面で有利である。活性炭のタイプ(ヤシガラ系、石炭
系、その他)には特に制限はない。一方、触媒として
は、一般に用いられている白金系、パラジウム系のもの
など、多様なものを用いることができる。
The activated carbon may be granular, powdery or fibrous, but granular or fibrous is particularly advantageous in terms of water flow efficiency. There is no particular limitation on the type of activated carbon (coconut shell type, coal type, etc.). On the other hand, as the catalyst, various catalysts such as commonly used platinum catalyst and palladium catalyst can be used.

【0019】上記活性炭及び触媒は、そのいずれか一方
を用いるだけでも目的は達せられるが、場合によって、
両者を併用しても良い。その他、酸化剤除去手段として
は、紫外線照射も採用可能である。
The purpose of the above-mentioned activated carbon and catalyst can be achieved by using either one of them, but depending on the case,
You may use both together. In addition, ultraviolet irradiation can also be adopted as the oxidizing agent removing means.

【0020】酸化剤除去工程3の通水条件は、加熱分解
処理工程の処理水中に残留する酸化剤が後段の脱イオン
処理工程4のイオン交換樹脂や逆浸透膜を酸化劣化させ
ない程度の、十分低濃度にまで除去できるような条件で
あれば良く、加熱分解処理工程の処理水中の残留酸化剤
濃度や、酸化剤除去工程の仕様、即ち、活性炭や触媒の
形状、粒径、充填量等によって適宜決定される。例え
ば、10ppmの残留Na225 を含む加熱分解処
理工程の処理水を、20/40メッシュの粒状活性炭充
填塔で処理する場合、SV=40hr-1程度以下とする
のが好ましい。
The water passing conditions in the oxidizing agent removing step 3 are sufficient so that the oxidizing agent remaining in the treated water in the heat decomposition treatment step does not cause oxidative deterioration of the ion exchange resin or the reverse osmosis membrane in the subsequent deionization treatment step 4. Any condition that can remove to a low concentration may be used, depending on the residual oxidant concentration in the treated water of the thermal decomposition treatment step and the specifications of the oxidant removal step, that is, the shape, particle size, filling amount of activated carbon and catalyst, etc. It is decided as appropriate. For example, when the treated water in the thermal decomposition treatment step containing 10 ppm of residual Na 2 S 2 O 5 is treated in the 20/40 mesh granular activated carbon packed tower, it is preferable that SV = 40 hr −1 or less.

【0021】なお、加熱分解処理水は、通常pH4以下
の酸性であるので、このような残留酸化剤除去装置を腐
食から保護するために、加熱分解処理工程と酸化剤除去
工程との間にpH調整のためのアルカリ注入手段を設
け、酸性水を中和した後、酸化剤除去工程に導入するの
が好ましい。
Since the heat-decomposed water is usually acidic with a pH of 4 or less, in order to protect such a residual oxidant removing device from corrosion, the pH between the heat-decomposing step and the oxidant removing step is adjusted. It is preferable to provide an alkali injecting means for adjustment, neutralize the acidic water, and then introduce the oxidant removal step.

【0022】本発明においては、このような酸化剤除去
工程における残留酸化剤の除去により、残留酸化剤濃度
を1ppm以下の低濃度にまで除去するのが好ましい。
In the present invention, it is preferable to remove the residual oxidant in such an oxidant removal step to reduce the residual oxidant concentration to a low concentration of 1 ppm or less.

【0023】脱イオン処理工程4としては、イオン交換
塔、逆浸透膜分離装置等を必要に応じて組み合せて用い
ることができる。即ち、例えば、イオン交換塔→逆浸透
膜分離装置、逆浸透膜分離装置→イオン交換塔、或い
は、逆浸透膜分離装置→逆浸透膜分離装置とすることが
できる。
In the deionization treatment step 4, an ion exchange column, a reverse osmosis membrane separation device, etc. can be used in combination as required. That is, for example, an ion exchange column → reverse osmosis membrane separation device, a reverse osmosis membrane separation device → ion exchange tower, or a reverse osmosis membrane separation device → reverse osmosis membrane separation device can be used.

【0024】また、後処理工程5としては、要求される
処理水水質に応じて、任意の手段を採用することがで
き、紫外線酸化による殺菌、TOC分解、或いは、イオ
ン交換、逆浸透膜分離、精密濾過膜分離、限外濾過膜分
離装置等、一般には超純水製造における二次純水製造工
程(サブシステム)に相当する工程、即ち、低圧紫外線
照射装置(有機物分解)→混床式イオン交換塔(非再生
型イオン交換器:分解有機物の除去)→限外濾過膜分離
装置(イオン交換塔から流出するイオン交換樹脂の微粒
子の分離)が採用される。
As the post-treatment step 5, any means can be adopted depending on the required quality of treated water, such as sterilization by ultraviolet oxidation, TOC decomposition, or ion exchange, reverse osmosis membrane separation, Microfiltration membrane separation, ultrafiltration membrane separation equipment, etc., which generally correspond to the secondary pure water production process (subsystem) in ultrapure water production, that is, low-pressure ultraviolet irradiation device (organic matter decomposition) → mixed bed ion Exchange tower (non-regenerative ion exchanger: removal of decomposed organic matter) → ultrafiltration membrane separator (separation of fine particles of ion exchange resin flowing out from the ion exchange tower) is adopted.

【0025】脱イオン処理工程及び後処理工程の具体例
としては、次の〜が挙げられる。
Specific examples of the deionization treatment step and the post-treatment step are as follows.

【0026】 脱炭酸塔→アニオン交換塔→逆浸透膜
分離装置→二次純水製造工程 逆浸透膜分離装置→低圧逆浸透膜分離装置→二次純
水製造工程 アニオン交換塔→脱炭酸塔→カチオン交換塔→アニ
オン交換塔→逆浸透膜分離装置→二次純水製造工程 弱アニオン交換塔→強カチオン交換塔→強アニオン
交換塔→二次純水製造工程 逆浸透膜分離装置→イオン交換塔(混床式イオン交
換塔又は(強カチオン交換塔→強アニオン交換塔))→
二次純水製造工程 そして、脱イオン処理工程及び後処理工程の装置は予め
加熱処理によりTOC成分を除去しているので、負荷が
軽減されて小容量小型装置を採用できる。
Decarbonation tower → anion exchange tower → reverse osmosis membrane separation device → second pure water production process reverse osmosis membrane separation device → low pressure reverse osmosis membrane separation device → second pure water production process anion exchange tower → decarbonation tower → Cation exchange tower → Anion exchange tower → Reverse osmosis membrane separation device → Secondary pure water production process Weak anion exchange tower → Strong cation exchange tower → Strong anion exchange tower → Secondary pure water production process Reverse osmosis membrane separation device → Ion exchange tower (Mixed bed ion exchange tower or (strong cation exchange tower → strong anion exchange tower)) →
Secondary pure water production step Then, since the TOC component is removed in advance by the heat treatment in the deionization treatment step and the post-treatment step, the load is reduced and a small capacity small size apparatus can be adopted.

【0027】[0027]

【作用】酸化剤の存在下に加熱処理することにより、原
水中のTOCを効率的に分解除去することができる。
By performing heat treatment in the presence of an oxidizing agent, TOC in raw water can be efficiently decomposed and removed.

【0028】本発明によれば、この加熱分解処理水中の
残留酸化剤を除去した後、脱イオン処理を行うため、脱
イオン処理工程のイオン交換樹脂や逆浸透膜等は残留酸
化剤による酸化劣化から効果的に保護される。このた
め、脱イオン効率が高く維持されると共に、酸化劣化に
起因するTOCの増加の問題もなく、高純度純水を安定
に得ることができる。
According to the present invention, since the deoxidizing treatment is carried out after removing the residual oxidizing agent in the water subjected to the thermal decomposition treatment, the ion exchange resin, the reverse osmosis membrane and the like in the deionizing treatment step are deteriorated by the oxidizing agent due to the residual oxidizing agent. Effectively protected from. Therefore, the deionization efficiency can be maintained high, and high-purity pure water can be stably obtained without the problem of an increase in TOC due to oxidative deterioration.

【0029】ところで、前述の如く、先願の方法では、
残留酸化剤の問題を回避するためには、加熱分解処理温
度を低くすることはできず、高温で加熱分解処理する必
要があったが、本発明においては、酸化剤除去手段を設
けたことにより、先願においては実用不適と考えられて
いた110℃未満の低温条件での加熱分解処理も可能と
なり、加熱分解処理温度の下限を70℃程度にまで引き
下げることができる。
By the way, as described above, in the method of the prior application,
In order to avoid the problem of residual oxidant, it was not possible to lower the heat decomposition treatment temperature, and it was necessary to perform heat decomposition treatment at a high temperature, but in the present invention, by providing an oxidant removal means. The thermal decomposition treatment under low temperature conditions of less than 110 ° C., which was considered to be unsuitable for practical use in the prior application, is possible, and the lower limit of the thermal decomposition treatment temperature can be lowered to about 70 ° C.

【0030】なお、加熱分解処理に当り、原水に添加さ
れた過硫酸塩等の酸化剤は、例えば130℃以上で5分
以上といった十分に高い温度で十分に長い時間加熱分解
処理を行う場合には、その濃度によらず殆どすべて加熱
分解処理工程において分解するが、この場合において
も、本発明に係る酸化剤除去手段は酸化剤のリークを確
実に防止するための手段として有効に機能する。
In the heat decomposition treatment, the oxidizing agent such as persulfate added to the raw water is used when the heat decomposition treatment is carried out at a sufficiently high temperature such as 130 ° C. or higher for 5 minutes or longer for a sufficiently long time. Almost all of them decompose in the heat decomposition treatment step regardless of their concentration, and even in this case, the oxidizing agent removing means according to the present invention effectively functions as a means for surely preventing the leakage of the oxidizing agent.

【0031】[0031]

【実施例】以下に実施例、比較例及び実験例を挙げて本
発明をより具体的に説明する。
EXAMPLES The present invention will be described more specifically with reference to Examples, Comparative Examples and Experimental Examples below.

【0032】実施例1 イソプロピルアルコール由来のTOCを1000ppb
含有する水を原水として、本発明に従って処理を行っ
た。
Example 1 TOC derived from isopropyl alcohol was 1000 ppb.
The contained water was used as raw water and treated according to the present invention.

【0033】まず、原水に酸化剤としてNa228
を70ppm添加し、反応温度130℃,反応時間2分
間の加熱分解処理を行った。この加熱分解処理水の水質
は下記の通りであった。
First, Na 2 S 2 O 8 was added to raw water as an oxidizing agent.
Was added in an amount of 70 ppm and subjected to thermal decomposition treatment at a reaction temperature of 130 ° C. and a reaction time of 2 minutes. The water quality of this heat-decomposition-treated water was as follows.

【0034】加熱分解処理水水質 TOC:約5ppb Na228 :約10ppm pH:3.3 この加熱分解処理水を下記仕様の活性炭カラムにSV=
10hr-1で通水した後、下記仕様のイオン交換樹脂カ
ラムにSV=30hr-1で通水した。
Water quality of heat-decomposition-treated water TOC: about 5 ppb Na 2 S 2 O 8 : about 10 ppm pH: 3.3 This heat-decomposition-treated water is applied to an activated carbon column having the following specifications by SV =
After water was passed for 10 hr -1 , water was passed through an ion exchange resin column having the following specifications at SV = 30 hr -1 .

【0035】活性炭カラム仕様 ヤシガラ活性炭(クラレケミカル(株)製「クラレコー
ルGW 10/32」)を300ml充填したガラスカラムイオン交換樹脂カラム仕様 強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂と
を混合したもの(三菱化学(株)製ダイヤイオンSMN
−UP)を100ml充填したガラスカラム 通水を10日間継続して行った後、イオン交換樹脂カラ
ムからの流出水を採取してTOCを分析した。結果を表
1に示す。
Activated carbon column specification Glass column filled with 300 ml of coconut shell activated carbon (“Kuraray Coal GW 10/32” manufactured by Kuraray Chemical Co., Ltd.) Ion exchange resin column specification Strong acidic cation exchange resin and strong basic anion exchange resin are mixed Done (Diaion SMN manufactured by Mitsubishi Chemical Corporation)
After passing water through a glass column filled with 100 ml of -UP) for 10 days, the outflow water from the ion exchange resin column was collected and analyzed for TOC. The results are shown in Table 1.

【0036】比較例1 実施例1において、活性炭カラムを通水せずに、加熱分
解処理水を直接イオン交換樹脂カラムに通水したこと以
外は同様にして通水を10日間継続して行い、イオン交
換樹脂カラムからの流出水を採取してTOCを分析し
た。結果を表1に示す。
Comparative Example 1 Water was continuously passed for 10 days in the same manner as in Example 1, except that the heat-decomposed water was directly passed through the ion exchange resin column without passing through the activated carbon column. The TOC was analyzed by collecting the effluent water from the ion exchange resin column. The results are shown in Table 1.

【0037】[0037]

【表1】 [Table 1]

【0038】表1より次のことが明らかである。即ち、
イオン交換樹脂カラムに通水する前に活性炭カラムに通
水しなかった比較例1では、イオン交換樹脂が加熱分解
処理水中の残留Na228 によって酸化を受け、有
機物を溶出したため、流出水TOCが流入水TOCより
も高いのに対し、活性炭カラムに通水した後、イオン交
換樹脂カラムに通水した実施例1では、残留Na22
8 が活性炭カラムで除去されたため、イオン交換樹脂
が酸化を受けなかったことから、TOCが著しく低減さ
れた。
The following is clear from Table 1. That is,
In Comparative Example 1 in which water was not passed through the activated carbon column before being passed through the ion exchange resin column, the ion exchange resin was oxidized by the residual Na 2 S 2 O 8 in the heat-decomposition-treated water, and the organic matter was eluted, so that the outflow occurred. The water TOC was higher than the inflow water TOC, whereas in Example 1 in which water was passed through the activated carbon column and then through the ion exchange resin column, residual Na 2 S 2
Since the O 8 was removed by the activated carbon column, the TOC was significantly reduced because the ion exchange resin did not undergo oxidation.

【0039】実験例1 石炭系活性炭(クラレケミカル(株)製「クラレコール
GW 10/32」)を充填したカラムに、Na228
超純水に溶かして濃度670ppmに調整した水を通水
し、活性炭カラム流出水のNa228 濃度を測定し
てその吸着容量を求めた。結果を表2に示す。
Experimental Example 1 Water in which Na 2 S 2 O 8 was dissolved in ultrapure water to a concentration of 670 ppm in a column packed with activated carbon of coal type (“Kuraray Coal GW 10/32” manufactured by Kuraray Chemical Co., Ltd.) After passing water, the Na 2 S 2 O 8 concentration of the activated carbon column outflow water was measured to determine its adsorption capacity. Table 2 shows the results.

【0040】[0040]

【表2】 [Table 2]

【0041】表2より、1300〜1500 Bed Volum
e 程度の通水まで吸着が可能で、Na228 <1p
pmに処理できることが確認された。
From Table 2, 1300 to 1500 Bed Volum
Adsorbs water up to about e, Na 2 S 2 O 8 <1p
It was confirmed that pm could be processed.

【0042】実験例2 TOCを500ppb(イソプロピルアルコール由来)
含む水を原水として、Na228 による加熱分解実
験を行った。反応時間を6分間に固定し(ただし、No.
12においては反応時間12分とした。)、反応温度、
Na228添加量を表3に示す如く適宜変えて行
い、結果を表3に示した。
Experimental Example 2 TOC was 500 ppb (derived from isopropyl alcohol)
A thermal decomposition experiment with Na 2 S 2 O 8 was performed using the water containing the raw water. Fix the reaction time at 6 minutes (however, No.
In No. 12, the reaction time was 12 minutes. ), Reaction temperature,
The amount of Na 2 S 2 O 8 added was appropriately changed as shown in Table 3, and the results are shown in Table 3.

【0043】[0043]

【表3】 [Table 3]

【0044】表3より、反応温度110℃未満であって
もNa228 添加量を増せば、TOC10ppb以
下(分解率98%以上)の処理水が得られることが明ら
かである。
From Table 3, it is apparent that treated water having a TOC of 10 ppb or less (decomposition rate of 98% or more) can be obtained by increasing the amount of Na 2 S 2 O 8 added even at a reaction temperature of less than 110 ° C.

【0045】実施例2 実験例1のNo. 9の処理水(97℃,Na228
2ppm添加の加熱分解処理水)を、石炭系活性炭(ク
ラレケミカル(株)製「クラレコールKW 20/40」)を
充填したカラムにSV=10hr-1で通水した後、更
に、実施例1で用いたと同様のイオン交換樹脂カラムに
SV=30hr-1で通水した。要所で採取したサンプル
水のTOC、Na228 濃度等を分析し、結果を表
4に示した。
Example 2 No. 9 treated water of Experimental Example 1 (97 ° C., Na 2 S 2 O 8 5
2 ppm addition of heat-decomposition treated water was passed through a column filled with activated carbon of the coal type (“Kuraray Coal KW 20/40” manufactured by Kuraray Chemical Co., Ltd.) at SV = 10 hr −1 , and then Example 1 Water was passed through an ion exchange resin column similar to that used in step SV = 30 hr −1 . The TOC and Na 2 S 2 O 8 concentration of the sample water collected at important points were analyzed, and the results are shown in Table 4.

【0046】[0046]

【表4】 [Table 4]

【0047】表4より、100℃未満の温度での加熱分
解とその後段の活性炭及びイオン交換樹脂との組み合せ
で、イオン交換樹脂の酸化劣化を引き起こすことなく、
TOC10ppb以下の高純度純水を得ることができる
ことが明らかである。
From Table 4, the combination of the thermal decomposition at a temperature of less than 100 ° C. and the activated carbon and the ion exchange resin in the subsequent stage, without causing the oxidative deterioration of the ion exchange resin,
It is clear that high-purity pure water having a TOC of 10 ppb or less can be obtained.

【0048】[0048]

【発明の効果】以上詳述した通り、本発明の純水の製造
方法によれば、原水に酸化剤を添加して原水中のTOC
成分を加熱分解除去した後、脱イオン処理する純水の製
造方法において、 残留酸化剤による脱イオン工程への悪影響を防止し
て、TOCが著しく低減された高純度純水を長期にわた
り、安定かつ効率的に製造することができる。 加熱分解工程で酸化剤を完全に加熱分解させる必要
がないことから、加熱分解反応温度を低く設定すること
ができる。 等の効果が奏され、工業的に極めて有利である。
As described in detail above, according to the method for producing pure water of the present invention, TOC in raw water is obtained by adding an oxidizing agent to raw water.
In the method for producing pure water in which the components are decomposed and removed by heating and then deionized, the high-purity pure water whose TOC is significantly reduced is stably and stably maintained for a long period of time by preventing the deoxidation process from being adversely affected by the residual oxidizing agent. It can be manufactured efficiently. Since it is not necessary to completely thermally decompose the oxidizing agent in the thermal decomposition step, the thermal decomposition reaction temperature can be set low. And the like, and is industrially extremely advantageous.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の純水の製造方法の一実施例方法を示す
系統図である。
FIG. 1 is a system diagram showing a method of an embodiment of a method for producing pure water according to the present invention.

【符号の説明】[Explanation of symbols]

1 前処理工程 2 加熱分解処理工程 3 酸化剤除去工程 4 脱イオン処理工程 5 後処理工程 1 Pretreatment Step 2 Heat Decomposition Treatment Step 3 Oxidizing Agent Removal Step 4 Deionization Treatment Step 5 Post Treatment Step

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/58 CDV A CDX Q ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication C02F 1/58 CDV A CDX Q

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原水を酸化剤存在下に加熱処理して原水
中のTOC成分を分解した後、加熱処理した水に含まれ
る残留酸化剤を除去し、次いで脱イオン処理することを
特徴とする純水の製造方法。
1. A method of treating raw water by heat treatment in the presence of an oxidant to decompose TOC components in the raw water, removing residual oxidant contained in the heat-treated water, and then performing deionization treatment. Pure water manufacturing method.
JP31647094A 1994-12-20 1994-12-20 Pure water production method Expired - Lifetime JP3528287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31647094A JP3528287B2 (en) 1994-12-20 1994-12-20 Pure water production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31647094A JP3528287B2 (en) 1994-12-20 1994-12-20 Pure water production method

Publications (2)

Publication Number Publication Date
JPH08168784A true JPH08168784A (en) 1996-07-02
JP3528287B2 JP3528287B2 (en) 2004-05-17

Family

ID=18077461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31647094A Expired - Lifetime JP3528287B2 (en) 1994-12-20 1994-12-20 Pure water production method

Country Status (1)

Country Link
JP (1) JP3528287B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103516A (en) * 2005-09-30 2007-04-19 Kurita Water Ind Ltd Sulfuric acid recycling cleaning system
JP2014233658A (en) * 2013-05-31 2014-12-15 オルガノ株式会社 Treatment device and treatment method for organic matter-containing water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103516A (en) * 2005-09-30 2007-04-19 Kurita Water Ind Ltd Sulfuric acid recycling cleaning system
JP4573043B2 (en) * 2005-09-30 2010-11-04 栗田工業株式会社 Sulfuric acid recycling cleaning system
JP2014233658A (en) * 2013-05-31 2014-12-15 オルガノ株式会社 Treatment device and treatment method for organic matter-containing water

Also Published As

Publication number Publication date
JP3528287B2 (en) 2004-05-17

Similar Documents

Publication Publication Date Title
EP0634364B1 (en) Pure water manufacturing method
JP3426072B2 (en) Ultrapure water production equipment
JPH0790219B2 (en) Pure water production apparatus and production method
TWI640482B (en) Ultrapure water manufacturing method and ultrapure water manufacturing equipment
WO2000064568A1 (en) Apparatus for producing water containing dissolved ozone
WO2005095280A1 (en) Apparatus for producing ultrapure water
JP2011110515A (en) Method and apparatus for purifying ion exchange resin
JP4599803B2 (en) Demineralized water production equipment
JP6161954B2 (en) Ultrapure water production apparatus and ultrapure water production method
JP3864934B2 (en) Pure water production equipment
WO2021131360A1 (en) Pure water production method, pure water production system, ultra-pure water production method, and ultra-pure water production system
JP3656458B2 (en) Pure water production method
JP2002210494A (en) Device for manufacturing extrapure water
JP2003266097A (en) Ultrapure water making apparatus
JP5499433B2 (en) Ultrapure water manufacturing method and apparatus, and electronic component member cleaning method and apparatus
WO2022024815A1 (en) Pure water production apparatus, ultrapure water production apparatus, pure water production method, and ultrapure water production method
JP3858359B2 (en) How to remove organic matter
JP3528287B2 (en) Pure water production method
JPH10309588A (en) Water treatment, water treating device and pure water producing device
JP3259557B2 (en) How to remove organic matter
JP2004181364A (en) Ultrapure water making method and apparatus therefor
JP3992996B2 (en) Wastewater treatment method and apparatus
JPH1128482A (en) Production of pure water
JP3794113B2 (en) Method for removing TOC component and dissolved oxygen
US20230242419A1 (en) Ultrapure water production system and ultrapure water production method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040216

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 10

EXPY Cancellation because of completion of term