JP2000167567A - Ultrapure water making apparatus - Google Patents

Ultrapure water making apparatus

Info

Publication number
JP2000167567A
JP2000167567A JP10344054A JP34405498A JP2000167567A JP 2000167567 A JP2000167567 A JP 2000167567A JP 10344054 A JP10344054 A JP 10344054A JP 34405498 A JP34405498 A JP 34405498A JP 2000167567 A JP2000167567 A JP 2000167567A
Authority
JP
Japan
Prior art keywords
water
trihalomethane
tower
ultrapure water
toc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10344054A
Other languages
Japanese (ja)
Inventor
Masahiro Furukawa
征弘 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP10344054A priority Critical patent/JP2000167567A/en
Publication of JP2000167567A publication Critical patent/JP2000167567A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To stably produce ultrapure water satisfying desired required quality over a long period of time by providing a trihalomethane removing device removing the greater part of trihalomethane in water to be treated at the arbitrary position of a pretreatment device and a primary pure water making device in an ultrapure water making apparatus. SOLUTION: An ultrapure water making apparatus is constituted of a pretreatment device, a primary pure water making device and a secondary pure water making device, and a trihalomethane removing device is arranged at the arbitrary position of the pretreatment device and the primary pure water making device to remove the greater part of trihalomethane to produce ultrapure water of high water quality. As the trihalomethane removing device, for example, a volatilizing tower subjecting trihalomethane to volatilizing treatment to remove the same is used. That is, the volatilizing tower is constituted of a sprinkling pipe 1 for sprinkling water into the tower from above to from a water membrane and an equipment 3 blowing air into the tower from below, and trihalomethane in water is removed by forming the water membrane to be expelled into the atmosphere by the force of air or inert gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、より高純度化され
た超純水水質、即ち、TOC 2ppb以下の超純水を安定
に製造できる超純水製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrapure water producing apparatus capable of stably producing ultrapure water having higher purity, that is, ultrapure water having a TOC of 2 ppb or less.

【0002】[0002]

【従来の技術】従来より、純水は、半導体、レンズ、液
晶等の洗浄用水、医薬用水等に用いられてきたが、最近
の半導体製造においては、従来よりさらに高純度化した
超純水が求められており、特にTOCが2ppb(μg/
L)以下の高水質の超純水を安定的に製造できる超純水
製造装置が必要とされている。
2. Description of the Related Art Conventionally, pure water has been used for cleaning water for semiconductors, lenses, liquid crystals, etc., medical water, etc. In recent semiconductor manufacturing, ultrapure water having a higher purity than before has been used. In particular, TOC is 2 ppb (μg /
L) There is a need for an ultrapure water production apparatus capable of stably producing the following high-purity ultrapure water.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来は
TOC、即ち全有機物炭素の除去として捉え、TOCを
構成する個別の物質とTOCとの関係について、代表的
な有機物質は別にして、十分な検討がなされていなかっ
た。
However, conventionally, TOC, that is, removal of total organic carbon, is considered to be sufficient for the relationship between TOC and individual substances constituting TOC, apart from typical organic substances. No consideration was given.

【0004】一方、泥炭地帯を水源とした地表水、井
水、上水にはフミン酸やフルボ酸等の腐食物質が多く含
まれており、さらに、最近のダム、湖沼水の水質悪化に
より、市水、工水にも腐食物質が含まれることが多いた
め、このような腐食物質を浄水場等にて殺菌のため塩素
処理すると、トリハロメタンが生成し、その量は非常に
多いものとなっている。このトリハロメタンは、通常超
純水製造装置の構成単位である活性炭(AC)塔、逆浸
透膜(RO)装置、及びUV酸化装置などにて一部は除
去できるが、除去能力が十分でないか、除去能力が継続
的ではない。
[0004] On the other hand, surface water, well water, and clean water using peatlands as water sources contain a large amount of corrosive substances such as humic acid and fulvic acid. Since city water and industrial water often contain corrosive substances, when such corrosive substances are chlorinated for sterilization at water purification plants, etc., trihalomethane is generated, and the amount becomes extremely large. I have. This trihalomethane can be partially removed by an activated carbon (AC) tower, a reverse osmosis membrane (RO) apparatus, a UV oxidizing apparatus, etc., which are usually constituent units of an ultrapure water production apparatus. Removal capacity is not continuous.

【0005】[0005]

【課題を解決するための手段】本発明者は上記に鑑み、
通常の超純水製造装置では除去しきれない物質について
検討したところ、トリハロメタンが厳しいTOC要求値
(2ppb 以下)に少なからぬ影響を与えることを見出し
た。そこで、前処理装置、一次純水製造装置、サブシス
テム(二次純水装置)からなる超純水装置において、前
処理装置及び一次純水製造装置の任意の位置に被処理水
中のトリハロメタンの大部分、好ましくは90%以上を
除去するトリハロメタン除去装置を設けたことを特徴と
する超純水製造装置を提案する。
In view of the above, the present inventor has considered,
Investigations on substances that could not be completely removed by a conventional ultrapure water production system revealed that trihalomethane had a considerable effect on the strict TOC requirement (2 ppb or less). Therefore, in an ultrapure water system consisting of a pretreatment device, a primary pure water production device, and a subsystem (secondary pure water device), a large amount of trihalomethane in the water to be treated can be placed at any position of the pretreatment device and the primary pure water production device. The present invention proposes an ultrapure water production apparatus, which is provided with a trihalomethane removal apparatus for removing a part, preferably 90% or more.

【0006】[0006]

【発明の実施の形態】従来の超純水製造装置の一例を図
1に示した。この従来の超純水製造装置において、トリ
ハロメタンは活性炭(AC)塔、逆浸透膜(RO)装
置、及びUV酸化装置などにても除去できるが、これら
各装置においては以下のような問題があり、長期間に亘
って安定にTOC 2ppb以下という要求品質を満足する
超純水製造を行うことができなかった。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an example of a conventional ultrapure water producing apparatus. In this conventional ultrapure water production apparatus, trihalomethane can be removed by an activated carbon (AC) tower, a reverse osmosis membrane (RO) apparatus, a UV oxidation apparatus, and the like. However, each of these apparatuses has the following problems. However, it has not been possible to stably produce ultrapure water satisfying the required quality of TOC of 2 ppb or less over a long period of time.

【0007】AC塔では、最初100%近くトリハロメ
タンを除去することができるが、僅か1〜2ヶ月で飽和
吸着量に達してリークしてしまう。しかも、リークし始
めると、AC入口より出口のトリハロメタン濃度が2〜
5倍になり、その状態がACを交換しない限り続く。こ
の現象は、トリハロメタン前駆物質がAC塔内でACを
触媒としてトリハロメタン、特にクロロホルムに変化す
るためである。このようにAC塔にてクロロホルムが大
量発生すると、TOC除去が過負荷となり、対応できな
くなる。したがって、ACを1〜3ヶ月に一度交換する
ことによって対応できるものの、ランニングコスト的に
は大きな負荷となる。
[0007] In the AC tower, it is possible to remove nearly 100% of trihalomethane at first, but it reaches the saturated adsorption amount and leaks in only 1 to 2 months. Moreover, when the leakage starts, the trihalomethane concentration at the outlet from the AC inlet is 2 to
5x, and the condition continues unless AC is replaced. This phenomenon is because the trihalomethane precursor is converted into trihalomethane, particularly chloroform, using AC as a catalyst in the AC tower. When a large amount of chloroform is generated in the AC tower in this way, the TOC removal becomes overloaded and cannot be handled. Therefore, although it can be dealt with by replacing the AC once every 1 to 3 months, the running cost becomes large.

【0008】また、RO装置では、濃度に関係なく、7
0%程度のトリハロメタンの除去を維持できるが、TO
C 2ppb以下という要求品質においては除去能力が不十
分である。
Further, in the RO apparatus, regardless of the concentration,
Although the removal of about 0% of trihalomethane can be maintained, TOTO
At the required quality of C 2 ppb or less, the removal ability is insufficient.

【0009】さらに、UV酸化装置では、クロロホルム
を中心としたトリハロメタンを分解できるが、UV酸化
装置で非常に分解しづらく、分解してもハロゲンイオン
を発生し、その除去も新たな負荷となる。また、通常の
0.3kw/m3 程度では対応できないため、設備を大
きくする必要があり、ランニングコスト(消費電力、年
1回のランプ交換費)も工場サイドの負担も大きなもの
となる。尚、トリハロメタンは有機物スカベンジャー樹
脂やイオン交換樹脂純水装置での除去を全く期待できな
い。即ち、有機物スカベンジャー樹脂は、被処理水中の
フミン酸やフルボ酸を除去するために用いられ、TOC
の除去にも寄与するが、トリハロメタンは非イオン、無
荷電のため、この有機物スカベンジャー樹脂では除去で
きない。
Further, a UV oxidizer can decompose trihalomethane, mainly chloroform, but it is very difficult to decompose in a UV oxidizer, and even if it decomposes, halogen ions are generated, and its removal is a new burden. Further, since it cannot cope with about 0.3 kW / m 3, it is necessary to increase the size of the equipment, and the running cost (power consumption, annual lamp replacement cost) and the burden on the factory side become large. It should be noted that trihalomethane cannot be expected to be removed at all by an organic scavenger resin or an ion exchange resin pure water apparatus. That is, the organic scavenger resin is used to remove humic acid and fulvic acid in the water to be treated,
Although trihalomethane is non-ionic and uncharged, it cannot be removed with this organic scavenger resin.

【0010】そこで、前記超純水製造装置にトリハロメ
タン除去装置を設けることにより、トリハロメタンの大
部分、好ましくは90%以上を除去し、残りのトリハロ
メタンは超純水製造装置の他の構成単位で部分的に除去
し、最終的にトリハロメタンの残留濃度を1ppb 以下に
すると、TOC 2ppb 以下の高水質の超純水を安定的
に製造できることを見出した。
Therefore, by providing a trihalomethane removing device in the ultrapure water producing apparatus, most of the trihalomethane, preferably 90% or more, is removed, and the remaining trihalomethane is partially removed in another structural unit of the ultrapure water producing apparatus. When the residual concentration of trihalomethane is finally reduced to 1 ppb or less, high-purity ultrapure water having a TOC of 2 ppb or less can be stably produced.

【0011】前記のように本発明の超純水製造装置は、
従来と同様に前処理装置、一次純水製造装置、サブシス
テム(二次純水装置)から構成される。前処理装置は、
凝集、固液分離(濾過、加圧浮上、膜分離)、活性炭、
イオン交換の各単位技術を原水水質に応じて適宜選択
し、任意の順に並べて形成する。一次純水製造装置は、
イオン交換、逆浸透膜(RO)等の各単位技術、並びに
電気再生式脱塩装置、蒸発装置、脱炭酸塔、脱気装置、
UV酸化装置などを適宜組み合わせて形成する。サブシ
ステムは、UV酸化(UV殺菌)、混床式脱塩装置、膜
分離を適宜組み合わせて形成する。
As described above, the ultrapure water production apparatus of the present invention
As in the conventional case, it is composed of a pretreatment device, a primary pure water production device and a subsystem (secondary pure water device). The pretreatment device is
Coagulation, solid-liquid separation (filtration, pressure flotation, membrane separation), activated carbon,
Each unit technique of ion exchange is appropriately selected according to the quality of raw water, and is formed by arranging in any order. Primary pure water production equipment
Unit technologies such as ion exchange and reverse osmosis membrane (RO), as well as electric regeneration type desalination equipment, evaporator, decarbonation tower, deaerator,
It is formed by appropriately combining a UV oxidation device and the like. The subsystem is formed by appropriately combining UV oxidation (UV sterilization), a mixed-bed desalination apparatus, and membrane separation.

【0012】これら超純水製造装置の前処理装置及び一
次純水製造装置の任意の位置に設けられるトリハロメタ
ン除去装置は、前述のように大部分、好ましくは90%
以上のトリハロメタンを除去できるものであれば特にそ
の構成を限定するものではない。具体的にはトリハロメ
タンを揮散処理して除去する揮散塔を用いる。この揮散
塔では、水中に含まれる疎水性、揮発性のトリハロメタ
ンを、水の薄膜を形成し、空気或いは不活性ガスの力で
大気中に強制的に追い出す。
As described above, the pretreatment device of the ultrapure water production device and the trihalomethane removal device provided at an arbitrary position of the primary pure water production device are mostly, preferably 90%, as described above.
The configuration is not particularly limited as long as the above trihalomethane can be removed. Specifically, a volatilization tower for stripping and removing trihalomethane is used. In this stripping tower, a hydrophobic and volatile trihalomethane contained in water is formed into a thin film of water and is forcibly expelled into the atmosphere by the power of air or an inert gas.

【0013】この揮散塔は、図2に示すように上方から
塔内に散水して水の薄膜形成を行わせる散布管1と、充
填物充填塔2と、下方から空気(或いは窒素ガス等の不
活性ガスでも良い)を吹き込む設備3とを備える構成で
ある。尚、図2中、4は被処理水、5は支持板、6は処
理水、7は排気であり、この排気7中にトリハロメタン
が混入して排出される。
As shown in FIG. 2, the volatilization tower includes a spray tube 1 for spraying water into the tower from above to form a thin film of water, a packed bed 2 and a bottom for air (or nitrogen gas or the like) from below. And a facility 3 for blowing an inert gas. In FIG. 2, reference numeral 4 denotes water to be treated, 5 denotes a support plate, 6 denotes treated water, and 7 denotes exhaust gas. Trihalomethane is mixed into the exhaust gas 7 and discharged.

【0014】充填物としては、合成高分子化合物やステ
ンレス(SUS)の表面積を大きくしたもの、例えばポ
リプロピレン(PP)製のネットリング(径25mm
φ,長さ25mm)や素焼きのラシヒリング管、SUS
製の管や突起物等を使用してもよいし、その他空隙や突
起物を持ったどのような形状でもよく、大きさは20〜
30mm程度のものが使用される。特に重量や破砕片の
発生を考慮するとPP製のネットリングが好適に使用さ
れる。このネットリングを用いると壁面流を少なくでき
るという点でも好ましい。このような充填物の充填高さ
は、1500〜1800mmである。
As the filler, a synthetic polymer compound or a stainless steel (SUS) having an increased surface area, for example, a polypropylene (PP) net ring (diameter 25 mm) is used.
φ, length 25mm) or unbaked Raschig ring tube, SUS
Pipes or projections may be used, or any other shape having voids or projections.
Those having a size of about 30 mm are used. In particular, a net ring made of PP is preferably used in consideration of the weight and generation of crushed pieces. The use of this net ring is also preferable in that the wall flow can be reduced. The filling height of such a filling is between 1500 and 1800 mm.

【0015】また、散布管3も特に限定するものではな
いが、散布の均一性が重要であるから7頭充円錐ノズル
を用いることが望ましい。支持板5としては、パンチン
グメタル或いはグレーチングの上にネット状のシートを
置いたものが使用され、グレーチングはプラスチック製
でもよい。
The spraying tube 3 is not particularly limited, but it is desirable to use a seven-head conical nozzle because uniformity of spraying is important. As the support plate 5, a net-shaped sheet is placed on a punching metal or a grating, and the grating may be made of plastic.

【0016】揮散塔への水流速はLV=20〜50m/
H、空気流量は10Nm3/min/m2以上、望ましくは1
0〜16Nm3/min/m2 とする。水温は20〜70℃が
適正である。泥炭地帯は寒冷地が多いため、揮散効率を
低下させないように水温20℃以上とすることが必要で
ある。また、さらなる揮散効率の向上を目的として水温
40℃以上としても良いが、この場合、保温設備が必要
となり、また後置設備に熱の影響が考えられる場合には
熱回収設備の付帯が必要となる。
The flow velocity of water to the stripping tower is LV = 20-50 m /
H, air flow rate is 10 Nm 3 / min / m 2 or more, preferably 1
0 to 16 Nm 3 / min / m 2 . An appropriate water temperature is 20 to 70 ° C. Since peat areas are often cold, it is necessary to keep the water temperature at 20 ° C. or higher so as not to lower the volatilization efficiency. In addition, the water temperature may be set to 40 ° C. or higher for the purpose of further improving the volatilization efficiency. However, in this case, a heat insulation facility is required. Become.

【0017】このような構成の揮散塔は、前述のように
超純水製造装置の前処理装置及び一次純水製造装置の任
意の位置に設けることができ、例えば市水を凝集、濾過
する前にまず揮散塔にて処理するようにしても良い。サ
ブシステム内は高純度水であること、水バランス等で安
定運転維持のため避けられるべきである。より好ましく
は、多床塔式純水製造装置設置の場合、脱炭酸塔兼用で
設置すると1ユニット少なくてすむ。また、RO装置の
前に設置してpHを下げ、脱炭酸も同時に行い、後置R
Oの炭酸カルシウムスケール防止や処理水質改善を兼ね
るようにしても良い。さらに揮散効果を向上するために
は、高能率窒素脱気塔のように多段方式にすることが好
ましい。
The volatilization tower having such a configuration can be provided at any position of the pretreatment device of the ultrapure water production device and the primary pure water production device as described above. First, it may be processed in a stripping tower. The inside of the subsystem should be avoided because of high purity water, water balance, etc. to maintain stable operation. More preferably, in the case of installing a multi-bed tower type pure water production apparatus, if it is installed also as a decarbonation tower, one unit is less. In addition, it is installed in front of the RO device to lower the pH and decarboxylate at the same time.
O may also serve to prevent calcium carbonate scale of O and to improve the quality of treated water. In order to further improve the volatilization effect, it is preferable to use a multi-stage system such as a high-efficiency nitrogen degassing tower.

【0018】前述のようにこの揮散塔にて大部分、好ま
しくは90%以上のトリハロメタンを除去し、残りのト
リハロメタンは超純水製造装置の他の構成単位で部分的
に除去する。他の構成単位としては、例えばRO、UV
酸化装置、脱炭酸塔、脱気塔がある。
As described above, most, preferably 90% or more, of the trihalomethane is removed in this stripping tower, and the remaining trihalomethane is partially removed by another constituent unit of the ultrapure water production apparatus. Other structural units include, for example, RO, UV
There are oxidizer, decarbonation tower and degassing tower.

【0019】なお、脱炭酸塔も揮散塔の一種であるが、
従来脱炭酸塔として使われているものは通水流速が高い
ため、トリハロメタンの除去効果は50%程度、よく取
れた場合でも70%以下であり、到底不十分である。し
たがって、この脱炭酸塔を本発明におけるトリハロメタ
ンを除去する揮散塔(トリハロメタン除去装置)として
使用するためには、トリハロメタンの除去効果が90%
以上となるように特殊仕様に設定変更する必要があり、
塔内に上部から散水する際に塔断面積に対してできるだ
け均一に散水し、通水流速を適切な範囲(LV=20〜
50m/H)で行い、空気流量も適切な範囲(10〜16
Nm3/min/m2)で行い、必要により水を加温することが
できるような揮散塔とすればよい。
The decarbonation tower is also a kind of volatilization tower,
What has been conventionally used as a decarbonation tower has a high flow rate of water, so that the effect of removing trihalomethane is about 50%, and even if it is well obtained, it is 70% or less, which is extremely insufficient. Therefore, in order to use this decarbonation tower as a stripping tower (trihalomethane removing device) for removing trihalomethane in the present invention, the effect of removing trihalomethane is 90%.
It is necessary to change the settings to special specifications so that
When water is sprinkled into the tower from the top, water is sprinkled as uniformly as possible with respect to the cross-sectional area of the tower, and the water flow velocity is adjusted to an appropriate range (LV = 20 to
50 m / H), and the air flow rate is also in an appropriate range (10 to 16
Nm 3 / min / m 2 ), and a volatilization tower capable of heating water as needed.

【0020】このような構成を有する本発明の超純水製
造装置は、特に被処理水を限定するものではなく、例え
ば泥炭地帯を水源とした地表水、井水、上水の処理にも
適用することができる。そして、トリハロメタンの残留
濃度を1ppb 以下にし、ランニングコストの負荷を大き
くすることなく安定にTOC 2ppb以下の高水質の超純
水を製造することができる。
The ultrapure water production apparatus of the present invention having such a configuration is not particularly limited to the water to be treated, and is also applicable to, for example, the treatment of surface water, well water, and tap water using a peat zone as a water source. can do. The residual concentration of trihalomethane is reduced to 1 ppb or less, and high-purity ultrapure water having a TOC of 2 ppb or less can be stably produced without increasing the load on running costs.

【0021】[0021]

【実施例】〔クロロホルム除去試験(予備実験)〕 1.試験方法 図3に示す装置を試験装置として用いた。純水にクロロ
ホルム(CHCl3 )溶解水溶液を注入し、揮散塔前後
のTOC(クロロホルム)をSievers TOC計にて測定
し、除去性能を試験評価した。尚、7頭充円錐ノズルを
散布管として用い、PP製ネットリング(径25mm
φ,長さ25mm)を充填物として用いた。充填物の充
填高さは1800mmとした。
[Example] [Chloroform removal test (preliminary experiment)] Test method The apparatus shown in FIG. 3 was used as a test apparatus. An aqueous solution of chloroform (CHCl 3 ) dissolved in pure water was injected, and the TOC (chloroform) before and after the stripping tower was measured with a Sievers TOC meter to test and evaluate the removal performance. In addition, using a 7-head conical nozzle as a spray tube, a PP net ring (25 mm in diameter)
φ, length 25 mm) was used as the filler. The filling height of the filling was 1800 mm.

【0022】2.試験結果 試験結果を表1及び図4〜6に示した。2. Test results The test results are shown in Table 1 and FIGS.

【表1】 [Table 1]

【0023】表1より以下のことが確認された。 (1)空気流量7.14Nm3/min/m2一定の条件(=Run N
o.1〜3)で、通水速度LV=14.1m/H の場合(=R
un No.3)でのTOC(クロロホルム)除去率は90.5
%であったが、LV=38.2m/H の場合(=Run No.
2)でのTOC(クロロホルム)除去率は83.2%であ
り、通水速度がクロロホルムの揮散能力に影響すること
が確認された。 (2)通水速度LV=20.1m/H 一定,空気流量6.7
8Nm3/min/m2一定の条件(=Run No.5〜8)で、給水
クロロホルム濃度10.04〜92.95ppb の範囲にてTO
C(クロロホルム)除去率には特にその影響が認められ
ず、約80%一定であった。 (3)通水速度LV=20.1m/H 一定の条件(=Run N
o.9〜11)で、空気流量が高いほどTOC(クロロホル
ム)除去率が高く、空気流量がクロロホルムの揮散能力
に影響することが確認された。
The following is confirmed from Table 1. (1) Air flow rate 7.14 Nm 3 / min / m 2 Constant conditions (= Run N
o.1-3), when the water flow velocity LV = 14.1m / H (= R
The removal rate of TOC (chloroform) in un No. 3) is 90.5.
%, But when LV = 38.2 m / H (= Run No.
The TOC (chloroform) removal rate in 2) was 83.2%, and it was confirmed that the water flow rate affected the volatilization ability of chloroform. (2) Flow rate LV = 20.1 m / H constant, air flow rate 6.7
8Nm 3 / min / m 2 Under constant conditions (= Run Nos.5-8), the TO concentration in the feedwater chloroform concentration ranged from 10.04 to 92.95 ppb.
The C (chloroform) removal rate was not particularly affected, and was constant at about 80%. (3) Flow rate LV = 20.1m / H Constant conditions (= Run N
o. 9 to 11), it was confirmed that the higher the air flow rate, the higher the TOC (chloroform) removal rate, and that the air flow rate affected the volatilization ability of chloroform.

【0024】また、図6に示すように追加実験を行い、
空気流量15Nm3/min/m2 では、通水速度LV=2
0.1m/Hで90%以上、LV=51.2m/Hで80%以
上のクロロホルム除去率に達した。
An additional experiment was performed as shown in FIG.
At an air flow rate of 15 Nm 3 / min / m 2 , the water flow speed LV = 2
A chloroform removal rate of 90% or more was achieved at 0.1 m / H, and a chloroform removal rate of 80% or more was achieved at LV = 51.2 m / H.

【0025】〔実施例1〕図7(a)に示すシステム構
成を有する超純水製造装置を構築し、市水を被処理水と
する超純水製造を行った。尚、図7(a)中のトリハロ
メタン除去装置は、前記図2に示す揮散塔であり、通水
速度LV=20m/H,空気流量15Nm3/min/m2,充
填物としてPP製ネットリング(径25mmφ,長さ2
5mm)を用い、その充填高さは1800mmとした。
また、水温30℃とした。図7(a)に記載されたトリ
ハロメタン濃度及びTOC濃度の数値は、その場所にお
ける水質を示すものであり、この超純水製造装置を2ヶ
月間運転したときの平均水質を測定した値である。
Example 1 An ultrapure water producing apparatus having the system configuration shown in FIG. 7A was constructed, and ultrapure water production was performed using city water as the water to be treated. The device for removing trihalomethane in FIG. 7 (a) is the stripping tower shown in FIG. 2, and has a water flow rate LV = 20 m / H, an air flow rate of 15 Nm 3 / min / m 2 , and a PP net ring as a filler. (Diameter 25mmφ, length 2
5 mm) and the filling height was 1800 mm.
The water temperature was 30 ° C. The numerical values of the trihalomethane concentration and the TOC concentration described in FIG. 7A indicate the water quality at the place, and are values obtained by measuring the average water quality when the ultrapure water production apparatus is operated for two months. .

【0026】〔比較例1〕図7(b)に示すように、前
記実施例1の超純水製造装置〔図7(a)〕におけるト
リハロメタン除去装置を設けない以外は全く同様に超純
水製造装置を構築し、市水を被処理水とする超純水製造
を行った。そして、前記実施例1と同様に経路途中にお
けるトリハロメタン濃度及びTOC濃度を測定して図7
(b)に記載した。
COMPARATIVE EXAMPLE 1 As shown in FIG. 7 (b), ultrapure water was prepared in the same manner as in the ultrapure water producing apparatus of Example 1 (FIG. 7 (a)) except that no trihalomethane removing apparatus was provided. A production apparatus was constructed, and ultrapure water was produced using city water as the water to be treated. Then, the concentration of trihalomethane and the concentration of TOC in the middle of the route were measured in the same manner as in Example 1, and FIG.
It was described in (b).

【0027】〔考察〕本発明の実施例1では、トリハロ
メタン除去装置にて90%のトリハロメタンが除去さ
れ、最終的に得られた超純水中ののトリハロメタンは1
ppb まで除去されていた。また、TOCも1ppbであっ
た。このようにTOCが2ppb以下の高水質の超純水を
安定的に製造できることが確認された。継続的に実験を
続けたところ、従来のACの寿命は1〜3ヶ月であった
ものが、6ヶ月〜1年に延長できることも確認できた。
また、詳細については記載しない別の実験により、本発
明の実施例1はトリハロメタン除去装置を設置しない比
較例1に対してUV酸化装置の設置規模を30%程度低
減でき、且つランニングコストも消費電力、ランプ交換
費用相当分低減できた。
[Consideration] In the first embodiment of the present invention, 90% of the trihalomethane is removed by the trihalomethane removing device, and the finally obtained trihalomethane in the ultrapure water is 1%.
Removed to ppb. The TOC was also 1 ppb. Thus, it was confirmed that high-purity ultrapure water having a TOC of 2 ppb or less can be stably produced. As a result of continuous experiments, it was confirmed that the life of the conventional AC was 1 to 3 months, but could be extended to 6 to 1 year.
Further, according to another experiment which is not described in detail, in Example 1 of the present invention, the installation scale of the UV oxidizing apparatus can be reduced by about 30% as compared with Comparative Example 1 in which the trihalomethane removing apparatus is not installed, and the running cost is reduced. , The cost of replacing the lamp was reduced.

【0028】[0028]

【発明の効果】以上詳述した通り、本発明の超純水製造
装置は、従来は除去能力が十分でないか、除去能力が継
続的ではなかったトリハロメタンの大部分を除去するト
リハロメタン除去装置を設けたことにより、長期間に亘
って安定にTOC 2ppb以下という要求品質を満足する
超純水製造を行うことができるものである。また、特に
泥炭地帯を水源とした地表水、井水、上水の処理にも適
用することができ、トリハロメタンの残留濃度を1ppb
以下にし、ランニングコストの負荷を大きくすることな
く安定にTOC 2ppb以下の高水質の超純水を製造する
ことができる。
As described above in detail, the ultrapure water producing apparatus of the present invention is provided with a trihalomethane removing apparatus for removing most of the trihalomethane which has not been conventionally sufficiently removed or has not been continuously removed. As a result, it is possible to stably produce ultrapure water satisfying the required quality of TOC 2 ppb or less for a long period of time. In addition, it can be applied to the treatment of surface water, well water, and tap water using peatland as a water source. The residual concentration of trihalomethane is 1 ppb.
In the following, high-purity ultrapure water having a TOC of 2 ppb or less can be stably manufactured without increasing the load of running cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の超純水製造装置の一例を示すフロー(流
れ系統図)である。
FIG. 1 is a flow (flow system diagram) showing an example of a conventional ultrapure water production apparatus.

【図2】トリハロメタン除去装置の一例を概念的に示す
フロー(流れ説明図)である。
FIG. 2 is a flow (flow explanatory diagram) conceptually showing an example of a trihalomethane removing device.

【図3】実施例におけるクロロホルム除去試験に用いた
試験装置を概念的に示すフロー(流れ説明図)である。
FIG. 3 is a flow (flow explanatory diagram) conceptually showing a test apparatus used for a chloroform removal test in Examples.

【図4】実施例におけるクロロホルム除去試験の結果を
示し、通水速度のTOC除去率への影響を示すグラフで
ある。
FIG. 4 is a graph showing the results of a chloroform removal test in Examples and showing the effect of the water flow rate on the TOC removal rate.

【図5】実施例におけるクロロホルム除去試験の結果を
示し、入口濃度のTOC除去率への影響を示すグラフで
ある。
FIG. 5 is a graph showing the results of a chloroform removal test in Examples and showing the effect of inlet concentration on the TOC removal rate.

【図6】実施例におけるクロロホルム除去試験の結果を
示し、空気流量のTOC除去率への影響を示すグラフで
ある。
FIG. 6 is a graph showing the results of a chloroform removal test in Examples and showing the effect of the air flow rate on the TOC removal rate.

【図7】(a)その過程におけるトリハロメタンの残留
濃度とTOCの残留濃度を付記した本発明の超純水製造
装置の一例を示すフロー(流れ系統図)、(b)その過
程におけるトリハロメタンの残留濃度とTOCの残留濃
度を付記した従来のの超純水製造装置の一例を示すフロ
ー(流れ系統図)である。
FIG. 7 (a) shows a flow (flow diagram) showing an example of the ultrapure water production apparatus of the present invention in which the residual concentration of trihalomethane and the residual concentration of TOC in the process are added, and (b) residual trihalomethane in the process. It is a flow (flow system diagram) which shows an example of the conventional ultrapure water production apparatus which added the concentration and the residual concentration of TOC.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 9/00 502 C02F 9/00 502B 502R 502E 502Z 503 503B 504 504E ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 9/00 502 C02F 9/00 502B 502R 502E 502Z 503 503B 504 504E

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 前処理装置、一次純水製造装置、サブシ
ステムからなる超純水装置において、前処理装置及び一
次純水製造装置の任意の位置に被処理水中のトリハロメ
タンの大部分を除去するトリハロメタン除去装置を設け
たことを特徴とする超純水製造装置。
An ultrapure water system comprising a pretreatment device, a primary pure water production device, and a subsystem removes most of the trihalomethane from the water to be treated at an arbitrary position of the pretreatment device and the primary pure water production device. An ultrapure water production device comprising a trihalomethane removal device.
JP10344054A 1998-12-03 1998-12-03 Ultrapure water making apparatus Pending JP2000167567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10344054A JP2000167567A (en) 1998-12-03 1998-12-03 Ultrapure water making apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10344054A JP2000167567A (en) 1998-12-03 1998-12-03 Ultrapure water making apparatus

Publications (1)

Publication Number Publication Date
JP2000167567A true JP2000167567A (en) 2000-06-20

Family

ID=18366305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10344054A Pending JP2000167567A (en) 1998-12-03 1998-12-03 Ultrapure water making apparatus

Country Status (1)

Country Link
JP (1) JP2000167567A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003266097A (en) * 2002-03-13 2003-09-24 Kurita Water Ind Ltd Ultrapure water making apparatus
JP2004057935A (en) * 2002-07-29 2004-02-26 Kurita Water Ind Ltd Ultrapure-water making system
WO2004024639A1 (en) * 2002-09-12 2004-03-25 Chemitreat Pte Ltd Method of removing organic impurities from water
JP2008080255A (en) * 2006-09-28 2008-04-10 Nippon Rensui Co Ltd Pure water making apparatus
JP2011183245A (en) * 2010-03-04 2011-09-22 Kurita Water Ind Ltd Method and apparatus for producing ultrapure water

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003266097A (en) * 2002-03-13 2003-09-24 Kurita Water Ind Ltd Ultrapure water making apparatus
JP2004057935A (en) * 2002-07-29 2004-02-26 Kurita Water Ind Ltd Ultrapure-water making system
WO2004024639A1 (en) * 2002-09-12 2004-03-25 Chemitreat Pte Ltd Method of removing organic impurities from water
GB2408737A (en) * 2002-09-12 2005-06-08 Chemitreat Pte Ltd Method of removing organic impurities from water
GB2408737B (en) * 2002-09-12 2006-06-07 Chemitreat Pte Ltd Method of removing organic impurities from water
CN100482602C (en) * 2002-09-12 2009-04-29 化学处理私人有限公司 Method of removing organic impurities from water
JP2008080255A (en) * 2006-09-28 2008-04-10 Nippon Rensui Co Ltd Pure water making apparatus
JP2011183245A (en) * 2010-03-04 2011-09-22 Kurita Water Ind Ltd Method and apparatus for producing ultrapure water

Similar Documents

Publication Publication Date Title
JP5649520B2 (en) Ultrapure water production equipment
EP0634364B1 (en) Pure water manufacturing method
US8764957B2 (en) Water treatment using a bipolar membrane
US20050121398A1 (en) System and method for removing organic compounds from waste water by oxidation
JP5617231B2 (en) Method and apparatus for purifying ion exchange resin
JPH0790219B2 (en) Pure water production apparatus and production method
JPH11114596A (en) Production of ultrapure water and ultrapure water producing device
US6277175B1 (en) Method and apparatus for removing trihalomethanes and dissolved oxygen from water
JP4449092B2 (en) Pure water production apparatus and method
JP2000167567A (en) Ultrapure water making apparatus
JP2004261768A (en) Ultrapure water manufacturing system and its operation method
CN202246314U (en) Water treatment system for polycrystalline silicon production
KR100398417B1 (en) A method for treating electrogalvanizing wastewaters
JP3906684B2 (en) Ultrapure water supply device
JPH10216749A (en) Ultrapure water making apparatus
JPS62204893A (en) Water treatment method using granular activated carbon tower and reverse osmosis membrane apparatus
JPH09294974A (en) Water treatment apparatus
JPH01284385A (en) Process and apparatus for producing pure water and superpure water
JP2001179262A (en) Pure water making apparatus
JP3482594B2 (en) Distillation method pure water production equipment
JP7261711B2 (en) Ultrapure water production system and ultrapure water production method
JP3871036B2 (en) Method and apparatus for reducing elution of long chain amines in high purity water
JPH07116648A (en) Removal of volatile silicon in water and prevention of clogging of ultrafiltration membrane
Barbier et al. Paris improves its drinking water treatment plants
JPH09220560A (en) Ultrapure water making apparatus

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040309