JPS63224793A - Production of mineral water - Google Patents

Production of mineral water

Info

Publication number
JPS63224793A
JPS63224793A JP5957387A JP5957387A JPS63224793A JP S63224793 A JPS63224793 A JP S63224793A JP 5957387 A JP5957387 A JP 5957387A JP 5957387 A JP5957387 A JP 5957387A JP S63224793 A JPS63224793 A JP S63224793A
Authority
JP
Japan
Prior art keywords
mineral
water
elution
treatment
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5957387A
Other languages
Japanese (ja)
Inventor
Noboru Fujimura
藤村 登
Kenichi Fujita
賢一 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP5957387A priority Critical patent/JPS63224793A/en
Publication of JPS63224793A publication Critical patent/JPS63224793A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce easily city water contg. a large amt. of dissolved minerals, by using a mineral body having adsorption activity as a mineral body for liberating the mineral components by elution and using a magnetic treatment in combination previously to the elution treatment or simultaneously with the elution treatment. CONSTITUTION:A mineral body (e.g. 'BAKUHANSEKI'-siliceouse stone produced in Japan having adsorption activity packed in a tank A is used as a mineral body to be eluted and magnetic treating device B utilizing oscillatory magnetic field, etc. is used in combination prior to the elution treatment or simultaneously with the elution treatment when mineral water is produced by eluting mineral components in the mineral body with water. For example, water in a tank 2 is converted to mineral water by circulating the water with a pump P in the direction of an arrow mark, and subjected to magnetic treatment in the device B and to elution of mineral components in the tank A. The circulation is continued while repeating the treatments. The degree of elution of the mineral components in the tank is detected with an electroconductivity sensor 4. City water contg. a large amt. of dissolved natural minerals is produced with this simple device.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、ミネラル成分の溶出した。いわゆるミネラル
水の製造方法に係わるものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention allows mineral components to be eluted. This relates to a method for producing so-called mineral water.

〈従来の技術〉 いわゆるミネラル水の製造には、従来は電解法を使った
り、あるいは当該成分を直接添加することが行われてい
るが、前者の方法は手間がかかり。
<Prior art> Conventionally, so-called mineral water has been produced by using an electrolytic method or by directly adding the relevant components, but the former method is time-consuming.

特別な装置が必要であシ、また後者の方法では。The latter method also requires special equipment.

本来のミネラル水は得られない。Original mineral water cannot be obtained.

最も理想的には9手間がかからず、しか本、天然の地下
から湧出したものと同じものが得られることが望ましい
Most ideally, it would be desirable to be able to obtain something that does not require much effort and is the same as that which naturally springs up from underground.

〈発明が解決する問題点〉 本発明は、かかる状況に鑑みてなされたもので。<Problems solved by the invention> The present invention was made in view of this situation.

その目的とする所は、非常に簡便な方法で、しかも天然
のミネラル水と同じものが得られるミネラル水の新しい
製造方法を提供することにある。
The purpose is to provide a new method for producing mineral water that is extremely simple and produces the same mineral water as natural mineral water.

く問題点を解決するための手段〉 本発明者は、上記問題点に関して鋭意研究を行った結果
1次の様な新しい知見を得た。
Means for Solving the Problems> The inventor of the present invention has conducted intensive research regarding the above problems and has obtained the following new knowledge.

即ち。That is.

■、水の中に天然の鉱物体を浸漬して、ミネラル分を溶
出させることによってミネラル水を製造するに際して、
この溶出処理の前に、あるいは溶出時同時に、該水に磁
気処理を併用すると共に、この溶出鉱物体として活性吸
着能を有する鉱物体を用いると、極めて多量のミネラル
分の溶出が起ること。
■When producing mineral water by immersing natural mineral bodies in water and eluting the minerals,
If a magnetic treatment is applied to the water before or at the same time as the elution process, and a mineral body having active adsorption ability is used as the elution mineral body, an extremely large amount of minerals will be leached.

2、この磁気処理の磁界としては、振動磁界が最も好ま
しいこと。
2. The most preferable magnetic field for this magnetic treatment is an oscillating magnetic field.

3、溶出鉱物体として、麦飯石が最も有効であること。3. Maihanite is the most effective as a leached mineral body.

以上の知見を得た。The above findings were obtained.

本発明は1以上の知見に基づいてなされたものである。The present invention has been made based on one or more findings.

〈作 用〉 活性吸着機能は、活性炭に代表されるいわゆる物理的な
吸着と共に、この吸着したものを化学的に分解する作用
を有する。
<Function> The activated adsorption function has the effect of chemically decomposing the adsorbed material in addition to so-called physical adsorption represented by activated carbon.

本発明のミネラル溶出に用いる鉱物は、この活性吸着性
を有する。
The mineral used for the mineral elution of the present invention has this active adsorption property.

成分的には酸化物、たとえばAfi、Si、アルカリ金
属、アルカリ土類金属の酸化物およびその他のミネラル
成分等から成り、微視的な構造は、おしなべて微多孔質
構造を呈す。
It consists of oxides such as Afi, Si, alkali metal, alkaline earth metal oxides, and other mineral components, and its microscopic structure generally exhibits a microporous structure.

これを表面積で表示すると、たとえば1yの粉末で50
0〜1000m’の様なオーダーの表面積を有す版行が
代表的である。
Expressing this in terms of surface area, for example, 1y of powder has a surface area of 50
Print lines having surface areas on the order of 0 to 1000 m' are typical.

上記した微多孔質構造の鉱物を水の中に浸漬すると、ミ
ネラル成分の多少の溶出は起ってくるが水に予じめ、あ
るいは溶出させるときに同時に。
When the above-mentioned mineral with a microporous structure is immersed in water, some of the mineral components will be leached out, either beforehand or at the same time as they are leached into the water.

磁気処理を併用するとミネラル成分の溶出がより活発に
なってくる。
When magnetic treatment is used in combination, the elution of mineral components becomes more active.

磁気処理の併用によってミネラル分が増加する理由とし
ては、水分子は酸素原子1.水素原子2からできていて
、水素原子プラス1.酸素原子マイナス2の電気を帯び
て互いに結合しているが。
The reason why the mineral content increases due to the combined use of magnetic treatment is that water molecules contain 1 oxygen atom. It is made up of 2 hydrogen atoms, plus 1 hydrogen atom. Oxygen atoms have an electric charge of minus 2 and are bonded to each other.

分子全体では電気はプラス2.マイナス2−0で水自体
は電気を帯びていないが、水分子を棒状の電気と考えた
場合1両端にプラス・マイナスの極が現われる。磁石の
場合、外部から作用する磁界の方向により磁石の方向が
変わるが、水分子の場合、電界の方向が変わると分子の
向きが変わることになる。
The electricity in the whole molecule is plus 2. At minus 2-0, water itself has no charge, but if you think of a water molecule as an electric rod, positive and negative poles will appear at both ends. In the case of a magnet, the direction of the magnet changes depending on the direction of the external magnetic field, but in the case of water molecules, the direction of the molecules changes when the direction of the electric field changes.

このような水分子の性質を利用したものである。This method takes advantage of the properties of water molecules.

しかも固定磁場よりも振動磁場の方が水分子の運動(回
転)エネルギーは高められる。しかし麦飯石槽を通過す
る際にエネルギーは消滅に至る。その代価として金属酸
化物の溶出が高められることが分かった。
Moreover, the kinetic (rotational) energy of water molecules is higher in an oscillating magnetic field than in a fixed magnetic field. However, the energy disappears when passing through the Maifan stone tank. It was found that the elution of metal oxides was increased as a trade-off.

特に作用させる磁界としては、振動磁界を用いた時に最
も好ましい結果が得られた。
In particular, the most favorable results were obtained when an oscillating magnetic field was used as the applied magnetic field.

振動磁界は、処理水の中にマグネットと磁性体で作った
振動体を配置し、この振動体をマグネットで磁化し、処
理水の流動に伴って、この振動体を振動させて、この振
動体の周辺の磁界を振動させる様にするものである。
The oscillating magnetic field is generated by placing a magnet and a vibrating body made of a magnetic material in the treated water, magnetizing this vibrating body with the magnet, and vibrating this vibrating body as the treated water flows. This is to make the magnetic field around the oscillate.

実際の装置は、一つのケーシングに流体(水)の入口と
出口を設け、この中にマグネットと振動体を併置する様
にする。
In the actual device, a fluid (water) inlet and outlet are provided in one casing, and a magnet and a vibrating body are placed side by side in this casing.

尚本装置には7本発明者が先に出願した振動スプリング
を使った磁気処理装置が最も適している。
It should be noted that the magnetic processing device using a vibrating spring, which was previously filed by the present inventor, is most suitable for this device.

これは、振動体にスプリングを使用し、流体の流しに応
じて、このスプリングが振動する様にしたものである。
This uses a spring as the vibrating body, and the spring vibrates in response to the flow of fluid.

本装置は水の磁化に対しては著効がある。This device is extremely effective against water magnetization.

〈実施例〉 次に本発明方法を図面によって説明する。<Example> Next, the method of the present invention will be explained with reference to the drawings.

第1図は本発明方法の説明図、第2図は磁気処理装置の
一例を示したものである。
FIG. 1 is an explanatory diagram of the method of the present invention, and FIG. 2 shows an example of a magnetic processing apparatus.

第1図において、(1)は給水パイプであり1通常水道
管に接続される。(2)は貯水タンク、(3)が水の取
出口である。
In FIG. 1, (1) is a water supply pipe and is connected to a normal water pipe. (2) is a water storage tank, and (3) is a water outlet.

Aは1例えば麦飯石の様な微多孔質で活性吸着性のある
ミネラル鉱物が充てんされた貯槽、Bは振動スプリング
を内蔵した磁気処理装置、PはボブPで水を矢印の方向
に循環させBで磁気処理。
A is a storage tank filled with microporous and active adsorbent minerals such as Maifan stone, B is a magnetic treatment device with a built-in vibration spring, and P is a bob P that circulates water in the direction of the arrow. Magnetic treatment with B.

Aでミネラル成分の溶出を起させ、これをくり返えし循
環させる。
A causes elution of mineral components, and this process is repeated repeatedly.

タンク内のミネラル分の溶出度合は、(4)の電気伝導
度センサーで検知し、所期の値に到達した所で循環をと
める。
The degree of elution of minerals in the tank is detected by the electrical conductivity sensor (4), and the circulation is stopped when the desired value is reached.

以下新しい水を給水する都度これをくり返す。Repeat this every time new water is supplied.

第2図はBの磁気処理装置の構造を説明した図である。FIG. 2 is a diagram illustrating the structure of the magnetic processing device B.

(1)はハウジング、(2)はマグネット、 +31は
リング状コイルスプリング、(4)は振動スプリングで
ある。
(1) is a housing, (2) is a magnet, +31 is a ring-shaped coil spring, and (4) is a vibration spring.

リング状コイルスプリングの、内径は少なくとも入口の
大きさよりも大きくマグネットの外にはみ出さない様に
、マグネットの径よりも小さくされている。
The inner diameter of the ring-shaped coil spring is at least larger than the size of the inlet and smaller than the diameter of the magnet so that it does not protrude outside the magnet.

このために(5)から流入して、マグネットに衝突して
せきとめられた水は、このスプリングの間をぬって進行
することになる。
For this reason, the water that flows in from (5), collides with the magnet, and is dammed up will travel between these springs.

マグネットの球面にはこのマグネットを水の流れ方向に
上下に振動させる振動スプリング(4)が取りつけられ
ているために、水の流れの圧力変化によってマグネット
は微妙にスプリング振動する。
Since a vibration spring (4) is attached to the spherical surface of the magnet to vibrate the magnet up and down in the direction of water flow, the magnet slightly vibrates as a result of pressure changes in the water flow.

またリング状コイルスプリング(3)も水の圧力変化お
よびマグネットの振動と連動して微妙に振動する。
The ring-shaped coil spring (3) also vibrates slightly in conjunction with the change in water pressure and the vibration of the magnet.

この結果、入口近傍ではマグネットの形成する磁界、リ
ング状コイルスプリングの磁化によって形成された磁界
がこれらの振動に伴って変化することになる。
As a result, near the entrance, the magnetic field formed by the magnet and the magnetic field formed by the magnetization of the ring-shaped coil spring change in accordance with these vibrations.

この結果、水の中のイオン成分が磁気的に活性化された
状態になる。
As a result, the ionic components in the water become magnetically activated.

尚この装置は、ミネラル水を連続的に製造できるもので
、水道水に含まれる残留塩素(カルキ)はポンプ運転後
、約1分〜2分で消えることを確認した。分析の結果、
カビ臭、トリハロメタン等の有害な物質の検出は全くな
い。しかも帯留水は一般細菌の発生も見られなかった。
This device is capable of continuously producing mineral water, and it was confirmed that residual chlorine (chlorine) contained in tap water disappears in about 1 to 2 minutes after pump operation. As a result of the analysis,
No mold odor or harmful substances such as trihalomethane were detected. Moreover, no general bacteria were observed in the aquifer water.

次に1本発明方法で処理したときの水の試験結果を示す
Next, test results of water treated by the method of the present invention will be shown.

分析試料:鉱石使用磁場処理水 分析者=(財)日本食品分析センター名古屋支所分析結
果: 螢光X線法による元素の定性試験結果 (十++):多量、(十+):少量、(+):微量、(
−C検出せず。
Analysis sample: Magnetic field treated water using ore Analyst = Japan Food Research Center Nagoya Branch Analysis results: Qualitative test results of elements using fluorescent X-ray method (10++): Large amount, (10+): Small amount, (+ ):Very small amount,(
-C not detected.

但し、蒸発残留物について試験した。However, the evaporation residue was tested.

以上の試験結果より9本発明方法で処理した水道水には
多量のミネラル成分の溶出があったことが確認できた。
From the above test results, it was confirmed that a large amount of mineral components were eluted in the tap water treated by the method of the present invention.

〈発明の効果〉 本発明は1以上詳記した様に、簡便な装置で。<Effect of the invention> The present invention, as described in detail above, can be carried out using a simple device.

天然のミネラル鉱物が多量に溶けこんだ水道水が容易に
得られる特徴を有するものである。
It is characterized by the ability to easily obtain tap water in which a large amount of natural minerals are dissolved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の説明図である。 第2図は本発明に使用する磁気処理装置の説明図である
。 第1図で。 (1)・・・給水パイプ   (2)・・・貯水夕/り
(3)・・・水の取出口   A・・・貯 槽B・・・
磁気処理装置  Pll、ポンプ第2図で。 (1)・・・ハウジング   (2)・・・マグネット
(3)・・・リング状コイルスプリング(4)・・・振
動スプリング
FIG. 1 is an explanatory diagram of the method of the present invention. FIG. 2 is an explanatory diagram of the magnetic processing apparatus used in the present invention. In Figure 1. (1)...Water supply pipe (2)...Water storage tank (3)...Water outlet A...Storage tank B...
Magnetic processing device Pll, pump in Figure 2. (1)...Housing (2)...Magnet (3)...Ring-shaped coil spring (4)...Vibration spring

Claims (1)

【特許請求の範囲】 1、水の中に鉱物体のミネラル成分を溶出させることに
よってミネラル水を製造する方法において、該溶出処理
の前に予じめ、あるいは溶出時同時に、磁気処理を併用
すると共に、該鉱物体として、活性吸着能を有する鉱物
体を用いることを特徴とするミネラル水の製造方法。 2、上記磁界が振動磁界である特許請求の範囲第1項に
記載の方法。 3、上記鉱物体が麦飯石である特許請求の範囲第1、第
2項に記載の方法。
[Claims] 1. A method for producing mineral water by eluting mineral components of mineral bodies into water, in which magnetic treatment is used in advance or simultaneously with the leaching treatment. Additionally, a method for producing mineral water, characterized in that a mineral body having active adsorption ability is used as the mineral body. 2. The method according to claim 1, wherein the magnetic field is an oscillating magnetic field. 3. The method according to claims 1 and 2, wherein the mineral body is maifanite.
JP5957387A 1987-03-14 1987-03-14 Production of mineral water Pending JPS63224793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5957387A JPS63224793A (en) 1987-03-14 1987-03-14 Production of mineral water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5957387A JPS63224793A (en) 1987-03-14 1987-03-14 Production of mineral water

Publications (1)

Publication Number Publication Date
JPS63224793A true JPS63224793A (en) 1988-09-19

Family

ID=13117110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5957387A Pending JPS63224793A (en) 1987-03-14 1987-03-14 Production of mineral water

Country Status (1)

Country Link
JP (1) JPS63224793A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06339A (en) * 1992-06-18 1994-01-11 Tokuyama Soda Co Ltd Production of domestic water
JPH07116668A (en) * 1993-10-21 1995-05-09 Kiyosuke Akita Water magnetizing and activating apparatus
US6093287A (en) * 1998-02-23 2000-07-25 Superior Manufacturing Division, Magnatech Corporation Magnetic treatment of water supply to increase activity of chemical spray solutions
JP2001180921A (en) * 1999-12-27 2001-07-03 Kenichi Fujita Oxidized carbon colloid and plant growth agent made of the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06339A (en) * 1992-06-18 1994-01-11 Tokuyama Soda Co Ltd Production of domestic water
JPH07116668A (en) * 1993-10-21 1995-05-09 Kiyosuke Akita Water magnetizing and activating apparatus
US6093287A (en) * 1998-02-23 2000-07-25 Superior Manufacturing Division, Magnatech Corporation Magnetic treatment of water supply to increase activity of chemical spray solutions
JP2001180921A (en) * 1999-12-27 2001-07-03 Kenichi Fujita Oxidized carbon colloid and plant growth agent made of the same

Similar Documents

Publication Publication Date Title
Anastopoulos et al. A review for chromium removal by carbon nanotubes
CN101466643B (en) Electromagnetic field treatment method and electromagnetic field treatment equipment of water
Faghihian et al. Removal of copper (II) and nickel (II) from aqueous media using silica aerogel modified with amino propyl triethoxysilane as an adsorbent: equilibrium, kinetic, and isotherms study
Chu et al. Virus transport through saturated sand columns as affected by different buffer solutions
Alandis et al. Thermodynamic and kinetic studies for the adsorption of Fe (III) and Ni (II) ions from aqueous solution using natural bentonite
Yang et al. Selective adsorption and separation of Cs (I) from salt lake brine by a novel surface magnetic ion-imprinted polymer
Zafar et al. Effective removal of lanthanum ions from aqueous solution using rice husk: impact of experimental variables
CN108163923A (en) One kind is used to adsorb Cs+Load ferrocyanide bacteria cellulose membrane preparation method
Revathi et al. Removal of copper (II) ions from synthetic electroplating rinse water using polyethyleneimine modified ion-exchange resin
Anbalagan et al. Removal and recovery of Ni (II) ions from synthetic wastewater using surface modified Strychnos potatorum seeds: experimental optimization and mechanism
JPS63224793A (en) Production of mineral water
Sarkar et al. Removal of arsenic from drinking water by ferric hydroxide microcapsule-loaded alginate beads in packed adsorption column
Newman et al. Facilitated transport of selected metals in aquifer material packed columns
Azimi et al. Ultrasonic-assisted adsorption of Ni (II) ions from aqueous solution onto Fe3O4 nanoparticles
Yao et al. Characteristics of heavy metal ion adsorption by silty mudstones in coal mine goafs
Sharma et al. Nanomagnetite-loaded poly (acrylamide-co-itaconic acid) hydrogel as adsorbent for effective removal of Mn2+ from contaminated water
Ren et al. Rapid and efficient removal of cationic dyes by magnetic chitosan adsorbent modified with EDTA
Chai et al. An enhanced study on adsorption of Al (iii) onto bentonite and kaolin: kinetics, isotherms, and mechanisms
Wang et al. Preparation and characterization of a new Ca/Fe-phosphate composite and its adsorption properties for uranyl ions
Shin et al. Adsorption of metal ions from aqueous solution by recycled aggregate: Estimation of pretreatment effect
JPH09117618A (en) Purifying device
Miura et al. Mercury removal from solution by high gradient magnetic separation with functional group modified magnetic activated carbon
Ishikawa et al. Biosorption of actinides from dilute waste actinide solution by egg-shell membrane
Song et al. Transport and numerical simulation of Cu 2+ in saturated porous medium in the presence of magnetic nanoparticles
Farmany et al. High adsorption capacity of multi-walled carbon nanotube as efficient adsorbent for removal of Al (III) from wastewater