JPS61143527A - Treatment of metal-containing water - Google Patents

Treatment of metal-containing water

Info

Publication number
JPS61143527A
JPS61143527A JP59263960A JP26396084A JPS61143527A JP S61143527 A JPS61143527 A JP S61143527A JP 59263960 A JP59263960 A JP 59263960A JP 26396084 A JP26396084 A JP 26396084A JP S61143527 A JPS61143527 A JP S61143527A
Authority
JP
Japan
Prior art keywords
extraction
metal
water
agent
containing water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59263960A
Other languages
Japanese (ja)
Inventor
Yoshihiro Eto
良弘 恵藤
Isamu Kato
勇 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP59263960A priority Critical patent/JPS61143527A/en
Publication of JPS61143527A publication Critical patent/JPS61143527A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Extraction Or Liquid Replacement (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PURPOSE:To extract and recover efficiently valuable metals by concentrating preliminarily metal-contg. water and using cyclically a back extracting agent in the stage of separating and extracting the valuable metals by extraction and back extraction from the metal-contg. water. CONSTITUTION:Waste plating water contg. Cu ions such as waste Cu plating water is put into a reaction vessel 31 and a flocculating agent such as FeCl2, FeCl3, FeSO4 or iron polysulfate is added thereto concentrate and flocculate the water and thereafter the water is supplied to a settling vessel 32 where a high-molecular flocculating agent such as partial hydrolyzate of polyacrylamide is added to the water to settle the metals such as Cu and Fe contained in the water in the form of hydroxide. The water is then fed to a pH adjusting vessel 33 where an acid or alkali is added thereto to adjust the pH. The water is fed to an extraction device 34. Only the Cu is separated from Fe by an extracting agent via a cylindrical solid membrane in the device 34 and thereafter the Cu is back extracted by a back extraction method and is taken out of an outlet 27 in the form of the crystal of CusO4. The remaining liquid is again circulated to the vessel 31 for flocculation of the waste plating liquid.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は金属含有水の処理方法に係り、詳しくは含有さ
れる金属の回収を極めて高効率で行なうことができる金
属含有水の処理方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for treating metal-containing water, and more particularly, to a method for treating metal-containing water that can recover contained metals with extremely high efficiency. .

[従来の技術] 金属のメッキ工程、あるいは金属材料や金属製品の酸洗
、エツチング工程等からは、金属を含有する洗浄廃水が
排出される。
[Prior Art] Cleaning wastewater containing metal is discharged from metal plating processes, or pickling and etching processes for metal materials and metal products.

従来、このような金属含有水の処理方法としては、これ
を中和して金属水酸化物を析出沈殿させた後、固液分離
する方法(例えば特公昭59−29675)が一般的で
ある。その他、蒸発により回収する方法、金属含有水か
ら金属を抽出により回収する方法、ガリウム廃水の如き
金属含有廃水をイオン交換樹脂法により濃縮した後、金
属を抽出する方法(特開昭57−118026)、金属
含有廃水を逆浸透膜(RO)法により濃縮した後金属を
抽出する方法(特開昭58−131188)等が提案さ
れている。
Conventionally, a common method for treating such metal-containing water is to neutralize it, precipitate metal hydroxides, and then perform solid-liquid separation (for example, Japanese Patent Publication No. 59-29675). Other methods include a method of recovering metals by evaporation, a method of recovering metals from metal-containing water by extraction, and a method of extracting metals after concentrating metal-containing wastewater such as gallium wastewater by an ion exchange resin method (Japanese Patent Application Laid-Open No. 118026-1982). , a method has been proposed in which metals are extracted after concentrating metal-containing wastewater by a reverse osmosis membrane (RO) method (Japanese Patent Application Laid-Open No. 131188/1983).

[発明が解決しようとする問題点] しかしながら、中和のみにより処理する方法(特公昭5
9−29675)では、中和に多量の中和剤が必要であ
り、難脱水性の汚泥が発生し。
[Problems to be solved by the invention] However, a method of processing only by neutralization (Tokukō Kokō 5)
9-29675), a large amount of neutralizing agent is required for neutralization, and sludge that is difficult to dewater is generated.

汚泥処理が困難であるという欠点があった。The drawback was that sludge treatment was difficult.

蒸発法による場合にはエネルギーコストの面から有利と
はいえず、しかも金属の選択的な回収もできない、また
、抽出により金属を回収する方法は、廃水中に含有され
る金属が低濃度の場合には、抽出速度が遅く効率的では
ない。
The evaporation method is not advantageous in terms of energy costs and also cannot selectively recover metals, and the method of recovering metals by extraction is only effective when the metals contained in wastewater are at low concentrations. The extraction speed is slow and not efficient.

金属含有廃水を濃縮した後、抽出する方法には次のよう
な問題がある。即ち、イオン交換樹脂法やその他の濃縮
法を採用した場合、逆抽出剤中に抽出された金属の回収
に多大な困難があった。
The method of extracting metal-containing wastewater after concentrating it has the following problems. That is, when the ion exchange resin method or other concentration methods are employed, it is very difficult to recover the metals extracted into the back extractant.

即ち、従来の方法では逆抽出剤から電解等で金属を析出
させて回収する必要があるが、電解を採用する場合には
逆抽出剤中の酸濃度を高くすることができず、逆抽出速
度が遅くなるという欠点を有する。また、更に電解装置
を必要とし、設備費、電力費、メンテナンス等の面から
有利なことではないという問題点を有している。
In other words, in conventional methods, it is necessary to precipitate and recover metals from the back-extracting agent by electrolysis, etc., but when electrolysis is used, it is not possible to increase the acid concentration in the back-extracting agent, and the back-extraction rate is low. It has the disadvantage that it is slow. Furthermore, this method requires an electrolyzer, which is not advantageous in terms of equipment costs, power costs, maintenance, etc.

[問題点を解決するための手段] 本発明は、上記従来の問題点を解消し、経済的、工業的
に有利な金属含有水の処理方法を提供するべくなされた
ものであり、 金属含有水を抽料とし、この抽料を抽剤と接触させ、次
いでこの抽剤を逆抽出剤と接触させて金属塩を逆抽出剤
中に回収する方法において、金属含有水を予め濃縮する
と共に、前記抽料と抽剤との接触及び/又は抽剤と逆抽
出剤との接触は固体膜を介して行ない、かつ、逆抽出剤
を循環使用して被抽出物を逆抽出剤から晶出させること
を特徴とする金属含有水の処理方法。
[Means for Solving the Problems] The present invention has been made to solve the above conventional problems and provide an economically and industrially advantageous method for treating metal-containing water. is used as an extraction material, the extraction material is brought into contact with an extraction agent, and the extraction agent is then brought into contact with a back-extracting agent to recover metal salts in the back-extracting agent. The contact between the extraction material and the extraction agent and/or the contact between the extraction agent and the back-extracting agent is carried out through a solid membrane, and the back-extracting agent is used repeatedly to crystallize the extracted material from the back-extracting agent. A method for treating metal-containing water, characterized by:

を要旨とするものである。The main points are as follows.

以下に本発明を図面を参照して詳細に説明する。The present invention will be explained in detail below with reference to the drawings.

第1図は本発明の金属含有水の処理方法に従い、抽出前
の濃縮方法として凝集沈殿処理法を採用して、Cuメッ
キ廃水の処理を行なう例を示す系統図である。
FIG. 1 is a system diagram showing an example of treating Cu plating wastewater by employing a coagulation-sedimentation treatment method as a concentration method before extraction according to the method for treating metal-containing water of the present invention.

Cuメッキ処理物の仕上げ工程の水洗処理により排出さ
れるCuメッキ廃水は、通常、数ppm〜数百ppmの
Cuを含有する0本発明において、このようなCuメッ
キ廃水は、まず反応槽31へ送給され、凝集剤により凝
集反応する。この場合、アルカリ剤等のpH調整剤を添
加するなどして反応槽内の液をPHII程度のアルカリ
性域に調整することにより、凝集反応効率を高めること
ができる0反応槽に添加する凝集剤は、廃水中に含有さ
れる金属により適宜選定されるが、通常、FeCl2.
FeCl3.Fe50+ 、ポリ硫酸鉄等のFe化合物
が好適に用いられる。
Cu plating wastewater discharged from the washing process in the finishing process of Cu-plated products usually contains several ppm to several hundred ppm of Cu. In the present invention, such Cu plating wastewater is first sent to the reaction tank 31. It is fed and undergoes a flocculation reaction by a flocculant. In this case, the coagulation reaction efficiency can be increased by adjusting the liquid in the reaction tank to an alkaline range of about PHII by adding a pH adjuster such as an alkaline agent. is selected depending on the metal contained in the wastewater, but usually FeCl2.
FeCl3. Fe compounds such as Fe50+ and polyferric sulfate are preferably used.

反応槽31からの凝集反応液は、次いで沈殿槽32に送
給され、沈殿処理される。沈殿槽32においては、ポリ
アクリルアミドの部分加水分解物等の高分子凝集剤を添
加することにより、効率的に沈殿処理を行なうことがで
きる。沈殿処理によす得られる上澄水は系外に排出され
る。沈殿した汚泥は、Cu (OH)2 、Fe (O
H)2 。
The flocculation reaction liquid from the reaction tank 31 is then fed to the precipitation tank 32 and subjected to precipitation treatment. In the precipitation tank 32, by adding a polymer flocculant such as a partial hydrolyzate of polyacrylamide, precipitation can be carried out efficiently. The supernatant water obtained from the precipitation treatment is discharged outside the system. The precipitated sludge contains Cu(OH)2, Fe(O
H)2.

Fe (OH)3を含むものであるが、このものはpH
調整槽33に送給され、必要に応じて更新液(Cuを数
千〜数万ppm含有するメッキ槽の電解液等)を添加す
ることによる濃度調整を施された後、更に必要に応じて
酸又はアルカリによりpH調整され、抽出装置34へ送
給される。(更新液は水洗水に混合して反応槽31に注
入して処理しても良いが、Cu濃度が高いためにpH調
整槽に送給して抽出する方が好ましい、)抽出装置34
においては、まず、pH調整槽33からの液を抽料とし
、これを抽剤と接触させ、次いで抽剤と逆抽出剤とを接
触させる。そして、抽剤からCu 11を抽出した逆抽
出剤は、これを循環使用してそのCu塩濃度を高め、C
u塩を逆抽出剤から晶出させる。晶出させて得られるC
 u S O4・5H20結晶はメッキ浴等に再利用す
ることができる。
It contains Fe(OH)3, but this one has a pH of
After being fed to the adjustment tank 33 and having its concentration adjusted by adding a renewal solution (such as an electrolytic solution for a plating tank containing several thousand to tens of thousands of ppm of Cu) as necessary, further The pH is adjusted with acid or alkali, and the mixture is sent to the extraction device 34. (The renewal solution may be mixed with washing water and injected into the reaction tank 31 for treatment, but since the Cu concentration is high, it is preferable to send it to the pH adjustment tank for extraction.) Extraction device 34
In this process, first, the liquid from the pH adjustment tank 33 is used as an extractant, and this is brought into contact with an extractant, and then the extractant is brought into contact with a back-extracting agent. Then, the back extractant that extracted Cu 11 from the extraction agent is recycled and used to increase the Cu salt concentration, and the
The u-salt is crystallized from the back extractant. C obtained by crystallization
u SO4.5H20 crystals can be reused in plating baths and the like.

なお、この場合、抽料中にはCu2+と共にF e ”
、Fe3+が含まれているのであるが、抽出工程におい
て、抽剤を選定することにより(本例に°おいては1例
えばSME−529(シェル化学製)を用いることによ
り) 、 Cu 24″のみを選択的に抽出することが
可能である。このようにすれば、Fe 2+、Fe’+
は抽残液中に残留するようになるため、抽残液を反応槽
31へ送給することにより、Fe塩を凝集剤として再利
用することが可能となる。そして、このため、反応槽に
おける凝集剤の添加は、処理開始時のみで良く、その後
凝集剤を追加する必要は殆どなくなり、ランニングコス
トも低減される。
In this case, Fe ” along with Cu2+ is present in the drawing material.
, Fe3+ is included, but in the extraction process, by selecting an extractant (for example, using SME-529 (manufactured by Shell Chemical Co., Ltd.) in this example), only Cu 24'' can be extracted. It is possible to selectively extract Fe 2+, Fe'+
Since Fe salt remains in the raffinate, by feeding the raffinate to the reaction tank 31, it becomes possible to reuse the Fe salt as a flocculant. For this reason, the flocculant needs to be added in the reaction tank only at the start of the treatment, and there is almost no need to add the flocculant thereafter, reducing running costs.

なお、第1図においては、金属含有水の濃縮を凝集沈殿
処理法によって行なう場合について説明したが、本発明
においては、濃縮法はこれに限られず、その他の方法、
例えばイオン交換処理法。
In addition, in FIG. 1, the case where concentration of metal-containing water is performed by a coagulation sedimentation treatment method has been explained, but in the present invention, the concentration method is not limited to this, and other methods,
For example, ion exchange treatment method.

膜分離処理法、蒸発処理法等も採用することが可能であ
る。また、上記説明のように、ある特定成分のみを逆抽
出する場合には循環される抽残液中に鉄イオン等の他の
金属イオンが次第に濃縮されるので、適宜引き抜いて別
途処理を行なう。
It is also possible to employ membrane separation treatment methods, evaporation treatment methods, etc. Further, as explained above, when only a certain specific component is back-extracted, other metal ions such as iron ions are gradually concentrated in the circulating raffinate, so they are appropriately extracted and processed separately.

このように金属含有水を予め濃縮した後、抽出すること
により、抽出速度を格段に向上させ、抽出剤の損失も減
少させることができる。(一般に、抽料をX倍に濃縮し
た場合は抽出剤の損失は1 / x程度に減少される。
By concentrating the metal-containing water in advance and then extracting it in this way, the extraction rate can be significantly improved and the loss of the extractant can be reduced. (Generally, if the extract is concentrated by a factor of X, the loss of extractant will be reduced to about 1/x.

) 第2図は1本発明方法において抽出装置34として用い
るに好適な装置の一例を示すものであり、チューブラ−
あるいはホローファイバー型の固体膜を装着した抽出装
置の断面図である。
) Figure 2 shows an example of a device suitable for use as the extraction device 34 in the method of the present invention, and is a tubular type.
Alternatively, it is a sectional view of an extraction device equipped with a hollow fiber type solid membrane.

■は円筒状の装置ケーシングであって、その上部には仕
切板11.12によって逆抽出側導入室21、抽料導入
室22が画成され、また下部には仕切板13によって、
抽残液排出室23と晶析室5が画成されている。そして
抽料導入室22と抽料排出室23とを連通するように、
パイプ状の固体膜20が多数設けられている。
(2) is a cylindrical device casing, in the upper part of which a back extraction side introduction chamber 21 and extraction material introduction chamber 22 are defined by partition plates 11 and 12, and in the lower part by a partition plate 13,
A raffinate discharge chamber 23 and a crystallization chamber 5 are defined. Then, so that the extraction chamber 22 and the extraction chamber 23 are communicated with each other,
A large number of pipe-shaped solid membranes 20 are provided.

上部の仕切板12と下部の仕切板23との間であって、
かつ、パイプ状固体I!20の外側の部分24は、逆抽
出側導入室21及び晶析室5にそれぞれ連通しており、
かつケーシングlに開設された抽剤供給口15及び抽剤
排出口1Bを通して抽剤の供給、排出が行なわれるよう
構成されている。なお、抽剤排出口18と抽剤供給口1
5とは、途中にポンプ2が設置された管路25によって
連絡されている。
Between the upper partition plate 12 and the lower partition plate 23,
And pipe-shaped solid I! The outer part 24 of 20 communicates with the back extraction side introduction chamber 21 and the crystallization chamber 5, respectively.
Further, the extraction agent is supplied and discharged through an extraction agent supply port 15 and an extraction agent discharge port 1B provided in the casing l. In addition, the extraction agent outlet 18 and the extraction agent supply port 1
5 through a conduit 25 in which the pump 2 is installed.

また、逆抽出側導入室21と晶析室5にはそれぞれ逆抽
出剤の供給口16と排出口19が設けられており、供給
口16と排出口19は管路26によって連絡されている
。この管路26の途中にはポンプ3が設置されていると
共に、逆抽出剤を補充するための配管4が接続されてい
る。
Further, the back extraction side introduction chamber 21 and the crystallization chamber 5 are provided with a back extraction agent supply port 16 and a discharge port 19, respectively, and the supply port 16 and the discharge port 19 are connected by a pipe line 26. A pump 3 is installed in the middle of this pipe line 26, and a pipe 4 for replenishing the back extractant is connected.

図中17は、抽料排出室23から抽料(抽残液)を排出
するための排出口であり、27は晶析室5からの析出結
晶の取出口である。
In the figure, 17 is an outlet for discharging the extract (raffinate liquid) from the extract discharge chamber 23, and 27 is an outlet for taking out the precipitated crystals from the crystallization chamber 5.

このように構成された第2図の抽出装置において、供給
口14から供給された金属塩を含有する抽料は、導入室
22からパイプ状固体膜20の内部へ流れ込み、流下す
る(図中矢印A)、そして、供給口15から導入され固
体膜lOの外側の部分24を上昇する抽剤(第2図にお
いて、斜線の部分が抽剤の上昇域である。)と固体膜2
0を介して接触し、抽料中の金属塩が抽剤に抽出される
In the extractor shown in FIG. 2 configured in this manner, the extract containing metal salts supplied from the supply port 14 flows from the introduction chamber 22 into the pipe-shaped solid membrane 20 and flows downward (as indicated by the arrow in the figure). A), and the extractant introduced from the supply port 15 and rising up the outer part 24 of the solid membrane 1O (in FIG. 2, the shaded area is the rising area of the extractant) and the solid membrane 2
0, and the metal salts in the extract are extracted into the extract.

−・方、供給口16から供給された逆抽出剤は導入室2
1から、固体膜20の外側の部分24(第2図の斜線部
)内の抽剤中を液柱あるいは液滴の形で降下しく図中矢
印B)、抽剤と直接に接触して金属塩の逆抽出を行なう
- side, the back extractant supplied from the supply port 16 is in the introduction chamber 2.
1, it descends in the form of a liquid column or droplet into the extractant in the outer portion 24 (shaded area in FIG. 2) of the solid membrane 20 (arrow B in the figure), and comes into direct contact with the extractant and metal Perform back extraction of salt.

なお、抽残液はI#出口17より排出され、第1図で説
明した様に、凝集沈殿処理法により金属含有水を濃縮す
る場合には、抽残液中に含まれる凝集剤を有効再利用す
るべく、凝集沈殿反応槽31へ送給される。抽剤は排出
口18より排出されてポンプ2により供給「115へ戻
され、循環使用される。また、逆抽出剤は、排出口19
より排出され、ポンプ3により供給口16へ戻され、循
環使用される。また、必要に応じ、配管4から逆抽出剤
が補給される。
The raffinate is discharged from the I# outlet 17, and as explained in Fig. 1, when concentrating metal-containing water by the coagulation-sedimentation method, the coagulant contained in the raffinate can be effectively recycled. It is fed to the coagulation-sedimentation reaction tank 31 for utilization. The extraction agent is discharged from the discharge port 18 and returned to the supply port 115 by the pump 2 for circulation use.
The water is discharged from the tank, returned to the supply port 16 by the pump 3, and used for circulation. In addition, a back-extractant is replenished from the pipe 4 as necessary.

而して、固体膜20の外側の部分24を降下し、金属塩
を逆抽出した逆抽出剤は、晶析室5に入るのであるが、
逆抽出操作を継続すると、逆抽出剤中の金属塩濃度が次
第に高まり、逆抽出剤中に金属塩の結晶が析出するよう
になる。このようにして逆抽出剤中で晶出した金属塩結
晶は晶析室5内でフロック化して沈殿し、取出口27か
ら排出される。
The strip-extracting agent that descends from the outer portion 24 of the solid membrane 20 and strips the metal salt enters the crystallization chamber 5.
As the back-extraction operation continues, the metal salt concentration in the back-extracting agent gradually increases, and metal salt crystals begin to precipitate in the back-extracting agent. The metal salt crystals thus crystallized in the back-extracting agent become flocs and precipitate in the crystallization chamber 5, and are discharged from the outlet 27.

なお、第2図の装置においては、抽料と抽剤とを固体膜
を介して接触させているが、固体膜を介さず直接接触さ
せても良い、また装置下部の逆抽出側排出側か晶析室5
とされているが、晶析室をケーシングlとは別体に設け
、この中で晶出させても良い、但し、第2図の如く、抽
出装置の最下部に晶析室5を設けるようにすれば、装置
がコンパクトになるという効果がある。
In the apparatus shown in Figure 2, the extraction material and the extraction agent are brought into contact through a solid membrane, but they may also be brought into direct contact without passing through the solid membrane, or from the reverse extraction side discharge side at the bottom of the apparatus. Crystallization chamber 5
However, the crystallization chamber may be provided separately from the casing 1, and the crystallization may be carried out within it.However, as shown in Fig. 2, the crystallization chamber 5 may be provided at the bottom of the extraction device. This has the effect of making the device more compact.

第2図の如き装置により、キレート系抽剤を用いて金属
の抽出を行なった場合、抽料の金属濃度と逆抽出剤の金
属濃度との比は下記(1)式で表わされるものとなる。
When metals are extracted using a chelate extractant using the apparatus shown in Figure 2, the ratio of the metal concentration in the extractant to the metal concentration in the back-extractant is expressed by the following equation (1). .

例えば、金属がCu2+の場合、抽料のPHを4、逆抽
出剤のpH11以下とすると100万倍以上にも濃縮で
き、晶析が可能となる。
For example, when the metal is Cu2+, if the pH of the extraction material is 4 and the pH of the back-extracting agent is 11 or less, it can be concentrated more than 1 million times and crystallization becomes possible.

逆抽出剤を循環使用して、逆抽出剤中から金属塩を晶析
で回収する方法によれば、逆抽出される金属と当量の酸
を添加するのみで、系に外部からエネルギーを加える必
要がなく、低コストで金属が回収できる。
According to the method of recycling the back-extracting agent and recovering metal salts from the back-extracting agent by crystallization, it is only necessary to add an acid equivalent to the metal to be back-extracted, and there is no need to add external energy to the system. metals can be recovered at low cost.

ただし、この際に、下記(2)式に示すような反応で逆
抽出剤中のH+が消費されるため、逆抽出剤への酸の定
に的な補給又はPH副制御必要となる。
However, at this time, H+ in the back-extracting agent is consumed by the reaction shown in equation (2) below, so it is necessary to regularly replenish acid to the back-extracting agent or to sub-control the pH.

(CuR)抽剤÷(H2SO,)逆抽出剤2 ・ → (2HR)抽剤◆(Cu S O4)逆抽出剤−(
2)(HR:キレート系抽剤) 本発明において、抽料と抽剤との接触及び/又は抽剤と
逆抽出剤との接触は、固体膜を介して。
(CuR) extractant ÷ (H2SO,) back extractant 2 ・ → (2HR) extractant ◆ (Cu S O4) back extractant - (
2) (HR: Chelate extraction agent) In the present invention, the extraction agent and the extraction agent are brought into contact with each other and/or the extraction agent and the back-extraction agent are brought into contact through a solid membrane.

行なうが、一般に、固体膜を介さずに接触させる方が逆
抽出速度が速く、固体膜への結晶付着の可能性もないと
ころから好ましい、しかしながら。
However, it is generally preferable to contact without intervening a solid membrane because the back extraction rate is faster and there is no possibility of crystals adhering to the solid membrane.

固体膜としてテフロン膜のような極めて疎水性の高いも
のを用いる場合は、固体膜面は抽剤で覆われるため結晶
付着はほとんどない、このため、抽出速度は遅くなる反
面、結晶純度が良くなると考えられる。従って、回収物
に高純度が要求される場合には、抽料と抽剤との接触及
び抽剤と逆抽出剤との接触の双方を固体膜を介して行な
うのが良い。
When using an extremely hydrophobic solid membrane such as a Teflon membrane, the surface of the solid membrane is covered with the extraction agent, so there is almost no crystal adhesion.For this reason, the extraction rate is slow, but the crystal purity is improved. Conceivable. Therefore, when high purity is required for the recovered material, it is preferable to carry out both the contact between the extraction material and the extraction agent and the contact between the extraction agent and the back-extraction agent through a solid membrane.

本発明において、固体膜の形態としては、平膜型、チュ
ーブラ−型、ホローファイバー型等、各種のものが用い
られる。
In the present invention, various forms of the solid membrane are used, such as a flat membrane type, a tubular type, and a hollow fiber type.

固体膜は多孔質のものであれば良く1例えばポリテトラ
フルオロエチレン(以下rPTFE」という)、酢酸セ
ルロース、ポリスルホン、ポリ塩化ビニル、ポリプロピ
レン、ポリアミド等の半透膜が挙げられるが、特にPT
FEが好ましい。
The solid membrane may be porous as long as it is porous. Examples include semipermeable membranes made of polytetrafluoroethylene (rPTFE), cellulose acetate, polysulfone, polyvinyl chloride, polypropylene, polyamide, etc.
FE is preferred.

一般にPTFEはテフロン(商品名)として市販されて
いる。PTFEは耐薬品性、疎水性に優れ、また抽出速
度も極めて高く、固体膜として採用するに好適な性質を
備える。多孔質PTFEIIIは、使用するll1l剤
等によって、その膜厚、孔径等を選定する。
Generally, PTFE is commercially available as Teflon (trade name). PTFE has excellent chemical resistance and hydrophobicity, and has an extremely high extraction rate, making it suitable for use as a solid membrane. The film thickness, pore diameter, etc. of porous PTFE III are selected depending on the ll1l agent used.

なお、PTFE固体膜の抽出速度が速い理由は明らかで
ないが、その網目状構造や極端な疎水性(親油性)によ
り、抽料又は逆抽出剤と抽剤との接触部が、孔だけでは
なく膜面全体にわたることとなり、膜内における拡散も
速いためと推定される。
The reason why the extraction rate of the PTFE solid membrane is so fast is not clear, but due to its network structure and extreme hydrophobicity (lipophilicity), the contact area between the extraction agent or the back-extraction agent and the extraction agent is not limited to only the pores. This is presumed to be because it spreads over the entire membrane surface and the diffusion within the membrane is also fast.

本発明において、抽料と抽剤あるいは抽剤と逆抽出剤を
固体膜を介して接触させる場合、固体膜として、p T
 F E IIIを用いると共に、抽料(抽剤と逆抽出
剤とを固体膜を介して接触させる場合には逆抽出剤、抽
料と抽剤及び抽剤と逆抽出剤を固体膜を介して接触させ
る場合には抽料及び逆抽出剤)側(以下、「水側」とい
うことがある、)の圧力を抽剤側の圧力よりも高くして
抽出を行なうことにより、水(抽料、逆抽出剤)の抽剤
側へのリークがなく、また抽剤が水側ヘリークすること
もなく、効率良く抽出を行なうことが可能となる。
In the present invention, when the extractant and the extractant or the extractant and the back-extractant are brought into contact through a solid membrane, the solid membrane is p T
F E III is used, and the extraction agent (or the extraction agent and the extraction agent and the extraction agent and the extraction agent are brought into contact with each other through a solid membrane). In the case of contact, the pressure on the side (hereinafter sometimes referred to as "water side") of the extraction material and back-extracting agent is higher than the pressure on the extraction agent side. There is no leakage of the back extractant to the extraction agent side, and no leakage of the extraction agent to the water side, making it possible to perform extraction efficiently.

抽料又は逆抽出開側(水側)の圧力を抽剤例の圧力と同
一あるいはそれよりも低くすると、抽剤が水側へリーク
し抽出が困難となる0反対に水側・ の圧力を高くする
と、抽剤の水側へのリークがなくなる。かつ、PTFE
の顕著な疎水性により、水側の圧力を高くしても、抽剤
側への水のリークは(過大な圧をかけない限り)生じな
い。
If the pressure on the extraction or back extraction open side (water side) is the same as or lower than the pressure in the extraction example, the extraction agent will leak to the water side, making extraction difficult. If it is set higher, there will be no leakage of extractant to the water side. And, PTFE
Due to its remarkable hydrophobicity, even if the pressure on the water side is increased, water will not leak to the extractant side (unless excessive pressure is applied).

水側と抽剤側との圧力差は、0.01Kg/crn”以
上であれば良いが、3 K g / c tn”よりも
大きくなると、水のリークが生じ得るところから、0、
O1〜3 K g / c rn’程度とするのが好ま
しい、この圧力差は、抽出装置又は逆抽出装置の出口圧
力調整弁で調整する等の方法により容易に調節可能であ
る。
The pressure difference between the water side and the extractant side should be 0.01 Kg/crn" or more, but if it becomes larger than 3 Kg/c tn", water leakage may occur.
This pressure difference, which is preferably on the order of O1-3 K g/c rn', can be easily adjusted by adjusting the outlet pressure regulating valve of the extractor or back-extractor.

本発明の金属含有水の処理方法は、メッキ廃水等の金属
塩を含有する被処理液の処理等に好適である。金属塩と
しては、Ag、AJI、Co。
The method for treating metal-containing water of the present invention is suitable for treating liquids to be treated containing metal salts, such as plating wastewater. Examples of metal salts include Ag, AJI, and Co.

Cd、Cu、Nf、Fe、Hg、Zn等の塩が挙げられ
る。
Examples include salts of Cd, Cu, Nf, Fe, Hg, Zn, and the like.

金属塩の抽出上程で使用される抽剤は上記の被抽出物質
に応じて適宜選択されるが、一般的な具体例としては、
(1)〜而が挙げられる。
The extraction agent used in the process of extracting metal salts is appropriately selected depending on the above-mentioned substance to be extracted, but general specific examples include:
Examples include (1).

■下記a−d等のキレート系抽剤: a、R−CI−OH 墨 式中 ” −CI2H25 式中 R;−C,H18 ■ド記a−c等の有機リン酸: a、ジー2−エチルへキシルリン酸等の酸性有機リン酸
エステル。
■Chelate extractants such as the following a-d: a, R-CI-OH in the black formula "-CI2H25 in the formula R;-C, H18 ■Organic phosphoric acids such as the dome a-c: a, G2- Acidic organic phosphate esters such as ethylhexyl phosphate.

b、+−リブチルホスフェート等の中性リン酸エステル
b, neutral phosphate esters such as +-butyl phosphate;

C−)りオクチルホスフィンオキサイド等の酸化ホスフ
ィン。
C-) Phosphine oxides such as polyoctylphosphine oxide.

■下記の如きアミン類: Primen  JMT(Robm&Haas製)Am
berlite  LA2(//   )Alanin
e  336(Henkellp)Aliquat  
336(tr   )等の1〜4級アミン類。
■Amines such as the following: Primen JMT (manufactured by Robm & Haas) Am
berlite LA2 (//) Alanin
e 336 (Henkellp) Aliquat
Primary to quaternary amines such as 336 (tr).

■ナフテン酸、versatic酸(shell製)等
のカルボン酸類。
■Carboxylic acids such as naphthenic acid and versatic acid (manufactured by Shell).

■クラウンエーテル類。■Crown ethers.

金属塩を抽出する場合、通常、抽剤を希釈剤に溶解して
用いるが、この場合には、例えばヘプタン、ノナン、デ
カン、クロロホルム、四塩化炭素、ケロシン、キシレン
、ベンゼン等の有機系溶媒を用いることができる。
When extracting metal salts, the extractant is usually dissolved in a diluent. Can be used.

また高級アルコール等の改質剤あるいは酸、アルカリ等
のp H調整剤を抽出系に添加しても良い。
Further, a modifier such as a higher alcohol or a pH adjuster such as an acid or alkali may be added to the extraction system.

逆抽出剤としてはHe見、H2SO,等の鉱酸が用いら
れることが多いが、ジー2−エチルへキシルホスフェー
ト(D2EHPA)を抽剤とする場合には、NaOH等
のアルカリ剤も採用可能である。いずれの場合において
も、逆抽出剤の循環使用に際しては、適宜、酸、アルカ
リ等を補給するのが好ましい。
Mineral acids such as He, H2SO, etc. are often used as back extractants, but when di-2-ethylhexyl phosphate (D2EHPA) is used as the extractant, alkaline agents such as NaOH can also be used. be. In any case, it is preferable to replenish acid, alkali, etc. as appropriate when recycling the back-extracting agent.

抽料、抽剤、逆抽出剤の具体的な組み合わせとしては、
例えばF記表1のものが挙げられる。
Specific combinations of extractants, extractants, and back-extractants include:
For example, those in Table 1 of F are listed.

表  1 木l;トリブチルホスフェート 木2;ジー2−エチルへキシルホスフェート[作用] 金属含有水をまず濃縮した後、濃縮液を抽料として抽出
工程に送給することにより、高い抽出効率で金属の抽出
を極めて有利に行なうことが可能となる。
Table 1 Wood 1: Tributyl phosphate Wood 2: Di-2-ethylhexyl phosphate [Function] After first concentrating the metal-containing water, the concentrated liquid is sent to the extraction process as extract material to extract metals with high extraction efficiency. Extraction can be carried out very advantageously.

しかして金属の抽出工程において、逆抽出剤を循環使用
することにより逆抽出剤中に金属塩が蓄積され過飽和と
なり析出(晶出)する、析出した金属塩は結晶体である
ため脱水回収が極めて容易であり、有効に再利用可能で
ある。
However, in the metal extraction process, when the back-extracting agent is used repeatedly, metal salts accumulate in the back-extracting agent, become supersaturated, and precipitate (crystallize).Since the precipitated metal salts are crystalline, dehydration and recovery are extremely difficult. It is easy and can be effectively reused.

また、抽料と抽剤との接触と抽剤と逆抽出剤との接触の
一方又は双方の接触を固体膜を介して行なうことにより
1回収される金属の純度が高いものになる。
Further, by carrying out one or both of the contact between the extraction material and the extraction agent and the contact between the extraction agent and the back-extracting agent through a solid membrane, the purity of the recovered metal can be increased.

[実施例] 以下に本発明を実施例を挙げて更に具体的に説明するが
、本発明はその要旨を超えない限り以下の実施例に限定
されるものではない。
[Examples] The present invention will be described in more detail below with reference to Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded.

実施例1 銅メッキ物水洗工程から排出された、Cu70ppm、
Fe61ppm及び酒石酸等の有機酸を含み、COD、
、140ppmc7)Cuメッキ水洗廃水に、Fe 5
04 ” 7H20を2600ppm添加し、Ca(O
H)2によりpHを11に調整した。この液に、高分子
凝集剤であるポリアクリルアミドの部分加水分解物をl
ppm添加して沈殿させたところ、得られた上澄水中の
Cuイオンは0 、2 p pm以下であり、汚泥はC
Cu2630pp、FFe22000ppを含有するも
のであった。この汚泥を電解槽から排出されたCu13
400ppm、FFe12200pp含有する更新液と
、その排出比で混合し、Cu3730ppm、FFe2
1O00pp含む液(以下「原液」という、)とし、抽
出を行なった。
Example 1 Cu70ppm discharged from the copper plated product washing process,
Contains Fe61ppm and organic acids such as tartaric acid, COD,
, 140ppmc7) Fe 5 in Cu plating washing wastewater
04” 7H20 was added at 2600 ppm, and Ca(O
The pH was adjusted to 11 with H)2. Add 1 liter of partial hydrolyzate of polyacrylamide, a polymer flocculant, to this solution.
When precipitated by adding ppm, the Cu ions in the obtained supernatant water were 0.2 ppm or less, and the sludge contained C.
It contained 2630pp of Cu and 22000pp of FFe. This sludge is the Cu13 discharged from the electrolytic tank.
400ppm, FFe12200pp, and mixed with that discharge ratio, Cu3730ppm, FFe2
A solution containing 1000pp (hereinafter referred to as "undiluted solution") was used for extraction.

固体膜として1面積75crn’の多孔質PTFE膜(
孔径0.2ルm)を内装した、第2図の抽出装置に、抽
料として上記の原液(pH= 4.1)IQを1200
m1/minで循環通液し、もう一方の側にSME−5
29を40voi%及びシェルシーJl/ D −70
を60vofL%(いずれもシェル化学製)からなる抽
剤500mJLと100g / l H2S O4の逆
抽出剤mlとを、各々720m見/ m i n、24
0m1/minで循環通液した。この通液中、原液は4
8時間毎に新しい原液と取り変えた。また、逆抽出剤の
H2SO4濃度は100 g/fLとなるように適宜c
onc−H2SO4を逆抽出剤に添加した。
A porous PTFE membrane with an area of 75 crn' was used as a solid membrane (
The above stock solution (pH = 4.1) was added as extraction material to the extraction device shown in Figure 2, which was equipped with a pore size of 0.2 μm (pore size: 0.2 m).
Circulate the liquid at m1/min and add SME-5 to the other side.
29 to 40voi% and Shell Sea Jl/D-70
500 mJL of extractant consisting of 60 vofL% (both manufactured by Shell Chemical) and ml of back extractant of 100 g/l H2SO4 were each examined at 720 m/min, 24
The liquid was circulated at a rate of 0 ml/min. During this liquid passage, the stock solution was
The stock solution was replaced with fresh stock solution every 8 hours. In addition, the H2SO4 concentration of the back extractant was adjusted to 100 g/fL.
onc-H2SO4 was added to the back extractant.

このような抽出及び逆抽出処理を継続して行なったとこ
ろ、逆抽出剤のCu濃度が66000PPmになったと
ころで逆抽出剤中にCu S O4・5H20の結晶が
析出し始め、以降、順調に析出を続けた。その初期抽出
速度は、平均15.6g−Cu/rn’−hr (14
〜18g−Cu/rr+′・hr)であった、析出した
C u S O4・5H20の結晶は容易に脱水回収す
ることが可能であった。また、48時間後の抽残液はp
H1,2〜1.3、Cu80〜110 p pm、 F
 e20800〜21000 p p mであり、Fe
は殆ど抽出されず、Cuのみ晶析回収されていた。この
抽残液はFeJIJを多場に含むことから、凝集剤とし
て再利用することが可能であった。
When such extraction and back-extraction processes were continued, Cu SO4.5H20 crystals began to precipitate in the back-extractant when the Cu concentration of the back-extractant reached 66,000 PPm, and the precipitation continued steadily from then on. continued. Its initial extraction rate was on average 15.6 g-Cu/rn'-hr (14
The precipitated Cu S O 4 .5H20 crystals, which had a weight of ~18 g-Cu/rr+'·hr), could be easily dehydrated and recovered. In addition, the raffinate after 48 hours was p
H1,2-1.3, Cu80-110 ppm, F
e20800~21000 ppm, Fe
was hardly extracted, and only Cu was crystallized and recovered. Since this raffinate solution contained a large amount of FeJIJ, it was possible to reuse it as a flocculant.

[効果] 以上詳述した通り1本発明の金属含有水の処理方法は、
まず金属含有水を濃縮した後、金属塩を抽出するもので
あり、速い抽出速度で効率的に抽出を行なうことができ
る。更に、逆抽出剤を循環使用して、金属塩を析出させ
ることにより、金属塩を結晶として極めて容易かつ効率
的に回収することができる。しかも1回収された結晶は
そのままp■利用可能である。従って、回収物の処理費
等が大幅に低減され、経済的、工業的に極めて有利であ
る。更に、抽料と抽剤との接触、及び抽剤と逆抽出剤と
の接触の一方又は双方を固体膜を介して行なうことによ
り、回収される金属の純度が高いものになる。
[Effects] As detailed above, the method for treating metal-containing water of the present invention includes:
First, the metal-containing water is concentrated and then the metal salts are extracted, and the extraction can be carried out efficiently at a high extraction rate. Furthermore, by recycling the back-extracting agent to precipitate the metal salt, the metal salt can be very easily and efficiently recovered in the form of crystals. Moreover, one recovered crystal can be used as p■ as it is. Therefore, the cost of processing the recovered material is significantly reduced, which is extremely advantageous economically and industrially. Further, by carrying out one or both of the contact between the extraction material and the extraction agent and the contact between the extraction agent and the back-extraction agent through a solid membrane, the purity of the recovered metal can be increased.

更に、本発明の方法は、金属イオン回収時の汚泥処理の
難を解消するものである。
Furthermore, the method of the present invention overcomes the difficulty of sludge treatment during metal ion recovery.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の金属含有水の処理方法の−例を説明す
る系統図、第2図は本発明の実施に好適な抽出装置の構
成を示す図である。 l・・・・・・装置ケーシング、 5・・・・・・晶析室、 20・・・・・・固体膜。 31・・・・・・反応槽。 32・・・・・・沈殿槽、 33・・・・・・pH調整槽、 34・・・・・・抽出装置。
FIG. 1 is a system diagram illustrating an example of the method for treating metal-containing water of the present invention, and FIG. 2 is a diagram showing the configuration of an extraction device suitable for carrying out the present invention. l...Device casing, 5...Crystallization chamber, 20...Solid film. 31...Reaction tank. 32... Sedimentation tank, 33... pH adjustment tank, 34... Extraction device.

Claims (4)

【特許請求の範囲】[Claims] (1)金属含有水を抽料とし、この抽料を抽剤と接触さ
せ、次いでこの抽剤を逆抽出剤と接触させて金属塩を逆
抽出剤中に回収する方法において、金属含有水を予め濃
縮すると共に、前記抽料と抽剤との接触及び/又は抽剤
と逆抽出剤との接触は固体膜を介して行ない、かつ、逆
抽出剤を循環使用して被抽出物を逆抽出剤から晶出させ
ることを特徴とする金属含有水の処理方法。
(1) A method in which metal-containing water is used as an extraction material, the extraction material is brought into contact with an extraction agent, and the extraction agent is then brought into contact with a back-extracting agent to recover metal salts into the back-extracting agent. In addition to pre-concentration, the contact between the extraction material and the extraction agent and/or the contact between the extraction agent and the back-extracting agent is performed through a solid membrane, and the material to be extracted is back-extracted by circulating the back-extracting agent. A method for treating metal-containing water, characterized by crystallizing it from a metal-containing agent.
(2)金属含有水を、凝集沈殿処理、イオン交換処理、
膜分離処理又は蒸発処理により濃縮することを特徴とす
る特許請求の範囲第1項に記載の金属含有水の処理方法
(2) Metal-containing water is subjected to coagulation sedimentation treatment, ion exchange treatment,
The method for treating metal-containing water according to claim 1, wherein the metal-containing water is concentrated by membrane separation treatment or evaporation treatment.
(3)金属含有水を、鉄化合物を凝集剤として用いた凝
集沈殿処理により濃縮することを特徴とする特許請求の
範囲第2項に記載の金属含有水の処理方法。
(3) The method for treating metal-containing water according to claim 2, characterized in that the metal-containing water is concentrated by coagulation-sedimentation treatment using an iron compound as a flocculant.
(4)金属含有水はメッキ廃水であることを特徴とする
特許請求の範囲第1項ないし第3項のいずれか1項に記
載の金属含有水の処理方法。
(4) The method for treating metal-containing water according to any one of claims 1 to 3, wherein the metal-containing water is plating wastewater.
JP59263960A 1984-12-14 1984-12-14 Treatment of metal-containing water Pending JPS61143527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59263960A JPS61143527A (en) 1984-12-14 1984-12-14 Treatment of metal-containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59263960A JPS61143527A (en) 1984-12-14 1984-12-14 Treatment of metal-containing water

Publications (1)

Publication Number Publication Date
JPS61143527A true JPS61143527A (en) 1986-07-01

Family

ID=17396629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59263960A Pending JPS61143527A (en) 1984-12-14 1984-12-14 Treatment of metal-containing water

Country Status (1)

Country Link
JP (1) JPS61143527A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6351902A (en) * 1986-08-22 1988-03-05 Kurita Water Ind Ltd Method and device for extraction
JPH02159326A (en) * 1988-12-14 1990-06-19 Konica Corp Method for recovering silver component
JP2010284593A (en) * 2009-06-11 2010-12-24 Kurita Water Ind Ltd Method for recovering water and metal from washing wastewater in electroplating
JP2011021219A (en) * 2009-07-14 2011-02-03 Sumitomo Metal Mining Co Ltd Method for recovering copper from copper/iron-containing material
CN108118156A (en) * 2018-01-10 2018-06-05 中信大锰矿业有限责任公司 A kind of electrolytic manganese anode mud separation production electrolytic manganese metal and the method for recycling lead
WO2023054621A1 (en) * 2021-09-29 2023-04-06 株式会社アサカ理研 Method for recovering valuable metal from waste lithium-ion battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6351902A (en) * 1986-08-22 1988-03-05 Kurita Water Ind Ltd Method and device for extraction
JPH02159326A (en) * 1988-12-14 1990-06-19 Konica Corp Method for recovering silver component
JP2010284593A (en) * 2009-06-11 2010-12-24 Kurita Water Ind Ltd Method for recovering water and metal from washing wastewater in electroplating
JP2011021219A (en) * 2009-07-14 2011-02-03 Sumitomo Metal Mining Co Ltd Method for recovering copper from copper/iron-containing material
CN108118156A (en) * 2018-01-10 2018-06-05 中信大锰矿业有限责任公司 A kind of electrolytic manganese anode mud separation production electrolytic manganese metal and the method for recycling lead
WO2023054621A1 (en) * 2021-09-29 2023-04-06 株式会社アサカ理研 Method for recovering valuable metal from waste lithium-ion battery
JPWO2023054621A1 (en) * 2021-09-29 2023-04-06

Similar Documents

Publication Publication Date Title
CN102459096B (en) Method for recovering water and metals from plating wastewater resulting from washing
JPS60106583A (en) Method of treating aqueous flow containing precipitable material and acid and/or base
US10214433B2 (en) Brine treatment scaling control system and method
CN101928089A (en) Method for disposing antiosmosis thick water out of purified terephthalic acid refined waste water
CN106966536A (en) Strong brine zero-emission film concentration technology and equipment
CN106186437A (en) A kind of process technique producing the waste water manufacturing demineralized water generation in viscose rayon
JP4146078B2 (en) Method for separating and recovering nickel and zinc from wastewater or sludge containing nickel and zinc
CN108341536A (en) A kind of processing method of epoxy resin production waste-water
CN109437444A (en) Deposition vanadium mother liquid and wash water processing equipment for recycling and its method
JPS61143527A (en) Treatment of metal-containing water
JPS63291608A (en) System for regenerating acidic waste liquid
JPH0714512B2 (en) Treatment method of wastewater containing heavy metals
CN107098526A (en) The film concentrator and handling process of strong brine zero-emission sub-prime crystallization
CN106396164B (en) A kind of industrial acidic wastewater treatment process
JPS59131525A (en) Process and device for recovering trivalent chromate from circulating water produced in tanning process using chromiumbath
JPH01194988A (en) Treatment of metal-containing water
CN213771708U (en) Novel membrane treatment system for wastewater hardness removal
CN209368011U (en) Deposition vanadium mother liquid and wash water processing equipment for recycling
CN116964247A (en) System and method for direct production of lithium hydroxide
RU2048453C1 (en) Method for treatment of sewage water to remove heavy metal ions
JP2711241B2 (en) Acid waste liquid regeneration method
JPH057880A (en) Treatment of waste water containing heavy metal
CN206089336U (en) Zero discharging equipment of sewage recycling
RU2088537C1 (en) Method of recuperation reverse-osmosis purification of waste water to remove heavy metal ions
JPS61132516A (en) Extraction process