JP2711241B2 - Acid waste liquid regeneration method - Google Patents

Acid waste liquid regeneration method

Info

Publication number
JP2711241B2
JP2711241B2 JP8155684A JP15568496A JP2711241B2 JP 2711241 B2 JP2711241 B2 JP 2711241B2 JP 8155684 A JP8155684 A JP 8155684A JP 15568496 A JP15568496 A JP 15568496A JP 2711241 B2 JP2711241 B2 JP 2711241B2
Authority
JP
Japan
Prior art keywords
acid
exchange membrane
waste liquid
solution
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8155684A
Other languages
Japanese (ja)
Other versions
JPH09887A (en
Inventor
宜契 山本
康利 小淵
義昭 野間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP8155684A priority Critical patent/JP2711241B2/en
Publication of JPH09887A publication Critical patent/JPH09887A/en
Application granted granted Critical
Publication of JP2711241B2 publication Critical patent/JP2711241B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/36Regeneration of waste pickling liquors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • ing And Chemical Polishing (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、酸廃液の再生方法に関
する。詳しくは、鉱酸とその金属塩類を含む酸廃液を再
生処理するに際し、拡散透析装置により脱酸する工程、
脱酸液を中和沈殿分離する工程、この中和、沈殿分離し
た中和濾液をバイポーラ膜と陰、陽イオン交換膜の組合
せからなるイオン交換膜電気透析装置により、酸とアル
カリに再生する工程からなり、必要に応じて、当該工程
より生成するアルカリ液を中和沈殿分離する工程の中和
剤に使用する酸廃液の再生方法である。 【0002】 【従来技術およびその問題点】鉱酸とその金属塩類を含
む酸廃液は近年、種々の産業における製造プロセス、処
理プロセスあるいは加工プロセスなどから、希薄な酸含
有液が大量に排出される。例えば、非鉄金属の原鉱また
はメタルの処理工程からの硫酸含有溶液、抽出またはビ
ックリング工程からの塩酸含有溶液、タンタルや鉛の処
理工程からの弗酸含有溶液、溶媒抽出、エッチング工程
からの塩酸、硫酸、硝酸含有溶液、メッキ廃液からのク
ロム酸含有溶液などが挙げられる。特に鉄または非鉄金
属のエッチング、ピックリングあるいはメッキ工程、製
練工程においては、酸中に金属が塩として溶出し、該金
属塩類の濃度が許容量を越した場合には、もはやその酸
は使用出来なくなるため、酸とその金属塩類を含む多量
の溶液が廃液として生じる。したがって従来、酸廃液は
公害上の問題から中和処理などの適宜の処理をした後、
スラッジ、スラリーとして廃棄されている。しかし、上
記のような酸廃液から金属成分と酸とを分離し再回収で
きるならば、種々の酸廃液の再利用、公害防止上から極
めて有利である。 【0003】従来技術としては、例えば特開昭52−1
01690,53−2379,53−18470号など
において、陰、陽イオン交換膜により形成された電気透
析槽において、酸とその金属塩類の含有廃液を脱酸、濃
縮して後、その脱酸液を両極室を陰イオン交換膜で区画
した隔膜電解槽において電解して、金属またはその水酸
化物として析出させる方法が提案されている。しかしな
がら、このような方法では各室毎に電極を有する隔膜電
解槽を用いるため、装置の規模が多大になるばかりでな
く、酸廃液にハロゲン化物を含有する場合には電極の材
質を厳選する必要があり、経済的に問題があった。した
がって、上記した如き鉱酸とその金属塩類を含有する酸
廃液から酸と金属成分とを分離して、高濃度の酸、アル
カリ、および金属として再利用する従来方法は効率的で
なく、また高濃度の酸を得ることが難しいこともあっ
て、工業的に実施された例はほとんどない。 【0004】 【問題点を解決するための手段】本発明は、上記のよう
な酸とその金属塩類とを含有する酸廃液から金属成分と
酸を分離し、さらに該金属成分を中和沈殿分離した中和
濾液を効率的に酸とアルカリに再生回収できる新規な処
理方法を提供するものである。即ち、本発明は、鉱酸と
その金属塩類を含有する酸廃液を、陰イオン交換膜を拡
散膜とする拡散透析装置により脱酸する工程(A)、脱
酸液を中和、沈殿分離する工程(B)、及び中和沈殿分
離した濾液を陽イオン交換樹脂部分の固定イオン濃度が
10N以上であるバイポーラ膜と陰、陽イオン交換膜の
組み合わせよりなるイオン交換膜電気透析装置により酸
とアルカリに再生する工程(C)、からなる酸廃液の再
生方法である。更に必要に応じて当該工程より生成する
アルカリ液を中和沈殿分離する工程(B)の中和剤に使
用し、あるいは生成する酸は脱酸工程(A)の拡散透析
装置の濃縮側に導入して高濃度の酸として再生すること
を特徴とする方法でもある。 【0005】本発明によれば、酸と金属成分の分離が効
率的に完全に達成され、しかも中和沈殿分離に使用され
るアルカリまたは非常に高濃度の酸を得ることが可能で
ある。即ち、本発明では、従来から用いられている中和
処理などの方法で金属成分をスラッジ、スラリーとして
廃棄されている工程を既存のまま使用でき、さらには、
多種多様の産業で使われている鉱酸の廃液の再生を経済
的に行うことが可能である。このような本発明の効果
は、上記した廃酸液を、まず陰イオン交換膜を拡散膜と
する拡散透析装置(I)により脱酸する。即ち、陰イオ
ン交換膜を拡散膜として用いることにより極めて高い選
択率で酸とその金属塩類とを含有する溶液から酸のみを
抽出分離することができる。次いで、脱酸された廃液は
中和沈殿分離装置(II)によって固型物は除かれバイポ
ーラ膜と陰陽イオン交換膜の組合せからなるイオン交換
膜電気透析装置(III)によって、金属塩は酸と塩基に再
生されるのである。このようにそれぞれの特質を利用
し、これを組合せることによって極めて効率的に酸回収
を可能としたものである。 【0006】以下、本発明を図面等を示しながら詳細に
説明する。本発明で処理の対象とされる酸とその金属塩
類を含む廃液とは、上記したように種々の例が挙げられ
る。酸としてはその酸根(酸を形成する陰イオン)が陰
イオン交換膜を透過しうるものであれば特に制限され
ず、例えば硫酸、塩酸、硝酸、リン酸、フッ酸などの廃
酸である。また、それに含有される金属塩類としては例
えば鉄、ニッケル、クロム、亜鉛、銅、アルミニウム、
マグネシウム、鉛、コバルト等の塩であり特に制限され
ない。特に本発明は、ハロゲン化物を含む酸廃液を極め
て効率的に処理することができる。これらの廃液の代表
的な一例としてはタンタルや鉛の処理工程からの弗酸含
有溶液、製練工程からの硝弗酸含有溶液、鉄のピックリ
ング工程からの排出される硫酸と硫酸鉄の含有溶液など
が挙げられる。当然のことながら、上記の酸と金属塩類
は二種以上含まれていてもよく、またそれは必ずしも廃
液と呼ばれるものでなくてもよい。即ち、本発明は上記
のような酸とその金属塩とを含有する溶液の全てに適用
されるものである。 【0007】本発明の図1において、(I)は拡散透析
装置、(II)は中和沈殿分離装置、(III)は複分解を行
うイオン交換膜電気透析装置であり、また(A)は脱酸
および濃縮工程、(B)は脱酸液の中和沈殿分離工程、
(C)は酸、アルカリ再生工程を示す。さらに具体的
に、拡散透析装置(I)は陰イオン交換膜を拡散膜とし
て設けることにより、1および2に区画され、中和沈殿
分離装置(II)としては、各種の廃液などを処理する既
存の中和、沈殿、分離装置が特に制限なく採用され、例
えば図2に示すような中和槽、沈殿槽、濃縮槽、真空濾
過槽を配備して構成され、またイオン交換膜電気透析装
置(III)は陽イオン交換膜3、バイポーラ膜4、陰イオ
ン交換膜5、を順に配置することにより中間室(複分解
室)6、酸生成室7およびアルカリ生成室8に区画され
る。 【0008】本発明の拡散装置(I)およびイオン交換
膜電気透析装置(III)に使用される上記の陽イオン交換
膜、陰イオン交換膜およびバイポーラ膜は、従来公知の
膜が適宜に採用することができるが、それぞれ酸の分
離、中性塩の複分解に有効な膜を選択すればよい。例え
ば、陽イオン交換膜としては、少なくとも一方の膜表層
部にアミノ基などの陰イオン交換基、あるいは炭素数4
〜30の長鎖アルキル基を結合した陽イオン選択性の陽
イオン交換膜が浸透水量も少なく出来るため好適であ
る。陰イオン交換膜としては、電気透析における電流効
率の向上を図るために、水素イオンの透過(拡散)が少
ない弱塩基性陰イオン交換膜が好適である。また、本発
明に用いるバイポーラ膜としては、陰イオン交換樹脂層
と陽イオン交換樹脂層とを有し、特に該陽イオン交換樹
脂層の固定イオン濃度が10N以上のバイポーラ膜であ
る。このため、加水分解効率を高く、かつ水素イオンの
逆拡散を小さく出来るので好適である。 【0009】本発明においては、鉱酸とその金属塩類を
含有する酸廃液(原液)9を拡散透析装置(I)の透析
室1に供給し、一方の拡散室2には希薄な酸等を供給し
て、酸廃液から酸を効率的に回収するために透析を実施
する条件を適切に選択する。 【0010】例えば、拡散透析装置(I)に原液を供給
する速度は、一般に0.01〜5cm/min、特に
0.1〜1cm/min程度が好ましい。かくして、拡
散透析装置(I)の透析室1からは原液の脱酸液10が
得られ、拡散室2からは酸液11を取る。 【0011】次に、透析室1からの脱酸液10は、中和
沈殿分離装置(II)に供給し、まずアルカリ液12で中
和した後、液中の金属塩を水酸化物として沈殿させスラ
ッジ、スラリー13にし、中和濾液14は難溶性塩の含
有度により必要に応じてキレート樹脂塔15を通した
後、イオン交換膜電気透析装置(III)の中間室6に供給
する。イオン交換膜電気透析装置(III)においては、中
間室6に供給した中和濾液を複分解することにより、酸
室7から酸と塩基室8からアルカリを効率的に生成する
ために、電気透析の条件を適切に選択する。例えば、中
和濾液14のイオン交換膜電気透析装置(III)に供給す
る速度は一般に0.5〜10cm/sec,電流密度は
一般に0.5〜20A/dm2 、また温度は10〜50
℃程が好ましい。 【0012】かくして、イオン交換膜電気透析装置(II
I)では、陽イオン交換膜および陰イオン交換膜を介し
て、中和濾液14の各イオンが選択的に透析移行する。
したがって、イオン交換膜電気透析装置(III)ではバイ
ポーラ膜を介して塩基室8から高濃度のアルカリが得ら
れ、酸生成室7から高濃度の酸が得られる。再生したア
ルカリは、中和沈殿分離装置(II)へ中和濃度に応じて
供給、また再生した酸16はそのまま再生酸液として供
給することが出来る。 【0013】 【発明の効果】上記のように本発明によれば、鉱酸とそ
の金属を含有する酸廃液から、高濃度の酸を経済的に効
率よく回収でき、また金属は水酸化物として回収でき
る。プロセスとしては、中和に使用するアルカリも再生
できるため、外部から別途に供給することなく、プロセ
スをクローズド化することが出来る。また、本発明によ
り回収された酸は高濃度であるため、必要量を希釈して
金属処理に循環使用でき、また他の方面へ使用も可能で
ある。 【0014】 【実施例】以下に、本発明を更に具体的に示すために実
施例を示すが、本発明は上記説明及び下記の実施例によ
って何ら限定されるものではない。 【0015】実施例1 硫酸鉄1.07規定および硫酸2.16規定を含む酸廃
液を図1のフローシートに従って処理し、硫酸と金属に
分離回収した。拡散透析槽(I)としてはネオセプタA
FN(徳山曹達(株)製、強塩基性陰イオン交換膜)に
より拡散室と透析室とに区画した拡散透析装置TSD−
2型(徳山曹達(株)製、有効膜面積2dm2 )を使用
した。イオン交換膜電気透析装置(III)としては、ネオ
セプターCMSおよび−ACMとバイポーラBPM(陽
イオン交換樹脂部分が強酸性基を有し、固定イオン濃度
が11Nであり、陰イオン交換樹脂部分が強塩基性陰イ
オン交換基を有するバイポーラ膜)により、中間室、酸
生成室およびアルカリ生成室とに区画した電気透析槽
(徳山曹達(株)製、有効膜面積2dm2 )を使用し
た。また中和沈殿分離装置としては、図2に示すような
中和槽、沈殿槽、濃縮槽、真空濾過機を配備した。 【0016】拡散透析槽(I)においては、拡散室に上
部から30℃の水を0.6リットル/Hrで供給し、ま
た透析室に下部から上記の酸廃液を0.6リットル/H
rで供給した。その結果、拡散室1より硫酸2規定およ
び硫酸鉄0.1規定の酸液を回収し、透析室2から硫酸
0.16規定および硫酸鉄0.97規定の脱酸した廃液
が排出された。 【0017】次いで、上記の脱酸した廃液を中和沈殿分
離装置(II)へ供給し、まず中和槽で水酸化ナトリウム
を用いて中和させた後、沈殿槽に送り固体と液体とに分
離し、底部に集まった固形分は濃縮槽に排泥され、真空
濾過機によって脱水処理を行いスラッジとして得た。一
方中和濾液は1.5リットル/hで電気透析装置(III)
の中間室に供給した。電気透析装置(III)においては、
温度35℃平均電流密度5A/dm2 で運転した。その
結果、硫酸3.5規定および水酸化ナトリウム3.6規
定の再生液が得られた。この再生した酸は、再生酸とし
て循環使用し、また再生アルカリは中和沈殿分離工程の
中和剤として使用した。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for regenerating an acid waste liquid. Specifically, when regenerating an acid waste liquid containing a mineral acid and its metal salts, a step of deoxidizing with a diffusion dialysis device,
A step of neutralizing, precipitating and separating the deoxidized solution, and a step of regenerating the neutralized, precipitated and separated neutralized filtrate into an acid and an alkali by an ion exchange membrane electrodialysis device comprising a combination of a bipolar membrane, a negative and a cation exchange membrane. And, if necessary, a method for regenerating an acid waste liquid used as a neutralizing agent in a step of neutralizing, precipitating and separating an alkaline liquid produced from the step. 2. Description of the Related Art Recently, a large amount of a dilute acid-containing liquid is discharged from an acid waste liquid containing a mineral acid and a metal salt thereof from a production process, a treatment process or a processing process in various industries. . For example, a sulfuric acid-containing solution from a nonferrous metal ore or metal processing step, a hydrochloric acid-containing solution from an extraction or bicking step, a hydrofluoric acid-containing solution from a tantalum or lead processing step, a solvent extraction, a hydrochloric acid from an etching step. , Sulfuric acid, nitric acid-containing solution, chromic acid-containing solution from plating waste liquid, and the like. Particularly, in the etching, pickling or plating process of iron or non-ferrous metals, and the kneading process, when the metal is eluted as a salt in the acid and the concentration of the metal salt exceeds the allowable amount, the acid is no longer used. As a result, a large amount of solution containing the acid and its metal salt is generated as a waste liquid. Therefore, conventionally, acid waste liquid is subjected to appropriate treatment such as neutralization treatment from the problem of pollution,
Sludge and slurry are discarded. However, if the metal component and the acid can be separated and recovered from the acid waste liquid as described above, it is extremely advantageous from the viewpoint of reusing various acid waste liquids and preventing pollution. The prior art is disclosed in, for example, Japanese Patent Application Laid-Open No. 52-1.
No. 01690, 53-2379, 53-18470, etc., in an electrodialysis tank formed by an anion and cation exchange membrane, a waste liquid containing an acid and its metal salts is deoxidized and concentrated, and then the deoxidized liquid is concentrated. A method has been proposed in which both electrodes are electrolyzed in a diaphragm electrolytic cell partitioned by an anion exchange membrane to precipitate as a metal or a hydroxide thereof. However, in such a method, since a diaphragm electrolytic cell having an electrode for each chamber is used, the scale of the apparatus is not only large, but also when the acid waste liquid contains a halide, it is necessary to carefully select the material of the electrode. There was an economic problem. Therefore, the conventional method of separating an acid and a metal component from an acid waste liquid containing a mineral acid and a metal salt thereof as described above and reusing the acid and the metal component as a high concentration of an acid, an alkali, and a metal is not efficient and has a high efficiency. Since it is difficult to obtain a concentrated acid, there are almost no cases where it is industrially practiced. SUMMARY OF THE INVENTION The present invention provides a method for separating a metal component and an acid from an acid waste solution containing the above-mentioned acid and a metal salt thereof, and further, neutralizing and separating the metal component. It is an object of the present invention to provide a novel treatment method that can efficiently regenerate and recover the neutralized filtrate into an acid and an alkali. That is, the present invention provides a step (A) of deoxidizing an acid waste liquid containing a mineral acid and a metal salt thereof by a diffusion dialysis apparatus using an anion exchange membrane as a diffusion membrane, neutralizing the deoxidized liquid, and separating out the precipitate. The filtrate obtained in the step (B) and the neutralization precipitation is separated into an acid and an alkali by an ion exchange membrane electrodialysis apparatus comprising a combination of a bipolar membrane having a fixed ion concentration of 10 N or more in a cation exchange resin part and a negative and cation exchange membrane. (C) regenerating the acid waste liquid. Further, if necessary, the alkaline solution generated from the step is used as a neutralizing agent in the step (B) of neutralizing, precipitating and separating, or the generated acid is introduced into the concentration side of the diffusion dialysis device in the deoxidizing step (A). And regenerate as a high-concentration acid. According to the present invention, it is possible to efficiently and completely separate an acid and a metal component, and to obtain an alkali or a very high concentration of an acid used for neutralization precipitation separation. In other words, in the present invention, a process in which a metal component is discarded as a sludge and a slurry by a conventionally used method such as a neutralization treatment can be used as is, and further,
It is possible to economically regenerate the waste liquid of mineral acids used in various industries. Such an effect of the present invention is that the above-mentioned waste acid solution is first deoxidized by a diffusion dialysis apparatus (I) using an anion exchange membrane as a diffusion membrane. That is, by using the anion exchange membrane as the diffusion membrane, it is possible to extract and separate only the acid from the solution containing the acid and its metal salt with extremely high selectivity. Next, the solids are removed from the deoxidized waste liquid by a neutralization / separation / separation device (II), and the metal salt is removed with an acid by an ion exchange membrane electrodialysis device (III) comprising a combination of a bipolar membrane and an anion / cation exchange membrane. It is regenerated into a base. As described above, by utilizing the respective characteristics and combining them, it is possible to extremely efficiently recover the acid. Hereinafter, the present invention will be described in detail with reference to the drawings and the like. Various examples of the waste liquid containing the acid and metal salts thereof to be treated in the present invention are mentioned above. The acid is not particularly limited as long as its acid radical (anion forming the acid) can permeate the anion exchange membrane, and examples thereof include waste acids such as sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, and hydrofluoric acid. Further, as metal salts contained therein, for example, iron, nickel, chromium, zinc, copper, aluminum,
It is a salt of magnesium, lead, cobalt or the like, and is not particularly limited. In particular, the present invention can extremely efficiently treat an acid waste solution containing a halide. Representative examples of these waste liquids include a solution containing hydrofluoric acid from a tantalum or lead treatment process, a solution containing nitric hydrofluoric acid from a kneading process, and a solution containing sulfuric acid and iron sulfate discharged from an iron pickling process. Solution and the like. It goes without saying that two or more kinds of the above-mentioned acids and metal salts may be contained, and it is not always necessary to call the waste liquid. That is, the present invention is applied to all solutions containing the above-mentioned acid and its metal salt. In FIG. 1 of the present invention, (I) is a diffusion dialysis device, (II) is a neutralization / sedimentation / separation device, (III) is an ion exchange membrane electrodialysis device that performs metathesis, and (A) is a dialysis device. An acid and concentration step, (B) a neutralization precipitation separation step of the deacidified solution,
(C) shows an acid and alkali regeneration step. More specifically, the diffusion dialysis apparatus (I) is divided into 1 and 2 by providing an anion exchange membrane as a diffusion membrane, and the neutralization / sedimentation / separation apparatus (II) is an existing apparatus for treating various waste liquids. A neutralization, sedimentation, and separation device is employed without particular limitation. For example, a neutralization tank, a sedimentation tank, a concentration tank, and a vacuum filtration tank as shown in FIG. 2 are provided, and an ion exchange membrane electrodialysis apparatus ( III) is divided into an intermediate chamber (double decomposition chamber) 6, an acid generation chamber 7, and an alkali generation chamber 8 by arranging a cation exchange membrane 3, a bipolar membrane 4, and an anion exchange membrane 5 in this order. As the cation exchange membrane, anion exchange membrane and bipolar membrane used in the diffusion apparatus (I) and the ion exchange membrane electrodialysis apparatus (III) of the present invention, conventionally known membranes are appropriately employed. However, it is sufficient to select a membrane which is effective for separating the acid and metathesis of the neutral salt. For example, as a cation exchange membrane, an anion exchange group such as an amino group or a C4
Cation-selective cation exchange membranes having a long chain alkyl group of from 30 to 30 are preferred because they can reduce the amount of permeated water. As an anion exchange membrane, a weakly basic anion exchange membrane having a small amount of hydrogen ion permeation (diffusion) is preferable in order to improve current efficiency in electrodialysis. Further, the bipolar membrane used in the present invention is a bipolar membrane having an anion exchange resin layer and a cation exchange resin layer, and particularly having a fixed ion concentration of 10 N or more in the cation exchange resin layer. This is preferable because the hydrolysis efficiency is high and the back diffusion of hydrogen ions can be reduced. In the present invention, an acid waste liquid (stock solution) 9 containing a mineral acid and a metal salt thereof is supplied to the dialysis chamber 1 of the diffusion dialysis apparatus (I), and one of the diffusion chambers 2 contains a dilute acid or the like. The conditions under which dialysis is carried out to feed and efficiently recover the acid from the acid waste liquor are appropriately selected. For example, the rate at which the stock solution is supplied to the diffusion dialysis apparatus (I) is generally preferably 0.01 to 5 cm / min, particularly preferably about 0.1 to 1 cm / min. Thus, the undiluted deacidified solution 10 is obtained from the dialysis chamber 1 of the diffusion dialysis device (I), and the acid solution 11 is taken from the diffusion chamber 2. Next, the deoxidized solution 10 from the dialysis chamber 1 is supplied to a neutralization / separation / separation apparatus (II), and is first neutralized with an alkaline solution 12, and then the metal salts in the solution are precipitated as hydroxide. The sludge and slurry 13 are formed, and the neutralized filtrate 14 is passed through a chelate resin tower 15 as necessary depending on the content of the hardly soluble salt, and then supplied to the intermediate chamber 6 of the ion exchange membrane electrodialyzer (III). In the ion-exchange membrane electrodialysis apparatus (III), the neutralization filtrate supplied to the intermediate chamber 6 is metathesized to produce an acid from the acid chamber 7 and an alkali from the base chamber 8 efficiently. Choose conditions appropriately. For example, the rate at which the neutralized filtrate 14 is supplied to the ion exchange membrane electrodialyzer (III) is generally 0.5 to 10 cm / sec, the current density is generally 0.5 to 20 A / dm 2 , and the temperature is 10 to 50 A / dm 2 .
C. is preferred. Thus, an ion exchange membrane electrodialyzer (II
In I), each ion of the neutralized filtrate 14 is selectively dialyzed through the cation exchange membrane and the anion exchange membrane.
Therefore, in the ion exchange membrane electrodialysis device (III), a high concentration of alkali is obtained from the base chamber 8 and a high concentration of acid is obtained from the acid generation chamber 7 through the bipolar membrane. The regenerated alkali can be supplied to the neutralization / sedimentation / separation device (II) according to the neutralization concentration, and the regenerated acid 16 can be supplied as it is as a regenerated acid solution. As described above, according to the present invention, a high-concentration acid can be economically and efficiently recovered from an acid waste liquid containing a mineral acid and its metal, and the metal is converted into a hydroxide. Can be collected. As the process, the alkali used for neutralization can also be regenerated, so that the process can be closed without being separately supplied from the outside. Further, since the acid recovered according to the present invention has a high concentration, it can be used in a metal treatment by diluting a required amount thereof, and can be used in other fields. The present invention will be described in more detail with reference to the following Examples, which by no means limit the scope of the present invention. Example 1 An acid waste liquid containing 1.07 N of iron sulfate and 2.16 N of sulfuric acid was treated according to the flow sheet of FIG. 1 to separate and collect sulfuric acid and metal. Neosepta A as diffusion dialysis tank (I)
Diffusion dialysis device TSD- divided into a diffusion room and a dialysis room by FN (manufactured by Tokuyama Soda Co., Ltd., strong basic anion exchange membrane).
Type 2 (manufactured by Tokuyama Soda Co., Ltd., effective membrane area 2 dm 2 ) was used. As the ion exchange membrane electrodialysis device (III), Neosceptor CMS and -ACM and bipolar BPM (the cation exchange resin part has a strong acidic group, the fixed ion concentration is 11N, and the anion exchange resin part is strong An electrodialysis tank (manufactured by Tokuyama Soda Co., Ltd., effective membrane area 2 dm 2 ) divided into an intermediate chamber, an acid generation chamber, and an alkali generation chamber by a bipolar membrane having a basic anion exchange group) was used. Further, as the neutralization-sedimentation / separation device, a neutralization tank, a sedimentation tank, a concentration tank, and a vacuum filter as shown in FIG. 2 were provided. In the diffusion dialysis tank (I), water at 30 ° C. is supplied from the upper portion to the diffusion chamber at 0.6 liter / Hr, and the above acid waste solution is supplied to the dialysis chamber from the lower portion at 0.6 liter / Hr.
r. As a result, an acid solution of 2N sulfuric acid and 0.1N of iron sulfate was recovered from the diffusion chamber 1, and a deacidified waste liquid of 0.16N and 0.97N of sulfuric acid was discharged from the dialysis chamber 2. Next, the deacidified waste liquid is supplied to a neutralization / sedimentation / separation apparatus (II), first neutralized with sodium hydroxide in a neutralization tank, and then sent to a sedimentation tank to be converted into a solid and a liquid. The solid matter separated and collected at the bottom was discharged into a thickening tank and subjected to dehydration treatment by a vacuum filter to obtain sludge. On the other hand, the neutralized filtrate was an electrodialyzer (III) at 1.5 liter / h.
To the intermediate room. In the electrodialyzer (III),
The operation was performed at a temperature of 35 ° C. and an average current density of 5 A / dm 2 . As a result, a regenerated solution of 3.5 N sulfuric acid and 3.6 N sodium hydroxide was obtained. The regenerated acid was recycled and used as a regenerating acid, and the regenerated alkali was used as a neutralizing agent in a neutralization precipitation separation step.

【図面の簡単な説明】 【図1】本発明のフローを示し、Iは脱酸工程の拡散透
析装置、IIは中和沈殿分離工程の装置、III は酸および
アルカリ再生工程におけるイオン交換膜電気透析装置で
ある。 【図2】中和沈殿分離装置(II)の代表的なフロー図で
ある。 【符号の説明】 1,2 拡散透析装置(I)および拡散室 3,4,5 イオン交換膜電気透析装置(III)におけ
る陰イオン交換膜、バイポーラ膜および陽イオン交換膜 6,7,8 中間室(複分解室)、酸生成室およびア
ルカリ生成室 9 廃酸液(原液) 10 脱酸液 11 拡散透析装置(I)における再生酸液 12 イオン交換膜電解槽(III)における再生アルカ
リ液 13 中和、沈殿分離装置(III)からのスラッジある
いはスラリー 14 中和濾液 15 キレート樹脂塔 16,17 イオン交換膜電気透析槽(III)における
それぞれ再生酸液と脱塩液 18 中和槽 19 沈殿槽 20 濃縮槽 21 真空濾過機 22 中和液 23 スラリー 24 スラッジ 25 固形分
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows the flow of the present invention, wherein I is a diffusion dialysis device in a deacidification step, II is a device in a neutralization precipitation separation step, and III is an ion exchange membrane electricity in an acid and alkali regeneration step. It is a dialysis machine. FIG. 2 is a typical flow chart of a neutralization / separation / separation apparatus (II). [Description of Signs] 1,2 Anion exchange membrane, bipolar membrane and cation exchange membrane 6,7,8 intermediate in diffusion dialysis device (I) and diffusion chamber 3,4,5 ion exchange membrane electrodialysis device (III) Chamber (double decomposition chamber), acid generation chamber and alkali generation chamber 9 waste acid solution (stock solution) 10 deoxidizing solution 11 regenerated acid solution in diffusion dialysis device (I) 12 regenerated alkali solution 13 in ion exchange membrane electrolytic cell (III) Sludge or slurry from the summing and sedimentation separation device (III) 14 neutralization filtrate 15 chelating resin towers 16 and 17 regenerated acid solution and desalting solution 18 in the ion exchange membrane electrodialysis tank (III) 18 neutralization tank 19 precipitation tank 20 Concentration tank 21 Vacuum filter 22 Neutralizing solution 23 Slurry 24 Sludge 25 Solid content

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C23F 1/46 C23G 1/36 C23G 1/36 C02F 1/46 103 Continued on the front page (51) Int.Cl. 6 Identification number Reference number in the agency FI Technical display location C23F 1/46 C23G 1/36 C23G 1/36 C02F 1/46 103

Claims (1)

(57)【特許請求の範囲】 1.鉱酸とその金属塩類を含有する酸廃液を、陰イオン
交換膜を拡散膜とする拡散透析装置により脱酸する工程
A、脱酸液を中和、沈殿分離する工程B、及び中和沈殿
分離した濾液を陽イオン交換樹脂部分の固定イオン濃度
が10N以上であるバイポーラ膜と陰、陽イオン交換膜
の組み合わせよりなるイオン交換膜電気透析装置により
酸とアルカリに再生する工程C、からなる酸廃液の再生
方法。
(57) [Claims] An acid effluent containing mineral acid and its metal salts is anionized
Step A for deoxidation by a diffusion dialysis apparatus using an exchange membrane as a diffusion membrane, step B for neutralizing and separating the deoxidized solution, and separation of the filtrate after neutralization and precipitation, wherein the fixed ion concentration of the cation exchange resin portion is 10 N or more. A method for regenerating an acid waste liquid, which comprises a step C of regenerating into an acid and an alkali by an ion exchange membrane electrodialysis apparatus comprising a combination of a bipolar membrane and a negative and cation exchange membrane.
JP8155684A 1996-06-17 1996-06-17 Acid waste liquid regeneration method Expired - Fee Related JP2711241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8155684A JP2711241B2 (en) 1996-06-17 1996-06-17 Acid waste liquid regeneration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8155684A JP2711241B2 (en) 1996-06-17 1996-06-17 Acid waste liquid regeneration method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP12374387A Division JPS63291608A (en) 1987-05-22 1987-05-22 System for regenerating acidic waste liquid

Publications (2)

Publication Number Publication Date
JPH09887A JPH09887A (en) 1997-01-07
JP2711241B2 true JP2711241B2 (en) 1998-02-10

Family

ID=15611308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8155684A Expired - Fee Related JP2711241B2 (en) 1996-06-17 1996-06-17 Acid waste liquid regeneration method

Country Status (1)

Country Link
JP (1) JP2711241B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6139240B2 (en) * 2013-04-19 2017-05-31 株式会社東芝 Method and apparatus for regenerating cleaning acid
CN105110521B (en) * 2015-08-25 2017-06-30 杭州蓝然环境技术有限公司 A kind of circulation utilization method of desulfurization wastewater
CN105645644B (en) * 2016-01-07 2018-06-08 浙江蓝极膜技术有限公司 A kind of technique for recycling sulfuric acid in sulfur acid and sodium sulfate wastewater with two sections of diffusion dialysis, two sections of electrodialysis and Bipolar Membrane
CN111892220A (en) * 2020-07-15 2020-11-06 李喜仁 Equipment and method for treating smelting flue gas waste acid
TWI794716B (en) * 2020-12-30 2023-03-01 財團法人工業技術研究院 System and method of treating waste water
CN116065033B (en) * 2023-01-03 2024-10-15 广东邦普循环科技有限公司 Method for treating nickel salt and acid by membrane method in hydrometallurgy and battery anode material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4740281A (en) * 1986-10-14 1988-04-26 Allied Corporation Recovery of acids from materials comprising acid and salt

Also Published As

Publication number Publication date
JPH09887A (en) 1997-01-07

Similar Documents

Publication Publication Date Title
US4655928A (en) Membrane processes for metal recovery and pollution control in metal process industries
JP5804496B2 (en) Method and apparatus for treating pickling waste liquid
US5091070A (en) Method of continuously removing and obtaining ethylene diamine tetracetic acid (edta) from the process water of electroless copper plating
US4943360A (en) Process for recovering nitric acid and hydrofluoric acid from waste pickle liquors
JPH0532088B2 (en)
JP2711241B2 (en) Acid waste liquid regeneration method
US3394068A (en) Electrodialysis of pickle liquor using sequestrants
CA2750135C (en) Process and apparatus for precipitating cationic metal hydroxides and the recovery of sulfuric acid from acidic solutions
CN104310673A (en) Method for physically treating complexing metal ion wastewater
KR100758461B1 (en) Method for reuse of wastewater in continuous electroplating lines
JP2678328B2 (en) Treatment method of monobasic acid waste liquid containing aluminum phosphate
US20040137587A1 (en) Method of separating multivalent ions and lactate ions from a fermentation broth
CN103420520A (en) Processing method of vanadium-containing aluminum-containing wastewater
RU2088537C1 (en) Method of recuperation reverse-osmosis purification of waste water to remove heavy metal ions
SU1105515A1 (en) Method of recovering acids from fluorine-containing pickles
JPS61143527A (en) Treatment of metal-containing water
CN221836851U (en) Cold rolling high salt waste water near zero release processing system
JP3572119B2 (en) Method and apparatus for separating and recovering two acids from an acid mixture such as nitric hydrofluoric acid waste liquid
JPS60264314A (en) Method for concentrating phosphoric acid or nitric acid
CN117023867A (en) Method for degreasing, removing hardness and filtering ternary precursor wastewater and preparing acid and alkali
CN115259488A (en) Treatment system and treatment method for acidic copper-containing wastewater
JPH05330265A (en) Surface treatment of aluminum support for printing plate
JPS637803B2 (en)
Barberis Regenerating pickling solutions using electro-electrodialysis

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees