JPS63291608A - System for regenerating acidic waste liquid - Google Patents

System for regenerating acidic waste liquid

Info

Publication number
JPS63291608A
JPS63291608A JP12374387A JP12374387A JPS63291608A JP S63291608 A JPS63291608 A JP S63291608A JP 12374387 A JP12374387 A JP 12374387A JP 12374387 A JP12374387 A JP 12374387A JP S63291608 A JPS63291608 A JP S63291608A
Authority
JP
Japan
Prior art keywords
acid
room
exchange membrane
liquid
acids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12374387A
Other languages
Japanese (ja)
Other versions
JPH0532088B2 (en
Inventor
Takahisa Yamamoto
宜契 山本
Yasutoshi Kofuchi
小淵 康利
Yoshiaki Noma
野間 義昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP12374387A priority Critical patent/JPS63291608A/en
Publication of JPS63291608A publication Critical patent/JPS63291608A/en
Publication of JPH0532088B2 publication Critical patent/JPH0532088B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/36Regeneration of waste pickling liquors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/445Ion-selective electrodialysis with bipolar membranes; Water splitting

Abstract

PURPOSE:To recover highly concentrated acids economically and efficiently, by introducing filtered liquids separated by neutralization and precipitation after deacidifying acidic waste liquids containing mineral acids and their metallic salts into an electrodialysis device comprising bipolar membranes and ion-exchange membranes to regenerate acids and alkalis. CONSTITUTION:Acidic waste liquid 9 containing mineral acids and their metallic salts is supplied to a deacidifying room (a dialysis room) of an ion-exchange membrane electrodialysis device or a diffusion dialysis device 1, while dilute acid is supplied to a concentration room (diffusion room) 2, causing acids in acidic waste liquid 9 to be selectively transferred to the concentration room 2. And deacidified liquid 10 having decreased acid concentration is fed to a neutralization precipitator II, where the liquid 10 is neutralized by alkaline liquid 12, causing metallic salts in the liquid to precipitate as hydroxides, whereby sludge and slurry 13 are obtained. The neutralized, separated liquid 14 is fed to an intermediate room 6 of an ion-exchange membrane electrodialysis device III wherein cation exchange membranes 3, bipolar membranes 4, and anion exchange membranes 5 are arranged in series, whereby highly concentrated alkalis is obtained through the bipolar membranes 4 from a base room 8 and highly concentrated acids from a acid producing room 7.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、酸廃液の再生方法に関する。詳しくは、鉱酸
とその金属塩類を含む酸廃液を再生処理するに際し、イ
オン交換膜電気透析装置または拡散透析装置により脱酸
する工程、脱酸液を中和沈殿分離する工程、この中和、
沈殿分離した中和濾液をバイポーラ膜と陰、陽イオン交
換膜の組合せからなるイオン交換a電気透析装置により
、酸とアルカリに再生する工程からなり、必要に応じて
、当該工程より生成するアルカリ液を中和沈殿分離する
工程の中和剤に使用し、あるいは生成する酸は脱酸工程
の電気透析装置の濃縮側に導入して高濃度の酸として再
生する酸廃液の再生方法である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for regenerating acid waste liquid. In detail, when regenerating acid waste liquid containing mineral acids and their metal salts, there are a process of deoxidizing with an ion exchange membrane electrodialysis device or a diffusion dialysis device, a process of neutralizing and precipitating and separating the deacidifying liquid, this neutralization,
The process consists of regenerating the precipitated and separated neutralized filtrate into acid and alkali using an ion exchange a electrodialysis device consisting of a combination of a bipolar membrane and an anion and cation exchange membrane. This is a method for regenerating acid waste liquid, in which the acid is used as a neutralizing agent in the process of neutralization and precipitation separation, or the generated acid is introduced into the concentration side of an electrodialyzer in the deacidification process to regenerate it as a highly concentrated acid.

[従来技術およびその問題点] 鉱酸とその金属塩類を含む酸廃液は近年、種々の産業に
おける製造プロセス、処理プロセスあるいは加工プロセ
スなどから、希薄な酸含有液が大量に排出される。例え
ば、非鉄金属の原鉱またはメタルの処理工程からの@酸
含有溶液、抽出またはピックリング工程からの塩酸含有
溶液、タンタルや鉛の処理工程からの弗酸含有溶液、溶
媒抽出、エツチング工程からの塩酸、硫酸、硝酸含有溶
液、メッキ廃液からのクロム酸含有溶液などが挙げられ
る。特に鉄または非鉄金属のエツチング、ビックリング
あるいはメッキ工程、製錬工程においては、酸中に金属
が塩として溶出し、該金属塩類の濃度が許容量を越した
場合には、もはやその酸は使用出来なくなるため、酸と
その金属塩類を含む多量の溶液が廃液として生じる。し
たがって従来、酸廃液は公害上の問題から中和処理など
の適宜の処理をした後、スラッジ、スラリーとして廃棄
されている。しかし、上記のような酸廃液から金属成分
と酸とを分離し再回収できるならば、種々の酸廃液の再
利用、公賓防止上から極めて有利である。
[Prior art and its problems] In recent years, large amounts of dilute acid-containing liquids have been discharged from manufacturing processes, treatment processes, processing processes, etc. in various industries. For example, @acid-containing solutions from non-ferrous metal raw ore or metal processing processes, hydrochloric acid-containing solutions from extraction or pickling processes, hydrofluoric acid-containing solutions from tantalum and lead processing processes, solvent extraction, and etching processes. Examples include solutions containing hydrochloric acid, sulfuric acid, and nitric acid, and solutions containing chromic acid from plating waste liquid. Particularly in the etching, bicking, plating, and smelting processes of ferrous or nonferrous metals, if the metal is eluted as a salt in the acid and the concentration of the metal salt exceeds the allowable amount, the acid can no longer be used. As a result, a large amount of solution containing the acid and its metal salts is produced as waste liquid. Therefore, conventionally, acid waste liquids are disposed of as sludge or slurry after being subjected to appropriate treatments such as neutralization due to pollution problems. However, if the metal components and acid could be separated and re-recovered from the acid waste liquid as described above, it would be extremely advantageous from the standpoint of reusing various acid waste liquids and preventing guests from attending.

従来技術としては、例えば特開昭52−101690.
53−2379.53−18470号などにおいて、陰
、陽イオン交換膜により形成された電気透析槽において
、酸とその金属塩類の含有廃液を脱酸、濃縮して後、そ
の脱酸液を両極室を陰イオン交換膜で区画した隔膜電解
槽において電解して、金属またはその水酸化物として析
出させる方法が提案されている。しかしながら、このよ
うな方法では各室毎に電極を有す毬隔膜電解槽を用いる
ため、装置の規模が多大になるばかりでなく、酸廃液に
ハロゲン化物を含有する場合には電極の材質を厳選する
必要があり、経済的に問題があった。したがって、上記
した如き鉱酸とその金属塩ffnを含有する酸廃液から
酸と金属成分とを分離して、高濃度の酸、アルカリ、お
よび金属として再利用する従来方法は効率的でなく、ま
た高濃度の酸を得ることが難しいこともあって、工業的
に実施された例はほとんどない。
As a conventional technique, for example, Japanese Patent Application Laid-Open No. 52-101690.
No. 53-2379.53-18470 etc., after deacidifying and concentrating waste liquid containing acid and its metal salts in an electrodialysis tank formed by an anion and cation exchange membrane, the deacidified liquid is passed into a bipolar chamber. A method has been proposed in which metals or their hydroxides are precipitated by electrolyzing them in a diaphragm electrolytic cell partitioned by anion exchange membranes. However, this method uses a diaphragm electrolytic cell with an electrode in each chamber, which not only increases the scale of the equipment, but also requires careful selection of electrode materials if the acid waste solution contains halides. It was necessary to do so, and there were financial problems. Therefore, the conventional method of separating the acid and metal components from the acid waste solution containing mineral acids and their metal salts ffn and reusing them as highly concentrated acids, alkalis, and metals is not efficient, and Partly because it is difficult to obtain highly concentrated acids, there are almost no examples of this being carried out industrially.

[問題点を解決するための手段] 本発明は、上記のような酸とその金属塩類との含有する
酸廃液から金属成分と酸を分離し、さらに該金属成分を
中和沈殿分離した中和濾液を効率的に酸とアルカリに再
生回収できる新規な処理方法を提供するものである。即
ち、本発明は、鉱酸とその金属塩類を含む酸廃液をイオ
ン交換膜電気透析装置または拡散透析装置により脱酸す
る工程(A)、脱M液を中和沈殿分離する工程(R)、
中和沈殿分離した液をバイポーラ膜と陰陽イオン交換膜
の組合せからなるイオン交換膜電気透析装置により酸と
アルカリに再生する工程(C)からなり、必要に応じて
当該工程より生成するアルカリ液を中和沈殿分離する工
程(B)の中和剤に使用し、あるいは生成する峻は脱酸
工程(A)のイオン交換膜電気透析装置または拡散透析
装置の濃縮側に導入して高濃度の陵として再生すること
を特徴とする方法である。
[Means for Solving the Problems] The present invention is directed to a neutralization process in which metal components and acids are separated from an acid waste solution containing acids and metal salts thereof as described above, and the metal components are further neutralized and precipitated. The present invention provides a novel treatment method that can efficiently regenerate filtrate into acid and alkali. That is, the present invention includes a step (A) of deoxidizing an acid waste solution containing a mineral acid and its metal salts using an ion exchange membrane electrodialysis device or a diffusion dialysis device, a step (R) of neutralizing and precipitating the de-M solution,
It consists of a step (C) in which the neutralized, precipitated and separated liquid is regenerated into acid and alkali using an ion exchange membrane electrodialysis device consisting of a combination of a bipolar membrane and an anion and cation exchange membrane. The sulfate used as the neutralizing agent in the neutralization precipitation separation step (B) or produced is introduced into the concentration side of the ion-exchange membrane electrodialysis device or diffusion dialysis device in the deoxidation step (A) to obtain a high-concentration solution. This method is characterized in that it is played back as follows.

本発明によれば、酸と金属成分の分離が効率的に完全に
達成され、しかも中和沈殿分離に使用されるアルカリま
たは非常に高濃度の酸を得ることが可能である。即ち、
本発明では、従来から用いられている中和処理などの方
法で金属物をスラッジ、スラリーとして廃棄されている
工程を既存のまま使用でき、さらには、多種多様の産業
で使われている鉱酸の廃液の再生を経済的に行うことが
可能である。このような本発明の効果は、上記した廃酸
液を脱酸するイオン交換膜電気透析装置または拡散透析
装置(1)と中和沈殿分離装置(It)とバイポーラ膜
と陰陽イオン交換膜の組合せからなるイオン交換膜電気
透析装置(Ill )とのそれぞれの特質を利用し、こ
れを組合せることによって極めて効率的に酸回収を可能
としたものである。
According to the present invention, the separation of acid and metal components is efficiently and completely achieved, and it is also possible to obtain alkali or very highly concentrated acids for use in neutralization precipitation separation. That is,
The present invention enables the existing process of discarding metal objects as sludge or slurry by methods such as neutralization treatment, which has been conventionally used, to be used as is. It is possible to economically regenerate waste liquid. Such effects of the present invention are achieved by the above-mentioned combination of an ion exchange membrane electrodialysis device or diffusion dialysis device (1) for deoxidizing the waste acid solution, a neutralization precipitation separation device (It), a bipolar membrane, and an anion-cation exchange membrane. By utilizing the characteristics of the ion-exchange membrane electrodialyzer (Ill) consisting of ion exchange membrane electrodialysis equipment (Ill), and combining these, it has become possible to recover acids extremely efficiently.

以下、本発明を図面等を示しながら詳細に説明する0本
発明で処理の対象とされる酸とその金属塩類を含む廃液
とは、上記したように種々の例が挙げられる。Wlとし
てはその酸根(酸を形成する陰イオン)が陰イオン交換
膜を透過しうるものであれば特に制限されず、例えば硫
酸、塩酸、硝酸リン酸、フッ酸なとの廃酸である。また
、それに含有される金属塩類としは例えば鉄、ニッケル
、クロム、亜鉛、銅、アルミニウム、マグネシウム、鉛
、コバルト等の塩であり特に制限されない。特に本発明
は、ハロゲン化物を含む酸廃液を極めて効率的に処理す
ることができる。これらの廃液の代表的な一例としはタ
ンタルや鉛の処理工程からの弗酸含有溶液、製錬工程か
らの硝弗酸含有溶液、鉄のビックリング工程からの排出
される硫酸と硫酸鉄の含有溶液などが挙げられる。当然
のことながら、上記の酸と金属塩類は二種以上台まれて
いてもよく、またそれは必ずしも廃液と呼ばれるもので
なくてもよい。即ち、本発明は上記のような酸とその金
属塩とを含有する溶液の全てに適用されるものである。
Hereinafter, the present invention will be described in detail with reference to the drawings and the like.As described above, various examples can be given of the waste liquid containing acids and metal salts thereof to be treated in the present invention. Wl is not particularly limited as long as its acid radical (anion forming acid) can pass through an anion exchange membrane, and examples thereof include waste acids such as sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, and hydrofluoric acid. Further, the metal salts contained therein are, for example, salts of iron, nickel, chromium, zinc, copper, aluminum, magnesium, lead, cobalt, etc., and are not particularly limited. In particular, the present invention allows acid wastewater containing halides to be treated very efficiently. Typical examples of these waste liquids include hydrofluoric acid-containing solutions from tantalum and lead processing processes, nitric-fluoric acid-containing solutions from smelting processes, and sulfuric acid and iron sulfate containing discharged from iron bicking processes. Examples include solutions. Naturally, two or more of the above-mentioned acids and metal salts may be present, and it does not necessarily have to be called a waste liquid. That is, the present invention is applicable to all solutions containing the acids and their metal salts as described above.

本発明の第1図において、(1)はイオン交換膜電気透
析装置、または拡散透析装置、(1【)は中和沈殿分離
装置、(Ill )は複分解を行うイオン交換膜電気透
析装置であり、また(A)は脱酸および濃縮工程、(R
)は脱酸液の中和沈殿分離工程、((:)は酸、アルカ
リ再生工程を示す。さらに具体的に、イオン交換膜電気
透析装置(1)は両極間に陽イオン交換膜および陰イオ
ン交換膜を交互に配置あるいは拡散透析装置(1)は陰
イオン交換膜などの拡散膜を設けることにより、脱酸室
(透析室)1および濃縮室(拡散室)2に区画され、中
和沈殿分離装置1)としては、各種の廃酸かどを処理す
る既存の中和、沈殿、分a装置が特に制限なく採用され
、例えば第2図に示すような中和槽、沈殿槽、S縮槽、
真空′IM過槽を配備して構成され、またイオン交換′
Pi電気透析装置(111)は陽イオン交換膜3、バイ
ポーラ膜4、陰イオン交換膜5、を順に配置することに
より中間室(″a分解室)6、酸生成室7およびアルカ
リ生成室13に区画される。
In FIG. 1 of the present invention, (1) is an ion-exchange membrane electrodialysis device or a diffusion dialysis device, (1[) is a neutralization precipitation separation device, and (Ill) is an ion-exchange membrane electrodialysis device that performs double decomposition. , and (A) is a deacidification and concentration step, (R
) indicates the neutralization precipitation separation process of the deacidifying solution, and ((:) indicates the acid/alkali regeneration process.More specifically, the ion exchange membrane electrodialysis device (1) uses a cation exchange membrane and an anion between the two electrodes. The diffusion dialysis device (1) is divided into a deoxidizing chamber (dialysis chamber) 1 and a concentration chamber (diffusion chamber) 2 by alternately arranging exchange membranes or by providing a diffusion membrane such as an anion exchange membrane. As the separation device 1), existing neutralization, precipitation, and separation devices for treating various types of waste acid residues can be used without any particular restrictions. ,
It consists of a vacuum 'IM' tank, and an ion exchange system.
The Pi electrodialysis device (111) has a cation exchange membrane 3, a bipolar membrane 4, and an anion exchange membrane 5 arranged in this order to provide an intermediate chamber (a decomposition chamber) 6, an acid generation chamber 7, and an alkali generation chamber 13. compartmentalized.

本発明のイオン交換膜電気透析装置または拡散透析装置
(1)および(III )に使用される上記の陽イオン
交換膜、陰イオン交換膜およびバイポーラ膜は、従来公
知の膜が適宜に採用することができるが、それぞれ酸の
分離、中性塩の複分解に有効な膜を選択すればよい。例
えば、陽イオン交換膜としては、少なくとも一方の膜表
層部にアミノ基などの陰イオン交換基、あるいは炭素数
4〜;30の長鎖アルキル基を結合した陽イオン選択性
の陽イオン交換膜が浸透水量も少なく出来るため好適で
ある。陰イオン交換膜としては、電気透析における電流
効率の向上を図るために、水素イオンの透過(拡散)が
少ない弱塩基性陰イオン交換膜が好適である。また、バ
イポーラ−膜としては、陰イオン交換層と陽イオン交換
層とを有し、特に該陽イオン交換層の固定イオン濃度が
ION以上のバイポーラ−膜が加水分解効率を高く、か
つ水素イオンの逆拡散を小さく出来るため好適である。
The above-mentioned cation exchange membrane, anion exchange membrane and bipolar membrane used in the ion exchange membrane electrodialysis device or diffusion dialysis device (1) and (III) of the present invention may be conventionally known membranes as appropriate. However, it is sufficient to select a membrane that is effective for separating acids and metathesis of neutral salts. For example, as a cation exchange membrane, a cation-selective cation exchange membrane in which an anion exchange group such as an amino group or a long chain alkyl group having 4 to 30 carbon atoms is bonded to at least one surface layer of the membrane is used. This is suitable because the amount of permeated water can be reduced. As the anion exchange membrane, a weakly basic anion exchange membrane with low permeation (diffusion) of hydrogen ions is suitable in order to improve current efficiency in electrodialysis. In addition, as a bipolar membrane, it has an anion exchange layer and a cation exchange layer, and in particular, a bipolar membrane in which the fixed ion concentration of the cation exchange layer is higher than ION has high hydrolysis efficiency and hydrogen ion This is preferable because despreading can be reduced.

本発明においては、鉱酸とその金属塩類を含有する峻廃
液(原液)9をイオン交換膜電気透析槽または拡散透析
装置(1)の脱酸室(透析室)1に供給し、一方の濃縮
室(拡散室)2には希薄な酸を供給して、原廃液から酸
を効率的に回収するために電気透析を実施する条件を適
切に選択する。
In the present invention, a concentrated waste solution (undiluted solution) 9 containing a mineral acid and its metal salts is supplied to a deacidification chamber (dialysis chamber) 1 of an ion exchange membrane electrodialysis tank or a diffusion dialysis device (1), and one of the concentrated A dilute acid is supplied to the chamber (diffusion chamber) 2, and conditions for performing electrodialysis are appropriately selected in order to efficiently recover the acid from the raw waste liquid.

例えば、イオン交換Pi電気透析装置(1)に原液を供
給する速度は一般に0.5〜20 cm / sec 
For example, the rate of supplying the stock solution to the ion exchange Pi electrodialysis device (1) is generally 0.5-20 cm/sec
.

好ましくは3〜8cm / seeであり、電流密度は
一般に1〜30A/rjm2であり好ましくは3〜15
A/dm2が適用され、温度は10〜50℃程度が好ま
しい。また、拡散透析装置(【)に原液を供給する速度
は、一般に0.01〜50/min。
Preferably it is 3-8 cm/see, and the current density is generally 1-30 A/rjm2, preferably 3-15
A/dm2 is applied, and the temperature is preferably about 10 to 50°C. Further, the rate of supplying the stock solution to the diffusion dialysis device ([) is generally 0.01 to 50/min.

特に0.1−1(至)/−1n程度が好ましい。かくし
て、特にイオン交換膜電気透析装置(1)では、原廃液
9の酸が金属塩を同伴することなくほぼ選択的に濃縮室
2に透析移行する。したがって、イオン交換膜電気透析
装置(1)の脱酸室lからは涼酸廃液中のV濃度が低下
した脱酸液10が得られ、濃縮室2からは高濃度の酸液
11が得られる。
Particularly preferred is about 0.1-1/-1n. Thus, particularly in the ion exchange membrane electrodialysis apparatus (1), the acid in the raw waste liquid 9 is almost selectively transferred to the concentration chamber 2 by dialysis without being accompanied by metal salts. Therefore, from the deoxidizing chamber 1 of the ion exchange membrane electrodialysis device (1), a deoxidizing solution 10 with a reduced V concentration in the cool acid waste solution is obtained, and from the concentration chamber 2, a highly concentrated acid solution 11 is obtained. .

電気透析の程度は、原廃液9における金属塩の種類によ
っても異なるが、一般にp H約1〜2まで脱酸液10
の酸濃度を低下することが好ましい。
The degree of electrodialysis varies depending on the type of metal salt in the raw waste solution 9, but generally the deoxidizing solution 10 is heated to a pH of approximately 1 to 2.
It is preferable to reduce the acid concentration.

また同様に拡散透析装置(1)の透析室lからは原液の
脱酸液10が得られ、拡散室2からは酸液11を得る。
Similarly, a undiluted deoxidizing solution 10 is obtained from the dialysis chamber 1 of the diffusion dialysis apparatus (1), and an acid solution 11 is obtained from the diffusion chamber 2.

次に、脱Pa室(透析室)1からの脱酸液10は、中和
沈殿分離装fit(I’[)に供給し、まずアルカリ液
12で中和した後、液中の金属塩を水酸化物として沈殿
させスラッジ、スラリー13にし、中和11tl!14
は難溶性塩の含有度により必要に応じてキレート樹脂塔
15を通した後、イオン交換膜電気透析装置(III 
)の中間室6に供給する。イオン交換膜電気透析装置(
111)においては、中間室6に供給した中和濾液を複
分解することにより、酸室7から酸と塩基室8からアル
カリを効率的に生成するために、電気透析の条件を適切
に選択する。
Next, the deoxidizing solution 10 from the de-Pa room (dialysis room) 1 is supplied to the neutralization precipitation separator fit (I'[), and after first being neutralized with the alkaline solution 12, the metal salts in the solution are removed. Precipitate as hydroxide, make sludge, slurry 13, neutralize 11 tl! 14
is passed through the chelate resin column 15 as necessary depending on the content of poorly soluble salts, and then subjected to an ion exchange membrane electrodialysis device (III
) is supplied to the intermediate chamber 6. Ion exchange membrane electrodialysis equipment (
In step 111), electrodialysis conditions are appropriately selected in order to efficiently generate acid from the acid chamber 7 and alkali from the base chamber 8 by double decomposing the neutralized filtrate supplied to the intermediate chamber 6.

例えば、中和濾液14のイオン交換膜電解透析装置(I
II )に供給する速度は一般に0.5〜10絹/se
c、電流密度は一般に0.5〜2OA/dm2、また温
度は10〜50℃程が好ましい。
For example, an ion exchange membrane electrodialyzer (I
II) The feeding rate is generally 0.5 to 10 silks/se.
c. The current density is generally 0.5 to 2 OA/dm2, and the temperature is preferably about 10 to 50°C.

かくして、イオン交換膜電気透析装置(■1)では、陽
イオン交換膜および陰イオン交換膜を介して、中和濾液
14の各イオンが選択的に透析移行する。したがって、
イオン交換膜電気透析装置(■)ではバイポーラ−膜を
介して塩基室8から高濃度のアルカリが得られ、酸生成
室7から高濃度の酸が得られる。再生したアルカリには
、中和沈殿分離装置(II)へ中和濃度に応じて供給、
また再生した酸16はイオン交換膜電気透析槽(1)の
濃縮室もしくはそのまま再生酸液として供給することが
出来る。
Thus, in the ion-exchange membrane electrodialysis device (1), each ion in the neutralized filtrate 14 is selectively dialyzed and transferred via the cation-exchange membrane and the anion-exchange membrane. therefore,
In the ion exchange membrane electrodialysis apparatus (■), a highly concentrated alkali is obtained from the base chamber 8 via the bipolar membrane, and a highly concentrated acid is obtained from the acid generating chamber 7. The regenerated alkali is supplied to the neutralization precipitation separator (II) according to the neutralization concentration.
Further, the regenerated acid 16 can be supplied to the concentration chamber of the ion exchange membrane electrodialysis tank (1) or directly as a regenerated acid solution.

[発明の効果] 上記のように本発明によれば、鉱酸とその金属を含有す
る酸廃液から、高濃度の酸を経済的に効率よく回収でき
、また金属は水酸化物として回収できる。プロセスとし
ては、中和に使用するアルカリも再生できるため、外部
から別途に供給することなく、プロセスをクローズド化
することが出来る。また、本発明により回収された酸は
高濃度であるため、必要量を希釈して金属処理に循環使
用でき、また他の方面へ使用も可能である。
[Effects of the Invention] As described above, according to the present invention, highly concentrated acids can be economically and efficiently recovered from acid waste liquid containing mineral acids and their metals, and metals can be recovered as hydroxides. As for the process, since the alkali used for neutralization can also be regenerated, the process can be closed without having to be supplied separately from the outside. Furthermore, since the acid recovered by the present invention has a high concentration, it can be diluted in the required amount and recycled for metal processing, and can also be used in other fields.

[実施例] 以下に、本発明を更に具体的に示すために実施例を示す
が、本発明は上記説明及び下記の実施例によって何ら限
定されるものではない。
[Examples] Examples are shown below to more specifically illustrate the present invention, but the present invention is not limited in any way by the above description and the following examples.

実施例1 ステンレスの酸洗工程から排出された硝酸130g/I
;L、弗酸20g/琵、鉄50g/Q、ニッケル5g/
(1、およびクロム10g/Qを含む廃液を第1図のフ
ロシートに従って処理し、硝弗酸と金属に分離回収した
Example 1 Nitric acid 130g/I discharged from stainless steel pickling process
;L, hydrofluoric acid 20g/Bi, iron 50g/Q, nickel 5g/
(1) and a waste liquid containing 10 g/Q of chromium was treated according to the flow sheet shown in Figure 1 and separated and recovered into nitric-fluoric acid and metals.

電気透析槽(1)としては、ネオセブター〇MSおよび
ネオセブタ−ACM(それぞれ徳山曹達■製の強酸性陽
イオン交換膜と弱塩基性陰イオン交換膜)により脱酸室
と酸濃縮回収室とに区画した電気透析槽TS−2型(徳
山曹達n製、有効膜面積2dm2/対)を使用した。イ
オン交換膜電気透析装置(III )としては、上記と
同一のネオセブターCMSおよび−ACMとバイポーラ
T’(PM(強酸性陽イオン交換基と強塩基性陰イオン
交換基を有したバイポーラ膜)により、中間室、酸生成
室およびアルカリ生成室とに区間した電気透析槽(徳1
11g達■製、有効膜面積2dm2)を使用した。また
、中和沈殿分離装置としては、第2図に示すような中和
槽、沈殿槽、濃縮槽、真空濾過機を配備した。
The electrodialysis tank (1) is divided into a deacidification chamber and an acid concentration recovery chamber using Neocebuta MS and Neocebuta ACM (strongly acidic cation exchange membrane and weakly basic anion exchange membrane manufactured by Tokuyama Soda, respectively). An electrodialysis tank TS-2 type (manufactured by Tokuyama Soda N, effective membrane area 2 dm2/pair) was used. The ion exchange membrane electrodialysis device (III) uses the same Neocebuta CMS and -ACM as above and Bipolar T' (PM (a bipolar membrane having a strong acidic cation exchange group and a strong basic anion exchange group). Electrodialysis tank (Toku 1) divided into an intermediate chamber, an acid generation chamber, and an alkali generation chamber
A 11g (effective membrane area: 2 dm2) manufactured by Datsui Co., Ltd. was used. In addition, as a neutralization precipitation separation device, a neutralization tank, a precipitation tank, a concentration tank, and a vacuum filtration machine as shown in FIG. 2 were provided.

電気透析槽(1)においては温度35℃、平均ft、流
密度5A/dm2、膜面速度F5cm/seeで運転し
た。その結果、硫酸10g/Q、、鉄70g/q、ニッ
ケル7g/Q、およびクロム14g/込の脱l?i液と
硫酸303 g /込、弗酸8.lLg/q、および鉄
0.93g/Qを含む回収液が得られた。上記の脱酸液
は中和沈殿分離装置(11)へ供給し、まず中和槽で水
酸化ナトリウムを用いて中和させた後、沈殿槽に送り固
体と液分に分離し、底部に集まった固形分は濃縮槽に1
JtI泥され、真空濾過機によって脱水処理を行いスラ
ッジとして得た。一方、中和濾液はキレート樹脂塔を通
した後、1、tl/hで電気透析槽(III ’)の中
間室に供給した。電気透析槽(III)においては温度
35℃、平均電流密度5A/dm2で運転した。その結
果、硫酸71g/q、弗酸57g/Qと水酸化ナトリウ
ム160g/Qの再生液が得られた。
The electrodialysis tank (1) was operated at a temperature of 35°C, an average ft, a flow density of 5A/dm2, and a membrane surface velocity of F5cm/see. As a result, 10 g/Q of sulfuric acid, 70 g/Q of iron, 7 g/Q of nickel, and 14 g/Q of chromium were removed. I solution and sulfuric acid 303 g/incl., hydrofluoric acid 8. A recovered liquid containing 1 Lg/q and 0.93 g/Q of iron was obtained. The above deacidifying solution is supplied to the neutralization sedimentation separator (11), where it is first neutralized using sodium hydroxide, and then sent to the settling tank where it is separated into solid and liquid components, which collect at the bottom. The solid content is transferred to the concentration tank.
JtI slurry was applied and dewatered using a vacuum filter to obtain a sludge. On the other hand, the neutralized filtrate was passed through the chelate resin tower and then supplied to the intermediate chamber of the electrodialysis tank (III') at a rate of 1, tl/h. The electrodialysis tank (III) was operated at a temperature of 35°C and an average current density of 5A/dm2. As a result, a regenerated solution containing 71 g/q of sulfuric acid, 57 g/Q of hydrofluoric acid, and 160 g/Q of sodium hydroxide was obtained.

次いで、この再生した酸は、電気透析槽(1)の濃縮室
5に供給し、再生酸として循環使用した。
Next, this regenerated acid was supplied to the concentration chamber 5 of the electrodialysis tank (1) and used for circulation as regenerated acid.

また再生アルカリは、中和沈殿分離工程の中和剤として
使用した。
The recycled alkali was also used as a neutralizing agent in the neutralization precipitation separation process.

実施例2 鉄のビックリング工程から排出された硫酸110g/Q
および硫酸鉄t5og/Qを含む酸排液を第1図のフロ
ーシートに従って処理し、硫酸と金属に分離回収した。
Example 2 110g/Q of sulfuric acid discharged from iron bicking process
The acid waste solution containing t5og/Q of iron sulfate was treated according to the flow sheet shown in FIG. 1, and sulfuric acid and metal were separated and recovered.

実施例1と同一の電気透析(1)、(III )および
中和沈殿分離表P#k(III)を用いて実施例1と同
様の条件、工程で行った。
The same conditions and steps as in Example 1 were carried out using the same electrodialysis (1), (III) and neutralization precipitation separation table P#k (III) as in Example 1.

その結果、電気透析装置(1)および(III )にお
いて得られた液の組成を第1表に示す。
As a result, the compositions of the solutions obtained in the electrodialyzers (1) and (III) are shown in Table 1.

第1表 実施例;3 アルミの酸洗工程から排出された塩酸45g/Qおよび
アルミtsg/Qを含む廃液を第1図のフローシートに
従って処即し、塩酸と金属に分離回収した。実施例1と
同一のi!気透析装置(1)および(III )と中和
沈殿分離装置(III )を用いて、実施例1と同様の
条件、工程で行った。
Table 1 Example: 3 A waste liquid containing 45 g/Q of hydrochloric acid and tsg/Q of aluminum discharged from the aluminum pickling process was treated according to the flow sheet shown in FIG. 1, and the hydrochloric acid and metal were separated and recovered. The same i! as in Example 1! The experiment was carried out under the same conditions and steps as in Example 1 using the gas dialysis equipment (1) and (III) and the neutralization precipitation separation equipment (III).

その際の結果を第2表に示す。The results are shown in Table 2.

実施例4 硫酸鉄1.07規定および硫酸2.16規定を含む酸廃
液を第1図のフローシートに従って処理し、硫酸と金属
に分離回収した。拡散透析槽(1)としてはネオセブタ
AFN(徳111曹達■製、強塩基性陰イオン交換膜)
により拡散室と透析室とに区画した拡散透析装置TSD
−2型く徳山曹達■製、有効膜面積2dm2)を使用し
た。イオン交換膜電気透析装置(Ill )と、中和沈
殿分離装置は実施例1と同様な装置を配協した。拡散透
析槽(1)においては、拡散室に上部から30’Cの水
を0−6Q/firで供給し、また透析室に下部から上
記の酸廃液を0.6<1/llrで供給した。その結果
、拡散室1より硫酸2規定および硫酸鉄0.1規定の酸
液を回収し、透析室2から硫酸0.1f;規定および硫
酸鉄0.97規定の脱酸した廃液が排出された。
Example 4 An acid waste solution containing 1.07N of iron sulfate and 2.16N of sulfuric acid was treated according to the flow sheet shown in FIG. 1, and sulfuric acid and metals were separated and recovered. The diffusion dialysis tank (1) is Neo Sebuta AFN (manufactured by Toku 111 Soda ■, strong basic anion exchange membrane)
Diffusion dialysis device TSD divided into a diffusion chamber and a dialysis chamber by
-2 type manufactured by Tokuyama Soda (effective membrane area: 2 dm2) was used. The ion exchange membrane electrodialysis device (Ill) and the neutralization precipitation separation device were the same as in Example 1. In the diffusion dialysis tank (1), water at 30'C was supplied from the upper part to the diffusion chamber at a rate of 0-6Q/fir, and the above acid waste solution was supplied from the lower part to the dialysis chamber at a rate of 0.6 < 1/llr. . As a result, an acid solution containing 2N sulfuric acid and 0.1N iron sulfate was recovered from the diffusion chamber 1, and a deoxidized waste solution containing 0.1N sulfuric acid and 0.97N iron sulfate was discharged from the dialysis chamber 2. .

次いで、上記の脱酸した廃液を中和沈殿分離工程(II
)へ供給し、まず中和槽で水酸化ナトリウムを用いて中
和させた後、沈殿槽に送り固体と液分とに分離し、底部
に集まった固形分は濃縮槽に141泥され、真空濾過基
によって脱水処理を行いスラッジとして得た。一方中和
濾液は1.5Cl/hて電気透析槽(1■)の中間室に
供給した。電気透析槽(m )においては、温度;(5
℃平平均法流密F5A/dm2て運転した。その結果、
硫酸;(,5規定および水酸化ナトリウム33.6規定
の再生液が得られた。この再生した酸は、再生酸として
循環使用し、また再生アルカリは中和沈殿分離工程の中
和剤として使用した。
Next, the deoxidized waste liquid is subjected to a neutralization precipitation separation step (II
), first neutralized using sodium hydroxide in a neutralization tank, then sent to a settling tank to separate solids and liquids, solids collected at the bottom are concentrated in a thickening tank, and then vacuum Dehydration treatment was performed using a filtration group to obtain a sludge. On the other hand, the neutralized filtrate was supplied at 1.5 Cl/h to the intermediate chamber of the electrodialysis tank (1■). In the electrodialyzer (m ), the temperature is (5
It was operated at a mean flow density of F5A/dm2. the result,
A regenerated solution of sulfuric acid; did.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のフローを示し、Iは脱酸工程のイオン
交換膜電気透析装置、拡散透析装置、!1は中和沈殿分
離工程の装置、1■は酸およびアルカリ再生工程におけ
るイオン交換膜電気透析装置である。1および2はイオ
ン交換膜電気透析装置および拡散透析装置(I)の脱酸
室(透析室)および濃縮室(拡散室)である。;1.4
および5はイオン交換膜電気透析装置(Ill )にお
ける陰イオン交換膜、バイポーラ膜および陽イオン交換
膜、6.7およびF(は中間室(複分解室)、酸生成室
およびアルカリ生成室である。9は廃酸液(原液)、1
0は脱酸液、11はイオン交換膜電気透析装置([)に
おける再生酸液、12はイオン交換膜電解槽(III 
)における再生アルカリ液、133は中和、沈殿分離装
置(m)からのスラッジあるいはスラリー、14は中和
濾液、15はキレート樹脂塔、16および17はイオン
交換膜電気透析槽(III )におけるそれぞれ再生酸
液と脱塩液を示す。 第2図は中和沈殿分離装置(I■)の代表例なフロー図
であり、1Bは中和槽、19は沈殿槽、2゜は濃縮槽、
21は真空濾過剤、22は中和液、23はスラリー、2
4はスラッジ、25は固形分を示す。
FIG. 1 shows the flow of the present invention, where I is an ion exchange membrane electrodialysis device, a diffusion dialysis device, and a diffusion dialysis device in the deoxidizing step. 1 is an apparatus for the neutralization precipitation separation process, and 1■ is an ion exchange membrane electrodialysis apparatus for the acid and alkali regeneration process. 1 and 2 are a deoxidizing chamber (dialysis chamber) and a concentration chamber (diffusion chamber) of an ion exchange membrane electrodialysis device and a diffusion dialysis device (I). ;1.4
and 5 are the anion exchange membrane, bipolar membrane and cation exchange membrane in the ion exchange membrane electrodialyzer (Ill), 6.7 and F (are the intermediate chamber (metathesis chamber), acid generation chamber and alkali generation chamber. 9 is waste acid solution (undiluted solution), 1
0 is a deoxidizing solution, 11 is a regenerated acid solution in an ion exchange membrane electrodialysis device ([), and 12 is an ion exchange membrane electrolytic cell (III
), 133 is the sludge or slurry from the neutralization and precipitation separator (m), 14 is the neutralized filtrate, 15 is the chelate resin tower, 16 and 17 are the ion exchange membrane electrodialysis tank (III), respectively. Regenerated acid solution and desalination solution are shown. Figure 2 is a typical flow diagram of the neutralization precipitation separation device (I■), where 1B is a neutralization tank, 19 is a settling tank, 2° is a concentration tank,
21 is a vacuum filtration agent, 22 is a neutralizing liquid, 23 is a slurry, 2
4 indicates sludge, and 25 indicates solid content.

Claims (1)

【特許請求の範囲】[Claims] 1)鉱酸とその金属塩類を含有する酸廃液をイオン交換
膜電気透析装置または拡散透析装置により脱酸する工程
(A)脱酸液を中和、沈殿分離する工程(B)、中和沈
殿分離した濾液をバイポーラ膜と陰、陽イオン交換膜の
組合せてなるイオン交換膜電気透析装置により酸とアル
カリに再生する工程(C)からなる酸廃液の再生方法。
1) A step of deoxidizing an acid waste solution containing mineral acids and their metal salts using an ion exchange membrane electrodialysis device or a diffusion dialysis device (A) A step of neutralizing and precipitating and separating the deacidifying solution (B) Neutralization and precipitation A method for regenerating acid waste liquid comprising a step (C) of regenerating the separated filtrate into acid and alkali using an ion exchange membrane electrodialysis device comprising a combination of a bipolar membrane and an anion and cation exchange membrane.
JP12374387A 1987-05-22 1987-05-22 System for regenerating acidic waste liquid Granted JPS63291608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12374387A JPS63291608A (en) 1987-05-22 1987-05-22 System for regenerating acidic waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12374387A JPS63291608A (en) 1987-05-22 1987-05-22 System for regenerating acidic waste liquid

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP8155684A Division JP2711241B2 (en) 1996-06-17 1996-06-17 Acid waste liquid regeneration method

Publications (2)

Publication Number Publication Date
JPS63291608A true JPS63291608A (en) 1988-11-29
JPH0532088B2 JPH0532088B2 (en) 1993-05-14

Family

ID=14868228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12374387A Granted JPS63291608A (en) 1987-05-22 1987-05-22 System for regenerating acidic waste liquid

Country Status (1)

Country Link
JP (1) JPS63291608A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5240579A (en) * 1991-03-14 1993-08-31 Yeda Research And Development Company Ltd. Electrodialysis reversal process and apparatus with bipolar membranes
WO1999014165A1 (en) * 1997-09-12 1999-03-25 Steuler Industriewerke Gmbh Method for treating metal containing acid solutions from surface treatment installations
WO2002048044A3 (en) * 2000-12-12 2002-09-12 Jurag Separation Aps A method and apparatus for isolation of ionic species by electrodialysis
JP2003071457A (en) * 2001-09-04 2003-03-11 Maezawa Ind Inc Method for recovering mineral acid from mixed acid of boric acid and mineral acid
KR100402824B1 (en) * 2001-04-03 2003-10-22 강봉규 The wastewater treatment method for lead removal process of pipe fitting made into bronze and brase
JP2005052794A (en) * 2003-08-07 2005-03-03 Shigeru Kitani Method and apparatus for treating aqueous solution
JP2006131982A (en) * 2004-11-09 2006-05-25 Jfe Steel Kk Treatment method for pickling waste solution and treatment device for pickling waste solution
WO2009022572A1 (en) * 2007-08-10 2009-02-19 Astom Corporation Method of recovering acid from acid waste liquid
JP2010059521A (en) * 2008-09-05 2010-03-18 Ebara Engineering Service Co Ltd Method and apparatus for removing and recovering copper from copper-containing acidic waste liquid
JP2010260009A (en) * 2009-05-08 2010-11-18 Nosaka Denki:Kk Acid concentrating method
CN105084600A (en) * 2015-08-28 2015-11-25 浙江奇彩环境科技有限公司 Method for efficiently treating salt-containing organic wastewater and application of method
JP2016030847A (en) * 2014-07-29 2016-03-07 住友金属鉱山株式会社 Method for purifying cobalt chloride solution

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62502695A (en) * 1985-05-03 1987-10-15 ザ・グレーバー・カンパニー Recovery of mixed acids from mixed salts
JPH02500420A (en) * 1986-10-14 1990-02-15 ザ・グレーバー・カンパニー How to recover acids from substances containing acids and salts

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62502695A (en) * 1985-05-03 1987-10-15 ザ・グレーバー・カンパニー Recovery of mixed acids from mixed salts
JPH02500420A (en) * 1986-10-14 1990-02-15 ザ・グレーバー・カンパニー How to recover acids from substances containing acids and salts

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5240579A (en) * 1991-03-14 1993-08-31 Yeda Research And Development Company Ltd. Electrodialysis reversal process and apparatus with bipolar membranes
WO1999014165A1 (en) * 1997-09-12 1999-03-25 Steuler Industriewerke Gmbh Method for treating metal containing acid solutions from surface treatment installations
US7704361B2 (en) 2000-12-12 2010-04-27 Jurag Separation A/S Method and apparatus for isolation of ionic species from a liquid
WO2002048044A3 (en) * 2000-12-12 2002-09-12 Jurag Separation Aps A method and apparatus for isolation of ionic species by electrodialysis
KR100402824B1 (en) * 2001-04-03 2003-10-22 강봉규 The wastewater treatment method for lead removal process of pipe fitting made into bronze and brase
JP2003071457A (en) * 2001-09-04 2003-03-11 Maezawa Ind Inc Method for recovering mineral acid from mixed acid of boric acid and mineral acid
JP2005052794A (en) * 2003-08-07 2005-03-03 Shigeru Kitani Method and apparatus for treating aqueous solution
JP2006131982A (en) * 2004-11-09 2006-05-25 Jfe Steel Kk Treatment method for pickling waste solution and treatment device for pickling waste solution
JP4544970B2 (en) * 2004-11-09 2010-09-15 Jfeスチール株式会社 Processing method for pickling waste liquid and processing equipment for pickling waste liquid
JP2009039672A (en) * 2007-08-10 2009-02-26 Astom:Kk Recovery method of acid from fluoronitric acid waste liquid
WO2009022572A1 (en) * 2007-08-10 2009-02-19 Astom Corporation Method of recovering acid from acid waste liquid
JP2010059521A (en) * 2008-09-05 2010-03-18 Ebara Engineering Service Co Ltd Method and apparatus for removing and recovering copper from copper-containing acidic waste liquid
JP2010260009A (en) * 2009-05-08 2010-11-18 Nosaka Denki:Kk Acid concentrating method
JP2016030847A (en) * 2014-07-29 2016-03-07 住友金属鉱山株式会社 Method for purifying cobalt chloride solution
CN105084600A (en) * 2015-08-28 2015-11-25 浙江奇彩环境科技有限公司 Method for efficiently treating salt-containing organic wastewater and application of method
CN105084600B (en) * 2015-08-28 2017-11-24 浙江奇彩环境科技股份有限公司 A kind of method and its application of efficient process salt-containing organic wastewater

Also Published As

Publication number Publication date
JPH0532088B2 (en) 1993-05-14

Similar Documents

Publication Publication Date Title
CA1249885A (en) Membrane processes for metal recovery and pollution control in metal process industries
CN110902922B (en) Process for separating acid from salt in salt-containing waste acid
US5091070A (en) Method of continuously removing and obtaining ethylene diamine tetracetic acid (edta) from the process water of electroless copper plating
JPS63291608A (en) System for regenerating acidic waste liquid
JP2012234732A (en) Lithium recovery method
JP5631948B2 (en) Nickel sludge treatment method
JPH07112558B2 (en) Method for recycling and recovering waste liquid hydrofluoric acid
US4976838A (en) Method for purification of bases from materials comprising base and salt
US3394068A (en) Electrodialysis of pickle liquor using sequestrants
US3766049A (en) Recovery of metal from rinse solutions
JP2711241B2 (en) Acid waste liquid regeneration method
CN104310673A (en) Method for physically treating complexing metal ion wastewater
US4775480A (en) Membrane processes for treatment of and recovery of components from kraft black liquors
WO2004022796A1 (en) Process and apparatus for recovery of cyanide and metals
JPH0489316A (en) Method for recovering copper sulfate from aqueous copper chloride solution containing hydrochloric acid
JPS61143527A (en) Treatment of metal-containing water
JPS5850792B2 (en) Device that changes salt concentration in liquid
SU1105515A1 (en) Method of recovering acids from fluorine-containing pickles
RU2067555C1 (en) Method for treatment of sewage water of production of printed circuit boards containing water-alkali dry-film photoresist and device for its embodiment
CN106745109A (en) Acid leaching process refines the processing method of waste liquid produced by cobalt nickel
CN106630268A (en) Recycling method of nickel in stainless steel
CN115259488A (en) Treatment system and treatment method for acidic copper-containing wastewater
KR920014717A (en) Plating wastewater treatment system for semiconductor products
JPH01207185A (en) Treatment of plating waste liquid
JPH03100188A (en) Method for regenerating waste sulfuric acid of pickling of stainless steel