JP2010260009A - Acid concentrating method - Google Patents

Acid concentrating method Download PDF

Info

Publication number
JP2010260009A
JP2010260009A JP2009113534A JP2009113534A JP2010260009A JP 2010260009 A JP2010260009 A JP 2010260009A JP 2009113534 A JP2009113534 A JP 2009113534A JP 2009113534 A JP2009113534 A JP 2009113534A JP 2010260009 A JP2010260009 A JP 2010260009A
Authority
JP
Japan
Prior art keywords
acid
acid solution
waste acid
pressure
dialysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009113534A
Other languages
Japanese (ja)
Other versions
JP5466873B2 (en
Inventor
Takuo Kawahara
拓夫 川原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOSAKA DENKI KK
Original Assignee
NOSAKA DENKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOSAKA DENKI KK filed Critical NOSAKA DENKI KK
Priority to JP2009113534A priority Critical patent/JP5466873B2/en
Publication of JP2010260009A publication Critical patent/JP2010260009A/en
Application granted granted Critical
Publication of JP5466873B2 publication Critical patent/JP5466873B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an acid concentrating method excellent in operability and economical efficiency and enhanced in the concentration efficiency of an acid. <P>SOLUTION: The acid concentrating method is characterized in that a waste acid solution containing Al is pressurized to be supplied to a pressure dialyzer 1, which has a charged separation membrane 2 having micropores of a nanometer unit of preferably 0.1-10 nm, mounted therein and dialyzed by the separation membrane 2 to concentrate the acid in the waste acid solution. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、アルミサッシ製造工程におけるアルマイト陽極酸化処理液からの硫酸回収、アルミコンデンサー製造工程におけるHClによるアルミホイルエッチング工程からの塩酸回収、アルミ材のリン酸による化学研磨工程からのリン酸回収、その他酸洗浄などによる廃酸溶液からの酸回収などを目的として、廃酸溶液中の酸を濃縮する方法に関するものである。   This invention is a sulfuric acid recovery from an anodized anodizing solution in an aluminum sash manufacturing process, a hydrochloric acid recovery from an aluminum foil etching process with HCl in an aluminum capacitor manufacturing process, a phosphoric acid recovery from a chemical polishing process using phosphoric acid of an aluminum material, The present invention also relates to a method for concentrating the acid in the waste acid solution for the purpose of recovering the acid from the waste acid solution by acid washing or the like.

従来より、廃酸溶液中の酸を濃縮する方法としては、電位差を駆動力とする電気透析法、濃度差を駆動力とする拡散透析法、吸着力を駆動力とするイオン交換膜法、圧力を駆動力とする逆浸透法、圧力透析法などが用いられている。   Conventionally, as a method for concentrating acid in a waste acid solution, electrodialysis using a potential difference as a driving force, diffusion dialysis method using a concentration difference as a driving force, ion exchange membrane method using an adsorption force as a driving force, pressure A reverse osmosis method using pressure as a driving force, a pressure dialysis method, or the like is used.

電気透析法は金属除去率がよいが設備投資、ランニングコストともに高コストで経済性に難があり、拡散透析法は操作が簡単で金属除去率がよく、ランニングコストも比較的安価であるものの、所要膜面積が大きくメンテナンス性に欠け、原液量とほぼ同じ廃液を排出する等の欠点がある。
イオン交換樹脂法は金属除去率がよく、ランニングコストも比較的安価であるが、建設費が高く操作が複雑である。
逆浸透法はpH2以下の酸濃度に対して耐久性に欠ける。また、本願発明と同様に圧力透析を用いることも提案されている。この方法は金属除去率がよく廃酸量を減らすことができるが、酸濃縮率がよくない。
すなわち、何れの方法によっても一長一短がある。
特開2003−144858号公報
Although the electrodialysis method has a good metal removal rate, both capital investment and running cost are high and economically difficult. The diffusion dialysis method is easy to operate, has a good metal removal rate, and the running cost is relatively low. There are drawbacks such as large required membrane area, lack of maintainability, and discharge of waste liquid almost the same as the amount of stock solution.
The ion exchange resin method has a high metal removal rate and a relatively low running cost, but has a high construction cost and a complicated operation.
The reverse osmosis method lacks durability against an acid concentration of pH 2 or lower. It has also been proposed to use pressure dialysis as in the present invention. This method has a good metal removal rate and can reduce the amount of waste acid, but the acid concentration rate is not good.
That is, both methods have advantages and disadvantages.
JP 2003-144858 A

この発明は、操作性及び経済性に優れ、かつ、酸濃縮率を向上させる酸の濃縮方法を得ることを課題とするものである。   This invention makes it a subject to obtain the acid concentration method which is excellent in operativity and economical efficiency, and improves an acid concentration rate.

この発明の酸の濃縮方法は、ナノメーター単位、好ましくは0.1〜10nmの微細孔を備え荷電した分離膜が装着された圧力透析装置にAlを含有する廃酸溶液を加圧して供給し、前記分離膜で透析して廃酸溶液中の酸を濃縮することを特徴とするものである。膜中に含まれる単位量の水に対する固定電荷の量(固定電荷密度)は0.1〜10×10−8当量/kg程度が好ましい。
前記廃酸溶液のAlの濃度は0.01molないし2molであることが好ましく(請求項2)、この範囲の濃度となるように必要によりAlを添加し、又は溶液を希釈する。Al濃度が0.01mol以上でないとAlを固定電荷として機能させることができず、また、2mol以上であると浸透圧が高くなって透析が困難な場合が生ずるためである。
また、透析の操作圧力は1ないし7MPaとするのが好ましい(請求項3)。操作圧力が1MPa以下ではフラックス(単位時間・単位膜面積当たりの膜ろ過水量)が小さく、7MPa以上では装置の耐圧性により運転に支障が生ずる場合があるためである。
In the acid concentration method of the present invention, a waste acid solution containing Al is pressurized and supplied to a pressure dialysis apparatus equipped with a charged separation membrane having fine pores of nanometer units, preferably 0.1 to 10 nm. The acid in the waste acid solution is concentrated by dialysis with the separation membrane. The amount of fixed charge (fixed charge density) relative to the unit amount of water contained in the membrane is preferably about 0.1 to 10 × 10 −8 equivalent / kg.
The concentration of Al in the waste acid solution is preferably 0.01 mol to 2 mol (Claim 2), and if necessary, Al is added or the solution is diluted so that the concentration is in this range. This is because if the Al concentration is not 0.01 mol or more, Al cannot function as a fixed charge, and if it is 2 mol or more, the osmotic pressure increases and dialysis is difficult.
The operation pressure for dialysis is preferably 1 to 7 MPa (Claim 3). This is because when the operating pressure is 1 MPa or less, the flux (the amount of membrane filtrate water per unit time / unit membrane area) is small, and when it is 7 MPa or more, the operation may be hindered due to the pressure resistance of the apparatus.

この発明によれば、廃酸溶液中にAlが含有されており、溶液中でAlは網目構造のAl3+イオンとして存在し、このAl3+イオンがあたかも固定電荷のように振る舞うものと考えられる。そのために、処理すべき廃酸溶液が陰イオンの解離度が高い強酸の廃酸溶液である場合には、陰イオン及びHイオンの分離膜透過が共に促進されるので、分離膜の酸の阻止率を大幅に減少させることができる。他方、陰イオンの解離度が低い弱酸の廃酸溶液である場合には、陰イオンよりもHイオンの分離膜透過が促進されるので、結果として陰イオンは廃酸溶液側に濃縮され、分離膜の酸の阻止率を大幅に増大させることができる。
したがって、Alを含有した廃酸溶液を透析圧で圧力透析装置に供給、透析することで、強酸の場合には透析液側において、弱酸の場合には廃酸溶液側において酸を濃縮することができる。
ここで、阻止率は、分離膜を介した供給液側の溶質の濃度Cc と透析液側の溶質濃度Cpで定義され、〔阻止率R=(1−Cp/Cc)×100[%]〕で求められる。
したがって、操作性及び経済性に優れ、かつ、金属除去率がよく廃酸量も少ない利点を有する圧力透析法において、酸濃縮率を向上させることができる。
According to the present invention, are contained in Al in waste acid solution, Al in solution exists as Al 3+ ions network structure is believed that this Al 3+ ions behave as if it were a fixed charge. Therefore, when the waste acid solution to be treated is a strong acid waste acid solution having a high degree of anion dissociation, both anion and H + ion permeation through the separation membrane are promoted. The rejection rate can be greatly reduced. On the other hand, in the case of a waste acid solution of a weak acid having a low degree of anion dissociation, the permeation of the H + ion through the separation membrane is promoted more than the anion, so that the anion is concentrated on the waste acid solution side, The acid rejection rate of the separation membrane can be greatly increased.
Therefore, the waste acid solution containing Al is supplied to the pressure dialysis machine at dialysis pressure and dialyzed to concentrate the acid on the dialysate side in the case of a strong acid and on the waste acid solution side in the case of a weak acid. it can.
Here, the rejection rate is defined by the solute concentration Cc on the supply liquid side through the separation membrane and the solute concentration Cp on the dialysate side, and [rejection rate R = (1−Cp / Cc) × 100 [%]] Is required.
Therefore, it is possible to improve the acid concentration rate in the pressure dialysis method which has the advantages of excellent operability and economy, good metal removal rate and low waste acid amount.

図1は、この発明の酸の濃縮方法に用いる圧力透析装置の模式図である。
圧力透析装置1の内部には分離膜2が取り付けられ、この分離膜2によって圧力透析装置1の内部は廃酸液漕11と透析液漕12とに隔てられ、廃酸液漕11には透析される廃酸液を供給する供給口111及び透析後の廃液を取り出す取出口112が設けられ、透析液漕12には透析液を取り出するための取出口122が設けられている。
分離膜2はナノメーター単位(0.1〜10nm)の微細孔を多数備えた構造となっており、廃酸液漕11側に廃酸液を供給して圧力を加えると水及び酸は透過するが、金属及び分子量の大きな有機物は透過しない。また、この微細孔は低級のアミノ基又は4級アンモニウム塩基などの荷電基をもつものとしてあり、その固定電荷密度は0.1〜10×10−8当量/kg程度としてある。
FIG. 1 is a schematic view of a pressure dialysis apparatus used in the acid concentration method of the present invention.
A separation membrane 2 is attached to the inside of the pressure dialysis device 1, and the inside of the pressure dialysis device 1 is separated into a waste acid solution tank 11 and a dialysate solution tank 12 by the separation membrane 2. A supply port 111 for supplying the waste acid solution to be used and an outlet 112 for taking out the waste solution after dialysis are provided, and an outlet 122 for taking out the dialysate is provided in the dialysate tank 12.
The separation membrane 2 has a structure having a large number of fine pores of nanometer units (0.1 to 10 nm). When a waste acid solution is supplied to the waste acid solution tank 11 side and pressure is applied, water and acid are permeated. However, metals and organic substances having a large molecular weight do not permeate. The micropores have a charged group such as a lower amino group or a quaternary ammonium base, and the fixed charge density is about 0.1 to 10 × 10 −8 equivalent / kg.

前記廃酸液漕11に供給される廃酸液は0.01〜2molの濃度でAlを含有するものとする。廃酸液のAl濃度がこれよりも高い場合は希釈してこの範囲に調製し、これよりも低い場合はAlを添加する。この廃酸液に1Mpaないし7Mpaの圧力を加えて分離膜を透過させて圧力透析を行う。
廃酸液がAlを含有することによって、濃縮対象となる酸が硫酸などの強酸である場合には、SO 2−などの陰イオン及びHイオンの分離膜透過が共に促進されるので、分離膜の酸の阻止率が負の値となり、硫酸が透析液漕12側において濃縮される。他方、リン酸などの弱酸の場合には、PO 3−などの陰イオンよりもHイオンの分離膜透過が促進されるので、分離膜の酸の阻止率が正の値に増大され、リン酸が廃酸液漕11側において濃縮される。
したがって、操作性及び経済性に優れ、かつ、金属除去率がよく廃酸量も少ない利点を有する圧力透析法において、酸濃縮率を向上させることができる。
The waste acid solution supplied to the waste acid solution tank 11 contains Al at a concentration of 0.01 to 2 mol. If the Al concentration of the waste acid solution is higher than this, it is diluted and adjusted to this range, and if it is lower than this, Al is added. The waste acid solution is subjected to pressure dialysis by applying a pressure of 1 Mpa to 7 Mpa to permeate the separation membrane.
When the waste acid solution contains Al, when the acid to be concentrated is a strong acid such as sulfuric acid, both anions such as SO 4 2− and H + ions permeate through the separation membrane. The acid rejection rate of the separation membrane becomes a negative value, and the sulfuric acid is concentrated on the dialysate 12 side. On the other hand, in the case of a weak acid such as phosphoric acid, the permeation of H + ions through the separation membrane is promoted more than that of an anion such as PO 4 3−, so that the acid rejection rate of the separation membrane is increased to a positive value. Phosphoric acid is concentrated on the waste acid liquid tank 11 side.
Therefore, it is possible to improve the acid concentration rate in the pressure dialysis method that has the advantages of excellent operability and economy, good metal removal rate and low waste acid amount.

廃酸溶液にAlを添加して圧力透析を行った場合と、Alを添加せずに圧力透析を行った場合の実施例・比較例を以下に示す。   Examples and comparative examples in which Al is added to the waste acid solution and pressure dialysis is performed and in which pressure dialysis is performed without adding Al are shown below.

[実施例1・比較例1]強酸の例
SO143g/lを含む廃酸溶液にAl16g/l(0.6mol/l)を添加した場合とAlを添加しなかった場合とで圧力透析を行い、表1の結果を得た(温度:44℃、透析圧:5MPa、微細孔の大きさ:0.1〜1nm、荷電基の種類:アミノ基、固定電荷密度:(1〜10)×10−8 当量/kg−HO)。

Figure 2010260009
すなわち、廃酸液にAlを添加した場合、分離膜2のHSOの透過が促進され、透析液漕12側においてHSOを濃縮することができる。 [Example 1 / Comparative Example 1] Example of strong acid Pressure when Al 16 g / l (0.6 mol / l) was added to a waste acid solution containing 143 g / l of H 2 SO 4 and when Al was not added Dialysis was performed to obtain the results shown in Table 1 (temperature: 44 ° C., dialysis pressure: 5 MPa, micropore size: 0.1 to 1 nm, charged group type: amino group, fixed charge density: (1 to 10 ) × 10 -8 eq / kg-H 2 O).
Figure 2010260009
That is, when Al is added to the waste acid solution, permeation of H 2 SO 4 through the separation membrane 2 is promoted, and H 2 SO 4 can be concentrated on the dialysate tank 12 side.

[実施例2・比較例2]強酸の例
HCl179g/lを含む廃酸溶液にAl5.0g/l(0.19mol/l)を添加した場合とAlを添加しなかった場合とで圧力透析を行い、表2の結果を得た(温度:40℃、透析圧:5MPa、微細孔の大きさ:0.1〜1nm、荷電基の種類:アミノ基、固定電荷密度:(1〜10)×10−8 当量/kg−HO)。

Figure 2010260009
すなわち、廃酸液にAlを添加した場合、分離膜2のHClの透過が促進され、透析液漕12側においてHClを濃縮することができる。 [Example 2 / Comparative Example 2] Example of strong acid Pressure dialysis was carried out in the case where Al 5.0 g / l (0.19 mol / l) was added to the waste acid solution containing 179 g / l HCl and in the case where Al was not added. The results shown in Table 2 were obtained (temperature: 40 ° C., dialysis pressure: 5 MPa, micropore size: 0.1 to 1 nm, charged group type: amino group, fixed charge density: (1 to 10) × 10-8 eq / kg-H 2 O).
Figure 2010260009
That is, when Al is added to the waste acid solution, permeation of HCl through the separation membrane 2 is promoted, and HCl can be concentrated on the dialysate tank 12 side.

[実施例3・比較例3]弱酸の例
PO163g/lを含む廃酸溶液にAl1.9g/l(0.07mol/l)を添加した場合とAlを添加しなかった場合とで圧力透析を行い、表3の結果を得た(室温、透析圧:3MPa、微細孔の大きさ:0.1〜1nm、荷電基の種類:アミノ基、固定電荷密度:(1〜10)×10−8 当量/kg−HO)。

Figure 2010260009
すなわち、廃酸液にAlを添加した場合、分離膜2のHPOの透過が抑制され、廃酸液漕11側においてHPOを濃縮することができる。 [Example 3 / Comparative Example 3] Example of weak acid When Al 1.9 g / l (0.07 mol / l) was added to a waste acid solution containing 163 g / l of H 3 PO 4 and when Al was not added The results shown in Table 3 were obtained (room temperature, dialysis pressure: 3 MPa, micropore size: 0.1-1 nm, charged group type: amino group, fixed charge density: (1-10) × 10 -8 eq / kg-H 2 O).
Figure 2010260009
That is, when Al is added to the waste acid solution, permeation of H 3 PO 4 through the separation membrane 2 is suppressed, and H 3 PO 4 can be concentrated on the waste acid solution tank 11 side.

この発明は、各種廃酸溶液からの酸回収などを目的として、廃酸溶液中の酸を濃縮する方法に関するものであって、産業上の利用可能性を有するものである。   The present invention relates to a method for concentrating an acid in a waste acid solution for the purpose of recovering acid from various waste acid solutions, and has industrial applicability.

この発明の実施例に用いられる圧力透析装置の模式図Schematic diagram of a pressure dialysis apparatus used in an embodiment of the present invention

1 圧力透析装置
11 廃酸液漕
12 透析液漕
2 分離膜
DESCRIPTION OF SYMBOLS 1 Pressure dialysis machine 11 Waste acid liquid tank 12 Dialysate liquid 2 Separation membrane

Claims (3)

ナノメーター単位の微細孔を備え荷電した分離膜が装着された圧力透析装置に、Alを含有する廃酸溶液を加圧して供給し、前記分離膜で透析して廃酸溶液中の酸を濃縮することを特徴とする酸の濃縮方法。 Pressurize and supply Al containing waste acid solution to a pressure dialysis machine equipped with nanometer-scale micropores and a charged separation membrane, and concentrate the acid in the waste acid solution by dialysis on the separation membrane. And a method for concentrating the acid. 廃酸溶液のAl濃度は0.01molないし2molとした、請求項1記載の酸の濃縮方法。 The acid concentration method according to claim 1, wherein the Al concentration of the waste acid solution is 0.01 mol to 2 mol. 透析の操作圧力は1ないし7MPaとした、請求項1又は2記載の酸の濃縮方法。
The acid concentration method according to claim 1 or 2, wherein the dialysis operation pressure is 1 to 7 MPa.
JP2009113534A 2009-05-08 2009-05-08 Acid concentration method Active JP5466873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009113534A JP5466873B2 (en) 2009-05-08 2009-05-08 Acid concentration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009113534A JP5466873B2 (en) 2009-05-08 2009-05-08 Acid concentration method

Publications (2)

Publication Number Publication Date
JP2010260009A true JP2010260009A (en) 2010-11-18
JP5466873B2 JP5466873B2 (en) 2014-04-09

Family

ID=43358559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009113534A Active JP5466873B2 (en) 2009-05-08 2009-05-08 Acid concentration method

Country Status (1)

Country Link
JP (1) JP5466873B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4990699A (en) * 1972-12-29 1974-08-29
JPS63291608A (en) * 1987-05-22 1988-11-29 Tokuyama Soda Co Ltd System for regenerating acidic waste liquid
JPH0271829A (en) * 1988-09-06 1990-03-12 Asahi Glass Co Ltd Novel method for recovering acid
JPH03146118A (en) * 1989-11-01 1991-06-21 Daido Chem Eng Kk Treatment method of aluminum material surface treatment wastewater
JPH0598500A (en) * 1991-05-28 1993-04-20 Nissan Eng Kk Method for perfectly recycling free acid from waste aluminum electrolytic solution
JPH05228471A (en) * 1992-02-18 1993-09-07 Nittetsu Mining Co Ltd Treatment of aluminum phosphate-containing monobasic acid waste liquid
JPH08144100A (en) * 1994-11-16 1996-06-04 Asahi Glass Co Ltd Separation, concentration and recovery of acid from waste acid etching liquid of aluminum
JPH0947638A (en) * 1995-08-09 1997-02-18 Asahi Glass Co Ltd Acid recovering process
JP2001219036A (en) * 2000-02-07 2001-08-14 Takuo Kawahara Acid recovering method
JP2002239554A (en) * 2001-02-15 2002-08-27 Fuji Photo Film Co Ltd Method and apparatus for treating acidic treatment liquid and method for producing support for lithographic printing plate

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4990699A (en) * 1972-12-29 1974-08-29
JPS63291608A (en) * 1987-05-22 1988-11-29 Tokuyama Soda Co Ltd System for regenerating acidic waste liquid
JPH0271829A (en) * 1988-09-06 1990-03-12 Asahi Glass Co Ltd Novel method for recovering acid
JPH03146118A (en) * 1989-11-01 1991-06-21 Daido Chem Eng Kk Treatment method of aluminum material surface treatment wastewater
JPH0598500A (en) * 1991-05-28 1993-04-20 Nissan Eng Kk Method for perfectly recycling free acid from waste aluminum electrolytic solution
JPH05228471A (en) * 1992-02-18 1993-09-07 Nittetsu Mining Co Ltd Treatment of aluminum phosphate-containing monobasic acid waste liquid
JPH08144100A (en) * 1994-11-16 1996-06-04 Asahi Glass Co Ltd Separation, concentration and recovery of acid from waste acid etching liquid of aluminum
JPH0947638A (en) * 1995-08-09 1997-02-18 Asahi Glass Co Ltd Acid recovering process
JP2001219036A (en) * 2000-02-07 2001-08-14 Takuo Kawahara Acid recovering method
JP2002239554A (en) * 2001-02-15 2002-08-27 Fuji Photo Film Co Ltd Method and apparatus for treating acidic treatment liquid and method for producing support for lithographic printing plate

Also Published As

Publication number Publication date
JP5466873B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
CN104445788B (en) High slat-containing wastewater treatment for reuse zero-emission integrated technique
JP2021176990A (en) Recovery method of lithium from acid solution
US8491795B2 (en) Conversion of seawater to drinking water at room temperature
KR102047155B1 (en) Method and device for treating boron-containing water
JP2018065114A (en) Concentration method and apparatus
JP5135749B2 (en) Method and apparatus for recovering phosphoric acid from phosphoric acid-containing water
JP2012120943A (en) Alkali metal separation and recovery method, and alkali metal separation and recovery apparatus
WO2012093724A1 (en) Method for alkali metal separation and recovery, and device for alkali metal separation and recovery
TWI428293B (en) Method and apparatus for recovering phosphoric acid from phosphoric acid-containing water
WO2013005694A1 (en) Method for separating and recovering alkali metal, and apparatus for separating and recovering alkali metal
TW201703847A (en) Removal device of fine particles in water and ultrapure water production/supply system
JP2018030065A (en) Ultrapure water production system and method
JP5466873B2 (en) Acid concentration method
JP6437874B2 (en) Method and apparatus for regenerating ion exchange resin
JP5072477B2 (en) Method for recovering acid from nitric hydrofluoric acid waste liquid
JP7246399B2 (en) Pure water production system and pure water production method
JP2010069399A (en) Boron separation system
JP2000061464A (en) Production of pure water
CN210237294U (en) Near-zero emission treatment system for surface treatment wastewater
JP2009269028A (en) Composite semi-permeable membrane and method for manufacturing the same
JP2010099549A (en) Manufacturing method of composite semi-permeable membrane
KR101511232B1 (en) Forward Osmosis membrane packed with draw material, the preparing method thereof and the forward osmosis apparatus comprising the same
JP2005137964A (en) Liquid separation membrane and its manufacturing method
KR101636701B1 (en) NF/RO water purification system using capacitive deionization
JP2002001069A (en) Method for producing pure water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120501

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140127

R150 Certificate of patent or registration of utility model

Ref document number: 5466873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250