JP2009039672A - Recovery method of acid from fluoronitric acid waste liquid - Google Patents

Recovery method of acid from fluoronitric acid waste liquid Download PDF

Info

Publication number
JP2009039672A
JP2009039672A JP2007208825A JP2007208825A JP2009039672A JP 2009039672 A JP2009039672 A JP 2009039672A JP 2007208825 A JP2007208825 A JP 2007208825A JP 2007208825 A JP2007208825 A JP 2007208825A JP 2009039672 A JP2009039672 A JP 2009039672A
Authority
JP
Japan
Prior art keywords
acid
exchange membrane
chamber
cation exchange
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007208825A
Other languages
Japanese (ja)
Other versions
JP5072477B2 (en
Inventor
Ryuji Takeshita
竜二 竹下
Masayoshi Niimoto
正義 新本
Toshio Aritomi
俊男 有冨
Taro Kobayashi
太郎 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Astom Corp
Original Assignee
Astom Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Astom Corp filed Critical Astom Corp
Priority to JP2007208825A priority Critical patent/JP5072477B2/en
Priority to PCT/JP2008/064000 priority patent/WO2009022572A1/en
Publication of JP2009039672A publication Critical patent/JP2009039672A/en
Application granted granted Critical
Publication of JP5072477B2 publication Critical patent/JP5072477B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/46Apparatus therefor
    • B01D61/463Apparatus therefor comprising the membrane sequence AC or CA, where C is a cation exchange membrane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/20Nitrogen oxides; Oxyacids of nitrogen; Salts thereof
    • C01B21/38Nitric acid
    • C01B21/46Purification; Separation ; Stabilisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/46Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/19Fluorine; Hydrogen fluoride
    • C01B7/191Hydrogen fluoride
    • C01B7/195Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for recovering an acid of high purity from a fluoronitric acid waste liquid by the reduced number of processes. <P>SOLUTION: A pair of anion exchange membranes A is arranged between the anode and the cathode, and a cation exchange membrane C and a monovalent selective cation exchange membrane CIMS are successively arranged between a pair of the anion exchange membranes A from the anode side. The fluoronitric acid waste liquid is supplied to the desalting and deoxidation chamber 5 formed between the anion exchange membrane A and the cation exchange membrane C and electrodialysis is performed while supplying an acid aqueous solution to a drainage chamber 7 which is adjacent to the desalting and deoxidation chamber 5 and formed between the cation exchange membrane C and the monovalent selective cation exchange membrane SC, so that nitric acid and/or fluoric acid is recovered from the acid chamber 9 adjacent to the desalting and deoxidation chamber 5 and formed between the monovalent selective cation exchange membrane SC and the anion exchange membrane A. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、硝酸及び/またはフッ酸を含む硝フッ酸廃液から酸を回収する方法に関する。   The present invention relates to a method for recovering acid from a nitric hydrofluoric acid waste solution containing nitric acid and / or hydrofluoric acid.

ステンレスの酸洗工程などからは硝酸やフッ酸を含む所謂硝フッ酸廃液が排出される。また、エッチングなどが行われるLSI工場等からも、このような硝フッ酸廃液は多量に排出される。このような硝フッ酸廃液には、鉄、クロム、ニッケルなどの有価金属を多く含んでいるため、省資源や環境汚染などの観点から、該廃液から酸や有価金属を回収しての再利用が図れている。   A so-called nitric hydrofluoric acid waste solution containing nitric acid and hydrofluoric acid is discharged from the pickling process of stainless steel. A large amount of such fluoric acid waste liquid is also discharged from LSI factories where etching and the like are performed. Since such nitric hydrofluoric acid waste liquid contains a large amount of valuable metals such as iron, chromium and nickel, from the viewpoint of resource saving and environmental pollution, acid and valuable metals are recovered from the waste liquid and reused. Is planned.

上記の硝フッ酸廃液から硝酸やフッ酸を回収するには、一般に、これをろ過した後、アニオン交換膜を用いての拡散透析により有価金属成分を除去して酸を回収する方法が知られているが、この方法では、回収される酸に有価金属成分がかなり含まれており、純度の高い酸を回収することが困難である。従って、高純度の酸を回収するために種々の方法が提案されている。   In order to recover nitric acid and hydrofluoric acid from the above-mentioned nitric hydrofluoric acid waste solution, generally, after filtering this, a method of recovering acid by removing valuable metal components by diffusion dialysis using an anion exchange membrane is known. However, in this method, the recovered metal contains a considerable amount of valuable metal components, and it is difficult to recover a highly pure acid. Accordingly, various methods have been proposed for recovering high purity acid.

その代表的な方法として、例えば特許文献1,2には、酸廃液を拡散透析により脱酸した後、KOH等のアルカリ金属の水溶液を添加して中和を行った後、ろ過を行い、金属成分を沈殿分離し、ろ液(硝酸乃至フッ酸のアルカリ塩水溶液)を、バイポーラ膜を備えた電気透析装置を用いて処理する酸の回収方法が提案されている。   As a typical method, for example, in Patent Documents 1 and 2, acid waste liquid is deoxidized by diffusion dialysis, and then neutralized by adding an aqueous solution of an alkali metal such as KOH, followed by filtration. There has been proposed an acid recovery method in which components are precipitated and separated, and the filtrate (aqueous alkaline salt solution of nitric acid or hydrofluoric acid) is treated using an electrodialyzer equipped with a bipolar membrane.

特開平9−887号公報Japanese Patent Laid-Open No. 9-887 特開平9−10557号公報Japanese Patent Laid-Open No. 9-10557

上記の方法によれば、有価金属成分を有効に除去し、高純度の酸を回収することができる。しかしながら、バイポーラ膜を用いての電解透析に先立って、中和及びろ過が必要であり、工程数が多く、未だ改善の余地がある。
また、硝フッ酸廃液中の硝酸イオンは沈殿物として分離することが難しく、硝酸イオンを効率よく回収することは難しい。近年、廃水中に含まれる窒素による環境への悪影響が指摘されるとともに、窒素の排出規制が厳しくなる状況下、廃水中の硝酸イオンを回収する技術が重要性を増している。
According to said method, a valuable metal component can be removed effectively and a highly purified acid can be collect | recovered. However, prior to electrodialysis using a bipolar membrane, neutralization and filtration are necessary, the number of processes is large, and there is still room for improvement.
In addition, nitrate ions in the nitric hydrofluoric acid waste solution are difficult to separate as precipitates, and it is difficult to efficiently recover nitrate ions. In recent years, the negative influence on the environment caused by nitrogen contained in wastewater has been pointed out, and technology for recovering nitrate ions in wastewater has become increasingly important under the circumstances where nitrogen emission regulations become severe.

従って、本発明の目的は、少ない工程数で且つ高純度の酸を硝フッ酸廃液から回収する方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for recovering a high-purity acid from a nitric hydrofluoric acid waste solution with a small number of steps.

本発明によれば、陽極及び陰極の間に、少なくとも1対のアニオン交換膜を配置し、該一対のアニオン交換膜の間に陽極側から順にカチオン交換膜と一価選択性カチオン交換膜を配置し、
前記アニオン交換膜とカチオン交換膜との間に形成されている脱塩脱酸室に、硝酸金属塩及び/又はフッ酸金属塩を含む硝フッ酸廃液を供給するとともに、該脱塩脱酸室に隣接し且つカチオン交換膜と一価選択性カチオン交換膜との間に形成されている排液室に酸水溶液を供給しながら電気透析を行ない、
前記脱塩脱酸室に隣接し且つ一価選択性カチオン交換膜とアニオン交換膜との間に形成されている酸室から、硝酸及び/又はフッ酸を回収することを特徴とする硝フッ酸廃液からの酸の回収方法が提供される。
According to the present invention, at least one pair of anion exchange membranes is arranged between an anode and a cathode, and a cation exchange membrane and a monovalent selective cation exchange membrane are arranged in this order from the anode side between the pair of anion exchange membranes. And
A nitric hydrofluoric acid waste solution containing a nitrate metal salt and / or a hydrofluoric acid metal salt is supplied to a demineralization deoxidation chamber formed between the anion exchange membrane and the cation exchange membrane, and the demineralization deoxidation chamber Electrodialysis while supplying an aqueous acid solution to a drainage chamber adjacent to and formed between the cation exchange membrane and the monovalent selective cation exchange membrane,
Nitric acid hydrofluoric acid, wherein nitric acid and / or hydrofluoric acid is recovered from an acid chamber adjacent to the desalting and deoxidizing chamber and formed between a monovalent selective cation exchange membrane and an anion exchange membrane A method for recovering acid from waste liquid is provided.

本発明においては、前記脱塩脱酸室から硝フッ酸廃液の脱塩液を回収し、該脱塩液に前記酸水溶液を添加し、前記排液室に供給して電気透析を行うが好ましい。   In the present invention, it is preferable to recover the desalted solution of nitric hydrofluoric acid waste solution from the desalting and deoxidizing chamber, add the acid aqueous solution to the desalted solution, and supply to the draining chamber for electrodialysis. .

本発明によれば、アルカリによる中和や中和により生成した沈殿のろ過分離(金属成分の除去)などの工程を行うことなく、硝フッ酸廃液を直接電気透析することにより、効率よく、高純度の酸を回収することができる。即ち、少ない工程数で硝フッ酸廃液から酸を回収できるのが本発明の最大の利点である。   According to the present invention, by directly electrodialyzing the nitric hydrofluoric acid waste liquid without performing steps such as neutralization with alkali and filtration separation of the precipitate formed by neutralization (removal of metal components), high efficiency can be achieved. Pure acid can be recovered. That is, the greatest advantage of the present invention is that the acid can be recovered from the nitric hydrofluoric acid waste solution with a small number of steps.

本発明において、酸の回収のための電気透析の実施に使用される電気透析装置の代表的な構造を示す図1において、かかる装置では、一対のアニオン交換膜A、Aが配置されており、さらに、この一対のアニオン交換膜A、Aの間には、陽極1側から順にカチオン交換膜Cと一価選択性カチオン交換膜SCが配置されており、アニオン交換膜Aとカチオン交換膜Cとの間に脱塩脱酸室5が形成され、これに隣接しているカチオン交換膜Cと一価選択性カチオン交換膜SCとの間には排液室7が形成されており、さらに、排液室7の陰極3側に隣接している一価選択性カチオン交換膜SCとアニオン交換膜Aとの間には酸室9が形成されている。   In the present invention, in FIG. 1 showing a typical structure of an electrodialysis apparatus used for electrodialysis for acid recovery, in this apparatus, a pair of anion exchange membranes A and A are arranged, Furthermore, a cation exchange membrane C and a monovalent selective cation exchange membrane SC are disposed between the pair of anion exchange membranes A and A in this order from the anode 1 side. A desalting and deoxidizing chamber 5 is formed between the cation exchange membrane C and the monovalent selective cation exchange membrane SC adjacent to the desalting and deoxidizing chamber 5. An acid chamber 9 is formed between the monovalent selective cation exchange membrane SC and the anion exchange membrane A adjacent to the cathode 3 side of the liquid chamber 7.

また、図1の装置では、上記の陽極1側のアニオン交換膜Aの外側(陽極側)には、さらに一価選択性カチオン交換膜SCが設けられ、上記の原液室5に隣接するように酸室9が形成されており、また、陰極3側のアニオン交換膜Aの外側(陰極側)には、さらにカチオン交換膜C及び一価選択性カチオン交換膜SC設けられており、酸室9に隣接するアニオン交換膜Aとカチオン交換膜Cの間にも原液室5が形成され、また、この原液室5に隣接するカチオン交換膜Cと一価選択性カチオン交換膜SCとの間にも排液室7が形成されている。   Further, in the apparatus of FIG. 1, a monovalent selective cation exchange membrane SC is further provided on the outer side (anode side) of the anion exchange membrane A on the anode 1 side so as to be adjacent to the stock solution chamber 5. An acid chamber 9 is formed, and a cation exchange membrane C and a monovalent selective cation exchange membrane SC are further provided outside the anion exchange membrane A on the cathode 3 side (cathode side). A stock solution chamber 5 is also formed between the anion exchange membrane A and the cation exchange membrane C adjacent to each other, and also between the cation exchange membrane C adjacent to the stock solution chamber 5 and the monovalent selective cation exchange membrane SC. A drainage chamber 7 is formed.

従って、陽極1及び陰極3は、一価選択性カチオン交換膜SCで区画された陽極室10或いは陰極室11内に収容されている。   Therefore, the anode 1 and the cathode 3 are accommodated in the anode chamber 10 or the cathode chamber 11 partitioned by the monovalent selective cation exchange membrane SC.

上記のような構造の電気透析装置において、アニオン交換膜A及びカチオン交換膜Cとしては、それ自体公知の膜が使用される。例えば、ポリオレフィン樹脂、ポリ塩化ビニル、フッ素系樹脂などからなる織布、不織布、多孔性フィルム等を基材とし、この基材にイオン交換樹脂が充填された構造を有するものである。   In the electrodialysis apparatus having the above structure, as the anion exchange membrane A and the cation exchange membrane C, membranes known per se are used. For example, it has a structure in which a woven fabric, a nonwoven fabric, a porous film or the like made of polyolefin resin, polyvinyl chloride, fluorine-based resin or the like is used as a base material and the base material is filled with an ion exchange resin.

上記のイオン交換樹脂は、炭化水素系或いはフッ素系等の基材樹脂にイオン交換基(アニオン交換膜ではアニオン交換基、カチオン交換膜ではカチオン交換基)が導入されたものであり、イオン交換基は、水溶液中で負又は正の電荷となり得る官能基なら特に制限されるものではない。例えばアニオン交換基としては、1〜3級アミノ基、4級アンモニウム基、ピリジル基、イミダゾール基、4級ピリジニウム基等が挙げられ、一般的に、強塩基性基である4級アンモニウム基や4級ピリジニウム基が好適である。また、カチオン交換基としては、スルホン酸基、カルボン酸基、ホスホン酸基等が挙げられ、一般的に、強酸性基であるスルホン酸基が好適である。   The above ion exchange resin is obtained by introducing an ion exchange group (anion exchange group in an anion exchange membrane or a cation exchange group in a cation exchange membrane) into a hydrocarbon-based or fluorine-based base resin. Is not particularly limited as long as it is a functional group that can be negatively or positively charged in an aqueous solution. For example, examples of the anion exchange group include primary to tertiary amino groups, quaternary ammonium groups, pyridyl groups, imidazole groups, and quaternary pyridinium groups. Generally, quaternary ammonium groups or 4 that are strongly basic groups are used. A class pyridinium group is preferred. Examples of the cation exchange group include a sulfonic acid group, a carboxylic acid group, and a phosphonic acid group. In general, a sulfonic acid group that is a strongly acidic group is preferable.

このようなアニオン交換膜A及びカチオン交換膜Cのイオン交換容量は、一般に、0.1乃至3.0meq/g、好ましくは0.5乃至2.5 meq/gであるのがよく、膜厚は、10乃至500μm、特に30乃至300μm程度である。
なお、アニオン交換膜は、回収酸側から原液側へのプロトンリークが生じ易く、酸回収効率を向上させるために、プロトンリークの低いアニオン交換膜が好適に用いられる。
The ion exchange capacity of such anion exchange membrane A and cation exchange membrane C is generally 0.1 to 3.0 meq / g, preferably 0.5 to 2.5 meq / g. Is about 10 to 500 μm, particularly about 30 to 300 μm.
The anion exchange membrane is prone to proton leakage from the recovered acid side to the stock solution side, and an anion exchange membrane with low proton leakage is preferably used in order to improve acid recovery efficiency.

また、一価選択性カチオン交換膜SCは、H、Na、Kなどの一価のカチオンは選択的に透過するが、アニオンは勿論のこと、多価金属イオンなどの多価カチオンを遮断する性質のカチオン交換膜である。1価カチオン選択透過性は、例えば 下記式(1)で示される2価カチオンのマグネシウムイオンに対する1価カチオンのプロトンの相対輸率(イオン選択透過係数:P Mg)が、10以上、好ましくは、100以上であることが重要である。
Mg=(t/tMg)/(C/CMg) (1)
:膜中のプロトンの輸率
Mg:膜中のマグネシウムイオンの輸率
:処理液中のプロトンの規定濃度
Mg:処理液中のマグネシウムイオンの規定濃度
このような一価選択性カチオン交換膜SCもそれ自体公知であり、具体的には、前述したカチオン交換膜の少なくとも一方の面にアニオン交換体層が形成された構造を有する複合カチオン交換膜である。
Further, the monovalent selective cation-exchange membrane SC is, H +, Na +, monovalent cations such as K + are selectively permeable, anion, of course, polyvalent cations such as polyvalent metal ions It is a cation exchange membrane with a blocking property. The monovalent cation selective permeability is, for example, a relative transport number (ion selective permeability coefficient: P H Mg ) of a monovalent cation with respect to a magnesium ion of a divalent cation represented by the following formula (1) is 10 or more, preferably , 100 or more is important.
P H Mg = (t H / t Mg) / (C H / C Mg) (1)
t H : Transport number of protons in the membrane t Mg : Transport number of magnesium ions in the membrane C H : Specified concentration of protons in the processing solution C Mg : Specified concentration of magnesium ions in the processing solution Such monovalent selection The cationic cation exchange membrane SC is also known per se, and is specifically a composite cation exchange membrane having a structure in which an anion exchanger layer is formed on at least one surface of the cation exchange membrane.

上記のような一価選択性カチオン交換膜SCとして使用される複合カチオン交換膜としては、例えば特開昭62−205135号公報に開示されているもの、例えばカチオン交換膜の少なくとも一方の表面に、第4級アンモニウム塩基類と3個以上のビニルベンジル基とを有するビニル系化合物を重合させることにより形成された重合体層(アニオン交換体層)を有しているものが、一価イオンを選択的に透過し、後述する廃液中に存在する多価金属イオンを遮断するという観点から特に好適である。   As the composite cation exchange membrane used as the monovalent selective cation exchange membrane SC as described above, for example, one disclosed in JP-A-62-205135, for example, on at least one surface of the cation exchange membrane, Those having a polymer layer (anion exchanger layer) formed by polymerizing a vinyl compound having a quaternary ammonium base and three or more vinylbenzyl groups select monovalent ions. It is particularly suitable from the viewpoint of blocking the polyvalent metal ions that permeate and exist in the waste liquid described later.

上記の複合カチオン交換膜において、ビニル系化合物が有している第4級アンモニウム塩基類としては、第4級アンモニウム塩基のみならず、第4級ピリジニウム塩基、スルホニウム塩基、ホスホニウム塩基等のいわゆるオニウム塩基であってもよい。ビニル化合物の有する第4級アンモニウム塩基類の数は、1個以上が有効であるが、必要以上に多すぎると一価選択性が低下するため、一般に1〜1000個、特に3〜50個が好ましい。また、ビニル系化合物が有するビニルベンジル基は、3個以上であれば制限されないが、このビニルベンジル基が多いほど、より緻密な重合体層がカチオン交換膜の表面に形成されるため、改質カチオン交換膜として所望の効果を発揮する。しかしながら、このようなビニル化合物のビニルベンジル基が多すぎる場合には、ビニル化合物の分子間、分子内で重合が起り易く取り扱いが難しいため、該ビニル化合物が有するビニルベンジル基の数は、一般に3〜1000個、特に3〜100個が好ましい。   In the above composite cation exchange membrane, the quaternary ammonium bases possessed by the vinyl compound include not only quaternary ammonium bases but also so-called onium bases such as quaternary pyridinium bases, sulfonium bases, and phosphonium bases. It may be. The number of quaternary ammonium bases possessed by the vinyl compound is effectively 1 or more, but if the amount is more than necessary, the monovalent selectivity is lowered, so generally 1 to 1000, especially 3 to 50 are present. preferable. In addition, the number of vinyl benzyl groups in the vinyl compound is not limited as long as it is 3 or more. However, the more vinyl benzyl groups, the denser polymer layer is formed on the surface of the cation exchange membrane. The desired effect is exhibited as a cation exchange membrane. However, when there are too many vinylbenzyl groups in such a vinyl compound, polymerization occurs easily between the molecules of the vinyl compound and within the molecule and is difficult to handle. Therefore, the number of vinylbenzyl groups possessed by the vinyl compound is generally 3 -1000, especially 3-100 are preferable.

上記のような第4級アンモニウム塩基と3個以上のビニルベンジル基を有するビニル系化合物は、一般的には例えば次の方法により合成される。   A vinyl compound having a quaternary ammonium base and three or more vinylbenzyl groups as described above is generally synthesized by, for example, the following method.

(1)メチルアミン、エチルアミンなどの一級アミンを3個のビニルベンジルクロライドでアルキル化する。
(2)エチレンジアミン、プロピレンジアミンなどの二価の一級アミンを3個以上のビニルベンジルクロライドと反応させ、必要によりヨウ化メチル、ジメチル硫酸のようなアルキル化剤にて第4級アンモニウム塩基とする。
(3)3価以上の三級アミノ化合物に少なくとも3個以上のビニルベンジルクロライドを反応させる。さらに必要なら、他のアルキル化剤にて未反応の第三級アミノ基を第4級アミノ基に変換してもよい。
上記の3価以上の三級アミノ化合物としては、例えば下記式;
H−(CHCHX)n−H、
(式中、Xは、p−ピリジル基、m−ピリジル基、3−メチルピリジン−4イル基、ジメチルアミノメチル基、o−,m−またはp−(ジメチルアミノメチル)フェニル基、o−,m−またはp−(ジメチルアミノエチル)フェニル基、o−,m−またはp−(ジエチルアミノメチル)フェニル基、o−,m−またはp−(ジエチルアミノエチル)フェニル基であり、nは、3以上の整数である)、
(CHN(CH−N(CH)−(CHN(CH
(CHN(CH−N(CH)−(CHN(CH
(CHN(CH−N(CH)−(CHN(CH

Figure 2009039672
(式中、Xは、式;(CHN(CH−で表される基である)、
で表される化合物などを例示することができる。
(4)同一分子中に3個以上のハロゲン原子を有する化合物、例えば下記式;
H−(CHCHX)n−H
(式中、Xは、o−,m−またはp−クロロメチルフェニル基である)、
で表される化合物に、ビニルフェニルアルキルN,N−ジアルキルアミンを反応させる。 (1) Alkylating a primary amine such as methylamine or ethylamine with three vinylbenzyl chlorides.
(2) A divalent primary amine such as ethylenediamine or propylenediamine is reacted with three or more vinylbenzyl chlorides to form a quaternary ammonium base with an alkylating agent such as methyl iodide or dimethyl sulfate as necessary.
(3) A tertiary amino compound having a valence of 3 or more is reacted with at least 3 vinylbenzyl chlorides. Further, if necessary, an unreacted tertiary amino group may be converted to a quaternary amino group with another alkylating agent.
Examples of the trivalent or higher tertiary amino compounds include the following formulas:
H- (CH 2 CHX 1) n -H,
(In the formula, X 1 is p-pyridyl group, m-pyridyl group, 3-methylpyridin-4-yl group, dimethylaminomethyl group, o-, m- or p- (dimethylaminomethyl) phenyl group, o- , M- or p- (dimethylaminoethyl) phenyl group, o-, m- or p- (diethylaminomethyl) phenyl group, o-, m- or p- (diethylaminoethyl) phenyl group, and n is 3 An integer greater than or equal to
(CH 3) 2 N (CH 2) 3 -N (CH 3) - (CH 2) 3 N (CH 3) 2,
(CH 3) 2 N (CH 2) 2 -N (CH 3) - (CH 2) 2 N (CH 3) 2,
(CH 3) 2 N (CH 2) 6 -N (CH 3) - (CH 2) 6 N (CH 3) 2,
Figure 2009039672
(Wherein X 2 is a group represented by the formula: (CH 3 ) 2 N (CH 2 ) 3 —),
The compound etc. which are represented by these can be illustrated.
(4) A compound having 3 or more halogen atoms in the same molecule, for example, the following formula:
H- (CH 2 CHX 3) n -H
(Wherein X 3 is an o-, m- or p-chloromethylphenyl group),
Is reacted with vinylphenylalkyl N, N-dialkylamine.

このような一価選択性カチオン交換膜SCにおいて、一般に、カチオン交換膜の表面に形成されているアニオン交換体の重合体層の厚みは、0.01乃至50μm 程度の範囲にあるのがよく、且つそのアニオン交換容量は0.1乃至3 meq/g程度の範囲にあることが、適度な一価選択性を確保する上で好ましい。また、かかるアニオン交換体の重合体層は、カチオン交換膜の一方の表面に設けられていればよいが、両面に設けることも可能である。   In such a monovalent selective cation exchange membrane SC, generally, the thickness of the polymer layer of the anion exchanger formed on the surface of the cation exchange membrane should be in the range of about 0.01 to 50 μm, In addition, the anion exchange capacity is preferably in the range of about 0.1 to 3 meq / g in order to ensure appropriate monovalent selectivity. The polymer layer of the anion exchanger may be provided on one surface of the cation exchange membrane, but can be provided on both surfaces.

尚、図1の装置において、一価選択性カチオン交換膜SCは、そのアニオン交換体の重合体層側の面が陽極1側を指向するように配置される。   In the apparatus of FIG. 1, the monovalent selective cation exchange membrane SC is arranged so that the surface of the anion exchanger on the polymer layer side faces the anode 1 side.

本発明においては、上述した電気透析装置の脱塩脱酸室5に、硝フッ酸廃液を供給して電気透析を行うことにより、硝フッ酸廃液からの酸の回収が行われる。   In the present invention, the acid is recovered from the nitric hydrofluoric acid waste liquid by supplying the nitric hydrofluoric acid waste liquid to the desalting and deoxidation chamber 5 of the electrodialysis apparatus described above and performing electrodialysis.

この硝フッ酸廃液は、既に述べたように、ステンレスの酸洗工程から排出され、或いはLSI工場など、エッチングやメッキなどの処理を行うところからも多量に排出されるものであり、ろ過などの廃水処理工程を経て固形分が除去されており、フッ酸及び硝酸を含み、さらに鉄、クロム、ニッケル等の多価金属イオンを含んでいる。勿論、この硝フッ酸廃液は、硝酸或いはフッ酸の一方のみを含有するものであってもよい。また、公知の拡散透析などの処理によって、多価金属イオン濃度が低減されているものであってもよい。   As already mentioned, this nitric hydrofluoric acid waste liquid is discharged from the pickling process of stainless steel, or is also discharged in large quantities from places such as LSI factory where etching and plating are performed, such as filtration. The solid content has been removed through a wastewater treatment process, which contains hydrofluoric acid and nitric acid, and further contains polyvalent metal ions such as iron, chromium and nickel. Of course, this nitric hydrofluoric acid waste liquid may contain only one of nitric acid or hydrofluoric acid. Further, the polyvalent metal ion concentration may be reduced by a known treatment such as diffusion dialysis.

本発明においては、上記の硝フッ酸廃液を原液として脱塩脱酸室5に供給すると同時に、陽極室10及び陰極室11には、極液として希薄な酸水溶液が供給し、酸室9には、希薄な酸水溶液若しくはイオン交換水を供給し、さらには排液室7にはプロトン補給源として酸水溶液を供給し、この状態で陽極1及び陰極3の間に所定の電圧が印加され、所定の電流密度で電気透析が実行される。   In the present invention, the nitric hydrofluoric acid waste liquid is supplied to the demineralization and deoxidation chamber 5 as a stock solution, and at the same time, a dilute acid aqueous solution is supplied to the anode chamber 10 and the cathode chamber 11 as an extreme solution. Supplies a dilute acid aqueous solution or ion-exchanged water, and further supplies an acid aqueous solution as a proton replenishment source to the drainage chamber 7. In this state, a predetermined voltage is applied between the anode 1 and the cathode 3, Electrodialysis is performed at a predetermined current density.

上記のプロトン供給源として用いる酸としては、特に制限されるものではないが、本発明が硝フッ酸廃液からフッ酸や硝酸を回収するものであるため、これを同種の酸を使用するのでは意味がなく、また、塩酸は装置腐食などの問題があるため適当でなく、従って、一般的には硫酸あるいはリン酸が使用され、特にコストの点で硫酸が好適に使用される。また、陽極室10、陰極室11或いは酸室9に供給する希薄な酸としては、回収すべき酸と同じ酸、即ち、硝酸或いはフッ酸が好適である。   The acid used as the proton supply source is not particularly limited. However, since the present invention recovers hydrofluoric acid and nitric acid from a nitric hydrofluoric acid waste solution, the same kind of acid is not used. There is no meaning, and hydrochloric acid is not suitable because of problems such as corrosion of the apparatus. Therefore, sulfuric acid or phosphoric acid is generally used, and sulfuric acid is preferably used particularly in terms of cost. The dilute acid supplied to the anode chamber 10, the cathode chamber 11 or the acid chamber 9 is preferably the same acid as the acid to be recovered, that is, nitric acid or hydrofluoric acid.

上記のように電気透析を行うと、図1に示されているように、脱塩脱酸室5に供給された原液(硝フッ酸廃液)からは、NO 、Fがアニオン交換膜Aを通って酸室9に移動する。一方、Fe2+、Cr3+、Ni2+等の金属多価イオン及びHがカチオン交換膜を通って排液室7に移動する。また、排液室7内のHは、一価選択性のカチオン交換膜SCを通って酸室9内に流入することとなる。この場合、金属多価イオンの酸室5内への流入は、一価選択性カチオン交換膜SCによって遮断される。 When electrodialysis is performed as described above, as shown in FIG. 1, NO 3 and F are separated from the anion exchange membrane from the stock solution (nitric acid hydrofluoric acid waste solution) supplied to the desalting and deoxidizing chamber 5. Move through A to the acid chamber 9. On the other hand, metal multivalent ions such as Fe 2+ , Cr 3+ , Ni 2+, and H + move to the drainage chamber 7 through the cation exchange membrane. Further, H + in the drainage chamber 7 flows into the acid chamber 9 through the monovalent selective cation exchange membrane SC. In this case, the inflow of the metal multivalent ions into the acid chamber 5 is blocked by the monovalent selective cation exchange membrane SC.

従って、上記のようにして電気透析を続行していくと、酸室9内のフッ酸及び硝酸濃度が増大していき、適度な濃度に達した段階で、酸室9から、これら酸の混合液を回収する。また、排液室7からは、Fe2+、Cr3+、Ni2+等の金属多価イオンを含む酸水溶液が排出されることとなる。 Therefore, when the electrodialysis is continued as described above, the hydrofluoric acid and nitric acid concentrations in the acid chamber 9 increase, and when the acid chamber 9 reaches an appropriate concentration, the acid chamber 9 mixes these acids. Collect the liquid. From the drainage chamber 7, an acid aqueous solution containing metal polyvalent ions such as Fe 2+ , Cr 3+ , and Ni 2+ is discharged.

上述した本発明において、排液室7に酸水溶液を供給することが極めて重要である。即ち、上記のようにして電気透析を行うと、硝フッ酸廃液(原液)中に含まれている多価金属と塩を形成している酸根も、アニオン交換膜Aを通って酸室9に移行する。従って、酸室9の液中にはプロトンが不足することとなり、このまま酸室9の液を回収した場合には、プロトン不足のために酸の回収効率が低下してしまう。このため、本発明では、プロトン不足を補うため、排液室7に硫酸等の酸の水溶液を供給し、プロトン不足を補っているのである。即ち、排液室9に供給した酸に由来するHは、一価選択性カチオン交換膜SCを通って酸室9に移行し、プロトン不足を補い、これにより、高効率で酸を回収することができる。
尚、上記の場合において、プロトン補給源として供給された酸に由来するアニオン(例えばSO 2−)は、そのまま排液室7に留まることとなる。
In the present invention described above, it is extremely important to supply the acid aqueous solution to the drainage chamber 7. That is, when electrodialysis is performed as described above, the acid radicals forming a salt with the polyvalent metal contained in the nitric hydrofluoric acid waste solution (stock solution) also pass through the anion exchange membrane A into the acid chamber 9. Transition. Accordingly, protons are insufficient in the liquid in the acid chamber 9, and when the liquid in the acid chamber 9 is recovered as it is, the acid recovery efficiency decreases due to insufficient protons. Therefore, in the present invention, in order to compensate for the lack of protons, an acid aqueous solution such as sulfuric acid is supplied to the drainage chamber 7 to compensate for the lack of protons. That is, H + derived from the acid supplied to the drainage chamber 9 moves to the acid chamber 9 through the monovalent selective cation exchange membrane SC to compensate for proton deficiency, thereby recovering the acid with high efficiency. be able to.
In the above case, the anion (for example, SO 4 2− ) derived from the acid supplied as the proton replenishment source remains in the drainage chamber 7 as it is.

上記のように、排液室9に供給する酸は、Fe(NOやFeF等の酸の多価金属塩に由来するプロトン不足を補うものであるから、その供給量は、脱塩脱酸室5に供給される硝フッ酸廃液(原液)中に含まれる多価金属イオンと同当量であればよい。 As described above, the acid supplied to the drainage chamber 9 compensates for the lack of protons derived from polyvalent metal salts of acids such as Fe (NO 3 ) 2 and FeF. What is necessary is just to be the same as the polyvalent metal ion contained in the nitric hydrofluoric acid waste solution (stock solution) supplied to the deoxidation chamber 5.

本発明において、プロトン補給源として供給される酸水溶液は、単独で排液室7に供給することもできるが、一般的には、図1に示されているように、脱塩脱酸室5に供給され、電気透析によって脱塩脱酸された希釈液に、上記の酸を添加して排液室7に循環させることが、Fe等の多価金属が効率よく回収されるという点で好適である。
尚、図1の例では、1対(2枚)のアニオン交換膜Aを使用し、その間にカチオン交換膜Cと一価選択性カチオン交換膜SCが配置された構造を有する電気透析装置が示されているが、本発明で用いる電気透析装置は、このような構造に限定されるものではなく、例えば、さらに多数枚のアニオン交換膜Aが使用され、それぞれのアニオン交換膜Aの対の間にカチオン交換膜Cと一価選択性カチオン交換膜SCが配置された構造の電気透析装置を使用することも、当然可能である。
In the present invention, the aqueous acid solution supplied as a proton replenishment source can be supplied alone to the drainage chamber 7, but generally, as shown in FIG. It is preferable that polyvalent metals such as Fe are efficiently recovered by adding the above acid to the dilute solution that has been supplied to the solution and desalted and deacidified by electrodialysis and circulating it in the drainage chamber 7. It is.
1 shows an electrodialysis apparatus having a structure in which a pair (two) of anion exchange membranes A is used, and a cation exchange membrane C and a monovalent selective cation exchange membrane SC are disposed therebetween. However, the electrodialysis apparatus used in the present invention is not limited to such a structure. For example, a larger number of anion exchange membranes A are used, and each pair of anion exchange membranes A is used. It is of course possible to use an electrodialyzer having a structure in which the cation exchange membrane C and the monovalent selective cation exchange membrane SC are arranged.

上記のような電気透析終了後は、酸室9から硝酸及びフッ酸の混合水溶液或いは硝酸水溶液若しくはフッ酸水溶液が、多価金属が除去され、高純度で回収される。また、排液室7からは、プロトン補給源として供給された酸及び多価金属を含む液が廃液として取り出される。   After completion of the electrodialysis as described above, the mixed solution of nitric acid and hydrofluoric acid or the aqueous solution of nitric acid or hydrofluoric acid is removed from the acid chamber 9 and the polyvalent metal is removed and recovered with high purity. Further, from the drain chamber 7, a liquid containing an acid and a polyvalent metal supplied as a proton supply source is taken out as a waste liquid.

本発明において、上記のようにして回収された酸は、ステンレス洗浄工程などに再利用される。また、排液室7から排出される廃液は、必要により多価金属を回収してステンレスの製造などに再利用される。   In the present invention, the acid recovered as described above is reused in a stainless steel cleaning process or the like. In addition, the waste liquid discharged from the drain chamber 7 is reused for producing stainless steel by collecting polyvalent metals as necessary.

以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.

以下の実験に際して、図1に示す構造を有し、下記のイオン交換膜を備えた電気透析装置(処理能力9L/Hr・m)を用いた。
なお、用いたカチオン交換膜のイオン選択透過係数(P Mg)は、次の方法で測定した。イオン交換膜を2室アクリルセルに挟み、両室に、0.25N−HClと0.25N−MgCl2を含む混合水溶液を満たし、25℃で攪拌しながら、10mA/cm2の電流密度で60分間にわたって電気透析を行い、電気透析後、両室のプロトンとマグネシウムイオン量を測定して、式1からP Mgを算出した。
カチオン交換膜C;ネオセプタCMX
厚み:180μm
カチオン交換容量:1.6meq/g
Mg:2
アニオン交換膜A;ネオセプタAMX
厚み:140μm
アニオン交換容量:1.5meq/g
一価選択性カチオン交換膜SC;ネオセプタCIMS
厚み:140μm
Mg:210
In the following experiment, an electrodialyzer (processing capacity 9 L / Hr · m 2 ) having the structure shown in FIG. 1 and having the following ion exchange membrane was used.
The ion selective permeation coefficient (P H Mg ) of the cation exchange membrane used was measured by the following method. An ion exchange membrane is sandwiched between two-chamber acrylic cells, and both chambers are filled with a mixed aqueous solution containing 0.25N-HCl and 0.25N-MgCl2 and stirred at 25 ° C. for 60 minutes at a current density of 10 mA / cm 2. Electrodialysis was performed, and after electrodialysis, the amount of protons and magnesium ions in both chambers was measured, and P H Mg was calculated from Equation 1.
Cation exchange membrane C; Neoceptor CMX
Thickness: 180μm
Cation exchange capacity: 1.6 meq / g
P H Mg: 2
Anion exchange membrane A; Neoceptor AMX
Thickness: 140 μm
Anion exchange capacity: 1.5 meq / g
Monovalent selective cation exchange membrane SC; Neoceptor CIMS
Thickness: 140 μm
P H Mg: 210

<実施例1>
仮想酸廃液として、下記の組成の原液を用意した。
原液組成;
NO濃度:20.4g/L
SO濃度: 0
Fe濃度:3.9g/L
濃度:0.12N
<Example 1>
A stock solution having the following composition was prepared as a virtual acid waste solution.
Stock solution composition;
NO 3 concentration: 20.4 g / L
SO 4 concentration: 0
Fe concentration: 3.9 g / L
H + concentration: 0.12N

また、極液用の酸及びプロトン補給源として、以下の酸水溶液を用意した。
極液用酸水溶液;硝酸水溶液
NO濃度:7.6g/L
濃度:0.13N
プロトン補給用酸水溶液;硫酸水溶液
SO濃度:22.7g/L
濃度:0.51N
Moreover, the following acid aqueous solution was prepared as an acid and proton supply source for polar solutions.
Aqueous acid aqueous solution; nitric acid aqueous solution NO 3 concentration: 7.6 g / L
H + concentration: 0.13N
Acid aqueous solution for proton supply; sulfuric acid aqueous solution SO 4 concentration: 22.7 g / L
H + concentration: 0.51N

電気透析装置の脱塩脱酸室に、上記の原液1リットルを供給し、陽極室、陰極室、酸室に極液用の硝酸200ccを供給し、さらに、排液室にプロトン補給用硫酸水溶液1リットルを供給し、下記の条件で120分間、2.5A/dm2を通電して電気透析を行った。   1 liter of the above stock solution is supplied to the demineralization and deoxidation chamber of the electrodialysis apparatus, 200 cc of nitric acid for polar solution is supplied to the anode chamber, the cathode chamber and the acid chamber, and further, the sulfuric acid aqueous solution for proton replenishment is supplied to the drainage chamber. 1 liter was supplied, and electrodialysis was performed by energizing 2.5 A / dm 2 for 120 minutes under the following conditions.

電気透析後、酸室から回収した回収酸、脱塩脱酸室から回収した脱塩液及び排液室から回収した廃液の組成を、イオンクロマトグラフィ、原子吸光或いは滴定により分析し、その結果は以下の通りであった。鉄イオンが十分除去された硝酸を回収することができた。   After electrodialysis, the composition of the recovered acid recovered from the acid chamber, the desalted liquid recovered from the demineralized deacidified chamber, and the waste liquid recovered from the drained chamber was analyzed by ion chromatography, atomic absorption, or titration. It was as follows. Nitric acid from which iron ions were sufficiently removed could be recovered.

回収酸(280ml);
NO濃度:63.2g/L
SO濃度:3.12g/L
Fe濃度:0.19g/L
濃度:1.15N
脱塩液(910ml);
NO濃度:1.22g/L
SO濃度:0.17g/L
Fe濃度:0.03g/L
濃度:0.025N
廃液(1000ml);
NO濃度:1.04g/L
SO濃度:21.4g/L
Fe濃度:3.2g/L
濃度:0.49N
Recovered acid (280 ml);
NO 3 concentration: 63.2 g / L
SO 4 concentration: 3.12 g / L
Fe concentration: 0.19 g / L
H + concentration: 1.15N
Desalted solution (910 ml);
NO 3 concentration: 1.22 g / L
SO 4 concentration: 0.17 g / L
Fe concentration: 0.03 g / L
H + concentration: 0.025N
Waste liquid (1000 ml);
NO 3 concentration: 1.04 g / L
SO 4 concentration: 21.4 g / L
Fe concentration: 3.2 g / L
H + concentration: 0.49N

<比較例1>
電気透析装置の排液室に、プロトン補給用硫酸水溶液の代わりにイオン交換水1リットルを供給した以外は、実施例1と全く同じ条件で電気透析を行った。しかし、排液室の液の電気伝導度が低く、十分な電気が流れず、電気透析が実施できなかった。
<Comparative Example 1>
Electrodialysis was performed under exactly the same conditions as in Example 1, except that 1 liter of ion-exchanged water was supplied to the drain chamber of the electrodialysis apparatus instead of the sulfuric acid aqueous solution for proton replenishment. However, the electrical conductivity of the liquid in the drainage chamber was low, sufficient electricity did not flow, and electrodialysis could not be performed.

<比較例2>
電気透析装置中のカチオン交換膜ネオセプタCMXを除き、ネオセプタAMXとネオセプタCIMSに挟まれた室を脱塩脱酸室として原液を供給し、プロトン補給用硫酸水溶液を供給する排液室を除いた以外は、実施例1と全く同じ条件で電気透析を行い、電気透析後、酸室から回収した回収酸、脱塩脱酸室から回収した脱塩液の組成を分析した。その結果は以下の通りであった。通電した電気量に対して原液中のプロトン量が少なく、1価カチオン選択透過性膜を用いても鉄イオンが透過することになり、その結果、回収酸中の鉄イオン濃度が増し、純度の高い酸を得ることができなかった。
<Comparative example 2>
Except for the cation exchange membrane Neoceptor CMX in the electrodialysis machine, except that the chamber between Neoceptor AMX and Neoceptor CIMS is used as the desalting and deoxidizing chamber, and the stock solution is supplied, and the drainage chamber for supplying the sulfuric acid aqueous solution for proton supply is removed. Electrodialyzed under exactly the same conditions as in Example 1, and analyzed the composition of the recovered acid recovered from the acid chamber and the desalted solution recovered from the demineralized deoxidation chamber after electrodialysis. The results were as follows. The amount of protons in the stock solution is small compared to the amount of electricity applied, and iron ions permeate even when a monovalent cation selective permeable membrane is used. As a result, the concentration of iron ions in the recovered acid increases, A high acid could not be obtained.

回収酸(280ml);
NO濃度: 54.6g/L
SO濃度: 0g/L
Fe濃度: 14.9g/L
濃度: 0.35N
脱塩液(920ml);
NO濃度: 3.6g/L
SO濃度: 0g/L
Fe濃度: 1.0g/L
濃度: 0.02N
Recovered acid (280 ml);
NO 3 concentration: 54.6 g / L
SO 4 concentration: 0 g / L
Fe concentration: 14.9 g / L
H + concentration: 0.35N
Desalted solution (920 ml);
NO 3 concentration: 3.6 g / L
SO 4 concentration: 0 g / L
Fe concentration: 1.0 g / L
H + concentration: 0.02N

本発明に用いる電気透析装置の代表的な構造を示す図。The figure which shows the typical structure of the electrodialysis apparatus used for this invention.

符号の説明Explanation of symbols

A:アニオン交換膜
C:カチオン交換膜
CS:一価選択性カチオン交換膜
1:陽極
3:陰極
5:脱塩脱酸室
7:排液室
9:酸室
A: Anion exchange membrane C: Cation exchange membrane CS: Monovalent selective cation exchange membrane 1: Anode 3: Cathode 5: Desalination deoxidation chamber 7: Drainage chamber 9: Acid chamber

Claims (2)

陽極及び陰極の間に、少なくとも1対のアニオン交換膜を配置し、該一対のアニオン交換膜の間に陽極側から順にカチオン交換膜と一価選択性カチオン交換膜を配置し、
前記アニオン交換膜とカチオン交換膜との間に形成されている脱塩脱酸室に、硝酸金属塩及び/又はフッ酸金属塩を含む硝フッ酸廃液を供給するとともに、該脱塩脱酸室に隣接し且つカチオン交換膜と一価選択性カチオン交換膜との間に形成されている排液室に酸水溶液を供給しながら電気透析を行ない、
前記脱塩脱酸室に隣接し且つ一価選択性カチオン交換膜とアニオン交換膜との間に形成されている酸室から、硝酸及び/又はフッ酸を回収することを特徴とする硝フッ酸廃液からの酸の回収方法。
Arranging at least one pair of anion exchange membranes between the anode and the cathode, and arranging a cation exchange membrane and a monovalent selective cation exchange membrane in order from the anode side between the pair of anion exchange membranes,
A nitric hydrofluoric acid waste solution containing a nitrate metal salt and / or a hydrofluoric acid metal salt is supplied to a demineralization deoxidation chamber formed between the anion exchange membrane and the cation exchange membrane, and the demineralization deoxidation chamber Electrodialysis while supplying an aqueous acid solution to a drainage chamber adjacent to and formed between the cation exchange membrane and the monovalent selective cation exchange membrane,
Nitric acid hydrofluoric acid, wherein nitric acid and / or hydrofluoric acid is recovered from an acid chamber adjacent to the desalting and deoxidizing chamber and formed between a monovalent selective cation exchange membrane and an anion exchange membrane Method for recovering acid from waste liquid.
前記脱塩脱酸室から硝フッ酸廃液の脱塩液を回収し、該脱塩液に前記酸水溶液を添加し、前記排液室に供給して電気透析を行う請求項1に記載の酸の回収方法。   The acid according to claim 1, wherein the desalted solution of nitric hydrofluoric acid waste solution is recovered from the desalting and deoxidizing chamber, the acid aqueous solution is added to the desalted solution, and the acid is supplied to the draining chamber for electrodialysis. Recovery method.
JP2007208825A 2007-08-10 2007-08-10 Method for recovering acid from nitric hydrofluoric acid waste liquid Active JP5072477B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007208825A JP5072477B2 (en) 2007-08-10 2007-08-10 Method for recovering acid from nitric hydrofluoric acid waste liquid
PCT/JP2008/064000 WO2009022572A1 (en) 2007-08-10 2008-08-05 Method of recovering acid from acid waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007208825A JP5072477B2 (en) 2007-08-10 2007-08-10 Method for recovering acid from nitric hydrofluoric acid waste liquid

Publications (2)

Publication Number Publication Date
JP2009039672A true JP2009039672A (en) 2009-02-26
JP5072477B2 JP5072477B2 (en) 2012-11-14

Family

ID=40350626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007208825A Active JP5072477B2 (en) 2007-08-10 2007-08-10 Method for recovering acid from nitric hydrofluoric acid waste liquid

Country Status (2)

Country Link
JP (1) JP5072477B2 (en)
WO (1) WO2009022572A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106362594A (en) * 2016-08-30 2017-02-01 中国科学院青海盐湖研究所 Monovalent ion selectivity electrodialysis device and preparation method of lithium chloride concentrated liquor
JP2019504446A (en) * 2015-12-18 2019-02-14 ケミラ ユルキネン オサケイティエKemira Oyj Microbial fuel cell and method of using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ304507B6 (en) * 2013-03-28 2014-06-04 Membrain S.R.O. Process for preparing potassium nitrate by employing electrodialysis method and apparatus for making the same
CN115448429A (en) * 2022-09-22 2022-12-09 河北工程大学 Monovalent selective bipolar membrane electrodialysis device and method for treating high-salinity wastewater

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54123595A (en) * 1978-03-20 1979-09-25 Sumitomo Metal Ind Ltd Recovering method for hydrofluoric and nitric acids
JPS63291608A (en) * 1987-05-22 1988-11-29 Tokuyama Soda Co Ltd System for regenerating acidic waste liquid
JPH01123606A (en) * 1987-11-05 1989-05-16 Tosoh Corp Method for recovering hydrofluoric acid
JPH0492805A (en) * 1990-08-07 1992-03-25 Asahi Glass Co Ltd Method for recovering nitric acid from nitrate
JPH07148420A (en) * 1993-11-30 1995-06-13 Tokuyama Corp Method for recovering acid and alkali
JPH0899022A (en) * 1994-09-30 1996-04-16 Tokuyama Corp Method for electrodialysis
JP2003285071A (en) * 2002-03-29 2003-10-07 Toshiba Corp Treatment method for fluoride ion-containing waste liquid and treatment apparatus using the same
JP2005052794A (en) * 2003-08-07 2005-03-03 Shigeru Kitani Method and apparatus for treating aqueous solution

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4740281A (en) * 1986-10-14 1988-04-26 Allied Corporation Recovery of acids from materials comprising acid and salt

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54123595A (en) * 1978-03-20 1979-09-25 Sumitomo Metal Ind Ltd Recovering method for hydrofluoric and nitric acids
JPS63291608A (en) * 1987-05-22 1988-11-29 Tokuyama Soda Co Ltd System for regenerating acidic waste liquid
JPH01123606A (en) * 1987-11-05 1989-05-16 Tosoh Corp Method for recovering hydrofluoric acid
JPH0492805A (en) * 1990-08-07 1992-03-25 Asahi Glass Co Ltd Method for recovering nitric acid from nitrate
JPH07148420A (en) * 1993-11-30 1995-06-13 Tokuyama Corp Method for recovering acid and alkali
JPH0899022A (en) * 1994-09-30 1996-04-16 Tokuyama Corp Method for electrodialysis
JP2003285071A (en) * 2002-03-29 2003-10-07 Toshiba Corp Treatment method for fluoride ion-containing waste liquid and treatment apparatus using the same
JP2005052794A (en) * 2003-08-07 2005-03-03 Shigeru Kitani Method and apparatus for treating aqueous solution

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019504446A (en) * 2015-12-18 2019-02-14 ケミラ ユルキネン オサケイティエKemira Oyj Microbial fuel cell and method of using the same
CN106362594A (en) * 2016-08-30 2017-02-01 中国科学院青海盐湖研究所 Monovalent ion selectivity electrodialysis device and preparation method of lithium chloride concentrated liquor

Also Published As

Publication number Publication date
JP5072477B2 (en) 2012-11-14
WO2009022572A1 (en) 2009-02-19

Similar Documents

Publication Publication Date Title
Sedighi et al. Environmental sustainability and ions removal through electrodialysis desalination: Operating conditions and process parameters
JP4805455B2 (en) Method and apparatus for preventing scale generation in an electrodeionization unit
US20090152117A1 (en) Electrodialysis apparatus, waste water treatment method and fluorine treatment system
KR101739609B1 (en) Membrane electrolysis stack, electrodialysis device including the stack and method for the regeneration of an electroless plating bath
TWI616404B (en) Method and device for processing boron-containing water
AU2013330231B2 (en) Wastewater refinery
US20130126353A1 (en) Electrodialysis with ion exchange and bi-polar electrodialysis
KR20110131214A (en) Method for purifying lithium-containing wastewater during the continuous production of lithium transition metal phosphates
CN101486503B (en) Method for making drinking water
JP5072477B2 (en) Method for recovering acid from nitric hydrofluoric acid waste liquid
TWI428293B (en) Method and apparatus for recovering phosphoric acid from phosphoric acid-containing water
WO2022209641A1 (en) Electrodialysis method using bipolar membrane
JP4403621B2 (en) Electrodeionization equipment
US20120080376A1 (en) Use of desalination brine for ion exchange regeneration
JP6545657B2 (en) Separation method of anions
JP5188454B2 (en) Method for producing organic acid
JP5711503B2 (en) Method and apparatus for regenerating electroless nickel plating solution
WO2020264012A1 (en) Electrodialysis process and bipolar membrane electrodialysis devices for silica removal
JP2012125723A (en) Apparatus for refining waste liquid of nitrohydrofluoric acid and method therefor
JP3695338B2 (en) Method for producing deionized water
JP4925687B2 (en) Recovery method of high purity inorganic acid
JP2003236345A (en) Method and apparatus for manufacturing dealkalized water glass
JP2004052029A (en) Treatment method and treatment apparatus for electroless nickel-plating liquid
JP4915843B2 (en) Electric softening device, softening device and soft water production method
JP4991655B2 (en) Electrodialysis machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120821

R150 Certificate of patent or registration of utility model

Ref document number: 5072477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350