JP4991655B2 - Electrodialysis machine - Google Patents

Electrodialysis machine Download PDF

Info

Publication number
JP4991655B2
JP4991655B2 JP2008189021A JP2008189021A JP4991655B2 JP 4991655 B2 JP4991655 B2 JP 4991655B2 JP 2008189021 A JP2008189021 A JP 2008189021A JP 2008189021 A JP2008189021 A JP 2008189021A JP 4991655 B2 JP4991655 B2 JP 4991655B2
Authority
JP
Japan
Prior art keywords
ions
exchange membrane
ion
amount
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008189021A
Other languages
Japanese (ja)
Other versions
JP2010022970A (en
Inventor
一平 沢山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008189021A priority Critical patent/JP4991655B2/en
Publication of JP2010022970A publication Critical patent/JP2010022970A/en
Application granted granted Critical
Publication of JP4991655B2 publication Critical patent/JP4991655B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

本発明は、除去対象イオンを含む電解質液から、電気透析法により前記除去対象イオンを除去する電気透析装置に関するものである。   The present invention relates to an electrodialysis apparatus that removes ions to be removed from an electrolyte solution containing ions to be removed by electrodialysis.

陰イオンおよび陽イオンを含む電解質液、例えば無電解NiやCuメッキ液等では使用により反応を阻害する複数の陰イオンおよび陽イオン種が蓄積する。陰イオンとしては、次亜燐酸、ホルマリン等の還元剤が分解した亜燐酸、蟻酸等と、そして不足した金属イオンの対イオンとしての硫酸や塩素等の複数の陰イオンが存在する。また陽イオンとしては、NiやCu等の補充金属成分の対イオンとしてのNaやK等と、金属不純物としての鉄や鉛等複数の陽イオンが存在する。   In an electrolyte solution containing an anion and a cation, for example, an electroless Ni or Cu plating solution, a plurality of anions and cation species that inhibit the reaction are accumulated by use. As anions, there are a plurality of anions such as phosphorous acid and formic acid decomposed by a reducing agent such as hypophosphorous acid and formalin, and sulfuric acid and chlorine as counter ions of the deficient metal ions. As cations, there are Na and K as counter ions of supplemental metal components such as Ni and Cu, and a plurality of cations such as iron and lead as metal impurities.

上記の蓄積イオンの除去の為に電気透析法が提案されている。電気透析法では目的除外イオンの除去と同時に有効イオンも除去される為に、いかに有効イオンの除去を少なくするかが重要である。そのイオン除去量は、各イオン毎に使用されるイオン交換膜により個別な値を有し、複数種の除去対象イオンが存在する場合は、各除去対象イオンの除去目標量に対して同時に透析が終了することが、有効成分の損失を減少する上で必要である。   An electrodialysis method has been proposed to remove the accumulated ions. In the electrodialysis method, effective ions are removed at the same time as removal of ions excluded from the object, so it is important to reduce the removal of effective ions. The ion removal amount has an individual value depending on the ion exchange membrane used for each ion, and when multiple types of ions to be removed exist, dialysis is simultaneously performed against the removal target amount of each ion to be removed. Termination is necessary to reduce the loss of active ingredients.

例えば、特許文献1では電解質液の陰極側にカチオン膜を配して陽イオンを除去し、陽極側ではアニオン膜を配して陰イオンを除去する提案がある。しかし、同一イオン種の複数種を同時に除去する場合は、各イオンと使用するイオン交換膜の間で除去効率に差があり、除去終了時点ではいずれかのイオンが過剰に又は不足気味に透析が終了する事になる。また、全ての除去対象イオンを目標通りに除去しようとすると、透析時間が長くなり有効成分の除去量が増加し透析効率を妨げることになる。   For example, Patent Document 1 proposes that a cation film is disposed on the cathode side of the electrolyte solution to remove cations, and an anion film is disposed on the anode side to remove anions. However, when removing multiple species of the same ionic species at the same time, there is a difference in the removal efficiency between each ion and the ion exchange membrane to be used, and at the end of removal, either ion is excessively or insufficiently dialyzed. It will end. Further, if all the ions to be removed are removed as intended, the dialysis time becomes longer, the amount of active ingredient removed increases, and dialysis efficiency is hindered.

また、特許文献2では除去対象イオンである亜燐酸を第1段透析により濃縮し、次いで液のpHを6から10に変更することで亜燐酸を2価イオンにし、一価選択性を有する陰イオン交換膜を使用することで有効成分の次亜燐酸イオンとを有効に分離する。
また、特許文献3では2段階の透析を行ない、第2段目に一価選択性の陰イオン交換膜を使用することで亜燐酸と次亜燐酸の分離を行なうことが提案されている。
Further, in Patent Document 2, phosphorous acid, which is an ion to be removed, is concentrated by first stage dialysis, and then the pH of the solution is changed from 6 to 10 to convert the phosphorous acid to a divalent ion, which is an anion having monovalent selectivity. By using an ion exchange membrane, the active ingredient hypophosphite ions are effectively separated.
Further, Patent Document 3 proposes to separate phosphorous acid and hypophosphorous acid by performing two-stage dialysis and using a monovalent selective anion exchange membrane in the second stage.

しかし、基本的には陰イオンおよび陽イオンの少なくともどちらか一方の複数のイオンの除去を対象とする場合、特許文献1と同様に過剰又は不足した透析となる。また、全ての除去対象イオンを目標通りに除去しようとすると、有効成分の除去量が増加し透析効率を妨げることになる。
特開昭63−303078で号公報 特開2004−52029号公報 特許第3420570号公報
However, basically, when removing a plurality of ions of at least one of anions and cations, the dialysis is excessive or insufficient as in Patent Document 1. Further, if all the ions to be removed are to be removed according to the target, the removal amount of the active ingredient is increased and the dialysis efficiency is hindered.
Japanese Laid-Open Patent Publication No. 63-303078 JP 2004-52029 A Japanese Patent No. 3420570

以上のように、従来の技術においては、同一イオン種で複数の除去対象イオンを有する電解質液を同時に効率良く除去する提案はなされていない。
本発明は、この様な背景技術に鑑みてなされたものであり、電気透析法を用いて、除去対象イオンである陰又は陽イオン種の少なくともどちらかを複数種含む電解質液中から同時に除去対象イオンを除去し、かつ有効イオン成分の透析時の損失が少ない電気透析装置を提供することである。
As described above, in the prior art, no proposal has been made to efficiently and efficiently remove an electrolyte solution having a plurality of ions to be removed with the same ionic species.
The present invention has been made in view of such a background art, and is to be simultaneously removed from an electrolyte solution containing at least one of anion or cation species, which are ions to be removed, using an electrodialysis method. It is an object of the present invention to provide an electrodialysis apparatus that removes ions and reduces the loss of active ion components during dialysis.

よって、本発明は、
有効イオンと複数種の除去対象イオンとを含む電解質液から、電気透析法により前記複数種の除去対象イオンを前記有効イオンよりも優先して除去する電気透析装置であって、
陽極陰極との間に透析膜である複数のカチオン交換膜および複数のアニオン交換膜を備え、
前記カチオン交換膜または前記アニオン交換膜の少なくともいずれかは、それぞれ面積の異なる複数の副イオン交換膜が重なって構成されており、
前記複数の副イオン交換膜は、前記除去対象イオンの下記式(1)で示される固有イオン移動量がそれぞれ異なっており、
前記副イオン交換膜が有する前記除去対象イオンの前記固有イオン移動量は、前記副イオン交換膜が有する前記有効イオンの前記固有イオン移動量よりも大きく、
前記副イオン交換膜のそれぞれの面積比は、下記式(2)で示されることを特徴とする電気透析装置を提供する。
Thus, the present invention
An electrodialysis apparatus that removes the plurality of types of removal target ions in preference to the effective ions by an electrodialysis method from an electrolyte solution containing effective ions and a plurality of types of removal target ions ,
Comprising a plurality of cation exchange membranes and a plurality of anion exchange membranes are dialysis membrane between the anode and the cathode,
At least one of the cation exchange membrane or the anion exchange membrane is configured by overlapping a plurality of sub ion exchange membranes each having a different area,
Wherein the plurality of sub-ion exchange membranes, specific ion movement amount represented by the following formula (1) of the removal target ions have Tsu different respectively,
The specific ion transfer amount of the ions to be removed that the secondary ion exchange membrane has is larger than the specific ion transfer amount of the effective ions that the secondary ion exchange membrane has,
The area ratio of each of the secondary ion exchange membranes is represented by the following formula (2) .

ただし、固有イオン移動量(g/(A×H)/dm)=イオン移動量(g)÷電気量(A×H)÷イオン交換膜面積(dm) ・・・・(1)
式中、イオン交換膜面積は、1個の副イオン交換膜の面積を示す。)
式(2)は以下のように示される。
AMI1=(SA1×ZA×A1I1+・・・・+SAN×ZA×ANI1)×Q
AMI2=(SA1×ZA×A1I2+・・・・+SAN×ZA×ANI2)×Q


AMIn=(SA1×ZA×A1In+・・・・+SAN×ZA×ANIn)×Q
(式中、SA1・・・SANは副イオン交換膜の面積比であり、AMI1・・AMInは除去対象のイオンn種(I1・・・In)の除去目標量(g)であり、A1I1・・A1In〜ANI1・・ANInは使用する副イオン交換膜N種(A1・・・AN)ごとの除去対象イオンn種(I1・・・In)での固有イオン移動量(g/(A×H)/dm )、Qは透析時の電気量(A×H)、ZAは使用する前記カチオン交換膜または前記アニオン交換膜のいずれか一方の副イオン交換膜の全面積(dm )を示す。)
However, specific ion transfer amount (g / (A × H) / dm 2 ) = ion transfer amount (g) ÷ electric amount (A × H) ÷ ion exchange membrane area (dm 2 ) (1)
(In the formula, the area of the ion exchange membrane indicates the area of one sub ion exchange membrane .)
Formula (2) is shown as follows.
AMI1 = (SA1 × ZA × A1I1 +... + SAN × ZA × ANI1) × Q
AMI2 = (SA1 × ZA × A1I2 +... + SAN × ZA × ANI2) × Q


AMIn = (SA1 × ZA × A1In +... + SAN × ZA × ANIn) × Q
(Where SA1... SAN is the area ratio of the sub-ion exchange membrane, AMI1... AMIn is the removal target amount (g) of ion n species (I1... In) to be removed, and A1I1. A1In to ANI1... ANIn is a specific ion transfer amount (g / (A × H) for n types of ions to be removed (I1... In) for each of the secondary ion exchange membrane N types (A1... AN) used. ) / Dm 2 ), Q is the quantity of electricity during dialysis (A × H), and ZA is the total area (dm 2 ) of either the cation exchange membrane or the anion exchange membrane used. .)

本発明によれば、電気透析法を用いて、除去対象イオンである陰又は陽イオン種の少なくともどちらかを複数種含む電解質液中から同時に除去対象イオンを除去し、かつ有効イオン成分の透析時の損失が少ない電気透析装置を提供することができる。   According to the present invention, by using an electrodialysis method, ions to be removed are simultaneously removed from an electrolyte solution containing a plurality of anion or cation species that are ions to be removed, and active ion components are dialyzed. It is possible to provide an electrodialysis apparatus with a small loss.

以下、本発明を詳細に説明する。
本発明に係る電気透析装置は、有効イオンと複数種の除去対象イオンとを含む電解質液から、電気透析法により前記複数種の除去対象イオンを前記有効イオンよりも優先して除去する電気透析装置であって、
陽極陰極との間に透析膜である複数のカチオン交換膜および複数のアニオン交換膜を備え、
前記カチオン交換膜または前記アニオン交換膜の少なくともいずれかは、それぞれ面積の異なる複数の副イオン交換膜が重なって構成されており、
前記複数の副イオン交換膜は、前記除去対象イオンの下記式(1)で示される固有イオン移動量がそれぞれ異なっており、
前記副イオン交換膜が有する前記除去対象イオンの前記固有イオン移動量は、前記副イオン交換膜が有する前記有効イオンの前記固有イオン移動量よりも大きく、
前記副イオン交換膜のそれぞれの面積比は、下記式(2)で示されることを特徴とする電気透析装置である。
Hereinafter, the present invention will be described in detail.
The electrodialysis apparatus according to the present invention removes the plurality of types of removal target ions with priority over the effective ions from an electrolyte solution containing effective ions and a plurality of types of removal target ions by an electrodialysis method. Because
Comprising a plurality of cation exchange membranes and a plurality of anion exchange membranes are dialysis membrane between the anode and the cathode,
At least one of the cation exchange membrane or the anion exchange membrane is configured by overlapping a plurality of sub ion exchange membranes each having a different area,
Wherein the plurality of sub-ion exchange membranes, specific ion movement amount represented by the following formula (1) of the removal target ions have Tsu different respectively,
The specific ion transfer amount of the ions to be removed that the secondary ion exchange membrane has is larger than the specific ion transfer amount of the effective ions that the secondary ion exchange membrane has,
The area ratio of each of the secondary ion exchange membranes is represented by the following formula (2) .

ただし、固有イオン移動量(g/(A×H)/dm)=イオン移動量(g)÷電気量(A×H)÷イオン交換膜面積(dm) ・・・・(1)
式中、イオン交換膜面積は、1個の副イオン交換膜の面積を示す。)
式(2)は以下のように示される。
AMI1=(SA1×ZA×A1I1+・・・・+SAN×ZA×ANI1)×Q
AMI2=(SA1×ZA×A1I2+・・・・+SAN×ZA×ANI2)×Q


AMIn=(SA1×ZA×A1In+・・・・+SAN×ZA×ANIn)×Q
(式中、SA1・・・SANは副イオン交換膜の面積比であり、AMI1・・AMInは除去対象のイオンn種(I1・・・In)の除去目標量(g)であり、A1I1・・A1In〜ANI1・・ANInは使用する副イオン交換膜N種(A1・・・AN)ごとの除去対象イオンn種(I1・・・In)での固有イオン移動量(g/(A×H)/dm )、Qは透析時の電気量(A×H)、ZAは使用する前記カチオン交換膜または前記アニオン交換膜のいずれか一方の副イオン交換膜の全面積(dm )を示す。)
However, specific ion transfer amount (g / (A × H) / dm 2 ) = ion transfer amount (g) ÷ electric amount (A × H) ÷ ion exchange membrane area (dm 2 ) (1)
(In the formula, the area of the ion exchange membrane indicates the area of one sub ion exchange membrane .)
Formula (2) is shown as follows.
AMI1 = (SA1 × ZA × A1I1 +... + SAN × ZA × ANI1) × Q
AMI2 = (SA1 × ZA × A1I2 +... + SAN × ZA × ANI2) × Q


AMIn = (SA1 × ZA × A1In +... + SAN × ZA × ANIn) × Q
(Where SA1... SAN is the area ratio of the sub-ion exchange membrane, AMI1... AMIn is the removal target amount (g) of ion n species (I1... In) to be removed, and A1I1. A1In to ANI1... ANIn is a specific ion transfer amount (g / (A × H) for n types of ions to be removed (I1... In) for each of the secondary ion exchange membrane N types (A1... AN) used. ) / Dm 2 ), Q is the quantity of electricity during dialysis (A × H), and ZA is the total area (dm 2 ) of either the cation exchange membrane or the anion exchange membrane used. .)

本発明の電気透析装置の基本的構成は、脱塩すべく電解質液の陽極側に接する膜としてアニオン交換膜を配し、その陰極側にカチオン交換膜を配する。脱塩すべく電解質液中には除去対象イオンとして、陽イオンに複数種のイオン又は陰イオンに複数種が存在している溶液である。液中に複数の除去対象イオンが存在する電解質液としては、例えばNiや銅や金等の無電解メッキ液がある。   In the basic configuration of the electrodialysis apparatus of the present invention, an anion exchange membrane is arranged as a membrane in contact with the anode side of the electrolyte solution for desalting, and a cation exchange membrane is arranged on the cathode side. In the electrolyte solution to be desalted, there are a plurality of ions in the cation or a plurality of ions in the anion as ions to be removed. Examples of the electrolyte solution in which a plurality of ions to be removed exist in the solution include electroless plating solutions such as Ni, copper, and gold.

除去対象の陰イオン成分は、還元剤の分解物の亜燐酸もしくは蟻酸や、補充成分の対イオンとして硫酸や塩素等の陰イオン等であり、複数種のイオンが使用に伴って蓄積する。また、除去対象の陽イオン成分は、各種有機酸や還元剤等の対イオンとしてNaやk等、そして不純物イオンとして鉄や銅や鉛等の金属イオン等の複数種が蓄積する。その為各イオンに適するイオン交換膜を1つの透析装置の中に複数種配置した電気透析装置を用いる。   The anion component to be removed is phosphorous acid or formic acid, which is a decomposition product of the reducing agent, and an anion such as sulfuric acid or chlorine as a counter ion of the supplement component, and a plurality of types of ions accumulate with use. In addition, the cation component to be removed accumulates a plurality of types such as Na and k as counter ions such as various organic acids and reducing agents, and metal ions such as iron, copper and lead as impurity ions. For this reason, an electrodialysis apparatus in which a plurality of ion exchange membranes suitable for each ion are arranged in one dialysis apparatus is used.

本発明では以下で得られる複数の固有イオン移動量(g/(A×H)/dm)を持つイオン交換膜を1つの電気透析装置内に組み込むことを特徴とする。
固有イオン移動量は対象イオンに対してイオン交換膜ごとに有する固有の値で、下記式(1)により得ることが出来る.
固有イオン移動量(g/(A×H)/dm)=イオン移動量(g)÷電気量(A×H)÷イオン交換膜面積(dm) ・・・・(1)
The present invention is characterized in that an ion exchange membrane having a plurality of intrinsic ion migration amounts (g / (A × H) / dm 2 ) obtained below is incorporated in one electrodialysis apparatus.
The specific ion transfer amount is a specific value of each ion exchange membrane with respect to the target ion, and can be obtained by the following formula (1).
Inherent ion transfer amount (g / (A × H) / dm 2 ) = ion transfer amount (g) ÷ electric amount (A × H) ÷ ion exchange membrane area (dm 2 ) (1)

式(1)中のイオン移動量は目的イオンの透析処理により移動した量(g)で与えられ、電気量はイオン交換膜への電流と時間の積で与えられ、またイオン交換膜面積は透析装置の陽極と陰極間に設置されているアニオンまたはカチオン交換膜の総面積で与えられる。   In formula (1), the amount of ion movement is given by the amount (g) of the target ion moved by dialysis treatment, the amount of electricity is given by the product of current and time to the ion exchange membrane, and the ion exchange membrane area is dialysis It is given by the total area of the anion or cation exchange membrane placed between the anode and cathode of the device.

本発明においては、前記カチオン交換膜およびアニオン交換膜の少なくともいずれか一方が複数の膜からなり、前記複数の膜は前記固有イオン移動量(g/(A×H)/dm)から求められた膜の面積比が異なることが好ましい。 In the present invention, at least one of the cation exchange membrane and the anion exchange membrane comprises a plurality of membranes, and the plurality of membranes are determined from the intrinsic ion migration amount (g / (A × H) / dm 2 ). It is preferable that the area ratios of the films differ.

また、本発明においては、除去対象イオンが陰イオンからなり、前記陰イオンがn種(I1・・・In)で、使用するアニオン交換膜がN種(A1・・・AN)の場合、前記N種のアニオン交換膜の面積比(SA1・・・SAN)は下記の式から求められることが好ましい。   Further, in the present invention, when the ion to be removed is an anion, the anion is n species (I1... In), and the anion exchange membrane to be used is N species (A1... AN), The area ratio (SA1... SAN) of the N kinds of anion exchange membranes is preferably obtained from the following formula.

AMI1=(SA1×ZA×A1I1+・・・・+SAN×ZA×ANI1)×Q
AMI2=(SA1×ZA×A1I2+・・・・+SAN×ZA×ANI2)×Q


AMIn=(SA1×ZA×A1In+・・・・+SAN×ZA×ANIn)×Q
(式中、AMI1・・AMInは除去対象の陰イオンn種(I1・・・In)の除去目標量(g)、A1I1・・A1In〜ANI1・・ANInは使用するアニオン交換膜N種(A1・・・AN)ごとの除去対象陰イオンn種(I1・・・In)での固有イオン移動量(g/(A×H)/dm)、Qは透析時の電気量(A×H)、ZAは使用するアニオン交換膜の全面積(dm)を示す。)
AMI1 = (SA1 × ZA × A1I1 +... + SAN × ZA × ANI1) × Q
AMI2 = (SA1 × ZA × A1I2 +... + SAN × ZA × ANI2) × Q


AMIn = (SA1 × ZA × A1In +... + SAN × ZA × ANIn) × Q
(In the formula, AMI1 ·· AMIn is the removal target amount (g) of anion n species (I1... In) to be removed, and A1I1 ·· A1In to ANI1 ·· ANIn are the anion exchange membrane N species (A1 · · · AN (specific ion movement amount at I1 ··· in) (g / ( a × H) removing the target anion n species each) / dm 2), Q is the quantity of electricity during dialysis (a × H ), ZA represents the total area (dm 2 ) of the anion exchange membrane used.)

また、本発明においては、除去対象イオンが陽イオンからなり、前記陽イオンがn種(I1・・・In)で、使用するカチオン交換膜がN種(K1・・・KN)の場合、前記N種のカチオン交換膜の面積比(SK1・・・SKN)が下記の式から求められることが好ましい。   Further, in the present invention, when the ion to be removed is a cation, the cation is n species (I1... In), and the cation exchange membrane to be used is N species (K1... KN), It is preferable that the area ratio (SK1... SKN) of the N kinds of cation exchange membranes is obtained from the following formula.

KMI1=(SK1×ZK×K1I1+・・・・+SKN×ZK×KNI1)×Q
KMI2=(SK1×ZK×K1I2+・・・・+SKN×ZK×KNI2)×Q


KMIn=(SK1×ZK×K1In+・・・・+SKN×ZK×KnIn)×Q
(式中、KMI1・・KMInは除去対象の陽イオンn種(I1・・・In)の除去目標量(g)、K1I1・・K1In〜KNI1・・KNInは使用するカチオン交換膜N種(K1・・・KN)ごとの除去対象陽イオンn種(I1・・・In)での固有イオン移動量(g/(A×H)/dm)、Qは透析時の電気量(A×H)、ZKは使用するカチオン交換膜の全面積(dm)を示す。)
KMI1 = (SK1 × ZK × K1I1 +... + SKN × ZK × KNI1) × Q
KMI2 = (SK1 × ZK × K1I2 ++... + SKN × ZK × KNI2) × Q


KMIn = (SK1 × ZK × K1In +... + SKN × ZK × KnIn) × Q
(Where KMI1 ·· KMIn is the removal target amount (g) of cation n species (I1... In) to be removed, and K1I1 ·· K1In to KNI1 ·· KNIn are cation exchange membrane N species (K1) · · · KN (specific ion movement amount at I1 ··· in) (g / ( a × H) removing the target cation n species each) / dm 2), Q is the quantity of electricity during dialysis (a × H ), ZK represents the total area (dm 2 ) of the cation exchange membrane used.)

本発明で用いられるイオン交換膜のアニオン交換膜は、還元剤の分解物の亜燐酸や蟻酸等の除去に優れる膜であり、アストム社製ネオセプタACSや旭硝子エンジニアリング社製のセレミオンASV等が用いられる。補充成分の対イオンとして硫酸/塩素等の除去性に優れる膜としては、アストム社製ネオセプタAM1、AM3や旭硝子エンジニアリング社製のセレミオンAMV膜が除去目的量に応じて用いられる。   The anion exchange membrane of the ion exchange membrane used in the present invention is a membrane excellent in the removal of phosphorous acid, formic acid and the like, which are decomposition products of the reducing agent, such as Astom Neocepta ACS, Asahi Glass Engineering Selemion ASV, etc. . As membranes excellent in removability of sulfuric acid / chlorine or the like as counter ions of the supplement component, Astom Neoceptors AM1 and AM3 and Asahi Glass Engineering Selemion AMV membranes are used according to the removal target amount.

また本発明で用いられるカチオン交換膜は、対イオンとしてNa/k等を優先的に除去したい場合はセレミオンCMV膜やアストム社製ネオセプタCM1やCM2等が用いられる。鉄や銅や鉛等の金属不純物イオン等を優先的に除去したい場合は、アストム社製ネオセプタCMSや旭硝子エンジニアリング社製のセレミオンCSOやデュポン社製のナフィオン424等が用いられる。   As the cation exchange membrane used in the present invention, a Selemion CMV membrane, an Astom Neoceptor CM1 or CM2 or the like is used when Na / k or the like is preferentially removed as a counter ion. When it is desired to preferentially remove metal impurity ions such as iron, copper and lead, Astom Neoceptor CMS, Asahi Glass Engineering Selemion CSO, DuPont Nafion 424 and the like are used.

イオン交換膜の面積比率は、アニオン交換膜およびカチオン交換膜の除去目的量に応じて面積比を決定する。
また、本発明で用いられる電解条件は特に制限は無いが、通常0.1A/dmから10A/dmが通常用いられる。
The area ratio of the ion exchange membrane is determined according to the removal target amount of the anion exchange membrane and the cation exchange membrane.
The electrolysis conditions used in the present invention are not particularly limited, but usually 0.1 A / dm 2 to 10 A / dm 2 is usually used.

以上により、各陽・陰イオン中の複数種の除去対象イオン種が混在する場合、電気透析装置を構成しているイオン交換膜の面積比率を変えることで、複数の除去対象イオンの各目的量が同時に得られ、有効成分の透析時の損失が減少し透析効率が向上する。   As described above, when multiple types of ion species to be removed are mixed in each positive / anion ion, each target amount of multiple ions to be removed can be changed by changing the area ratio of the ion exchange membrane constituting the electrodialysis apparatus. At the same time, the loss of active ingredients during dialysis is reduced and dialysis efficiency is improved.

本発明は、複数イオンの除去を目的とする電気透析において、アニオン交換膜またはカチオン交換膜を、複数種の固有イオン移動量を有するイオン交換膜で構成することで目的濃度に同時に到達するように配置した電気透析装置を用いる。   In the electrodialysis for the purpose of removing multiple ions, the present invention is configured such that an anion exchange membrane or a cation exchange membrane is composed of an ion exchange membrane having a plurality of kinds of intrinsic ion migration amounts to simultaneously reach a target concentration. Use the arranged electrodialyzer.

以下に図面を用いて本発明の電気透析装置を、無電解Niを例にして詳細に説明する。
図1は本発明の電気透析装置の一実施態様を示す概念図である。図1において、電気透析対象とするメッキ液1は、循環ポンプ6により電気透析装置3を経由してメッキ槽2に循環再生される。電気透析装置3で透析された濃縮液4は循環ポンプ7により、電気透析装置3を経由して濃縮槽5に循環再生される。透析時は電源8の直流電源により所定電流が通電される。
Hereinafter, the electrodialysis apparatus of the present invention will be described in detail using electroless Ni as an example with reference to the drawings.
FIG. 1 is a conceptual diagram showing an embodiment of the electrodialysis apparatus of the present invention. In FIG. 1, a plating solution 1 to be electrodialyzed is circulated and regenerated in a plating tank 2 via an electrodialyzer 3 by a circulation pump 6. The concentrated solution 4 dialyzed by the electrodialysis apparatus 3 is circulated and regenerated to the concentration tank 5 via the electrodialysis apparatus 3 by the circulation pump 7. At the time of dialysis, a predetermined current is supplied by a DC power source of the power source 8.

図2は本発明の電気透析装置の他の実施態様を示す概念図である。アニオン交換膜とカチオン交換膜が各々N種類のイオン交換膜で構成されている電気透析装置3を示す。メッキ液はメッキ室9に導入され、濃縮室10にはメッキ液に影響を与えない塩例えば硫酸Naや硫酸等の電解質が導入される。ブロック1では除去対象とする陰又は陽イオンの第1番目(例えば陰イオンでは硫酸、陽イオンではNa)を優先する為のイオン交換膜(アニオン膜A1、カチオン膜K1)で構成される。またブロックNでは除去対象とする陰又は陽イオンの第N番目(例えば陰イオンでは亜燐酸、陽イオンでは鉄)を優先する為のイオン交換膜(アニオン膜An、カチオン膜Kn)で構成される。ブロックの配分数は各イオンの固有イオン移動量(g/(A×H)/dm)に基づいて透析所要時間等により決定される。図2では、N種類のイオン交換膜をブロック毎に配置したが、膜面積比率が維持されていればであればその順序は問わない。 FIG. 2 is a conceptual diagram showing another embodiment of the electrodialysis apparatus of the present invention. 1 shows an electrodialysis apparatus 3 in which an anion exchange membrane and a cation exchange membrane are each composed of N types of ion exchange membranes. A plating solution is introduced into the plating chamber 9, and an electrolyte such as sodium sulfate or sulfuric acid that does not affect the plating solution is introduced into the concentration chamber 10. The block 1 is composed of an ion exchange membrane (anion membrane A1, cation membrane K1) for giving priority to the first negative or positive ion to be removed (for example, sulfuric acid for anion and Na for positive ion). The block N is composed of an ion exchange membrane (anion membrane An, cation membrane Kn) for giving priority to the Nth anion or cation to be removed (for example, phosphorous acid for anions, iron for cations). . The number of blocks allocated is determined by the time required for dialysis and the like based on the specific ion movement amount (g / (A × H) / dm 2 ) of each ion. In FIG. 2, N types of ion exchange membranes are arranged for each block, but the order of the membranes is not limited as long as the membrane area ratio is maintained.

本発明におけるイオンの固有イオン移動量(g/(A×H)/dm)は、図3および図4で示す装置により測定される。
図3はカチオン交換膜の固有イオン移動量を求める装置を示す概念図である。図3によりカチオン交換膜の固有イオン移動量を求めることが出来る。陽極室側に所定濃度に調整された脱塩液を規定量入れ、評価対象のカチオン交換膜21を設置し、陰極側に硫酸や硫酸Na等の電解質を入れ、一定の電気量を与えイオン移動量を測定し、単位当たりに換算し求めることが出来る。
In the present invention, the specific ion migration amount (g / (A × H) / dm 2 ) of ions is measured by the apparatus shown in FIGS.
FIG. 3 is a conceptual diagram showing an apparatus for determining the intrinsic ion migration amount of the cation exchange membrane. From FIG. 3, the intrinsic ion migration amount of the cation exchange membrane can be obtained. A predetermined amount of desalted liquid adjusted to a predetermined concentration is placed on the anode chamber side, a cation exchange membrane 21 to be evaluated is installed, an electrolyte such as sulfuric acid or sodium sulfate is placed on the cathode side, and a certain amount of electricity is applied to move ions. The amount can be measured and converted per unit.

図4はアニオン交換膜の固有イオン移動量を求める装置を示す概念図である。図4によりアニオン交換膜の固有イオン移動量を求めることが出来る。陰極室側に所定濃度に調整された脱塩液を規定量入れ、評価対象のアニオン交換膜31を設置し、陽極側に硫酸や硫酸Na等の電解質を入れ、一定の電気量を与えイオン移動量を測定し、単位当たりに換算し求めることが出来る。   FIG. 4 is a conceptual diagram showing an apparatus for obtaining the intrinsic ion migration amount of the anion exchange membrane. With reference to FIG. 4, the intrinsic ion migration amount of the anion exchange membrane can be obtained. A predetermined amount of desalted liquid adjusted to a predetermined concentration is placed on the cathode chamber side, an anion exchange membrane 31 to be evaluated is installed, and an electrolyte such as sulfuric acid or sodium sulfate is placed on the anode side, giving a certain amount of electricity and ion migration The amount can be measured and converted per unit.

以下、実施例を示して本発明を具体的に説明する。
実施例1
図4の装置を用い、無電解Ni液(Ni2+:5g/L、硫酸(A):40g/L、亜燐酸(B)2−:60g/L、次亜燐酸:35g/L、ナトリウム:60g/L)1Lを脱塩室に入れ、10g/Lの酢酸ナトリウム溶液1Lを濃縮室に入れた。評価用アニオン膜として膜面積1dmの陰イオン交換膜AMV膜(SI)又はACS膜(SII)を形成し、10A×Hの電気量を与え濃縮室に移動した硫酸2−(A)、亜燐酸2−(B)、次亜燐酸(C)の各イオンをキャピラリー電気泳動装置(横河アナリィティカル社製)を用いて測定し各膜に対応する各イオンの移動量(g)を得た。その結果を表1に示す
Hereinafter, the present invention will be specifically described with reference to examples.
Example 1
Using the apparatus of FIG. 4, electroless Ni solution (Ni 2+ : 5 g / L, sulfuric acid (A): 40 g / L, phosphorous acid (B) 2− : 60 g / L, hypophosphorous acid : 35 g / L, sodium : 60 g / L) 1 L was placed in a desalting chamber, and 1 L of a 10 g / L sodium acetate solution was placed in the concentration chamber. An anion exchange membrane AMV membrane (SI) or ACS membrane (SII) having a membrane area of 1 dm 2 is formed as an anion membrane for evaluation, and sulfuric acid 2- (A), phosphate 2-(B), hypophosphite - the amount of movement of the ions each ion corresponding to each film was measured using capillary electrophoresis apparatus (manufactured by Yokogawa Ana Ryi Pharmaceuticals, Inc.) in (C) (g) Obtained. The results are shown in Table 1.

Figure 0004991655
Figure 0004991655

ついで各膜の各イオンの固有イオン移動量(g/(A×H)/dm)を得た。その結果を表2に示す Subsequently, the specific ion transfer amount (g / (A × H) / dm 2 ) of each ion of each film was obtained. The results are shown in Table 2.

Figure 0004991655
Figure 0004991655

ついで、無電解Niメッキ液として陰イオン不要成分の亜燐酸と硫酸イオンを除去する為に、図1に示す電気透析装置を用いて、上記メッキ液組成100Lの老化した液を再生の為に、硫酸濃度(A)を5g/Lに(除去目標量は3500g)また亜燐酸濃度(B)を10g/Lに(除去目標量は5000g)すべく、アニオン交換膜の膜面積35dmを有する透析ユニットを用意し、電気量をQとした時の、陰イオン交換膜の膜面積比率(AMV/ACS)=(SI/SII)を以下求めた。 Then, in order to remove phosphorous acid and sulfate ions, which are components that do not require anions, as an electroless Ni plating solution, using the electrodialysis apparatus shown in FIG. Dialysis with an anion exchange membrane area of 35 dm 2 to achieve a sulfuric acid concentration (A) of 5 g / L (removal target amount is 3500 g) and phosphorous acid concentration (B) is 10 g / L (removal target amount is 5000 g). The unit was prepared, and the membrane area ratio (AMV / ACS) = (SI / SII) of the anion exchange membrane when the amount of electricity was Q was determined below.

(硫酸イオン)
3500=(35×SI×2.2+35×SII×1.3)×Q
(亜燐酸イオン)
5000=(35×SI×0.9+35×SII×2.6)×Q
AMV/ACS=SI/SII=16.3Q/49.3Q
以上により、アニオン交換膜の膜面積35dmでの各膜面積比率は、以下のようにして得られる。
(Sulfate ion)
3500 = (35 × SI × 2.2 + 35 × SII × 1.3) × Q
(Phosphite ion)
5000 = (35 × SI × 0.9 + 35 × SII × 2.6) × Q
AMV / ACS = SI / SII = 16.3Q / 49.3Q
As described above, each membrane area ratio in the membrane area of 35 dm 2 of the anion exchange membrane is obtained as follows.

AMV膜面積(dm)=35(dm)×16.3/(16.3+49.3)=8.75
ACS膜面積(dm)=35(dm)×49.3/(16.3+49.3)=26.25
AMV膜は8.75dmで、ACS膜は26.25dmである。
AMV film area (dm 2 ) = 35 (dm 2 ) × 16.3 / (16.3 + 49.3) = 8.75
ACS film area (dm 2 ) = 35 (dm 2 ) × 49.3 / (16.3 + 49.3) = 26.25
The AMV film is 8.75 dm 2 and the ACS film is 26.25 dm 2 .

上記比率で構成された電気透析装置を用いて、電流5(A)で透析を13.11時間行うことで硫酸と亜燐酸イオンの各々が以下の様にメッキ液から除去された。
硫酸イオン=(8.75×2.2+26.25×1.3)×5(A)×13.11(H)=3499(g)≒3500(g)
亜燐酸イオン=(8.75×0.9+26.25×2.6)×5(A)×13.11(H)=4996(g)≒5000(g)
Each of sulfuric acid and phosphite ions was removed from the plating solution as follows by performing dialysis for 13.11 hours at an electric current of 5 (A) using the electrodialyzer configured at the above ratio.
Sulfate ion = (8.75 × 2.2 + 26.25 × 1.3) × 5 (A) × 13.11 (H) = 3499 (g) ≈3500 (g)
Phosphite ion = (8.75 × 0.9 + 26.25 × 2.6) × 5 (A) × 13.11 (H) = 4996 (g) ≈5000 (g)

以上のように除去目標の硫酸(3500g)と亜燐酸イオン(5000g)は同時に得られた。この場合の有効成分の次亜燐酸の損失量は以下により得られ,1262gであった。
次亜燐酸イオン=(8.75×0.4+26.25×0.6)×5(A)×13.11(H)=1262(g)
As described above, removal target sulfuric acid (3500 g) and phosphite ion (5000 g) were obtained at the same time. In this case, the loss of hypophosphorous acid as an active ingredient was obtained as follows and was 1262 g.
Hypophosphite ion = (8.75 × 0.4 + 26.25 × 0.6) × 5 (A) × 13.11 (H) = 1262 (g)

比較例1
実施例1に同様な液組成の無電解NIメッキ液量(100L)を実施例1と同様の装置でアニオン交換膜膜面積(35dm)、電流(5A)で陰イオン交換膜をAMV膜だけで構成した場合の各イオンの必要透析時間を求めた。
Comparative Example 1
The electroless NI plating solution volume (100 L) having the same liquid composition as in Example 1 was prepared by using the same apparatus as in Example 1 with an anion exchange membrane area (35 dm 2 ) and current (5 A) as an anion exchange membrane only for an AMV membrane. The required dialysis time of each ion when configured with

硫酸と亜燐酸イオンの目標濃度を得るには実施例1記載のAMV膜の固有イオン移動量から各々
(硫酸の場合)
3500=2.2×35×5(A)×T1(H)
T1=9.09(H)
(亜燐酸の場合)
5000=0.9×35×5(A)×T2(H)
T2=31.7(H)
となり、透析必要時間は大きく異なり、どちらかのイオンが過剰又は不足状態が生ずる。
In order to obtain the target concentrations of sulfuric acid and phosphite ions, the specific ion migration amounts of the AMV membrane described in Example 1 are used (in the case of sulfuric acid).
3500 = 2.2 × 35 × 5 (A) × T1 (H)
T1 = 9.09 (H)
(In the case of phosphorous acid)
5000 = 0.9 × 35 × 5 (A) × T2 (H)
T2 = 31.7 (H)
Thus, the time required for dialysis varies greatly, and either ion is excessive or insufficient.

又、硫酸と亜燐酸イオンを目標量を得ようとするとT2=31.7(H)の透析が必要となり、有効成分の次亜燐酸は以下の式で得られる様に、2219(g)除去され、実施例1よりも1.75倍多く除外された。
次亜燐酸イオン=(35×0.4)×5(A)×31.7(H)=2219(g)
Further, when obtaining target amounts of sulfuric acid and phosphite ions, dialysis of T2 = 31.7 (H) is required, and the active ingredient hypophosphorous acid is removed by 2219 (g) as obtained by the following formula. And 1.75 times more than Example 1.
Hypophosphite ion = (35 × 0.4) × 5 (A) × 31.7 (H) = 2219 (g)

比較例2
実施例1に同様な液組成で液量(100L)、アニオン交換膜膜面積(35dm)、電流(5A)で陰イオン交換膜をACS膜だけで構成した場合の各イオンの必要透析時間を求めた。
Comparative Example 2
The required dialysis time of each ion when the anion exchange membrane is composed of only an ACS membrane with the same liquid composition as in Example 1 (100 L), anion exchange membrane area (35 dm 2 ), and current (5 A). Asked.

硫酸と亜燐酸イオンの目標濃度を得るには実施例1記載のACS膜の固有イオン移動量から各々
(硫酸の場合)
3500=1.3×35×5(A)×T1(H)
T1=15.38(H)
(亜燐酸の場合)
5000=2.6×35×5(A)×T1(H)
T2=10.99(H)
となり、透析必要時間は大きく異なり、どちらかのイオンが過剰又は不足状態が生ずる。
In order to obtain the target concentration of sulfuric acid and phosphite ions, the specific ion transfer amount of the ACS membrane described in Example 1 is used (in the case of sulfuric acid).
3500 = 1.3 × 35 × 5 (A) × T1 (H)
T1 = 15.38 (H)
(In the case of phosphorous acid)
5000 = 2.6 × 35 × 5 (A) × T1 (H)
T2 = 10.99 (H)
Thus, the time required for dialysis varies greatly, and either ion is excessive or insufficient.

又、硫酸と亜燐酸イオンを目標量を得ようとするとT2=15.38(H)の透析が必要となり、有効成分の次亜燐酸は以下の式で得られる様に、1615(g)除去され、実施例1よりも1.28倍多く除外された。
次亜燐酸イオン=(35×0.6)×5(A)×15.38(H)=1615(g)
In addition, when obtaining target amounts of sulfuric acid and phosphite ions, dialysis of T2 = 15.38 (H) is required, and the active ingredient hypophosphorous acid is removed by 1615 (g) as obtained by the following formula. And 1.28 times more excluded than Example 1.
Hypophosphite ion = (35 × 0.6) × 5 (A) × 15.38 (H) = 1615 (g)

実施例2
図3の装置を用い無電解Ni液(Ni(D):5g/L、Na(A):50g/L、不純物イオンのFe(B):2g/L、鉛(C):0.5g/L、次亜燐酸:20g/L)1Lを脱塩室に入れ、10g/Lの酢酸ナトリウム溶液1Lを濃縮室に入れた。評価用カチオン膜として膜面積1dmの陽イオン交換膜膜ナフィオン424膜(SI)又はセレミオンCMV膜(SII)を形成し、10AHの電気量を与え、濃縮室に移動したNa(A)、鉄(B)、鉛(C)、Ni(D)イオンをキャピラリー電気泳動装置を用いて測定し、各膜に対応する各イオンの移動量(g)を得た。その結果を表3に示す
Example 2
Electroless Ni liquid (Ni (D): 5 g / L, Na (A): 50 g / L, Fe (B) of impurity ions: 2 g / L, lead (C): 0.5 g / L using the apparatus of FIG. L, hypophosphorous acid: 20 g / L) 1 L was placed in the desalting chamber, and 1 L of 10 g / L sodium acetate solution was placed in the concentration chamber. A cation exchange membrane Nafion 424 membrane (SI) or a Selemion CMV membrane (SII) having a membrane area of 1 dm 2 was formed as a cation membrane for evaluation, an electric quantity of 10 AH was given, and Na (A), iron moved to the concentration chamber (B), lead (C), and Ni (D) ions were measured using a capillary electrophoresis apparatus to obtain a migration amount (g) of each ion corresponding to each film. The results are shown in Table 3.

Figure 0004991655
Figure 0004991655

ついで各膜での各イオンの固有イオン移動量(g/(A×H)/dm)以下を得た。その結果を表4に示す Subsequently, a specific ion transfer amount (g / (A × H) / dm 2 ) or less of each ion in each film was obtained. The results are shown in Table 4.

Figure 0004991655
Figure 0004991655

上記メッキ液(100L)を図1に示す電気透析装置を用いて、無電解Niメッキ液としての不要成分の液再生の為にNa濃度(A)を10g/Lに(除去目標量は4000g)、鉄濃度(B)を0.1g/Lに(除去目標量は190g)、鉛濃度(C)を0.05g/Lに(除去目標量は45g)すべく、カチオン交換膜の膜面積35dmを有する透析装置を用意し、電気量をQとした時の陽イオン交換膜の膜面積比率(CMV/CSO/424)=(SI/SII/SIII)を以下求めた。 Using the electrodialyzer shown in FIG. 1 for the plating solution (100 L), the Na concentration (A) is 10 g / L (removal target amount is 4000 g) in order to regenerate unnecessary components as an electroless Ni plating solution. The membrane area of the cation exchange membrane is 35 dm so that the iron concentration (B) is 0.1 g / L (removal target amount is 190 g) and the lead concentration (C) is 0.05 g / L (removal target amount is 45 g). 2 was prepared, and the membrane area ratio (CMV / CSO / 424) = (SI / SII / SIII) of the cation exchange membrane when the amount of electricity was Q was determined as follows.

(Naイオン)
4000=(35×SI×2.0+35×SII×1.4+35×SIII×1.1)×Q
(鉄イオン)
190=(35×SI×0.05+35×SII×0.12+35×SIII×0.08)×Q
(鉛イオン)
45=(35×SI×0.01+35×SII×0.02+35×SIII×0.05)×Q
(CMV/CSO/424)=(SI/SII/SIII)=35Q/24.7Q/8.8Q
以上によりカチオン交換膜の膜面積35dmでの各膜面積比率は以下得られる。
(Na ion)
4000 = (35 × SI × 2.0 + 35 × SII × 1.4 + 35 × SIII × 1.1) × Q
(Iron ion)
190 = (35 × SI × 0.05 + 35 × SII × 0.12 + 35 × SIII × 0.08) × Q
(Lead ion)
45 = (35 × SI × 0.01 + 35 × SII × 0.02 + 35 × SIII × 0.05) × Q
(CMV / CSO / 424) = (SI / SII / SIII) = 35Q / 24.7Q / 8.8Q
By the above, each membrane area ratio with the membrane area of 35 dm 2 of the cation exchange membrane is obtained as follows.

CMV膜面積(dm)=35(dm)×35/(35+24.7+8.8)=17.8
CSO膜面積(dm)=35(dm)×24.7/(35+24.7+8.8)=12.6
424面積(dm)=35(dm)×8.8/(35+24.7+8.8)=4.6
以上により各膜面積は,CMV膜は17.8dm、CSO膜は12.6dm、ナフィオン膜は4.6dmが得られた。
CMV membrane area (dm 2 ) = 35 (dm 2 ) × 35 / (35 + 24.7 + 8.8) = 17.8
CSO film area (dm 2 ) = 35 (dm 2 ) × 24.7 / (35 + 24.7 + 8.8) = 12.6
424 area (dm 2 ) = 35 (dm 2 ) × 8.8 / (35 + 24.7 + 8.8) = 4.6
Each membrane area by more than, CMV membranes 17.8dm 2, CSO film 12.6dm 2, Nafion film 4.6Dm 2 was obtained.

上記比率において電流5Aで透析を13.7時間行うことでNaと鉄と鉛イオンは以下の除去量(g)が得られた。
Naイオン=(17.8×2.0+12.6×1.4+4.6×1.1)×5(A)×13.7(H)=3995(g)≒4000(g)
鉄イオン=(17.8×0.05+12.6×0.12+4.6×0.08)×5(A)×13.7(H)=190(g)
鉛イオン=(17.8×0.01+12.6×0.02+4.6×0.05)×5(A)×13.7(H)=45(g)
以上のように除去目標のNa(4000g)と鉄(190g)と鉛(45g)イオンは同時に得られた。
The following removal amount (g) of Na, iron, and lead ions was obtained by performing dialysis for 13.7 hours at a current of 5 A at the above ratio.
Na ion = (17.8 × 2.0 + 12.6 × 1.4 + 4.6 × 1.1) × 5 (A) × 13.7 (H) = 3995 (g) ≈4000 (g)
Iron ion = (17.8 × 0.05 + 12.6 × 0.12 + 4.6 × 0.08) × 5 (A) × 13.7 (H) = 190 (g)
Lead ion = (17.8 × 0.01 + 12.6 × 0.02 + 4.6 × 0.05) × 5 (A) × 13.7 (H) = 45 (g)
As described above, removal target Na (4000 g), iron (190 g) and lead (45 g) ions were obtained simultaneously.

この場合の有効成分のNiの損失量は以下式により得られ1973gであった。
Niイオン=(17.8×0.76+12.6×0.9+4.6×0.86)×5(A)×13.7(H)=1973(g)
The loss amount of Ni as an active ingredient in this case was obtained by the following formula and was 1973 g.
Ni ion = (17.8 × 0.76 + 12.6 × 0.9 + 4.6 × 0.86) × 5 (A) × 13.7 (H) = 1973 (g)

比較例3
実施例2に同様な液組成で液量(100L)、カチオン交換膜の膜面積(35dm)、電流(5A)で陽イオン交換膜をCMV膜だけで構成した場合の各イオンの必要透析時間を以下に求めた。
Comparative Example 3
Necessary dialysis time for each ion when the cation exchange membrane is composed of only a CMV membrane with the same liquid composition as in Example 2 (100 L), cation exchange membrane area (35 dm 2 ), and current (5 A). Was determined below.

NaとFeと鉛イオンの除去目標量を得るには実施例2記載のCMV膜の固有イオン移動量から各々
(Naイオンの場合)
4000=2.0×35×5×T1(H)
T1=11.4(H)
(Feイオンの場合)
190=0.05×35×5×T2(H)
T2=21.7(H)
(鉛イオンの場合)
45=0.01×35×5×T3(H)
T3=25.7(H)
となり、透析必要時間は大きく異なり、どちらかのイオンが過剰又は不足状態が生ずる。
In order to obtain removal target amounts of Na, Fe, and lead ions, the specific ion migration amount of the CMV film described in Example 2 is used (in the case of Na ions).
4000 = 2.0 × 35 × 5 × T1 (H)
T1 = 11.4 (H)
(In the case of Fe ions)
190 = 0.05 × 35 × 5 × T2 (H)
T2 = 21.7 (H)
(Lead ion)
45 = 0.01 × 35 × 5 × T3 (H)
T3 = 25.7 (H)
Thus, the time required for dialysis varies greatly, and either ion is excessive or insufficient.

また、Naと鉄と鉛イオンの除去目標量を得ようとするとT3=25.7(時間)の透析が必要となり、有効成分のNiの除去量は以下の式により得られ、3418(g)除去され、実施例1よりも1.73倍多く除外された。
Niイオン=(35×0.76)×5(A)×25.7(H)=3418(g)
Further, when trying to obtain a target removal amount of Na, iron and lead ions, dialysis of T3 = 25.7 (hours) is required, and the removal amount of Ni as an active ingredient is obtained by the following equation, 3418 (g) It was removed and excluded 1.73 times more than Example 1.
Ni ion = (35 × 0.76) × 5 (A) × 25.7 (H) = 3418 (g)

本発明の電気透析装置は、電気透析法を用いて、除去対象イオンである陰又は陽イオン種の少なくともどちらかを複数種含む電解質液中から同時に除去対象イオンを除去し、かつ有効イオン成分の透析時の損失が少ないので、有価成分の回収として利用することができる。   The electrodialysis apparatus of the present invention simultaneously removes ions to be removed from an electrolyte solution containing a plurality of at least one of anion and cation species that are ions to be removed using an electrodialysis method, and the active ion component. Since there is little loss during dialysis, it can be used to recover valuable components.

本発明の電気透析装置の一実施態様を示す概念図である。It is a conceptual diagram which shows one embodiment of the electrodialysis apparatus of this invention. 本発明の電気透析装置の他の実施態様を示す概念図である。It is a conceptual diagram which shows the other embodiment of the electrodialysis apparatus of this invention. カチオン交換膜の固有イオン移動量を求める装置を示す概念図である。It is a conceptual diagram which shows the apparatus which calculates | requires the intrinsic | native ion movement amount of a cation exchange membrane. アニオン交換膜の固有イオン移動量を求める装置を示す概念図である。It is a conceptual diagram which shows the apparatus which calculates | requires the intrinsic | native ion movement amount of an anion exchange membrane.

符号の説明Explanation of symbols

1 メッキ液
2 メッキ槽
3 電気透析装置
4 濃縮液
5 濃縮液槽
6,7 循環ポンプ
8 電源
21 カチオン交換膜
22 脱塩室
23 濃縮室
31 アニオン交換膜
32 脱塩室
33 濃縮室
DESCRIPTION OF SYMBOLS 1 Plating liquid 2 Plating tank 3 Electrodialyzer 4 Concentrated liquid 5 Concentrated liquid tank 6,7 Circulating pump 8 Power supply 21 Cation exchange membrane 22 Desalination chamber 23 Concentration chamber 31 Anion exchange membrane 32 Desalination chamber 33 Concentration chamber

Claims (5)

有効イオンと複数種の除去対象イオンとを含む電解質液から、電気透析法により前記複数種の除去対象イオンを前記有効イオンよりも優先して除去する電気透析装置であって、
陽極陰極との間に透析膜である複数のカチオン交換膜および複数のアニオン交換膜を備え、
前記カチオン交換膜または前記アニオン交換膜の少なくともいずれかは、それぞれ面積の異なる複数の副イオン交換膜が重なって構成されており、
前記複数の副イオン交換膜は、前記除去対象イオンの下記式(1)で示される固有イオン移動量がそれぞれ異なっており、
前記副イオン交換膜が有する前記除去対象イオンの前記固有イオン移動量は、前記副イオン交換膜が有する前記有効イオンの前記固有イオン移動量よりも大きく、
前記副イオン交換膜のそれぞれの面積比は、下記式(2)で示されることを特徴とする電気透析装置。
固有イオン移動量(g/(A×H)/dm)=イオン移動量(g)÷電気量(A×H)÷イオン交換膜面積(dm) ・・・・(1)
式中、イオン交換膜面積は、1個の副イオン交換膜の面積を示す。)
式(2)は以下のように示される。
AMI1=(SA1×ZA×A1I1+・・・・+SAN×ZA×ANI1)×Q
AMI2=(SA1×ZA×A1I2+・・・・+SAN×ZA×ANI2)×Q


AMIn=(SA1×ZA×A1In+・・・・+SAN×ZA×ANIn)×Q
(式中、SA1・・・SANは副イオン交換膜の面積比であり、AMI1・・AMInは除去対象のイオンn種(I1・・・In)の除去目標量(g)であり、A1I1・・A1In〜ANI1・・ANInは使用する副イオン交換膜N種(A1・・・AN)ごとの除去対象イオンn種(I1・・・In)での固有イオン移動量(g/(A×H)/dm )、Qは透析時の電気量(A×H)、ZAは使用する前記カチオン交換膜または前記アニオン交換膜のいずれか一方の副イオン交換膜の全面積(dm )を示す。)
An electrodialysis apparatus that removes the plurality of types of removal target ions in preference to the effective ions by an electrodialysis method from an electrolyte solution containing effective ions and a plurality of types of removal target ions ,
Comprising a plurality of cation exchange membranes and a plurality of anion exchange membranes are dialysis membrane between the anode and the cathode,
At least one of the cation exchange membrane or the anion exchange membrane is configured by overlapping a plurality of sub ion exchange membranes each having a different area,
Wherein the plurality of sub-ion exchange membranes, specific ion movement amount represented by the following formula (1) of the removal target ions have Tsu different respectively,
The specific ion transfer amount of the ions to be removed that the secondary ion exchange membrane has is larger than the specific ion transfer amount of the effective ions that the secondary ion exchange membrane has,
The area ratio of each of the secondary ion exchange membranes is represented by the following formula (2) .
Inherent ion transfer amount (g / (A × H) / dm 2 ) = ion transfer amount (g) ÷ electric amount (A × H) ÷ ion exchange membrane area (dm 2 ) (1)
(In the formula, the area of the ion exchange membrane indicates the area of one sub ion exchange membrane .)
Formula (2) is shown as follows.
AMI1 = (SA1 × ZA × A1I1 +... + SAN × ZA × ANI1) × Q
AMI2 = (SA1 × ZA × A1I2 +... + SAN × ZA × ANI2) × Q


AMIn = (SA1 × ZA × A1In +... + SAN × ZA × ANIn) × Q
(Where SA1... SAN is the area ratio of the sub-ion exchange membrane, AMI1... AMIn is the removal target amount (g) of ion n species (I1... In) to be removed, and A1I1. A1In to ANI1... ANIn is a specific ion transfer amount (g / (A × H) for n types of ions to be removed (I1... In) for each of the secondary ion exchange membrane N types (A1... AN) used. ) / Dm 2 ), Q is the quantity of electricity during dialysis (A × H), and ZA is the total area (dm 2 ) of either the cation exchange membrane or the anion exchange membrane used. .)
前記副イオン交換膜が有する前記除去対象イオンの前記固有イオン移動量は、前記副イオン交換膜が有する前記有効イオンの前記固有イオン移動量のいずれよりも大きいことを特徴とする請求項1に記載の電気透析装置。2. The specific ion transfer amount of the ions to be removed included in the secondary ion exchange membrane is larger than any of the specific ion transfer amounts of the effective ions included in the secondary ion exchange membrane. Electrodialysis machine. 前記複数のカチオン交換膜および前記複数のアニオン交換膜のそれぞれは互いに離間し、Each of the plurality of cation exchange membranes and the plurality of anion exchange membranes are spaced apart from each other;
前記カチオン交換膜と前記アニオン交換膜とが交互に配置されていることを特徴とする請求項1または2に記載の電気透析装置。The electrodialysis apparatus according to claim 1 or 2, wherein the cation exchange membrane and the anion exchange membrane are alternately arranged.
前記除去対象イオンはいずれもアニオンであることを特徴とする請求項1乃至3のいずれか一項に記載の電気透析装置。The electrodialysis apparatus according to any one of claims 1 to 3, wherein all of the ions to be removed are anions. 前記除去対象イオンは、硫酸イオンおよび亜燐酸イオンであり、The ions to be removed are sulfate ions and phosphite ions,
前記有効イオンは、次亜燐酸イオンであることを特徴とする請求項1乃至4のいずれか一項に記載の電気透析装置。The electrodialyzer according to any one of claims 1 to 4, wherein the effective ions are hypophosphite ions.
JP2008189021A 2008-07-22 2008-07-22 Electrodialysis machine Expired - Fee Related JP4991655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008189021A JP4991655B2 (en) 2008-07-22 2008-07-22 Electrodialysis machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008189021A JP4991655B2 (en) 2008-07-22 2008-07-22 Electrodialysis machine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012103226A Division JP5393834B2 (en) 2012-04-27 2012-04-27 Electrodialysis apparatus for removing a plurality of ions to be removed from a liquid containing an electrolyte

Publications (2)

Publication Number Publication Date
JP2010022970A JP2010022970A (en) 2010-02-04
JP4991655B2 true JP4991655B2 (en) 2012-08-01

Family

ID=41729313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008189021A Expired - Fee Related JP4991655B2 (en) 2008-07-22 2008-07-22 Electrodialysis machine

Country Status (1)

Country Link
JP (1) JP4991655B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101966426B (en) * 2010-09-15 2012-07-25 中国科学院过程工程研究所 Electric dialyzator for desalting fermentation liquor
CN111717967A (en) * 2020-06-08 2020-09-29 江西怡皓环境工程有限公司 Integrated rural domestic sewage treatment equipment and sewage treatment method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63303078A (en) * 1987-06-01 1988-12-09 Tokuyama Soda Co Ltd Treatment of chemical nickel plating solution
DE19849278C1 (en) * 1998-10-15 2000-07-06 Atotech Deutschland Gmbh Method and device for the electrodialytic regeneration of an electroless plating bath
JP4025987B2 (en) * 2002-07-18 2007-12-26 奥野製薬工業株式会社 Method and apparatus for processing electroless nickel plating solution
JP4517177B2 (en) * 2004-05-06 2010-08-04 奥野製薬工業株式会社 Treatment method of electroless nickel plating solution
JP4799260B2 (en) * 2006-04-26 2011-10-26 日本カニゼン株式会社 Equipment for extending the life of electroless nickel plating solution

Also Published As

Publication number Publication date
JP2010022970A (en) 2010-02-04

Similar Documents

Publication Publication Date Title
US9669361B2 (en) Membrane electrolysis stack, electrodialysis device including the stack and method for the regeneration of an electroless plating bath
TWI421124B (en) Process to prepare amino acid-n, n-diacetic acid compounds
JP2015167922A (en) Electrodialyzer, electrodialysis method, and plating treatment system
JP4960288B2 (en) Electric deionized water production apparatus and deionized water production method
JP4799260B2 (en) Equipment for extending the life of electroless nickel plating solution
JP4991655B2 (en) Electrodialysis machine
JP2002322564A (en) System for regenerating current nonimpressed bath electrolyte by electrodialysis
JP2019107617A (en) Sterilization method of pure water production apparatus
JP4025987B2 (en) Method and apparatus for processing electroless nickel plating solution
JP5553492B2 (en) Method and apparatus for regenerating electroless plating solution
JP5393834B2 (en) Electrodialysis apparatus for removing a plurality of ions to be removed from a liquid containing an electrolyte
JP5277559B2 (en) Method and apparatus for recovering phosphoric acid from phosphoric acid-containing water
JP5072477B2 (en) Method for recovering acid from nitric hydrofluoric acid waste liquid
JP2008279417A (en) Electrolyte liquid regeneration method and regeneration apparatus
JP2014039931A (en) Method for removing removal object ion from electrolyte-containing liquid
JP5806038B2 (en) Electric deionized water production equipment
JP2012125723A (en) Apparatus for refining waste liquid of nitrohydrofluoric acid and method therefor
JP4475568B2 (en) Bacteria generation suppression method in electric demineralized water production equipment
JPH07313098A (en) Production of low salt soysauce and apparatus therefor
JP4915843B2 (en) Electric softening device, softening device and soft water production method
JP5186605B2 (en) Electric deionized water production apparatus and deionized water production method
JP2001219161A (en) Water cleaning apparatus
JP6223282B2 (en) Method and apparatus for regenerating electroless plating solution
JP6994351B2 (en) Electric deionized water production equipment
JP6873735B2 (en) Electric deionized water production equipment and water treatment equipment and water treatment method using this

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100621

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120507

R151 Written notification of patent or utility model registration

Ref document number: 4991655

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees