JP2019107617A - Sterilization method of pure water production apparatus - Google Patents

Sterilization method of pure water production apparatus Download PDF

Info

Publication number
JP2019107617A
JP2019107617A JP2017242653A JP2017242653A JP2019107617A JP 2019107617 A JP2019107617 A JP 2019107617A JP 2017242653 A JP2017242653 A JP 2017242653A JP 2017242653 A JP2017242653 A JP 2017242653A JP 2019107617 A JP2019107617 A JP 2019107617A
Authority
JP
Japan
Prior art keywords
water
treated
membrane filtration
sterilizing
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017242653A
Other languages
Japanese (ja)
Other versions
JP7011457B2 (en
Inventor
賢治 柴崎
Kenji Shibazaki
賢治 柴崎
日高 真生
Masanari Hidaka
真生 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2017242653A priority Critical patent/JP7011457B2/en
Publication of JP2019107617A publication Critical patent/JP2019107617A/en
Application granted granted Critical
Publication of JP7011457B2 publication Critical patent/JP7011457B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide improved efficiency of sterilization treatment with hot water.SOLUTION: A method of sterilizing a pure water production apparatus 1 comprising: a membrane filtration device 3; and an electric deionized water production device 4 connected to the downstream side of the membrane filtration device 3 and supplied with permeated water from the membrane filtration device 3. The method has: a step in which, after the water to be treated from a pretreatment device stored in a water to be treated tank 2 is sequentially supplied to the membrane filtration device 3 and the electric deionized water production device 4, it is returned to the water to be treated tank 2, thus circulating the water to be treated along a circulation path including the membrane filtration device 3 and the electric deionized water producing device 4; and a step of heating the water to be treated circulating along the circulation path to a predetermined temperature, and then cooling it after held for predetermined time, thus sterilizing the membrane filtration device 3 and the electric deionized water production device 4. The step of sterilizing is performed within the range of the conditions that a cation exchanger CE and an anion exchanger AE packed in a deionization chamber D of the electric deionized water production device 4 are not broken.SELECTED DRAWING: Figure 1

Description

本発明は、純水製造装置の殺菌方法に関する。   The present invention relates to a method of sterilizing a pure water production apparatus.

従来から、医薬品製造などに使用される純水(精製水)を製造する装置として、逆浸透膜(RO膜)またはナノろ過膜(NF膜)を有し、工業用水、井水、市水などの原水を透過水と濃縮水とに分離する膜ろ過装置と、透過水をイオン交換体に通水することで脱イオン水(純水)を製造する電気式脱イオン水製造装置とを組み合わせた純水製造装置が知られている。このような純水製造装置では、医薬品製造などに使用される純水を製造するという性質上、日本薬局方の要求を担保するために、系内の生菌数を低減させる殺菌処理が定期的に行われている。この殺菌処理は、一般に、例えば60℃以上の熱水を系内に通水することで行われている。   Conventionally, it has reverse osmosis membrane (RO membrane) or nanofiltration membrane (NF membrane) as an apparatus for producing pure water (purified water) used for pharmaceutical production etc., and industrial water, well water, city water etc. Combined with a membrane filtration unit that separates the raw water into permeate and concentrated water, and an electro-deionized water production unit that produces deionized water (pure water) by passing the permeate through the ion exchanger. A pure water production system is known. In such a pure water production apparatus, due to the nature of producing pure water used for pharmaceutical production etc., in order to secure the requirements of the Japanese Pharmacopoeia, the sterilization treatment to reduce the number of viable bacteria in the system is regularly performed. It has been done. This sterilization treatment is generally performed by passing hot water of, for example, 60 ° C. or more into the system.

特許文献1には、純水製造装置で製造された純水を加熱して系内に通水する方法が記載されている。具体的には、純水製造装置で製造された純水を原水タンクに一旦貯留し、その純水を加熱して膜ろ過装置と電気式脱イオン水製造装置に順次供給した後、原水タンクに還流させることで、加熱された純水を系内で循環させる方法が記載されている。この方法によれば、膜ろ過装置と電気式脱イオン水製造装置を一括して殺菌することができ、これらを個別に殺菌する場合に比べて、水使用量や工程数を削減することでより効率的な殺菌処理を行うことが可能になる。   Patent Document 1 describes a method of heating pure water manufactured by a pure water manufacturing apparatus and passing the water through the system. Specifically, pure water produced by the pure water production apparatus is temporarily stored in the raw water tank, and the pure water is heated and sequentially supplied to the membrane filtration apparatus and the electro-deionized water production apparatus before being fed to the raw water tank. A method is described in which heated pure water is circulated in the system by refluxing. According to this method, it is possible to sterilize the membrane filtration apparatus and the electrodeionization water production apparatus at one time, and it is possible to reduce the amount of water used and the number of processes compared to the case of sterilizing these individually. It becomes possible to perform efficient sterilization treatment.

特開2004−74109号公報Unexamined-Japanese-Patent No. 2004-74109

しかしながら、特許文献1に記載の方法では、殺菌処理を実施するにあたり、通常運転(純水製造)時に原水タンクに貯留されていた原水を外部に排出してから、加熱される純水を原水タンクに貯留する必要がある。すなわち、特許文献1に記載の方法には、殺菌処理を実施する度にこのような余分な工程が必要になる点や、それに伴って一定量の水が無駄に消費されてしまう点で、依然として改善の余地が残されている。   However, in the method described in Patent Document 1, when carrying out the sterilization process, the raw water stored in the raw water tank during normal operation (pure water production) is discharged to the outside, and then the heated pure water is treated in the raw water tank Need to be stored. That is, the method described in Patent Document 1 still requires such an extra step every time sterilization is performed, and the point that a certain amount of water is wasted in accordance with it. There is room for improvement.

そこで、本発明の目的は、熱水による殺菌処理のさらなる効率化を実現する純水製造装置の殺菌方法を提供することである。   Therefore, an object of the present invention is to provide a method for sterilizing a pure water production apparatus, which realizes further efficiency improvement of sterilization treatment with hot water.

上述した目的を達成するために、本発明の純水製造装置の殺菌方法は、逆浸透膜またはナノろ過膜を有する膜ろ過装置と、膜ろ過装置の下流側に接続され、膜ろ過装置からの透過水が供給される電気式脱イオン水製造装置であって、陽極と陰極との間に位置し、陽極側のアニオン交換膜と陰極側のカチオン交換膜とで区画され、カチオン交換体とアニオン交換体とが充填された脱塩室を有する電気式脱イオン水製造装置と、を有する純水製造装置の殺菌方法であって、被処理水タンクに貯留された前処理装置からの被処理水を膜ろ過装置と電気式脱イオン水製造装置に順次供給した後、被処理水タンクに還流させることで、膜ろ過装置と電気式脱イオン水製造装置とを含む循環経路に沿って被処理水を循環させる工程と、循環経路に沿って循環する被処理水を所定の温度まで加熱し、一定時間保持した後に冷却することで、膜ろ過装置と電気式脱イオン水製造装置とを殺菌する工程と、を含み、殺菌する工程は、電気式脱イオン水製造装置の脱塩室に充填されたカチオン交換体とアニオン交換体が破過しない条件の範囲内で行われる。   In order to achieve the above-mentioned object, the sterilizing method of the pure water production apparatus of the present invention comprises a membrane filtration apparatus having a reverse osmosis membrane or a nanofiltration membrane, and a downstream side of the membrane filtration apparatus connected from the membrane filtration apparatus An apparatus for producing deionized water supplied with permeated water, which is located between an anode and a cathode and is partitioned by an anion exchange membrane on the anode side and a cation exchange membrane on the cathode side, and a cation exchanger and an anion An electric deionized water production apparatus having a demineralization chamber filled with an exchange body, and a method for sterilizing a pure water production apparatus comprising: treated water from a pretreatment apparatus stored in a treated water tank Are sequentially supplied to the membrane filtration apparatus and the electrodeionization water producing apparatus, and then returned to the treated water tank, whereby the water to be treated along the circulation path including the membrane filtration apparatus and the electrodeionization water producing apparatus Circulation process and circulation along the circulation path. The step of sterilizing the membrane filtration apparatus and the electrodeionization water production apparatus by heating the water to be treated to a predetermined temperature and holding it for a certain period of time and then cooling; It is carried out in the range of the conditions which the cation exchanger and anion exchanger which were filled in the deionization chamber of the deionized water production apparatus do not break through.

このような純水製造装置の殺菌方法によれば、通常運転時に被処理水タンク(原水タンク)に貯留されていた被処理水(原水)を外部に排出する必要がなくなり、水使用量と工程数を共に削減することができる。なお、加熱殺菌用の熱水として原水を用いることで、運転再開時の電気式脱イオン水製造装置の処理水質に対する影響が懸念されるが、電気式脱イオン水製造装置の脱塩室に充填されたカチオン交換体とアニオン交換体が破過しない条件の範囲内で原水の循環を行うことで、その影響も最小限に抑えることができる。   According to the sterilizing method of such a pure water production apparatus, there is no need to discharge the treated water (raw water) stored in the treated water tank (raw water tank) during normal operation, and the amount of water used and the process Both can be reduced. The use of raw water as hot water for heat sterilization may affect the treated water quality of the electric deionized water production equipment at the time of resumption of operation, but the deionization chamber of the electric deionized water production equipment is filled with the raw water. The effect can also be minimized by circulating the raw water within the range where the cation exchanger and the anion exchanger do not break through.

以上、本発明によれば、熱水による殺菌処理のさらなる効率化を実現することができる。   As mentioned above, according to this invention, the further efficiency improvement of the sterilization process by a hot water is realizable.

本発明の一実施形態に係る純水製造装置の概略構成図である。It is a schematic block diagram of the pure water manufacturing apparatus which concerns on one Embodiment of this invention. 実施例および比較例1における処理水比抵抗の時間変化を示すグラフである。It is a graph which shows the time change of treated water specific resistance in an example and comparative example 1.

以下、図面を参照して、本発明の実施の形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1(a)は、本発明の一実施形態に係る純水製造装置の概略構成図である。図1(b)は、図1(a)の純水製造装置を構成する電気式脱イオン水製造装置の概略構成図である。なお、図示した純水製造装置および電気式脱イオン水製造装置の構成は、それぞれ単なる一例であり、本発明を制限するものではなく、装置の使用目的や用途、要求性能に応じて適宜変更可能であることは言うまでもない。   Fig.1 (a) is a schematic block diagram of the pure-water manufacturing apparatus based on one Embodiment of this invention. FIG.1 (b) is a schematic block diagram of the electrodeionization water manufacturing apparatus which comprises the pure water manufacturing apparatus of Fig.1 (a). The configurations of the pure water producing apparatus and the electric deionized water producing apparatus shown in the drawings are merely examples, and are not intended to limit the present invention, and can be appropriately changed according to the use purpose, application, and required performance of the apparatus. It goes without saying that

純水製造装置1は、被処理水(原水)を順次処理して純水を製造するものであり、図1(a)に示すように、原水タンク2と、膜ろ過装置3と、電気式脱イオン水製造装置4とを有している。   The pure water production apparatus 1 sequentially treats the water to be treated (raw water) to produce pure water, and as shown in FIG. 1 (a), the raw water tank 2, the membrane filtration device 3, and the electric type And a deionized water production unit 4.

膜ろ過装置3は、原水タンク2から供給される原水中の不純物を除去して透過水を生成するものであり、原水を、不純物を含む濃縮水と、不純物が除去された透過水とに分離する逆浸透膜(RO膜)またはナノろ過膜(NF膜)を有している。膜ろ過装置3には、原水タンク2からの原水を膜ろ過装置3に供給する供給ラインL1と、膜ろ過装置3からの透過水を流通させる透過水ラインL2と、膜ろ過装置3からの濃縮水を流通させる濃縮水ラインL3とが接続されている。濃縮水ラインL3は、濃縮水ラインL3を流れる濃縮水の一部または全部を外部に排出する排水ラインL4と、原水タンク2に還流させる還流水ラインL5とに分岐している。原水タンク2には、原水供給ラインL6を通じて、除濁や脱塩素などを行う前処理装置(図示せず)が接続され、前処理された原水(例えば、導電率が1000μS/cm以下の水)が必要に応じて供給されるようになっている。   The membrane filtration apparatus 3 removes impurities in the raw water supplied from the raw water tank 2 to generate permeated water, and separates the raw water into concentrated water containing the impurities and permeated water from which the impurities are removed. Reverse osmosis membrane (RO membrane) or nanofiltration membrane (NF membrane). The membrane filtration apparatus 3 includes a supply line L1 for supplying raw water from the raw water tank 2 to the membrane filtration apparatus 3, a permeate water line L2 for circulating permeate water from the membrane filtration apparatus 3, and concentration from the membrane filtration apparatus 3. A concentrated water line L3 for circulating water is connected. The concentrated water line L3 is branched into a drainage line L4 for discharging a part or all of the concentrated water flowing in the concentrated water line L3 to the outside and a reflux water line L5 for refluxing to the raw water tank 2. A raw water tank 2 is connected to a pretreatment device (not shown) for removing turbidity and dechlorination through a raw water supply line L6, and pretreated raw water (for example, water having a conductivity of 1000 μS / cm or less) Will be supplied as needed.

供給ラインL1には、熱交換器5と加圧ポンプ6とが設けられている。熱交換器5は、後述する殺菌工程時に膜ろ過装置3に供給される原水を加熱して熱水を生成するために設けられている。加圧ポンプ6は、原水タンク2と熱交換器5との間に設けられた送水ポンプ(図示せず)と共に、原水タンク2に貯留された原水を膜ろ過装置3に供給するために設けられている。加圧ポンプ6は、インバータ(図示せず)によって回転数が制御されるようになっており、膜ろ過装置3への原水の供給圧力を調整する機能も有している。排水ラインL4および還流水ラインL5にはそれぞれ、濃縮水ラインL3を流れる濃縮水の流路を切り替えるためのバルブV1,V2が設けられている。   The heat exchanger 5 and the pressurizing pump 6 are provided in the supply line L1. The heat exchanger 5 is provided in order to heat the raw water supplied to the membrane filtration apparatus 3 at the time of the sterilization process mentioned later, and to produce a hot water. The pressure pump 6 is provided to supply raw water stored in the raw water tank 2 to the membrane filtration device 3 together with a water pump (not shown) provided between the raw water tank 2 and the heat exchanger 5. ing. The pressure pump 6 has its rotation speed controlled by an inverter (not shown), and also has a function of adjusting the supply pressure of the raw water to the membrane filtration device 3. The drainage line L4 and the reflux water line L5 are respectively provided with valves V1 and V2 for switching the flow path of the concentrated water flowing in the concentrated water line L3.

電気式脱イオン水製造装置4は、イオン交換体による被処理水の脱イオン化(脱塩)処理と、イオン交換体の再生処理とを同時に行う装置である。電気式脱イオン水製造装置4は、透過水ラインL2を介して膜ろ過装置3の下流側に接続され、膜ろ過装置3からの透過水が被処理水として供給されるようになっている。電気式脱イオン水製造装置4には、電気式脱イオン水製造装置4からの処理水(脱イオン水)を流通させて処理水タンクまたはユースポイントに供給する処理水ラインL7と、電気式脱イオン水製造装置4からの濃縮水を外部に排出する濃縮水排出ラインL8とが接続されている。   The electrodeionization water producing apparatus 4 is an apparatus for simultaneously performing the deionization (demineralization) treatment of the water to be treated by the ion exchanger and the regeneration treatment of the ion exchanger. The electrodeionization water producing apparatus 4 is connected to the downstream side of the membrane filtration apparatus 3 via the permeated water line L2, and permeated water from the membrane filtration apparatus 3 is supplied as treated water. The deionized water production apparatus 4 includes a treated water line L7 for circulating treated water (deionized water) from the electric deionized water production apparatus 4 and supplying the treated water to a treated water tank or a use point; A concentrated water discharge line L8 for discharging the concentrated water from the ion water production apparatus 4 to the outside is connected.

処理水ラインL7にはバルブV3が設けられ、その上流側に、バルブV4を介して処理水還流ラインL9が接続されている。処理水還流ラインL9は、その反対側で原水タンク2に接続されている。これにより、例えば、装置起動時や運転再開時、ユースポイントで処理水(純水)の需要がないときなど、電気式脱イオン水製造装置4で製造される処理水を原水タンク2に還流させる循環運転を行うこともできる。また、濃縮水排出ラインL8にはバルブV5が設けられ、その上流側に、バルブV6を介して濃縮水還流ラインL10が接続されている。濃縮水還流ラインL10は、その反対側で原水タンク2に接続されている。これにより、電気式脱イオン水製造装置4からの濃縮水の水質によっては、その一部または全部を原水タンク2に還流させることもできる。   A valve V3 is provided on the treated water line L7, and a treated water reflux line L9 is connected to the upstream side thereof via a valve V4. The treated water return line L9 is connected to the raw water tank 2 on the opposite side. Thus, for example, when the apparatus starts up or restarts operation, or when there is no demand for treated water (pure water) at the point of use, the treated water produced by the electrodeionization water producing apparatus 4 is returned to the raw water tank 2 Circulation operation can also be performed. Further, a valve V5 is provided in the concentrated water discharge line L8, and a concentrated water reflux line L10 is connected to the upstream side thereof via the valve V6. The concentrated water reflux line L10 is connected to the raw water tank 2 on the opposite side. Thereby, depending on the water quality of the concentrated water from the electrodeionization water producing apparatus 4, a part or all of the concentrated water can be returned to the raw water tank 2.

電気式脱イオン水製造装置4は、図1(b)に示すように、陽極11を備えた陽極室E1と、陰極12を備えた陰極室E2と、陽極室E1と陰極室E2との間に設けられた脱塩室Dと、脱塩室Dの陽極11側でアニオン交換膜a1を介して脱塩室Dと隣接する陽極側濃縮室C1と、脱塩室Dの陰極12側でカチオン交換膜c1を介して脱塩室Dと隣接する陰極側濃縮室C2とを有している。陽極側濃縮室C1は、カチオン交換膜c2を介して陽極室E1と隣接し、陰極側濃縮室C2は、アニオン交換膜a2を介して陰極室E2と隣接している。   As shown in FIG. 1 (b), the electrodeionization water producing apparatus 4 has an anode chamber E1 provided with an anode 11, a cathode chamber E2 provided with a cathode 12, and a space between the anode chamber E1 and the cathode chamber E2. In the deionization chamber D, the anode-side concentrating chamber C1 adjacent to the desalting chamber D via the anion exchange membrane a1 on the anode 11 side of the desalting chamber D, and cations on the cathode 12 side of the desalting chamber D A deionization compartment D and a cathode side concentration compartment C2 adjacent to the deionization compartment D are provided via the exchange membrane c1. The anode side concentration chamber C1 is adjacent to the anode chamber E1 via the cation exchange membrane c2, and the cathode side concentration chamber C2 is adjacent to the cathode chamber E2 via the anion exchange membrane a2.

脱塩室Dは、中間イオン交換膜mによって第1の小脱塩室D1と第2の小脱塩室D2とに区画されている。第1の小脱塩室D1は、アニオン交換膜a1を介して陽極側濃縮室C1と隣接し、第2の小脱塩室D2は、カチオン交換膜c1を介して陰極側濃縮室C2と隣接している。中間イオン交換膜mは、例えば、アニオン交換膜またはカチオン交換膜の単一膜、あるいはバイポーラ膜である。   The deionization chamber D is divided by the intermediate ion exchange membrane m into a first small deionization chamber D1 and a second small deionization chamber D2. The first small deionization chamber D1 is adjacent to the anode side concentration chamber C1 through the anion exchange membrane a1, and the second small deionization chamber D2 is adjacent to the cathode side concentration chamber C2 through the cation exchange membrane c1. doing. The intermediate ion exchange membrane m is, for example, a single membrane of an anion exchange membrane or a cation exchange membrane, or a bipolar membrane.

脱塩室Dには、カチオン交換体AEとアニオン交換体CEとが充填されている。具体的には、第1の小脱塩室D1には、アニオン交換体AEが単床形態で充填され、第2の小脱塩室D2には、カチオン交換体CEとアニオン交換体AEとが複床形態で充填されている。より具体的には、第2の小脱塩室D2は、被処理水の流れ方向に沿って2つの領域に区画され、上流側の領域に、カチオン交換体CEが単床形態で充填され、下流側の領域に、アニオン交換体AEが単床形態で充填されている。脱塩室Dに充填されるカチオン交換体としては、カチオン交換樹脂、カチオン交換繊維、モノリス状多孔質カチオン交換体等が挙げられ、最も汎用的なカチオン交換樹脂が好適に用いられる。カチオン交換体の種類としては、弱酸性カチオン交換体、強酸性カチオン交換体等が挙げられる。脱塩室Dに充填されるアニオン交換体としては、アニオン交換樹脂、アニオン交換繊維、モノリス状多孔質アニオン交換体等が挙げられ、最も汎用的なアニオン交換樹脂が好適に用いられる。アニオン交換体の種類としては、弱塩基性アニオン交換体、強塩基性アニオン交換体等が挙げられる。   The deionization chamber D is filled with a cation exchanger AE and an anion exchanger CE. Specifically, the first small deionization chamber D1 is filled with an anion exchanger AE in a single bed form, and the second small deionization chamber D2 includes a cation exchanger CE and an anion exchanger AE. It is packed in a double bed form. More specifically, the second small deionization chamber D2 is divided into two regions along the flow direction of the water to be treated, and the upstream region is filled with the cation exchanger CE in a single bed form, In the downstream region, anion exchangers AE are packed in single bed form. As a cation exchanger filled in the deionization chamber D, a cation exchange resin, a cation exchange fiber, a monolithic porous cation exchanger, etc. may be mentioned, and the most versatile cation exchange resin is preferably used. As a kind of cation exchanger, weak acid cation exchanger, strong acid cation exchanger, etc. are mentioned. As an anion exchanger filled in the deionization chamber D, anion exchange resin, anion exchange fiber, monolithic porous anion exchanger etc. may be mentioned, and the most versatile anion exchange resin is preferably used. As a kind of anion exchanger, a weak base anion exchanger, a strong base anion exchanger, etc. are mentioned.

なお、陽極側濃縮室C1および陰極側濃縮室C2には、電気式脱イオン水製造装置4の電気抵抗を抑えるために、それぞれイオン交換体が充填されていることが好ましい。また、陽極室E1および陰極室E2にも、電気式脱イオン水製造装置4の電気抵抗を抑えるために、それぞれイオン交換体などの導電性物質が充填されていることが好ましい。一例として、陽極側濃縮室C1、陰極側濃縮室C2、および陰極室E2には、アニオン交換体が充填され、陽極室E1には、カチオン交換体が充填されている。   In addition, in order to suppress the electrical resistance of the electrodeionization water production apparatus 4, it is preferable that the anode side concentration chamber C1 and the cathode side concentration chamber C2 be filled with ion exchangers, respectively. Further, it is preferable that the anode chamber E1 and the cathode chamber E2 be filled with a conductive substance such as an ion exchanger, in order to suppress the electrical resistance of the electrodeionization water producing apparatus 4. As an example, an anion exchanger is filled in the anode side concentration chamber C1, the cathode side concentration chamber C2, and the cathode chamber E2, and a cation exchanger is filled in the anode chamber E1.

膜ろ過装置3からの透過水ラインL2は複数(図示した例では3つ)に分岐して、第1の小脱塩室D1、陽極側濃縮室C1、および陰極側濃縮室C2にそれぞれ接続されている。第1の小脱塩室D1は、第2の小脱塩室D2と直列流路を形成し、その下流側は、処理水ラインL7に接続されている。陽極側濃縮室C1および陰極側濃縮室C2は並列流路を形成し、その下流側は、濃縮水排出ラインL8に接続されている。こうして、膜ろ過装置3からの透過水が、被処理水として第1および第2の小脱塩室D1,D2に供給され、濃縮水として陽極側濃縮室C1および陰極側濃縮室C2に供給される。なお、図示は省略するが、陽極室E1および陰極室E2にも、電極水を供給および排出するためのラインが接続されている。   The permeated water line L2 from the membrane filtration unit 3 is branched into a plurality (three in the illustrated example) and connected to the first small deionization chamber D1, the anode side concentration chamber C1, and the cathode side concentration chamber C2, respectively ing. The first small deionization chamber D1 forms a serial flow path with the second small deionization chamber D2, and the downstream side thereof is connected to the treated water line L7. The anode side concentration chamber C1 and the cathode side concentration chamber C2 form a parallel flow path, and the downstream side thereof is connected to a concentrated water discharge line L8. Thus, the permeated water from the membrane filtration unit 3 is supplied as treated water to the first and second small deionization chambers D1 and D2, and is supplied as concentrated water to the anode side concentration chamber C1 and the cathode side concentration chamber C2. Ru. Although not shown, lines for supplying and discharging electrode water are also connected to the anode chamber E1 and the cathode chamber E2.

透過水ラインL2を通じて膜ろ過装置3から供給される透過水(被処理水)は、脱塩室Dを通過する際にイオン成分が除去され、処理水(脱イオン水)として、処理水ラインL8を通じて処理水タンクまたはユースポイントに供給される。このとき、脱塩室で除去されたイオン成分は、両極11,12間に直流電圧が印加されることで発生する電位差により、脱塩室Dに隣接する濃縮室C1,C2に移動する。具体的には、カチオン成分は、陰極12側に引き寄せられ、カチオン交換膜c1を通過して陰極側濃縮室C2に移動し、アニオン成分は、陽極11側に引き寄せられ、アニオン交換膜a1を通過して陽極側濃縮室C1に移動する。こうして濃縮室C1,C2に移動したイオン成分は、濃縮室C1,C2に供給される濃縮水に取り込まれ、濃縮水排出ラインL8を介して外部に排出される。ただし、濃縮水の水質によっては、その一部または全部が原水タンク2に還流するようになっていてもよい。一方で、脱塩室Dでは、水解離反応(水が水素イオンと水酸化物イオンとに解離する反応)が連続的に進行している。水素イオンは、カチオン交換体に吸着したカチオン成分と交換され、水酸化物イオンは、アニオン交換体に吸着したアニオン成分と交換される。こうして、脱塩室Dに充填されたカチオン交換体およびアニオン交換体がそれぞれ再生される。   The permeated water (to-be-treated water) supplied from the membrane filtration apparatus 3 through the permeated water line L2 has its ion component removed when passing through the deionization chamber D, and treated water (deionized water) is treated water line L8 Through the water supply tank or point of use. At this time, the ionic components removed in the desalting chamber move to concentration chambers C1 and C2 adjacent to the desalting chamber D due to a potential difference generated by applying a DC voltage between the two electrodes 11 and 12. Specifically, the cation component is drawn to the cathode 12 side, passes through the cation exchange membrane c1 and moves to the cathode side concentration chamber C2, and the anion component is drawn to the anode 11 side, and passes through the anion exchange membrane a1. And move to the anode side concentration chamber C1. The ion components thus transferred to the concentration chambers C1 and C2 are taken into the concentrated water supplied to the concentration chambers C1 and C2 and discharged to the outside through the concentrated water discharge line L8. However, depending on the quality of the concentrated water, part or all of it may be returned to the raw water tank 2. On the other hand, in the deionization chamber D, a water dissociation reaction (a reaction in which water is dissociated into hydrogen ions and hydroxide ions) proceeds continuously. The hydrogen ions are exchanged with the cation component adsorbed to the cation exchanger, and the hydroxide ions are exchanged with the anion component adsorbed to the anion exchanger. Thus, the cation exchanger and the anion exchanger charged in the deionization compartment D are regenerated respectively.

なお、冒頭でも述べたように、電気式脱イオン水製造装置4の図示した構成は、あくまで一例であり、装置の使用目的や用途、要求性能に応じて、各室の構成(数、配置など)や流路構成を変更したり、バルブや計測器などを追加したりするなどの変更が適宜可能である。例えば、脱塩室は2つ以上設けられていてもよい。この場合、脱塩室と濃縮室とは、カチオン交換膜またはアニオン交換膜を介して交互に設けられ、2つ以上の脱塩室は、直列または並列流路を形成することになる。また、脱塩室におけるカチオン交換体およびアニオン交換体の充填形態も、図示したものに限定されず、例えば、第1の小脱塩室にカチオン交換体が単床形態で充填され、第2の小脱塩室にアニオン交換体とカチオン交換体とがそれぞれ単床形態で充填されていてもよい。   As described at the beginning, the illustrated configuration of the electrodeionization water producing apparatus 4 is merely an example, and the configuration (number, arrangement, etc. of each chamber according to the purpose of use, application, and required performance of the apparatus. And changes in the flow path configuration and addition of valves, measuring instruments, etc. For example, two or more deionization chambers may be provided. In this case, the desalting chamber and the concentration chamber are alternately provided via a cation exchange membrane or an anion exchange membrane, and two or more desalting chambers form a serial or parallel flow path. Further, the form of packing of the cation exchanger and the anion exchanger in the desalting chamber is not limited to that illustrated either. For example, the first small desalting chamber is filled with the cation exchanger in a single bed form, and the second In the small deionization chamber, the anion exchanger and the cation exchanger may be packed in single bed form.

本実施形態の純水製造装置1は、医薬品製造などに使用される純水を製造するものである。そのため、本実施形態では、通常運転時の純水製造の合間に、熱水によって系内の生菌数を低減させる殺菌工程が定期的に行われる。以下、この殺菌工程について説明する。   The pure water production apparatus 1 of the present embodiment produces pure water used for pharmaceutical production and the like. Therefore, in the present embodiment, a sterilizing step of reducing the number of viable bacteria in the system with hot water is periodically performed between pure water production in normal operation. Hereinafter, this sterilization step will be described.

殺菌工程は、原水タンク2に貯留された原水を系内で循環させつつ、熱交換器5によって60℃程度以上、好ましくは90℃程度まで加熱し、一定時間保持した後、系内の温度が純水製造に適した温度になるまで冷却する工程である。殺菌工程が実行されることで、供給ラインL1、膜ろ過装置3、透過水ラインL2、電気式脱イオン水製造装置4、処理水ラインL7、および処理水還流ラインL9を含む純水製造装置1の系内が殺菌される。   In the sterilizing process, the temperature of the system is maintained after heating to about 60 ° C. or higher, preferably about 90 ° C. by the heat exchanger 5 and circulating the raw water stored in the raw water tank 2 in the system, preferably for about 90 ° C. It is a process of cooling to a temperature suitable for pure water production. A sterilization process is performed, and a pure water production apparatus 1 including a supply line L1, a membrane filtration apparatus 3, a permeated water line L2, an electric deionized water production apparatus 4, a treated water line L7, and a treated water reflux line L9. The inside of the system is sterilized.

殺菌工程が開始されると、電気式脱イオン水製造装置4の運転(直流電圧の印加)が停止され、純水製造が停止される。そして、処理水ラインL7のバルブV3が閉鎖され、処理水還流ラインL9のバルブV4が開放される。これにより、原水タンク2内の原水は、膜ろ過装置3と電気式脱イオン水製造装置4に順次供給された後、原水タンク2に還流することで、供給ラインL1、膜ろ過装置3、透過水ラインL2、電気式脱イオン水製造装置4、処理水ラインL7、および処理水還流ラインL9を含む循環経路に沿って循環される。それと同時に、熱交換器5により、循環する原水が60℃〜90℃になるまで加熱され、その温度で保持される。こうして、高温に保持された原水(熱水)の循環により、純水製造装置1の系内が殺菌される。なお、このとき、排水ラインL4のバルブV1が閉鎖され、還流水ラインL5のバルブV2が開放されることで、濃縮水ラインL3および還流水ラインL5も熱水により殺菌される。さらに、濃縮水排出ラインL8のバルブV5が閉鎖され、濃縮水還流ラインL10のバルブV6が開放されることで、濃縮水還流ラインL10も熱水により殺菌される。   When the sterilization process is started, the operation (application of the DC voltage) of the electrodeionization water producing apparatus 4 is stopped, and the pure water production is stopped. Then, the valve V3 of the treated water line L7 is closed, and the valve V4 of the treated water return line L9 is opened. As a result, the raw water in the raw water tank 2 is sequentially supplied to the membrane filtration unit 3 and the electric deionized water production unit 4 and then returned to the raw water tank 2 to supply the feed line L1, the membrane filtration unit 3, and the permeation. The water is circulated along a circulation path including the water line L2, the electrodeionization water producing apparatus 4, the treated water line L7, and the treated water reflux line L9. At the same time, the heat exchanger 5 heats the circulating raw water to 60 ° C. to 90 ° C., and the temperature is maintained. Thus, the inside of the system of the pure water production apparatus 1 is sterilized by the circulation of the raw water (hot water) kept at a high temperature. At this time, the valve V1 of the drainage line L4 is closed and the valve V2 of the reflux water line L5 is opened, whereby the concentrated water line L3 and the reflux water line L5 are also sterilized by the hot water. Further, the valve V5 of the concentrated water discharge line L8 is closed, and the valve V6 of the concentrated water reflux line L10 is opened, whereby the concentrated water reflux line L10 is also sterilized by the hot water.

熱水の循環が一定時間行われた後、熱交換器5により、循環する熱水が例えば45℃未満になるまで冷却されて、殺菌工程が終了する。そして、純水製造装置1において通常運転が再開される前に、原水タンク2に接続された排水ライン(図示せず)を通じて、熱水殺菌に使用された原水タンク2内の原水が外部に排出される。その後、原水供給ラインL6を通じて原水タンク2に新たに原水が供給され、純水製造装置1において通常運転が再開される。通常運転が再開されると、処理水還流ラインL9のバルブV4が閉鎖されるとともに、処理水ラインL7のバルブV3が開放され、純水製造装置1で製造された純水が処理水タンクまたはユースポイントに供給される。   After circulation of the hot water has been performed for a certain period of time, the heat exchanger 5 cools the circulating hot water to, for example, less than 45 ° C., and the sterilization process is completed. Then, before the normal operation is resumed in the pure water production apparatus 1, the raw water in the raw water tank 2 used for the hot water sterilization is discharged to the outside through a drainage line (not shown) connected to the raw water tank 2 Be done. Thereafter, the raw water is newly supplied to the raw water tank 2 through the raw water supply line L6, and the normal operation is resumed in the pure water production apparatus 1. When the normal operation is resumed, the valve V4 of the treated water reflux line L9 is closed, and the valve V3 of the treated water line L7 is opened, and the pure water produced by the pure water producing apparatus 1 is treated water tank or use Supplied to points.

上述したように、本実施形態では、通常運転時に原水タンク2に貯留されていた原水をそのまま加熱して循環させるため、殺菌工程の前に原水タンク2内の原水を外部に排出する必要がない。すなわち、原水ではなく純水を用いた熱水殺菌では、原水タンクに貯留されていた原水を純水で置換する工程が必要になるが、本実施形態では、そのような余分な工程は必要がなく、これに伴って一定量の水が無駄になることもない。その結果、水使用量と工程数を共に削減することができ、熱水による殺菌処理のさらなる効率化を実現することができる。   As described above, in the present embodiment, since the raw water stored in the raw water tank 2 is heated and circulated as it is during normal operation, there is no need to discharge the raw water in the raw water tank 2 to the outside before the sterilizing step. . That is, hot water sterilization using pure water instead of raw water requires a step of replacing the raw water stored in the raw water tank with pure water, but in this embodiment, such an extra step is necessary. There is no waste of a certain amount of water. As a result, both the amount of water used and the number of processes can be reduced, and further efficiency improvement of the sterilization treatment with hot water can be realized.

ただし、原水を加熱して殺菌処理を行うことには、次のような懸念がある。詳細な説明は省略するが、原水が高温になると、RO膜またはNF膜の構造上、膜ろ過装置への原水の供給圧力を低下させる必要がある。その結果、膜ろ過装置で分離される透過水の水質が悪化して、電気式脱イオン水製造装置への給水の水質基準を超えてしまう可能性があり、これが、運転再開時に電気式脱イオン水製造装置の処理水質に何らかの影響を与えることが懸念される。そのため、電気式脱イオン水製造装置を備えた純水製造装置では、特許文献1に記載されているように、純水を用いて熱水殺菌を行うことが一般的である。   However, there are the following concerns about heating and sterilizing raw water. Although the detailed description is omitted, if the temperature of the raw water becomes high, it is necessary to reduce the supply pressure of the raw water to the membrane filtration device due to the structure of the RO membrane or the NF membrane. As a result, the water quality of the permeate separated by the membrane filtration device may deteriorate, and the water quality standard of the water supply to the electric deionized water production device may be exceeded. There is a concern that the treated water quality of water production equipment will be affected. Therefore, in a pure water production apparatus equipped with an electrodeionization water producing apparatus, as described in Patent Document 1, it is general to perform hot water sterilization using pure water.

しかしながら、本発明者らの検証により、膜ろ過装置からの透過水の水質が悪化して、電気式脱イオン水製造装置への給水の水質基準を超えてしまう場合でも、ある条件の範囲内であれば、運転再開時の電気式脱イオン水製造装置の処理水質に対する影響が最小限に抑えられることが見出されている。その条件とは、電気式脱イオン水製造装置の脱塩室に充填されたカチオン交換体とアニオン交換体が破過しない条件である。すなわち、透過水の水質悪化によりカチオン交換体とアニオン交換体が破過してしまうと、後述する比較例に示すように、運転再開後の水質の立ち上がりに長時間かかる可能性があるが、カチオン交換体とアニオン交換体が破過しない限り、そのような問題を回避することができる。   However, according to the verification of the present inventors, even when the water quality of the permeated water from the membrane filtration device is deteriorated and the water quality standard of the water supply to the electrodeionization water producing device is exceeded, within a certain range of conditions. It has been found that if the operation is resumed, the influence on the treated water quality of the electrodeionization water producing apparatus can be minimized. The conditions are conditions which the cation exchanger and the anion exchanger with which the deionization chamber of the electrodeionization water production apparatus was filled do not break through. That is, if the cation exchanger and the anion exchanger are broken due to the deterioration of the water quality of the permeated water, it may take a long time to start up the water quality after resuming operation as shown in a comparative example described later. Such problems can be avoided as long as the exchanger and the anion exchanger do not break through.

したがって、本実施形態の殺菌工程では、電気式脱イオン水製造装置の脱塩室に充填されたカチオン交換体とアニオン交換体が破過しない条件の範囲内で、熱水(加熱された原水)の循環を行うようになっている。これにより、水質の立ち上がりに関する問題を回避して、運転再開後の電気式脱イオン水製造装置の処理水質に対する影響を最小限に抑えることができる。ここで、カチオン交換体とアニオン交換体が破過しないための具体的な条件は、実験により決定することもできるが、装置構成や運転条件から決定されるパラメータが以下の条件を満すかどうかを予め計算により確認することが好ましい。その条件は、脱塩室に充填されたカチオン交換体の体積(L)と総交換容量(eq/L−R)との積に対する、殺菌工程の間に脱塩室に供給される原水に含まれるカチオンの当量数(eq)の合計の割合と、脱塩室に充填されたアニオン交換体の体積と総交換容量との積に対する、殺菌工程の間に脱塩室に供給される原水に含まれるアニオンの当量数の合計の割合とが共に所定値以下となる条件である。なお、上記所定値は、後述する実施例に示すように、例えば50%である。   Therefore, in the sterilization step of the present embodiment, the hot water (heated raw water) is within the range where the cation exchanger and the anion exchanger filled in the deionization chamber of the electrodeionization water producing apparatus do not break through. It is supposed to carry out the circulation of As a result, it is possible to avoid the problems related to the rise of the water quality, and to minimize the influence on the treated water quality of the electrodeionization water producing apparatus after the restart of the operation. Here, the specific conditions for preventing the cation exchanger and the anion exchanger from passing through can also be determined by experiment, but whether the parameters determined from the apparatus configuration and the operating conditions satisfy the following conditions It is preferable to confirm beforehand by calculation. The conditions are included in the raw water supplied to the desalting chamber during the sterilization step relative to the product of the volume (L) of the cation exchanger charged in the desalting chamber and the total exchange capacity (eq / L-R). Contained in the raw water supplied to the demineralization chamber during the sterilization step relative to the product of the ratio of the total number of equivalent equivalents of cation (eq) to the volume of the anion exchanger packed in the deionization chamber and the total exchange capacity And the ratio of the total number of equivalents of the anions to be obtained is equal to or less than a predetermined value. The predetermined value is, for example, 50% as shown in an embodiment described later.

上述の条件において、殺菌工程の間に脱塩室に供給される原水に含まれるカチオンおよびアニオンのそれぞれの当量数の合計(殺菌工程中のカチオン負荷およびアニオン負荷のそれぞれの合計)は、以下のようにして算出される。まず、前処理装置から供給される原水に含まれるカチオンおよびアニオンの当量濃度を予め測定し、測定したカチオンおよびアニオンの当量濃度と、RO膜またはNF膜の阻止率の温度依存性から、殺菌工程時の各温度において脱塩室に供給される熱水に含まれるカチオンおよびアニオンの当量濃度を算出する。そして、算出したカチオンおよびアニオンの当量濃度と、殺菌工程時に脱塩室に供給される熱水の流量と、殺菌工程の所要時間(通水時間)とから、殺菌工程の間に脱塩室に供給される熱水に含まれるカチオンおよびアニオンの当量数の合計が算出される。なお、測定対象となるカチオンおよびカチオンは、理想的には、原水中の全てのアニオンおよびカチオンである。   Under the above conditions, the sum of the respective equivalents of cations and anions contained in the raw water supplied to the desalting chamber during the sterilization step (the sum of each of the cation load and the anion load during the sterilization step) is It is calculated as follows. First, the equivalent concentrations of cations and anions contained in the raw water supplied from the pretreatment device are measured in advance, and the measured equivalent concentrations of the cations and anions and the temperature dependency of the inhibition rate of the RO membrane or NF membrane Calculate equivalent concentrations of cations and anions contained in the hot water supplied to the desalting chamber at each temperature. Then, based on the calculated equivalent concentrations of the cation and the anion, the flow rate of the hot water supplied to the desalting chamber at the time of the sterilization step, and the required time (water flow time) of the sterilization step, The sum of the numbers of equivalents of cations and anions contained in the supplied hot water is calculated. The cations and cations to be measured are ideally all anions and cations in the raw water.

次に、具体的な実施例を挙げて、本発明をより詳細に説明する。   The present invention will now be described in more detail by way of specific examples.

(実施例)
本実施例では、図1に示す純水製造装置を用いて、上述した殺菌工程を実施し、通常運転の再開後から24時間後までの処理水質(処理水比抵抗)を2時間ごとに測定した。被処理水タンク(原水タンク)として、容積が200Lのものを用い、被処理水(原水)として、導電率が約300μS/cmのRO透過水(逆浸透膜によって分離された透過水)を用いた。なお、原水中のナトリウム濃度は、電気式脱イオン水製造装置への給水の水質基準の約17倍であった。
(Example)
In the present embodiment, the above-described sterilization step is carried out using the pure water production apparatus shown in FIG. 1, and the treated water quality (treated water specific resistance) from the resumption of normal operation to 24 hours after is measured every two hours. did. Use RO water of 200 L in volume as raw water tank (raw water tank) and use RO permeated water (permeated water separated by reverse osmosis membrane) with electric conductivity of about 300 μS / cm as raw water (raw water) It was. The sodium concentration in the raw water was about 17 times the water quality standard of the water supplied to the electrodeionization water producing apparatus.

脱塩室に充填されるカチオン交換体およびアニオン交換体として、それぞれH形カチオン交換樹脂およびOH形アニオン交換樹脂を用い、殺菌工程時の第1の小脱塩室および第2の小脱塩室での通水線速度(LV)は、それぞれ63m/hおよび72m/hであった。殺菌工程の所要時間は、原水の昇温、温度保持、および降温にそれぞれ1時間、合計3時間であり、原水の最高到達温度は87℃である。   The H-type cation exchange resin and the OH-type anion exchange resin are respectively used as a cation exchanger and an anion exchanger filled in the desalting chamber, and the first small desalting chamber and the second small desalting chamber during the sterilization step Linear velocity (LV) at 63 m / h and 72 m / h, respectively. The time required for the sterilization process is 3 hours in total for each of the raw water temperature raising, temperature holding and temperature lowering for 1 hour, and the maximum temperature reached of the raw water is 87 ° C.

上述した装置構成および運転条件において、脱塩室に充填されたカチオン交換体の体積と総交換容量との積に対する、殺菌工程中のカチオン負荷の合計の割合は43%、脱塩室に充填されたアニオン交換体の体積と総交換容量との積に対する、殺菌工程中のアニオン負荷の合計の割合は15%であった。   In the apparatus configuration and operating conditions described above, the ratio of the total of the cation load in the sterilization step to the product of the volume of the cation exchanger packed in the desalting chamber and the total exchange capacity is 43%, The ratio of the total of the anion load in the sterilization step to the product of the volume of the anion exchanger and the total exchange capacity was 15%.

(比較例1)
殺菌工程を実施する前に、原水タンクに貯留されていた原水を純水で置換する工程を行い、加熱殺菌用の熱水として純水を用いたこと以外、実施例と同様の条件で測定を行った。
(Comparative example 1)
Before carrying out the sterilization step, the step of replacing the raw water stored in the raw water tank with pure water was carried out, and measurements were carried out under the same conditions as in the example except that pure water was used as hot water for heat sterilization. went.

(比較例2)
脱塩室に充填されるカチオン交換体およびアニオン交換体として、それぞれ塩形のものを用いたこと以外、実施例と同様の条件で測定を行った。
(Comparative example 2)
The measurement was carried out under the same conditions as in Example except that each in the form of a salt was used as the cation exchanger and the anion exchanger packed in the desalting chamber.

図2は、実施例および比較例1における測定結果を示すグラフであり、通常運転再開後の経過時間に対する処理水比抵抗を示している。また、表1に、実施例および比較例1,2における測定結果、具体的には、運転再開2時間後での処理水比抵抗を示す。   FIG. 2 is a graph showing the measurement results in the example and the comparative example 1, and shows the treated water resistivity with respect to the elapsed time after resumption of normal operation. Table 1 shows the measurement results in the example and the comparative examples 1 and 2, specifically, the treated water specific resistance 2 hours after resumption of operation.

Figure 2019107617
Figure 2019107617

実施例は、加熱殺菌用の熱水として純水を用いた比較例1と比べて、殺菌工程にかかる水使用量を原水タンクの容積分(200L)だけ削減でき、純水の置換工程に要する時間を削減できる点で有利である(この効果は、装置の規模が大きくなるほど大きくなる)が、図2から分かるように、運転再開後の処理水質の点でも、比較例1と比べて遜色がないことが確認された。また、表1に示すように、実施例では、塩形のイオン交換樹脂を用いた比較例2と比べて、水質の立ち上がりに関して良好な結果が得られていることが確認された。比較例2は、電気式脱イオン水製造装置の脱塩室内のイオン交換体が破過した状態を模擬したものであることから、実施例において水質の立ち上がりが良好であることは、殺菌工程において電気式脱イオン水製造装置の脱塩室内のイオン交換体が破過しなかったためであると考えられる。   In the embodiment, compared to Comparative Example 1 in which pure water is used as hot water for heat sterilization, the amount of water used for the sterilization process can be reduced by the volume (200 L) of the raw water tank, and the pure water replacement process requires Although it is advantageous in that the time can be reduced (this effect increases as the scale of the apparatus increases), as can be seen from FIG. It was confirmed that there was not. Moreover, as shown in Table 1, in the Example, compared with the comparative example 2 which used the salt-form ion exchange resin, it was confirmed that a favorable result is acquired regarding the rise of water quality. Comparative Example 2 simulates a state in which the ion exchanger in the deionization chamber of the electrodeionization water production apparatus has broken through, so that the rising of the water quality is good in the example in the sterilization step. It is considered that this is because the ion exchanger in the demineralization chamber of the electrodeionization water production apparatus did not break through.

1 純水製造装置
2 原水タンク
3 膜ろ過装置
4 電気式脱イオン水製造装置
5 熱交換器
6 加圧ポンプ
11 陽極
12 陰極
D 脱塩室
D1 第1の小脱塩室
D2 第2の小脱塩室
C1 陽極側濃縮室
C2 陰極側濃縮室
E1 陽極室
E2 陰極室
a1,a2 アニオン交換膜
c1,c2 カチオン交換膜
m 中間イオン交換膜
L1 供給ライン
L2 透過水ライン
L3 濃縮水ライン
L4 排水ライン
L5 還流水ライン
L6 原水供給ライン
L7 処理水ライン
L8 濃縮水排出ライン
L9 処理水還流ライン
L10 濃縮水還流ライン
V1〜V6 バルブ
DESCRIPTION OF SYMBOLS 1 Pure water production apparatus 2 Raw water tank 3 Membrane filtration apparatus 4 Electric type deionized water production apparatus 5 Heat exchanger 6 Pressure pump 11 Anode 12 Cathode D Deionization room D1 1st small deionization room D2 2nd small removal Salt chamber C1 Anode-side concentration chamber C2 Cathode-side concentration chamber E1 Anode chamber E2 Cathode chamber a1, a2 Anion exchange membrane c1, c2 Cation exchange membrane m Intermediate ion exchange membrane L1 supply line L2 permeate water line L3 concentrate water line L4 drainage line L5 Reflux water line L6 Raw water supply line L7 Treated water line L8 Concentrated water discharge line L9 Treated water reflux line L10 Concentrated water reflux line V1 to V6 Valve

Claims (3)

逆浸透膜またはナノろ過膜を有する膜ろ過装置と、前記膜ろ過装置の下流側に接続され、前記膜ろ過装置からの透過水が供給される電気式脱イオン水製造装置であって、陽極と陰極との間に位置し、前記陽極側のアニオン交換膜と前記陰極側のカチオン交換膜とで区画され、カチオン交換体とアニオン交換体とが充填された脱塩室を有する電気式脱イオン水製造装置と、を有する純水製造装置の殺菌方法であって、
被処理水タンクに貯留された前処理装置からの被処理水を前記膜ろ過装置と前記電気式脱イオン水製造装置に順次供給した後、前記被処理水タンクに還流させることで、前記膜ろ過装置と前記電気式脱イオン水製造装置とを含む循環経路に沿って前記被処理水を循環させる工程と、
前記循環経路に沿って循環する前記被処理水を所定の温度まで加熱し、一定時間保持した後に冷却することで、前記膜ろ過装置と前記電気式脱イオン水製造装置とを殺菌する工程と、を含み、
前記殺菌する工程は、前記電気式脱イオン水製造装置の前記脱塩室に充填された前記カチオン交換体と前記アニオン交換体が破過しない条件の範囲内で行われる、純水製造装置の殺菌方法。
A membrane filtration apparatus having a reverse osmosis membrane or a nanofiltration membrane, and an electrodeionization water producing apparatus connected to the downstream side of the membrane filtration apparatus and supplied with permeated water from the membrane filtration apparatus, comprising: an anode An electric deionized water having a deionization chamber located between a cathode and separated by an anion exchange membrane on the anode side and a cation exchange membrane on the cathode side and filled with a cation exchanger and an anion exchanger A method of sterilizing a pure water production apparatus, comprising: a production apparatus;
The membrane filtration is performed by sequentially supplying the water to be treated from the pretreatment device stored in the water to be treated tank to the membrane filtration device and the electric deionized water production device, and then returning the water to the water to be treated tank. Circulating the water to be treated along a circulation path including an apparatus and the electrodeionization water producing apparatus;
Heating the treated water circulating along the circulation path to a predetermined temperature, holding the water for a certain period of time and cooling it, thereby sterilizing the membrane filtration apparatus and the electrodeionization water producing apparatus; Including
The step of sterilizing is performed under the condition that the cation exchanger and the anion exchanger packed in the deionization chamber of the electrodeionization water producing apparatus do not break out, the disinfection of the water purification system Method.
前記条件は、前記脱塩室に充填された前記カチオン交換体の体積と総交換容量との積に対する、前記殺菌する工程の間に前記脱塩室に供給される前記被処理水に含まれるカチオンの当量数の合計の割合と、前記脱塩室に充填された前記アニオン交換体の体積と総交換容量との積に対する、前記殺菌する工程の間に前記脱塩室に供給される前記被処理水に含まれるアニオンの当量数の合計の割合とが共に所定値以下となる条件である、請求項1に記載の純水製造装置の殺菌方法。   The condition is that the cation contained in the water to be treated supplied to the deionization chamber during the sterilizing step is a product of the volume of the cation exchanger and the total exchange capacity charged in the deionization chamber. Said treated material supplied to said desalting chamber during said sterilizing step with respect to the product of the ratio of the total of the number of equivalents of the volume, the volume of said anion exchanger packed in said desalting chamber and the total exchange capacity The method of sterilizing a pure water production apparatus according to claim 1, wherein the ratio of the total of the number of equivalents of anions contained in water is not more than a predetermined value. 前記所定値が50%である、請求項2に記載の純水製造装置の殺菌方法。   The sterilizing method of the pure-water manufacturing apparatus of Claim 2 whose said predetermined value is 50%.
JP2017242653A 2017-12-19 2017-12-19 Sterilization method for pure water production equipment Active JP7011457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017242653A JP7011457B2 (en) 2017-12-19 2017-12-19 Sterilization method for pure water production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017242653A JP7011457B2 (en) 2017-12-19 2017-12-19 Sterilization method for pure water production equipment

Publications (2)

Publication Number Publication Date
JP2019107617A true JP2019107617A (en) 2019-07-04
JP7011457B2 JP7011457B2 (en) 2022-01-26

Family

ID=67178538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017242653A Active JP7011457B2 (en) 2017-12-19 2017-12-19 Sterilization method for pure water production equipment

Country Status (1)

Country Link
JP (1) JP7011457B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110975628A (en) * 2019-12-24 2020-04-10 福州大学 Loose electric nanofiltration device and process for efficiently separating dye and inorganic salt
CN111921381A (en) * 2020-09-17 2020-11-13 山东龙安泰环保科技有限公司 Cooling device for electrodialyzer cathode and anode
CN113648833A (en) * 2021-09-15 2021-11-16 上海城市水资源开发利用国家工程中心有限公司 Novel low-pressure high-recovery-rate nanofiltration system and method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001047054A (en) * 1999-08-11 2001-02-20 Kurita Water Ind Ltd Sterilizing method of deionized water making apparatus and deionized water making method
JP2001353490A (en) * 2000-06-14 2001-12-25 Asahi Kasei Corp Production method of deionized water
JP2004074109A (en) * 2002-08-22 2004-03-11 Japan Organo Co Ltd Method and apparatus for manufacturing purified water for medicines
JP2005254201A (en) * 2004-03-15 2005-09-22 Japan Organo Co Ltd Bacterium growth inhibition method in electric desalted water production device
JP2010099594A (en) * 2008-10-23 2010-05-06 Miura Co Ltd Method for operating electric desalination apparatus
JP2014124483A (en) * 2012-12-27 2014-07-07 Nomura Micro Sci Co Ltd Method of sterilizing pure water production apparatus for pharmaceuticals and pure water production apparatus for pharmaceuticals
WO2017056792A1 (en) * 2015-09-30 2017-04-06 オルガノ株式会社 Water treatment device and water treatment method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001047054A (en) * 1999-08-11 2001-02-20 Kurita Water Ind Ltd Sterilizing method of deionized water making apparatus and deionized water making method
JP2001353490A (en) * 2000-06-14 2001-12-25 Asahi Kasei Corp Production method of deionized water
JP2004074109A (en) * 2002-08-22 2004-03-11 Japan Organo Co Ltd Method and apparatus for manufacturing purified water for medicines
JP2005254201A (en) * 2004-03-15 2005-09-22 Japan Organo Co Ltd Bacterium growth inhibition method in electric desalted water production device
JP2010099594A (en) * 2008-10-23 2010-05-06 Miura Co Ltd Method for operating electric desalination apparatus
JP2014124483A (en) * 2012-12-27 2014-07-07 Nomura Micro Sci Co Ltd Method of sterilizing pure water production apparatus for pharmaceuticals and pure water production apparatus for pharmaceuticals
WO2017056792A1 (en) * 2015-09-30 2017-04-06 オルガノ株式会社 Water treatment device and water treatment method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110975628A (en) * 2019-12-24 2020-04-10 福州大学 Loose electric nanofiltration device and process for efficiently separating dye and inorganic salt
CN111921381A (en) * 2020-09-17 2020-11-13 山东龙安泰环保科技有限公司 Cooling device for electrodialyzer cathode and anode
CN113648833A (en) * 2021-09-15 2021-11-16 上海城市水资源开发利用国家工程中心有限公司 Novel low-pressure high-recovery-rate nanofiltration system and method

Also Published As

Publication number Publication date
JP7011457B2 (en) 2022-01-26

Similar Documents

Publication Publication Date Title
JP5616771B2 (en) Dilution water production equipment for dialysate preparation
JP7011457B2 (en) Sterilization method for pure water production equipment
WO2002004357A1 (en) Electrodeionisation apparatus
JP5768961B2 (en) Water treatment equipment
WO2011065222A1 (en) Device and method for treating nitrogen compound-containing acidic solutions
JP2004167291A (en) Electric deionization apparatus
JP3951642B2 (en) Method for operating electrodeionization apparatus, electrodeionization apparatus and electrodeionization system
JP6105005B2 (en) Electric deionized water production apparatus and deionized water production method
WO2020148961A1 (en) Pure water production apparatus, and method for operating same
JP2011000576A (en) Electric deionized water producing apparatus and method for producing deionized water
JP3966103B2 (en) Operation method of electrodeionization equipment
JP5806038B2 (en) Electric deionized water production equipment
JP2007125455A (en) Operation method of electric deionized water production apparatus and electric deionized water production apparatus
JP4397089B2 (en) Operation method of electric deionized water production equipment
JP4475568B2 (en) Bacteria generation suppression method in electric demineralized water production equipment
JP5184401B2 (en) Pure water production method and pure water production apparatus
JP7246399B2 (en) Pure water production system and pure water production method
JP5661930B2 (en) Electric deionized water production equipment
JP4016663B2 (en) Operation method of electrodeionization equipment
JP2019188367A (en) Method for producing electric deionized water production apparatus
JP6720428B1 (en) Pure water production apparatus and operating method thereof
JP4915843B2 (en) Electric softening device, softening device and soft water production method
JP6994351B2 (en) Electric deionized water production equipment
JP4531213B2 (en) Desalination equipment
JP5186605B2 (en) Electric deionized water production apparatus and deionized water production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220114

R150 Certificate of patent or registration of utility model

Ref document number: 7011457

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150