JP6873735B2 - Electric deionized water production equipment and water treatment equipment and water treatment method using this - Google Patents
Electric deionized water production equipment and water treatment equipment and water treatment method using this Download PDFInfo
- Publication number
- JP6873735B2 JP6873735B2 JP2017031281A JP2017031281A JP6873735B2 JP 6873735 B2 JP6873735 B2 JP 6873735B2 JP 2017031281 A JP2017031281 A JP 2017031281A JP 2017031281 A JP2017031281 A JP 2017031281A JP 6873735 B2 JP6873735 B2 JP 6873735B2
- Authority
- JP
- Japan
- Prior art keywords
- exchanger
- cation
- anion
- exchange membrane
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 98
- 239000008367 deionised water Substances 0.000 title claims description 22
- 229910021641 deionized water Inorganic materials 0.000 title claims description 22
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 238000000034 method Methods 0.000 title claims description 5
- 150000001450 anions Chemical class 0.000 claims description 129
- 150000001768 cations Chemical class 0.000 claims description 121
- 238000011033 desalting Methods 0.000 claims description 78
- 239000012528 membrane Substances 0.000 claims description 65
- 238000005341 cation exchange Methods 0.000 claims description 50
- 239000003011 anion exchange membrane Substances 0.000 claims description 41
- 238000010612 desalination reaction Methods 0.000 claims description 23
- 239000003014 ion exchange membrane Substances 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 9
- 238000005349 anion exchange Methods 0.000 claims description 7
- 238000012856 packing Methods 0.000 claims description 7
- 238000011144 upstream manufacturing Methods 0.000 claims description 5
- 238000010586 diagram Methods 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 229910001415 sodium ion Inorganic materials 0.000 description 9
- 150000002500 ions Chemical class 0.000 description 8
- 230000007423 decrease Effects 0.000 description 5
- -1 hydroxide ions Chemical class 0.000 description 4
- 238000005342 ion exchange Methods 0.000 description 3
- 230000001954 sterilising effect Effects 0.000 description 3
- 238000004659 sterilization and disinfection Methods 0.000 description 3
- 125000000129 anionic group Chemical group 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001223 reverse osmosis Methods 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000003957 anion exchange resin Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000003729 cation exchange resin Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000002242 deionisation method Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 208000018459 dissociative disease Diseases 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Description
本発明は、電気式脱イオン水製造装置とこれを用いた水処理装置及び水処理方法に関し、特にアニオン交換体とカチオン交換体の脱塩室への充填に関する。 The present invention relates to an electric deionized water production apparatus, a water treatment apparatus using the same, and a water treatment method, and more particularly to filling an anion exchanger and a cation exchanger into a desalting chamber.
従来、イオン交換体のイオン交換基の薬剤による再生が不要な電気式脱イオン水製造装置(以下、EDIともいう)が開発され、実用化されている。EDIは、互いに対向する陰極室及び陽極室と、陰極室と陽極室との間に位置する脱塩室と、脱塩室に隣接する一対の濃縮室と、を有する。脱塩室は、陽極室側をアニオン交換膜によって、陰極室側をカチオン交換膜によって仕切られている。特許文献1には、脱塩室が、アニオン交換体が充填されたアニオン交換体充填部と、カチオン交換体が充填されたカチオン交換体充填部とに区画された混床式のEDIが開示されている。被処理水はアニオン交換体充填部とカチオン交換体充填部でアニオン成分とカチオン成分を除去されて、脱イオン水となる。 Conventionally, an electric deionized water production device (hereinafter, also referred to as EDI) that does not require regeneration of an ion exchanger by a chemical agent has been developed and put into practical use. The EDI has a cathode chamber and an anode chamber facing each other, a desalting chamber located between the cathode chamber and the anode chamber, and a pair of concentrating chambers adjacent to the desalting chamber. The desalting chamber is partitioned by an anion exchange membrane on the anode chamber side and by a cation exchange membrane on the cathode chamber side. Patent Document 1 discloses a mixed bed type EDI in which a desalting chamber is divided into an anion exchanger filled portion filled with an anion exchanger and a cation exchanger filled portion filled with a cation exchanger. ing. The water to be treated becomes deionized water by removing the anion component and the cation component at the anion exchanger-filled portion and the cation exchanger-filled portion.
脱イオン水の用途によっては、アニオン成分よりカチオン成分を優先的に除去することが望まれることがある。このような場合、アニオン交換体充填部とカチオン交換体充填部の体積比(樹脂の充填比率)を変更することが一般的である。例えば、アニオン交換体充填部とカチオン交換体充填部の体積比が5:5であるEDIにおいて、その比率を4:6に変更することでカチオン成分をより効率的に除去することができる。しかし、この場合、アニオン成分の除去効率が低下する。 Depending on the use of deionized water, it may be desired to preferentially remove the cationic component over the anionic component. In such a case, it is common to change the volume ratio (resin filling ratio) of the anion exchanger-filled portion and the cation exchanger-filled portion. For example, in an EDI in which the volume ratio of the anion exchanger-filled portion and the cation exchanger-filled portion is 5: 5, the cation component can be removed more efficiently by changing the ratio to 4: 6. However, in this case, the efficiency of removing the anion component decreases.
そこで、本発明はアニオン成分の除去効率を低下させることなく、カチオン成分の除去効率を高めることができる電気式脱イオン水製造装置を提供することを目的とする。 Therefore, an object of the present invention is to provide an electric deionized water production apparatus capable of increasing the removal efficiency of the cation component without lowering the removal efficiency of the anion component.
本発明の電気式脱イオン水製造装置は、互いに対向する陽極室及び陰極室と、陽極室と陰極室との間に位置し、陽極室側のアニオン交換膜と陰極室側のカチオン交換膜とで仕切られ、被処理水が流通する脱塩室と、アニオン交換膜及びカチオン交換膜を介してそれぞれ脱塩室に隣接する一対の濃縮室と、を有している。脱塩室には、アニオン交換体が充填された少なくとも一つのアニオン交換体充填部と、カチオン交換体が充填された少なくとも一つのカチオン交換体充填部とが、被処理水の流通経路に沿って交互に配置されている。アニオン交換膜とカチオン交換膜は可撓性を有している。アニオン交換体充填部の総容積をVa、カチオン交換体充填部の総容積をVk、脱塩室にアニオン交換体とカチオン交換体が充填されていないときのアニオン交換体充填部の容積をVa0、脱塩室にアニオン交換体とカチオン交換体が充填されていないときのカチオン交換体充填部の容積をVk0、アニオン交換体充填率RaをVa/Va0、カチオン交換体充填率RkをVk/Vk0とするとき、Rk≧1.20且つ1.05≧Ra≧1である。 The electric deionized water production apparatus of the present invention is located between the anode chamber and the cathode chamber facing each other and the anode chamber and the cathode chamber, and has an anion exchange membrane on the anode chamber side and a cation exchange membrane on the cathode chamber side. It has a desalting chamber in which water to be treated flows, and a pair of concentrating chambers adjacent to each of the desalting chambers via an anion exchange membrane and a cathode exchange membrane. In the desalting chamber, at least one anion exchanger-filled portion filled with an anion exchanger and at least one cation exchanger-filled portion filled with a cation exchanger are provided along the flow path of the water to be treated. They are arranged alternately. The anion exchange membrane and the cation exchange membrane have flexibility. The total volume of the anion exchanger filling part is Va, the total volume of the cation exchanger filling part is Vk, the volume of the anion exchanger filling part when the desalting chamber is not filled with the anion exchanger and the cation exchanger is Va0, When the desalting chamber is not filled with the anion exchanger and the cation exchanger, the volume of the cation exchanger filling portion is Vk0, the anion exchanger filling rate Ra is Va / Va0, and the cation exchanger filling rate Rk is Vk / Vk0. When this is done, Rk ≧ 1.20 and 1.05 ≧ Ra ≧ 1.
本発明によれば、カチオン交換体充填率Rkはアニオン交換体充填率Raよりも大きくされている(Rk>Ra)ため、カチオン成分の除去効率を高めることができる。また、アニオン交換体充填部に充填されるアニオン交換体の容積は、脱塩室にアニオン交換体とカチオン交換体が充填されていないときのアニオン交換体充填部の容積と同じか、それより大きくなっている(Ra≧1)。従って、アニオン成分の除去効率の低下が抑制される。よって、本発明によれば、アニオン成分の除去効率を低下させることなく、カチオン成分の除去効率を高めることができる電気式脱イオン水製造装置を提供することができる。 According to the present invention, since the cation exchanger packing factor Rk is larger than the anion exchanger filling factor Ra (Rk> Ra), the efficiency of removing the cation component can be improved. Further, the volume of the anion exchanger filled in the anion exchanger filling portion is the same as or larger than the volume of the anion exchanger filling portion when the desalting chamber is not filled with the anion exchanger and the cation exchanger. (Ra ≧ 1). Therefore, the decrease in the removal efficiency of the anion component is suppressed. Therefore, according to the present invention, it is possible to provide an electric deionized water production apparatus capable of increasing the removal efficiency of the cation component without lowering the removal efficiency of the anion component.
(第1の実施形態)
以下、図面を参照して、本発明のEDIの第1の実施形態について説明する。
(First Embodiment)
Hereinafter, the first embodiment of EDI of the present invention will be described with reference to the drawings.
図1は、本発明の第1の実施形態に係るEDI4の概略構成図である。EDI4は、互いに対向する陽極室E1及び陰極室E2と、陽極室E1と陰極室E2との間に位置し、陽極室E1側の第1のアニオン交換膜a1と陰極室E2側の第1のカチオン交換膜k1とで仕切られ、アニオン交換体とカチオン交換体が充填された脱塩室Dと、第1のカチオン交換膜k1及び第1のアニオン交換膜a1を介してそれぞれ脱塩室Dに隣接する一対の濃縮室C1,C2と、を有している。以下、第1のアニオン交換膜a1を介して脱塩室Dに隣接する陽極室E1側の濃縮室を第1の濃縮室C1といい、第1のカチオン交換膜k1を介して脱塩室Dに隣接する陰極室E2側の濃縮室を第2の濃縮室C2という。陽極室E1と第1の濃縮室C1は第2のカチオン交換膜k2によって仕切られ、陰極室E2と第2の濃縮室C2は第2のアニオン交換膜a2によって仕切られている。陽極室E1及び陰極室E2には電極水が、第1及び第2の濃縮室C1,C2には濃縮水が、脱塩室Dには被処理水が流れる。これらの水はEDI4の内部を上下方向に流れる。脱塩室の数に制限はなく、2以上の脱塩室を設けることもできる。この場合、陽極室E1と陰極室E2との間に濃縮室と脱塩室が交互に配置され、複数の脱塩室が並列または直列に配置される。 FIG. 1 is a schematic configuration diagram of EDI4 according to the first embodiment of the present invention. The EDI4 is located between the anode chamber E1 and the cathode chamber E2 facing each other and the anode chamber E1 and the cathode chamber E2, and is the first anion exchange film a1 on the anode chamber E1 side and the first on the cathode chamber E2 side. A desalting chamber D partitioned by a cation exchange membrane k1 and filled with an anion exchanger and a cation exchanger, and a desalting chamber D via a first cation exchange membrane k1 and a first anion exchange membrane a1 respectively. It has a pair of concentrating chambers C1 and C2 that are adjacent to each other. Hereinafter, the concentration chamber on the anode chamber E1 side adjacent to the desalting chamber D via the first anion exchange membrane a1 is referred to as the first concentration chamber C1, and the desalting chamber D is referred to via the first cation exchange membrane k1. The concentration chamber on the cathode chamber E2 side adjacent to the second concentration chamber C2 is referred to as a second concentration chamber C2. The anode chamber E1 and the first concentration chamber C1 are separated by a second cation exchange membrane k2, and the cathode chamber E2 and the second concentration chamber C2 are separated by a second anion exchange membrane a2. Electrode water flows through the anode chamber E1 and the cathode chamber E2, concentrated water flows through the first and second concentration chambers C1 and C2, and water to be treated flows through the desalination chamber D. These waters flow vertically inside the EDI4. There is no limit to the number of desalting chambers, and two or more desalting chambers can be provided. In this case, the concentration chamber and the desalination chamber are alternately arranged between the anode chamber E1 and the cathode chamber E2, and a plurality of desalination chambers are arranged in parallel or in series.
陽極室E1には陽極(図示せず)が、陰極室E2には陰極(図示せず)が収容されている。陽極と陰極はステンレスなどの金属の網状体あるいは板状体からなっている。陽極室E1と陰極室E2に供給される電極水は電極近傍での電気分解により、それぞれ水酸化物イオンと水素イオンを発生させる。EDI4の電気抵抗を抑えるため、陽極室E1と陰極室E2にはイオン交換体が充填されていることが好ましい。 The anode chamber E1 houses an anode (not shown), and the cathode chamber E2 houses a cathode (not shown). The anode and cathode are made of a metal mesh or plate such as stainless steel. The electrode water supplied to the anode chamber E1 and the cathode chamber E2 generates hydroxide ions and hydrogen ions by electrolysis in the vicinity of the electrodes, respectively. In order to suppress the electrical resistance of the EDI4, it is preferable that the anode chamber E1 and the cathode chamber E2 are filled with an ion exchanger.
第1及び第2の濃縮室C1,C2を流れる濃縮水は、濃縮水供給管L3から供給される。脱塩室Dで除去されたイオン成分は第1及び第2の濃縮室C1,C2に移動し、濃縮水とともに濃縮水排水管L4からEDI4の外部に排出される。EDI4の電気抵抗を抑えるために、第1及び第2の濃縮室C1,C2にはイオン交換体が充填されていることが好ましい。ただし、本実施形態では、後述するように、脱塩室Dに従来よりも多くのカチオン交換体が充填され、この結果第1のカチオン交換膜k1と第1のアニオン交換膜a1が面外に張り出す。第1及び第2の濃縮室C1,C2に充填されるイオン交換体の量は、第1のカチオン交換膜k1と第1のアニオン交換膜a1が面外に張り出し、十分な量のカチオン交換体が充填できるように調整することが好ましい。 The concentrated water flowing through the first and second concentration chambers C1 and C2 is supplied from the concentrated water supply pipe L3. The ionic components removed in the desalting chamber D move to the first and second concentration chambers C1 and C2, and are discharged from the concentrated water drain pipe L4 to the outside of the EDI4 together with the concentrated water. In order to suppress the electrical resistance of EDI4, it is preferable that the first and second concentration chambers C1 and C2 are filled with an ion exchanger. However, in the present embodiment, as will be described later, the desalting chamber D is filled with more cation exchanges than before, and as a result, the first cation exchange membrane k1 and the first anion exchange membrane a1 are out of plane. Overhang. The amount of ion exchangers filled in the first and second concentration chambers C1 and C2 is such that the first cation exchange membrane k1 and the first anion exchange membrane a1 project out of the plane, and a sufficient amount of cation exchangers are used. It is preferable to adjust so that the mixture can be filled.
被処理水は被処理水供給管L1を通って脱塩室Dに流入し、脱塩室Dでイオン成分(アニオン成分及びカチオン成分)を除去され、脱イオン水(処理水)として処理水排出管L2に排出される。被処理水から除去されたアニオン成分(Cl−、CO3 2−、HCO3 −、SiO2等)は第1のアニオン交換膜a1を通って第1の濃縮室C1に移動し、被処理水から除去されたカチオン成分(Na+、Ca2+、Mg2+等)は第1のカチオン交換膜k1を通って第2の濃縮室C2に移動する。 The water to be treated flows into the desalting chamber D through the water supply pipe L1 to be treated, the ionic components (anionic component and cation component) are removed in the desalting chamber D, and the treated water is discharged as deionized water (treated water). It is discharged to the pipe L2. The anion components (Cl − , CO 3 2- , HCO 3 − , SiO 2 etc.) removed from the water to be treated move to the first concentration chamber C1 through the first anion exchange membrane a1 and move to the water to be treated. The cation components (Na + , Ca 2+ , Mg 2+, etc.) removed from the cation exchange membrane move to the second concentration chamber C2 through the first cation exchange membrane k1.
脱塩室Dはアニオン交換体が充填されたアニオン交換体充填部Aと、カチオン交換体が充填されたカチオン交換体充填部Kとに区画されている。すなわち、脱塩室には、アニオン交換体が充填された少なくとも一つのアニオン交換体充填部Aと、カチオン交換体が充填された少なくとも一つのカチオン交換体充填部Kとが、処理水の流通経路に沿って交互に配置されている。アニオン交換体とカチオン交換体はそれぞれ粒状のアニオン交換樹脂とカチオン交換樹脂からなっているが、イオン交換作用を奏する限り、イオン交換繊維、モノリス状有機多孔質イオン交換体などの他のイオン交換体を用いることもできる。アニオン交換体充填部Aとカチオン交換体充填部Kの数は限定されないが、少なくとも一つのアニオン交換体充填部Aと、少なくとも一つのカチオン交換体充填部Kとが、脱塩室Dに上下方向に一列にかつ交互に配置されていればよい。本実施形態では、第1のアニオン交換体充填部A1と、第1のカチオン交換体充填部K1と、第2のアニオン交換体充填部A2とがこの順で設けられ、被処理水は第1のアニオン交換体充填部A1、第1のカチオン交換体充填部K1、第2のアニオン交換体充填部A2の順に通過する。図示は省略するが、第1のアニオン交換体充填部A1の上流側に別のカチオン交換体充填部を設けることもできる(被処理水はカチオン交換体、アニオン交換体、カチオン交換体、アニオン交換体の順に流れる)。アニオン交換体充填部A1、A2とカチオン交換体充填部Kとの間に物理的な障壁はなく、これらの充填部はアニオン交換体とカチオン交換体をそれぞれ単独で充填することで形成される(いわゆる複床形態)。 The desalting chamber D is divided into an anion exchanger filled portion A filled with an anion exchanger and a cation exchanger filled portion K filled with a cation exchanger. That is, in the desalination chamber, at least one anion exchanger-filled portion A filled with the anion exchanger and at least one cation exchanger-filled portion K filled with the cation exchanger are connected to the flow path of the treated water. They are arranged alternately along. The anion exchanger and the cation exchanger are composed of a granular anion exchange resin and a cation exchange resin, respectively, but other ion exchangers such as an ion exchange fiber and a monolithic organic porous ion exchanger as long as they exhibit an ion exchange action. Can also be used. The number of the anion exchanger filling portion A and the cation exchanger filling portion K is not limited, but at least one anion exchanger filling portion A and at least one cation exchanger filling portion K are vertically arranged in the desalting chamber D. It suffices if they are arranged in a row and alternately. In the present embodiment, the first anion exchanger filling portion A1, the first cation exchanger filling portion K1, and the second anion exchanger filling portion A2 are provided in this order, and the water to be treated is the first. Passes through the anion exchanger filling portion A1, the first cation exchanger filling portion K1, and the second anion exchanger filling portion A2 in this order. Although not shown, another cation exchanger filling portion may be provided on the upstream side of the first anion exchanger filling portion A1 (the water to be treated is a cation exchanger, an anion exchanger, cation exchanger, anion exchange). It flows in the order of the body). There is no physical barrier between the anion exchanger filling portions A1 and A2 and the cation exchanger filling portion K, and these filling portions are formed by individually filling the anion exchanger and the cation exchanger (respectively). So-called double-bed form).
アニオン交換膜とカチオン交換膜は薄い膜であるため、面外方向、すなわち陽極側及び陰極側に可撓性を有している。本実施形態ではカチオン交換体の充填量を増やしており、この結果第1のアニオン交換膜a1と第1のカチオン交換膜k1は面外方向、すなわち隣接する濃縮室C1,C2側に張り出す。具体的には第1のアニオン交換膜a1は第1の濃縮室C1側に張り出し、第1のカチオン交換膜k1は第2の濃縮室C2側に張り出す。 Since the anion exchange membrane and the cation exchange membrane are thin membranes, they have flexibility in the out-of-plane direction, that is, on the anode side and the cathode side. In the present embodiment, the filling amount of the cation exchange is increased, and as a result, the first anion exchange membrane a1 and the first cation exchange membrane k1 project in the out-of-plane direction, that is, toward the adjacent concentration chambers C1 and C2. Specifically, the first anion exchange membrane a1 overhangs the first concentration chamber C1 side, and the first cation exchange membrane k1 overhangs the second concentration chamber C2 side.
ここで、アニオン交換体とカチオン交換体の充填率を以下のように定義する。図2は脱塩室Dの概略斜視図であり、図2(a)はアニオン交換体とカチオン交換体が充填されていないときの、図2(b)はアニオン交換体とカチオン交換体が充填されているときの脱塩室Dと第1のアニオン交換膜a1及び第1のカチオン交換膜k1を示している。図2(a)に示すように、アニオン交換体とカチオン交換体が充填されていないときは、第1のアニオン交換膜a1と第1のカチオン交換膜k1は面外方向に変形しておらず、陽極室E1の中心と陰極室E2の中心を結ぶ直線に対して概ね直交する平面内にある。図2(b)に示すように、アニオン交換体とカチオン交換体が充填されているときは、第1のアニオン交換膜a1と第1のカチオン交換膜k1は面外方向に張り出している。 Here, the packing rates of the anion exchanger and the cation exchanger are defined as follows. FIG. 2 is a schematic perspective view of the desalination chamber D, FIG. 2 (a) is when the anion exchanger and the cation exchanger are not filled, and FIG. 2 (b) is filled with the anion exchanger and the cation exchanger. The desalting chamber D, the first anion exchange membrane a1 and the first cation exchange membrane k1 are shown. As shown in FIG. 2A, when the anion exchanger and the cation exchanger are not filled, the first anion exchange film a1 and the first cation exchange film k1 are not deformed in the out-of-plane direction. , It is in a plane substantially orthogonal to the straight line connecting the center of the anode chamber E1 and the center of the cathode chamber E2. As shown in FIG. 2B, when the anion exchange body and the cation exchange body are filled, the first anion exchange membrane a1 and the first cation exchange membrane k1 project in the out-of-plane direction.
図2(b)において符号を以下のように定義する。
Va:アニオン交換体充填部Aの総容積
Va1:第1のアニオン交換体充填部A1の容積
Va2:第2のアニオン交換体充填部A2の容積
Vk:カチオン交換体充填部Kの総容積
Vk1:第1のカチオン交換体充填部K1の容積
Ha:アニオン交換体の総充填高さ
Hk:カチオン交換体の総充填高さ
W:脱塩室Dにアニオン交換体とカチオン交換体が充填されていないときの第1のアニオン交換膜a1と第1のカチオン交換膜k1の間隔
S 脱塩室Dの奥行き
総容積は、複数のアニオン交換体充填部または複数のカチオン交換体充填部がある場合に、複数のアニオン交換体充填部の容積の合計、あるいは複数のカチオン交換体充填部の容積の合計を意味する。従って、図2(b)の場合、Va=Va1+Va2、Vk=Vk1である。総充填高さは、複数のアニオン交換体充填部または複数のカチオン交換体充填部がある場合に、複数のアニオン交換体充填部の高さの合計、あるいは複数のカチオン交換体充填部の高さの合計を意味する。従って、図2(b)の場合、Ha=Ha1+Ha2、Hk=Hk1である。なお、高さは被処理水の流れる方向と平行な方向に定義される。
In FIG. 2B, the reference numerals are defined as follows.
Va: Total volume of anion exchanger filling part A Va1: Volume of first anion exchanger filling part A1 Va2: Volume of second anion exchanger filling part A2 Vk: Total volume of cation exchanger filling part K Vk1: Volume of the first cation exchanger filling portion K1 Ha: Total filling height of the anion exchanger Hk: Total filling height of the cation exchanger W: The desalting chamber D is not filled with the anion exchanger and the cation exchanger. Distance between the first anion exchange film a1 and the first cation exchange film k1 S Depth of the desalting chamber D The total volume is the total volume when there are a plurality of anion exchanger filling portions or a plurality of cation exchanger filling portions. It means the total volume of a plurality of anion exchanger filling parts or the total volume of a plurality of cation exchanger filling parts. Therefore, in the case of FIG. 2B, Va = Va1 + Va2 and Vk = Vk1. The total filling height is the sum of the heights of the plurality of anion exchanger filling portions or the height of the plurality of cation exchanger filling portions when there are a plurality of anion exchanger filling portions or a plurality of cation exchanger filling portions. Means the sum of. Therefore, in the case of FIG. 2B, Ha = Ha1 + Ha2 and Hk = Hk1. The height is defined in the direction parallel to the flow direction of the water to be treated.
図2(a)において、アニオン交換体充填部Aの容積をVa0、カチオン交換体充填部Kの容積をVk0とする。Va0は、図2(b)におけるアニオン交換体充填部Aの、アニオン交換体とカチオン交換体が充填されていないときの容積であり、Vk0は、図2(b)におけるカチオン交換体充填部Kの、アニオン交換体とカチオン交換体が充填されていないときの容積である。第1のアニオン交換体充填部A1のアニオン交換体が充填されていないときの容積をVa01、第2のアニオン交換体充填部A2のアニオン交換体が充填されていないときの容積をVa02、第1のカチオン交換体充填部K1のアニオン交換体が充填されていないときの容積をVk01とすると、Va0=Va01+Va02、Vk=Vk01である。アニオン交換体の総充填高さHaとカチオン交換体の総充填高さHkは、図2(a)と(b)で同じであるため、Va0=Ha×S×W、Vk0=Hk×S×Wとなる。脱塩室Dの奥行きSは、陽極室E1の中心と陰極室E2の中心を結ぶ直線と、被処理水の流れる方向の両者と直交する方向に定義され、アニオン交換体とカチオン交換体が充填されているか否かに拘らず一定である。 In FIG. 2A, the volume of the anion exchanger filling portion A is Va0, and the volume of the cation exchanger filling portion K is Vk0. Va0 is the volume of the anion exchanger filling portion A in FIG. 2B when the anion exchanger and the cation exchanger are not filled, and Vk0 is the cation exchanger filling portion K in FIG. 2B. This is the volume when the anion exchanger and the cation exchanger are not filled. The volume of the first anion exchanger filling portion A1 when the anion exchanger is not filled is Va01, the volume of the second anion exchanger filling portion A2 when the anion exchanger is not filled is Va02, and the first Assuming that the volume of the cation exchanger-filled portion K1 when the anion exchanger is not filled is Vk01, Va0 = Va01 + Va02 and Vk = Vk01. Since the total filling height Ha of the anion exchanger and the total filling height Hk of the cation exchanger are the same in FIGS. 2A and 2B, Va0 = Ha × S × W and Vk0 = Hk × S × It becomes W. The depth S of the desalting chamber D is defined in a direction orthogonal to both the straight line connecting the center of the anode chamber E1 and the center of the cathode chamber E2 and the direction in which the water to be treated flows, and is filled with an anion exchanger and a cation exchanger. It is constant regardless of whether it is done or not.
以上より、アニオン交換体充填率Raとカチオン交換体充填率Rkは以下のように定義される。
アニオン交換体充填率Ra=Va/Va0=Va/(Ha×S×W)
カチオン交換体充填率Rk=Vk/Vk0=Vk/(Hk×S×W)
本実施形態ではVk>Vk0、かつVa>Va0であるが、VaについてはVa=Va0であってもよい。
From the above, the anion exchanger filling factor Ra and the cation exchanger packing factor Rk are defined as follows.
Anion exchanger filling factor Ra = Va / Va0 = Va / (Ha × S × W)
Cation exchanger filling factor Rk = Vk / Vk0 = Vk / (Hk × S × W)
In the present embodiment, Vk> Vk0 and Va> Va0, but Va = Va0 may be used for Va.
さらに、本実施形態ではRk>Raが成り立つ。Va≧Va0であることから、結局Rk>Ra≧1が成り立つ。このようにカチオン交換体とアニオン交換体を充填することで、カチオン成分をより効率的に除去することができる。アニオン交換体についても一定の充填量が確保されるため、アニオン成分を除去する能力が低下することもない。た、RkとRaは共に1以上であることが好ましく、これによってイオン交換体とイオン交換膜の密着性が確保され、イオンを効率よく濃縮室に移送することができる。なお、上述の定義から明らかなとおり、Rk>Raはカチオン交換体の充填量がアニオン交換体の充填量より多いこと(Vk>Va)を意味しない。換言すれば、Rk>Raはカチオン交換体充填部Kの幅方向寸法の平均値が、アニオン交換体充填部Aの幅方向寸法の平均値より大きいことを意味する。
Further, in this embodiment, Rk> Ra holds. Since
EDI4の上流側には被処理水から塩類などの不純物を除去する逆浸透膜(RO)装置2と、RO透過水を加熱する加熱手段3とが設けられている。加熱手段3は特に限定されず、ヒータ、熱交換器などであってよい。加熱手段3は例えば被処理水の熱水殺菌のために用いられる。RO装置2と加熱手段3は、EDI4とともに水処理装置1の一部を構成する。後述するように、本発明によれば、被処理水を40℃以上に加熱してもカチオン成分の除去効率の低下を抑制することができる。従って、本発明の水処理方法は、被処理水を40℃以上に加熱する工程と、40℃以上に加熱された被処理水をEDI4に供給して、被処理水をEDI4で処理する工程と、を有する。
On the upstream side of the EDI4, a reverse osmosis membrane (RO)
(第2の実施形態)
図3は、本発明の第2の実施形態に係るEDI4の概略構成図である。第2の実施形態はアニオン交換体充填部Aに第1のバイポーラ膜BP1が、カチオン交換体充填部Kに第2のバイポーラ膜BP2が設けられている点を除き、第1の実施形態と同じである。具体的には、アニオン交換体充填部Aの陰極側に第1のバイポーラ膜BP1が、カチオン交換体充填部Kの陽極側に第2のバイポーラ膜BP2が設けられている。第1及び第2のバイポーラ膜BP1,BP2はアニオン交換膜BPaとカチオン交換膜BPkとを貼り合わせることで形成される。第1のバイポーラ膜BP1のアニオン交換膜BPaはアニオン交換体と接しており、第2のバイポーラ膜BP2のカチオン交換膜BPkはカチオン交換体と接している。バイポーラ膜は水分解反応を促進し電流をより流しやすくする作用がある。第1及び第2のバイポーラ膜BP1,BP2を設けることで、アニオン成分とカチオン成分の除去効率が高められる。
(Second Embodiment)
FIG. 3 is a schematic configuration diagram of EDI4 according to the second embodiment of the present invention. The second embodiment is the same as the first embodiment except that the anion exchanger filling portion A is provided with the first bipolar film BP1 and the cation exchanger filling portion K is provided with the second bipolar film BP2. Is. Specifically, the first bipolar film BP1 is provided on the cathode side of the anion exchanger-filled portion A, and the second bipolar film BP2 is provided on the anode side of the cation exchanger-filled portion K. The first and second bipolar membranes BP1 and BP2 are formed by laminating the anion exchange membrane BPa and the cation exchange membrane BPk. The anion exchange membrane BPa of the first bipolar membrane BP1 is in contact with the anion exchanger, and the cation exchange membrane BPk of the second bipolar membrane BP2 is in contact with the cation exchanger. The bipolar film has the effect of promoting the water splitting reaction and making it easier for the current to flow. By providing the first and second bipolar films BP1 and BP2, the efficiency of removing the anion component and the cation component is enhanced.
(第3の実施形態)
図4は、本発明の第3の実施形態に係るEDI4の概略構成図である。図5は脱塩室Dの概略斜視図であり、図5(a)はアニオン交換体とカチオン交換体が充填されていないときの、図5(b)はアニオン交換体とカチオン交換体が充填されたときの脱塩室Dとアニオン交換膜及びカチオン交換膜を示している。第3の実施形態は脱塩室Dが2つの小脱塩室D1、D2に分割されている点を除き、第1の実施形態と同じである。具体的には、脱塩室Dは、第1のアニオン交換膜a1と第1のカチオン交換膜k1との間に位置する中間イオン交換膜xと、第1のアニオン交換膜a1と中間イオン交換膜xとによって仕切られた第1の小脱塩室D1と、第1のカチオン交換膜k1と中間イオン交換膜xとによって仕切られた第2の小脱塩室D2と、を有している。中間イオン交換膜xは、アニオン交換膜もしくはカチオン交換膜の単一膜、または、アニオン交換膜とカチオン交換膜の両方を備えた複合膜のいずれであってもよい。第1の小脱塩室D1と第2の小脱塩室D2は接続流路L5で直列接続されており、被処理水は第1の小脱塩室D1から第2の小脱塩室D2に流れる。
(Third Embodiment)
FIG. 4 is a schematic configuration diagram of EDI4 according to a third embodiment of the present invention. FIG. 5 is a schematic perspective view of the desalination chamber D, FIG. 5 (a) is when the anion exchanger and the cation exchanger are not filled, and FIG. 5 (b) is filled with the anion exchanger and the cation exchanger. The desalting chamber D, the anion exchange membrane, and the cation exchange membrane are shown. The third embodiment is the same as the first embodiment except that the desalting chamber D is divided into two small desalting chambers D1 and D2. Specifically, the desalting chamber D contains an intermediate ion exchange membrane x located between the first anion exchange membrane a1 and the first cation exchange membrane k1, and the first anion exchange membrane a1 and intermediate ion exchange. It has a first small desalting chamber D1 partitioned by the membrane x and a second small desalting chamber D2 partitioned by the first cation exchange membrane k1 and the intermediate ion exchange membrane x. .. The intermediate ion exchange membrane x may be either a single membrane of an anion exchange membrane or a cation exchange membrane, or a composite membrane having both an anion exchange membrane and a cation exchange membrane. The first small desalting chamber D1 and the second small desalting chamber D2 are connected in series by the connection flow path L5, and the water to be treated is from the first small desalting chamber D1 to the second small desalting chamber D2. Flow to.
このように脱塩室Dが2つの小脱塩室に区画された構成は、被処理水の多段処理が可能であり、脱イオン性能の向上に効果的である。しかも第1の小脱塩室D1と第2の小脱塩室D2との間に濃縮室を設ける必要がないため、陽極・陰極間の印加電圧が抑えられ、消費電力が下がり、運転費の低減を図ることが可能である。 The configuration in which the desalination chamber D is divided into two small desalination chambers in this way enables multi-stage treatment of the water to be treated, and is effective in improving the deionization performance. Moreover, since it is not necessary to provide a concentration chamber between the first small desalination chamber D1 and the second small desalination chamber D2, the applied voltage between the anode and the cathode is suppressed, the power consumption is reduced, and the operating cost is reduced. It is possible to reduce the amount.
脱塩室Dには、少なくとも一つのアニオン交換体充填部Aと少なくとも一つのカチオン交換体充填部Kとが、被処理水の流通経路に沿って交互に配置されている。本実施形態では、第1の小脱塩室D1にアニオン交換体が充填され、第2の小脱塩室D2には被処理水の流れ方向に関して上流側にカチオン交換体が、下流側にアニオン交換体が充填されている。従って、被処理水は第1のアニオン交換体充填部A1、第2のカチオン交換体充填部K2、第2のアニオン交換体充填部A2の順に通過する。第1の小脱塩室D1の上流側にアニオン交換体を、下流側にカチオン交換体を充填し、第2の小脱塩室D2にはアニオン交換体を充填し、第1の小脱塩室D1から第2の小脱塩室D2に被処理水が流れるようにすることもできる。 In the desalting chamber D, at least one anion exchanger filling portion A and at least one cation exchanger filling portion K are alternately arranged along the flow path of the water to be treated. In the present embodiment, the first small desalination chamber D1 is filled with an anion exchanger, the second small desalination chamber D2 is filled with a cation exchanger on the upstream side and an anion on the downstream side in the flow direction of the water to be treated. The replacement body is filled. Therefore, the water to be treated passes in the order of the first anion exchanger filling portion A1, the second cation exchanger filling portion K2, and the second anion exchanger filling portion A2. The upstream side of the first small desalination chamber D1 is filled with an anion exchanger, the downstream side is filled with a cation exchanger, the second small desalination chamber D2 is filled with an anion exchanger, and the first small desalting chamber is demineralized. It is also possible to allow the water to be treated to flow from the chamber D1 to the second small desalination chamber D2.
本実施形態においては、少なくとも一つのアニオン交換体充填部Aと少なくとも一つのカチオン交換体充填部Kが配置されている小脱塩室毎にRk>Ra≧1が成り立つ。すなわち、本実施形態では第1の小脱塩室D1にはアニオン交換体だけが充填され、第2の小脱塩室D2にはカチオン交換体とアニオン交換体が充填されているため、第2の小脱塩室D2でRk>Ra≧1が成り立つ。図5(b)において符号を以下のように定義する。
Va1:第1のアニオン交換体充填部A1の容積
Va2:第2のアニオン交換体充填部A2の容積
Vk1:第1のカチオン交換体充填部K1の容積(本実施形態ではVk1=0である)
Vk2:第2のカチオン交換体充填部K2の容積
Ha1:第1の小脱塩室D1に充填されたアニオン交換体の総充填高さ
Hk1:第1の小脱塩室D1に充填されたカチオン交換体の総充填高さ(本実施形態ではHk1=0である)
Ha2:第2の小脱塩室D2に充填されたアニオン交換体の総充填高さ
Hk2:第2の小脱塩室D2に充填されたカチオン交換体の総充填高さ
W1:脱塩室Dにアニオン交換体とカチオン交換体が充填されていないときの第1のアニオン交換膜a1と中間イオン交換膜xとの間隔
W2:脱塩室Dにアニオン交換体とカチオン交換体が充填されていないときの中間イオン交換膜xと第1のカチオン交換膜k1との間隔
S:脱塩室Dの奥行き
ここで、第2の小脱塩室D2について考えると、
Va0=Ha2×S×W2
Vk0=Hk2×S×W2
であり、
アニオン交換体充填率Ra=Va2/(Ha2×S×W2)
カチオン交換体充填率Rk=Vk2/(Hk2×S×W2)となる。
In the present embodiment, Rk> Ra ≧ 1 is established for each small desalination chamber in which at least one anion exchanger filling portion A and at least one cation exchanger filling portion K are arranged. That is, in the present embodiment, the first small desalting chamber D1 is filled with only the anion exchanger, and the second small desalting chamber D2 is filled with the cation exchanger and the anion exchanger. Rk> Ra ≧ 1 holds in the small desalination chamber D2. In FIG. 5B, the reference numerals are defined as follows.
Va1: Volume of the first anion exchanger filling part A1 Va2: Volume of the second anion exchanger filling part A2 Vk1: Volume of the first cation exchanger filling part K1 (Vk1 = 0 in this embodiment)
Vk2: Volume of the second cation exchanger filling portion K2 Ha1: Total filling height of the anion exchanger filled in the first small desalting chamber D1 Hk1: Cation filled in the first small desalting chamber D1 Total filling height of the exchanger (Hk1 = 0 in this embodiment)
Ha2: Total filling height of the anion exchange membrane filled in the second small desalting chamber D2 Hk2: Total filling height of the cation exchange membrane filled in the second small desalting chamber D2 W1: Desalting chamber D Distance between the first anion exchange membrane a1 and the intermediate ion exchange membrane x when the anion exchanger and the cation exchange membrane are not filled in W2: The desalting chamber D is not filled with the anion exchanger and the cation exchange membrane. Distance between intermediate ion exchange membrane x and first cation exchange membrane k1 S: Depth of desalting chamber D Here, considering the second small desalting chamber D2,
Va0 = Ha2 × S × W2
Vk0 = Hk2 × S × W2
And
Anion exchanger filling factor Ra = Va2 / (Ha2 × S × W2)
The cation exchanger packing factor Rk = Vk2 / (Hk2 × S × W2).
第1の小脱塩室D1にカチオン交換体とアニオン交換体が充填されている場合も同様である。第1の小脱塩室D1と第2の小脱塩室D2のそれぞれにカチオン交換体とアニオン交換体が充填されている場合は、第1の小脱塩室D1と第2の小脱塩室D2のそれぞれについてRk>Ra≧1が成り立つ。 The same applies when the first small desalting chamber D1 is filled with a cation exchanger and an anion exchanger. When the first small desalting chamber D1 and the second small desalting chamber D2 are filled with a cation exchanger and an anion exchanger, respectively, the first small desalting chamber D1 and the second small desalting chamber D1 and the second small desalting chamber D1 are filled. Rk> Ra ≧ 1 holds for each of the chambers D2.
(第4の実施形態)
図6は、本発明の第4の実施形態に係るEDI4の概略構成図である。第4の実施形態はアニオン交換体充填部Aに第1のバイポーラ膜BP1が設けられる点を除き、第3の実施形態と同じである。具体的には、アニオン交換体充填部Aの陰極側に第1のバイポーラ膜BP1が設けられ、第1のバイポーラ膜BP1のアニオン交換膜BPaがアニオン交換体と接している。一般にアニオン交換体はカチオン交換体より電気抵抗が高く、電流が流れにくい。このため電流がカチオン交換体に流れやすくなり、この偏流の影響によりアニオン成分の除去効率が低下する可能性がある。バイポーラ膜はアニオン交換膜とカチオン交換膜の接合面における水の解離反応を促進するため、電流をより流しやすくする作用がある。このため、アニオン交換体充填部Aに第1のバイポーラ膜BP1を設けることで偏流が改善される。
(Fourth Embodiment)
FIG. 6 is a schematic configuration diagram of EDI4 according to a fourth embodiment of the present invention. The fourth embodiment is the same as the third embodiment except that the first bipolar film BP1 is provided in the anion exchanger filling portion A. Specifically, the first bipolar membrane BP1 is provided on the cathode side of the anion exchanger filling portion A, and the anion exchange membrane BPa of the first bipolar membrane BP1 is in contact with the anion exchanger. In general, anion exchangers have higher electrical resistance than cation exchangers, and it is difficult for current to flow. Therefore, the current easily flows through the cation exchanger, and the efficiency of removing the anion component may decrease due to the influence of this drift. Since the bipolar membrane promotes the dissociation reaction of water at the junction surface between the anion exchange membrane and the cation exchange membrane, it has an effect of making it easier for an electric current to flow. Therefore, the drift is improved by providing the first bipolar film BP1 in the anion exchanger filling portion A.
(第5の実施形態)
図7は、本発明の第4の実施形態に係るEDI4の概略構成図である。第5の実施形態はカチオン交換体充填部Kに第2のバイポーラ膜BP2が設けられる点を除き、第4の実施形態と同じである。具体的には、カチオン交換体充填部Kの陽極側に第2のバイポーラ膜BP2が設けられ、第2のバイポーラ膜BP2のカチオン交換膜BPkがカチオン交換体と接している。第4の実施形態によって偏流が改善されるが、カチオン交換体充填部Kに流れる電流が減少する。このため、カチオン交換体充填部Kに第2のバイポーラ膜BP2を設け、カチオン交換体充填部Kに流れる電流を増加させることができる。
(Fifth Embodiment)
FIG. 7 is a schematic configuration diagram of EDI4 according to a fourth embodiment of the present invention. The fifth embodiment is the same as the fourth embodiment except that the cation exchanger filling portion K is provided with the second bipolar film BP2. Specifically, a second bipolar membrane BP2 is provided on the anode side of the cation exchanger filling portion K, and the cation exchange membrane BPk of the second bipolar membrane BP2 is in contact with the cation exchanger. The fourth embodiment improves the drift, but reduces the current flowing through the cation exchanger packing section K. Therefore, the second bipolar film BP2 can be provided on the cation exchanger-filled portion K to increase the current flowing through the cation exchanger-filled portion K.
(実施例)
次にいくつかの実施例について述べる。各実施例と各比較例では1段の逆浸透膜(RO膜)で処理した水をEDIに供給した。表1の左欄に示す各脱塩室の構成に対応した実施例と比較例は、アニオン交換体充填率Raとカチオン交換体充填率Rkのみが異なる。処理水の比抵抗は大きいほどイオン成分が除去されていることを示し、Naイオン量はカチオンイオンの代表例であるNaイオンの処理水における濃度を示している。
(Example)
Next, some examples will be described. In each Example and each Comparative Example, water treated with a one-stage reverse osmosis membrane (RO membrane) was supplied to EDI. The examples and comparative examples corresponding to the configurations of the desalting chambers shown in the left column of Table 1 differ only in the anion exchanger filling factor Ra and the cation exchanger filling factor Rk. The larger the resistivity of the treated water, the more the ionic component is removed, and the amount of Na ions indicates the concentration of Na ions, which is a typical example of cation ions, in the treated water.
実施例1は図6に示すEDIにおいてアニオン交換体充填率Ra=1.05、カチオン交換体充填率Rk=1.20としたものである。比較例1は図6に示すEDIにおいてアニオン交換体充填率Ra=1.10、カチオン交換体充填率Rk=1.10としたものである。実施例1においては、比較例1と比べて処理水の比抵抗が大きく、処理水のNaイオン量も減少しており、カチオン成分が効率的に除去されている。 In Example 1, the EDI shown in FIG. 6 has an anion exchanger filling factor Ra = 1.05 and a cation exchanger filling factor Rk = 1.20. In Comparative Example 1, in the EDI shown in FIG. 6, the anion exchanger filling factor Ra = 1.10 and the cation exchanger filling factor Rk = 1.10. In Example 1, the specific resistance of the treated water is larger than that of Comparative Example 1, the amount of Na ions in the treated water is also reduced, and the cation component is efficiently removed.
実施例2は図7に示すEDIにおいてアニオン交換体充填率Ra=1.05、カチオン交換体充填率Rk=1.20としたものである。比較例2は図7に示すEDIにおいてアニオン交換体充填率Ra=1.10、カチオン交換体充填率Rk=1.10としたものである。実施例2においても、比較例2と比べて処理水の比抵抗が大きく、処理水中へのNaイオン量も減少しており、カチオン成分が効率的に除去されている。 In Example 2, the EDI shown in FIG. 7 has an anion exchanger filling factor Ra = 1.05 and a cation exchanger filling factor Rk = 1.20. In Comparative Example 2, in the EDI shown in FIG. 7, the anion exchanger filling factor Ra = 1.10 and the cation exchanger filling factor Rk = 1.10. Also in Example 2, the specific resistance of the treated water is larger than that of Comparative Example 2, the amount of Na ions in the treated water is also reduced, and the cation component is efficiently removed.
次に、実施例3として熱水殺菌した被処理水をEDI4に導入し、熱水の温度を変えて処理水の比抵抗とNaイオン量を測定した。具体的には、実施例2と比較例2のEDI4において、被処理水を40℃、80℃に加熱したときの処理水の比抵抗とNaイオン量を測定した。熱水殺菌は各ケースで50回行い、各ケースで比抵抗とNaイオン量の平均値を求めた。被処理水の加熱を行わない場合の処理水の比抵抗とNaイオン量は実施例2、比較例2の通りである。図8に示すように、40℃で熱水殺菌した場合は実施例と比較例で多少の差が認められ、40℃を超えると差が大きくなり、80℃ではさらに差が大きくなる。従って、本実施例より40℃以上の被処理水をEDI4に導入したときにカチオンイオンを有効に除去できることが分かった。 Next, as Example 3, hot water sterilized water to be treated was introduced into EDI4, and the specific resistance and Na ion amount of the treated water were measured by changing the temperature of the hot water. Specifically, in EDI4 of Example 2 and Comparative Example 2, the specific resistance and the amount of Na ions of the treated water when the water to be treated was heated to 40 ° C. and 80 ° C. were measured. Hot water sterilization was performed 50 times in each case, and the average values of resistivity and Na ion amount were obtained in each case. The specific resistance and the amount of Na ions of the treated water when the water to be treated is not heated are as in Example 2 and Comparative Example 2. As shown in FIG. 8, when hot water sterilization is performed at 40 ° C., a slight difference is observed between the examples and the comparative examples, and when the temperature exceeds 40 ° C., the difference becomes large, and at 80 ° C., the difference becomes even larger. Therefore, from this example, it was found that the cation ion can be effectively removed when the water to be treated at 40 ° C. or higher is introduced into EDI4.
1 水処理装置
2 RO装置
3 加熱手段
4 電気式脱イオン水製造装置(EDI)
D 脱塩室
D1 第1の小脱塩室
D2 第2の小脱塩室
C1 第1の濃縮室
C2 第2の濃縮室
E1 陽極室
E2 陰極室
a1 第1のアニオン交換膜
a2 第2のアニオン交換膜
k1 第1のカチオン交換膜
k2 第2のカチオン交換膜
x 中間イオン交換膜
1
D Desalination chamber D1 First small desalination chamber D2 Second small desalination chamber C1 First concentration chamber C2 Second concentration chamber E1 Anode chamber E2 Cathode chamber a1 First anion exchange membrane a2 Second anion Exchange membrane k1 1st cation exchange membrane k2 2nd cation exchange membrane x intermediate ion exchange membrane
Claims (8)
前記陽極室と前記陰極室との間に位置し、前記陽極室側のアニオン交換膜と前記陰極室側のカチオン交換膜とで仕切られ、被処理水が流通する脱塩室と、
前記アニオン交換膜及び前記カチオン交換膜を介してそれぞれ前記脱塩室に隣接する一対の濃縮室と、を有し、
前記脱塩室には、アニオン交換体が充填された少なくとも一つのアニオン交換体充填部と、カチオン交換体が充填された少なくとも一つのカチオン交換体充填部とが、前記被処理水の流通経路に沿って交互に配置され、
前記アニオン交換膜と前記カチオン交換膜は可撓性を有し、
前記アニオン交換体充填部の総容積をVa、
前記カチオン交換体充填部の総容積をVk、
前記脱塩室に前記アニオン交換体と前記カチオン交換体が充填されていないときの前記アニオン交換体充填部の容積をVa0、
前記脱塩室に前記アニオン交換体と前記カチオン交換体が充填されていないときの前記カチオン交換体充填部の容積をVk0、
アニオン交換体充填率RaをVa/Va0、
カチオン交換体充填率RkをVk/Vk0とするとき、
Rk≧1.20且つ1.05≧Ra≧1である、電気式脱イオン水製造装置。 Anode chamber and cathode chamber facing each other,
A desalting chamber located between the anode chamber and the cathode chamber, partitioned by an anion exchange membrane on the anode chamber side and a cation exchange membrane on the cathode chamber side, and through which water to be treated flows.
It has a pair of concentration chambers adjacent to the desalting chamber via the anion exchange membrane and the cation exchange membrane, respectively.
In the desalting chamber, at least one anion exchanger-filled portion filled with an anion exchanger and at least one cation exchanger-filled portion filled with a cation exchanger are provided in the flow path of the water to be treated. Alternately arranged along
The anion exchange membrane and the cation exchange membrane have flexibility and
The total volume of the anion exchanger filling part is Va,
The total volume of the cation exchanger packed portion is Vk,
When the desalting chamber is not filled with the anion exchanger and the cation exchanger, the volume of the anion exchanger-filled portion is Va0.
When the desalting chamber is not filled with the anion exchanger and the cation exchanger, the volume of the cation exchanger-filled portion is Vk0.
Anion exchanger filling factor Ra is Va / Va0,
When the cation exchanger packing factor Rk is Vk / Vk0,
An electric deionized water production apparatus in which Rk ≧ 1.20 and 1.05 ≧ Ra ≧ 1.
前記カチオン交換体の総充填高さをHk、
前記脱塩室に前記アニオン交換体と前記カチオン交換体が充填されていないときの前記アニオン交換膜と前記カチオン交換膜の間隔をW、
前記脱塩室の奥行きをSとしたときに、
前記アニオン交換体充填率RaはVa/(Ha×S×W)、
前記カチオン交換体充填率RkはVk/(Hk×S×W)である、請求項1に記載の電気式脱イオン水製造装置。 The total filling height of the anion exchanger is Ha,
The total filling height of the cation exchanger is Hk,
The distance between the anion exchange membrane and the cation exchange membrane when the desalting chamber is not filled with the anion exchanger and the cation exchange membrane is W.
When the depth of the desalting chamber is S,
The anion exchanger filling factor Ra is Va / (Ha × S × W),
The electric deionized water production apparatus according to claim 1, wherein the cation exchanger filling factor Rk is Vk / (Hk × S × W).
前記陽極室と前記陰極室との間に位置し、前記陽極室側のアニオン交換膜と前記陰極室側のカチオン交換膜とで仕切られ、被処理水が流通する脱塩室と、
前記アニオン交換膜及び前記カチオン交換膜を介してそれぞれ前記脱塩室に隣接する一対の濃縮室と、を有し、
前記脱塩室は、前記アニオン交換膜と前記カチオン交換膜との間に位置する中間イオン交換膜と、前記アニオン交換膜と前記中間イオン交換膜とによって仕切られた第1の小脱塩室と、前記カチオン交換膜と前記中間イオン交換膜とによって仕切られ、前記第1の小脱塩室と直列に接続された第2の小脱塩室と、を有し、
前記第1の小脱塩室と前記第2の小脱塩室に少なくとも一方には、アニオン交換体が充填された少なくとも一つのアニオン交換体充填部と、カチオン交換体が充填された少なくとも一つのカチオン交換体充填部とが、前記被処理水の流通経路に沿って互いに独立して配置され、
前記アニオン交換膜と前記カチオン交換膜は可撓性を有し、
前記少なくとも一つのアニオン交換体充填部と、前記少なくとも一つのカチオン交換体充填部とが配置された小脱塩室(ただし、前記少なくとも一つのアニオン交換体充填部と、前記少なくとも一つのカチオン交換体充填部とが配置された小脱塩室が複数個ある場合は、それぞれの小脱塩室)において、
前記アニオン交換体充填部の総容積をVa、
前記カチオン交換体充填部の総容積をVk、
前記小脱塩室に前記アニオン交換体と前記カチオン交換体が充填されていないときの前記アニオン交換体充填部の容積をVa0、
前記小脱塩室に前記アニオン交換体と前記カチオン交換体が充填されていないときの前記カチオン交換体充填部の容積をVk0、
アニオン交換体充填率RaをVa/Va0、
カチオン交換体充填率RkをVk/Vk0とするとき、
Rk≧1.20且つ1.05≧Ra≧1である、電気式脱イオン水製造装置。 Anode chamber and cathode chamber facing each other,
A desalting chamber located between the anode chamber and the cathode chamber, partitioned by an anion exchange membrane on the anode chamber side and a cation exchange membrane on the cathode chamber side, and through which water to be treated flows.
It has a pair of concentration chambers adjacent to the desalting chamber via the anion exchange membrane and the cation exchange membrane, respectively.
The desalting chamber includes an intermediate ion exchange membrane located between the anion exchange membrane and the cation exchange membrane, and a first small desalting chamber partitioned by the anion exchange membrane and the intermediate ion exchange membrane. A second small desalting chamber partitioned by the cation exchange membrane and the intermediate ion exchange membrane and connected in series with the first small desalting chamber.
At least one of the first small desalting chamber and the second small desalting chamber is filled with at least one anion exchanger filled with an anion exchanger and at least one filled with a cation exchanger. and a cation exchanger filled portion along said flow path of the water to be treated are placed independently of one another,
The anion exchange membrane and the cation exchange membrane have flexibility and
A small desalting chamber in which the at least one anion exchanger filling portion and the at least one cation exchanger filling portion are arranged (however, the at least one anion exchanger filling portion and the at least one cation exchanger filling portion). If there are multiple small desalination chambers in which the filling part is arranged, in each small desalination chamber) ,
The total volume of the anion exchanger filling part is Va,
The total volume of the cation exchanger packed portion is Vk,
When the small desalting chamber is not filled with the anion exchanger and the cation exchanger, the volume of the anion exchanger-filled portion is Va0.
When the small desalting chamber is not filled with the anion exchanger and the cation exchanger, the volume of the cation exchanger-filled portion is Vk0.
Anion exchanger filling factor Ra is Va / Va0,
When the cation exchanger packing factor Rk is Vk / Vk0,
An electric deionized water production apparatus in which Rk ≧ 1.20 and 1.05 ≧ Ra ≧ 1.
前記アニオン交換体の総充填高さをHa、
前記カチオン交換体の総充填高さをHk、
前記小脱塩室に前記アニオン交換体と前記カチオン交換体が充填されていないときの前記アニオン交換膜と前記カチオン交換膜の間隔をW、
前記小脱塩室の奥行きをSとしたときに、
前記アニオン交換体充填率RaはVa/(Ha×S×W)、
前記カチオン交換体充填率RkはVk/(Hk×S×W)である、請求項3に記載の電気式脱イオン水製造装置。 In the small desalting chamber in which the at least one anion exchanger filling portion and the at least one cation exchanger filling portion are arranged.
The total filling height of the anion exchanger is Ha,
The total filling height of the cation exchanger is Hk,
When the small desalting chamber is not filled with the anion exchanger and the cation exchanger, the distance between the anion exchange membrane and the cation exchange membrane is W.
When the depth of the small desalination chamber is S,
The anion exchanger filling factor Ra is Va / (Ha × S × W),
The electric deionized water production apparatus according to claim 3, wherein the cation exchanger filling factor Rk is Vk / (Hk × S × W).
前記電気式脱イオン水製造装置の上流側に設けられ、前記電気式脱イオン水製造装置に供給される被処理水を加熱する加熱手段と、を有する、水処理装置。 The electric deionized water production apparatus according to any one of claims 1 to 6.
A water treatment apparatus provided on the upstream side of the electric deionized water producing apparatus and having a heating means for heating the water to be treated supplied to the electric deionized water producing apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017031281A JP6873735B2 (en) | 2017-02-22 | 2017-02-22 | Electric deionized water production equipment and water treatment equipment and water treatment method using this |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017031281A JP6873735B2 (en) | 2017-02-22 | 2017-02-22 | Electric deionized water production equipment and water treatment equipment and water treatment method using this |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018134599A JP2018134599A (en) | 2018-08-30 |
JP6873735B2 true JP6873735B2 (en) | 2021-05-19 |
Family
ID=63365109
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017031281A Active JP6873735B2 (en) | 2017-02-22 | 2017-02-22 | Electric deionized water production equipment and water treatment equipment and water treatment method using this |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6873735B2 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6197174B1 (en) * | 1998-11-25 | 2001-03-06 | E-Cell Corporation | Method and apparatus for electrodeionization of water using mixed bed and single phase ion exchange materials in the diluting compartment |
JP3508647B2 (en) * | 1999-10-07 | 2004-03-22 | 栗田工業株式会社 | Electrodeionization equipment |
JP2004216302A (en) * | 2003-01-16 | 2004-08-05 | Kurita Water Ind Ltd | Electrodeionizing apparatus and water treatment apparatus |
JP2009160555A (en) * | 2008-01-09 | 2009-07-23 | Kurita Water Ind Ltd | Electric deionizer |
MY160347A (en) * | 2010-06-03 | 2017-02-28 | Organo Corp | Electrodeionization apparatus for producing deionized water |
-
2017
- 2017-02-22 JP JP2017031281A patent/JP6873735B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018134599A (en) | 2018-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3385553B2 (en) | Electric deionized water production apparatus and deionized water production method | |
JP4960288B2 (en) | Electric deionized water production apparatus and deionized water production method | |
JP4803649B2 (en) | Operation method of electric deionized water production apparatus and electric deionized water production apparatus | |
JP2011000576A (en) | Electric deionized water producing apparatus and method for producing deionized water | |
JP4481418B2 (en) | Electric deionized water production equipment | |
JP5114307B2 (en) | Electric deionized water production equipment | |
JP6873735B2 (en) | Electric deionized water production equipment and water treatment equipment and water treatment method using this | |
JP3781352B2 (en) | Electric deionized water production apparatus and deionized water production method | |
JP5940387B2 (en) | Electric deionized water production apparatus and deionized water production method | |
JP4597388B2 (en) | Electric deionized water production apparatus and deionized water production method | |
JP5806038B2 (en) | Electric deionized water production equipment | |
JP4497388B2 (en) | Electric deionized water production apparatus and deionized water production method | |
JP2014528824A (en) | Desalination system and method | |
JP4552273B2 (en) | Electrodeionization equipment | |
JP5415966B2 (en) | Electric deionized water production apparatus and deionized water production method | |
JP3793843B1 (en) | Pure water equipment | |
JP2015147172A (en) | Method for producing pure water | |
JP5186605B2 (en) | Electric deionized water production apparatus and deionized water production method | |
JP5661930B2 (en) | Electric deionized water production equipment | |
JP2018134600A (en) | Electric deionized water production apparatus and water treatment apparatus and method using the same | |
JP6994351B2 (en) | Electric deionized water production equipment | |
JP3966491B2 (en) | Electric deionized water production apparatus and water flow method using the same | |
JP5492612B2 (en) | Electric deionized water production equipment | |
JP4453972B2 (en) | Electrodeionization apparatus and operation method of electrodeionization apparatus | |
JP5719707B2 (en) | Electric deionized water production equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191016 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200729 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201124 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210113 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210406 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210421 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6873735 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |