JP3508647B2 - Electrodeionization equipment - Google Patents

Electrodeionization equipment

Info

Publication number
JP3508647B2
JP3508647B2 JP28704499A JP28704499A JP3508647B2 JP 3508647 B2 JP3508647 B2 JP 3508647B2 JP 28704499 A JP28704499 A JP 28704499A JP 28704499 A JP28704499 A JP 28704499A JP 3508647 B2 JP3508647 B2 JP 3508647B2
Authority
JP
Japan
Prior art keywords
chamber
water
ion exchanger
volume
desalting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28704499A
Other languages
Japanese (ja)
Other versions
JP2001104960A (en
Inventor
邦博 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP28704499A priority Critical patent/JP3508647B2/en
Publication of JP2001104960A publication Critical patent/JP2001104960A/en
Application granted granted Critical
Publication of JP3508647B2 publication Critical patent/JP3508647B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、陰極と陽極との間
に、複数のアニオン交換膜とカチオン交換膜とを交互に
配列して濃縮室と脱塩室とを交互に形成してなる電気脱
イオン装置(電気再生式脱イオン装置)に係り、特に、
この電気脱イオン装置の脱塩室に充填するイオン交換体
の充填密度を改善して、得られる脱イオン水の水質を高
めた電気脱イオン装置に関する。 【0002】 【従来の技術】従来、半導体製造工場、液晶製造工場、
製薬工業、食品工業、電力工業等の各種の産業ないし研
究施設等において使用される脱イオン水の製造には、イ
オン交換樹脂のような再生を必要とせず、完全な連続採
水が可能で、極めて高純度の水を効率的に得ることがで
きるという優れた特長を備えることから、電気脱イオン
装置が多用されている。 【0003】電気脱イオン装置は、電極同士の間に複数
のカチオン交換膜とアニオン交換膜とを交互に配列して
脱塩室と濃縮室とを交互に形成し、脱塩室にイオン交換
体を充填した構成を有する。この電気脱イオン装置にあ
っては陽極、陰極間に電圧を印加しながら脱塩室に被処
理水を流入させると共に、濃縮室に濃縮水を流入させ被
処理水中の不純物イオンを除去し、脱イオン水を製造す
る。 【0004】図2はこの電気脱イオン装置の基本的な構
成を示す分解図である。 【0005】陰極側のエンドプレート1に沿って陰極電
極板2が配置され、この陰極電極板2の周縁部に枠状の
陰極用スペーサー3が重ね合わされる。この陰極用スペ
ーサー3の上にカチオン交換膜4、脱塩室形成用の枠状
フレーム5、アニオン交換膜6及び濃縮室形成用の枠状
フレーム7がこの順に重ね合わされる。このカチオン交
換膜4、脱塩室形成用の枠状フレーム5、アニオン交換
膜6及び濃縮室形成用の枠状フレーム7が1単位として
多数重ね合わされる。即ち、膜4、フレーム5、膜6、
フレーム7が連続して繰り返し積層される。最後のアニ
オン交換膜6に対し枠状の陽極用スペーサー8を介して
陽極電極板9が重ね合わされ、その上に陽極側エンドプ
レート10が重ね合わされて積層体とされる。この積層
体はボルト等によって締め付けられる。 【0006】上記の脱塩室用フレーム5の内側スペース
が脱塩室となっており、この脱塩室にはイオン交換樹脂
等のイオン交換体5Rが充填される。また、濃縮室用フ
レーム7の内側スペースが濃縮室となっている。この濃
縮室にはメッシュスペーサー7Mなどが配置される。 【0007】このような装置にあっては、陽極9と陰極
2の間に直流電流を通じ、且つ被処理水(原水)を被処
理水流入ライン11を通して脱塩室内に通水せしめ、ま
た、濃縮水を濃縮水流入ライン12を通じて濃縮室内に
通水せしめる。脱塩室内に流入してきた被処理水はイオ
ン交換樹脂の充填層を流下し、その際、該被処理水中の
不純物イオンが除かれて脱イオン水となり、これが脱イ
オン水流出ライン13を経て流出する。 【0008】一方、濃縮室内に通水された濃縮水は濃縮
室内を流下するときに、イオン交換膜4,6を介して移
動してくる不純物イオンを受け取り、不純物イオンを濃
縮した濃縮水として濃縮水流出ライン14より流出す
る。電極室にはそれぞれ導入ライン15,16及び取出
ライン17,18を介して電極水が流通される。 【0009】特開平10−216729号公報には、こ
のような電気脱イオン装置において、電気抵抗を小さく
して処理の安定化を図るべく、脱塩室内に充填したイオ
ン交換体とイオン交換膜との間に0.1〜20kg/c
の圧力を発生させて、イオン交換体相互及びイオン
交換体とイオン交換膜との密着性を上げることが記載さ
れている。そして、同公報には脱塩室に充填するイオン
交換体を再生型の容積より容積を減少させた形に変換
し、自由状態でのイオン交換体再生型容積が脱塩室容積
に対して103%〜170%となる量のイオン交換体を
充填することが記載されている。ただし、同公報では、
通水時(使用状態)におけるイオン交換体の容積につい
ては検討されていない。 【0010】 【発明が解決しようとする課題】しかし、特開平10−
216729号公報に記載されるように、自由状態での
イオン交換体再生型容積が脱塩室容積に対して103〜
170%となるようにイオン交換体を充填しても、必ず
しも良好な水質の処理水が得られるわけではなく、処理
の安定性の面で問題があった。 【0011】本発明は上記従来の問題点を解決し、電気
脱イオン装置の脱塩室におけるイオン交換体の充填状態
を改善することにより、高水質の処理水を安定かつ確実
に得ることができるようにした電気脱イオン装置を提供
することを目的とする。 【0012】 【課題を解決するための手段】本発明の電気脱イオン装
置は、陰極を備えてなる陰極室と陽極を備えてなる陽極
室との間に、陰イオン交換膜と陽イオン交換膜とを交互
に配列して脱塩室と濃縮室とを形成し、該脱塩室にイオ
ン交換体を充填した電気脱イオン装置において、吸水に
より膨潤すると乾燥時の110〜130%程度に容積が
大きくなるように乾燥させたイオン交換体を用い、該イ
オン交換体を乾燥状態で該脱塩室の容積の80〜95%
充填した電気脱イオン装置であって、該イオン交換体の
通水時容積が該脱塩室容積の10〜115%であるこ
とを特徴とする。 【0013】なお、以下において、脱塩室に充填された
イオン交換体の通水時の容積(このイオン交換体の容積
は、通水時の脱塩室の容積に相当する。)の、脱塩室容
積(この脱塩室容積とは、イオン交換体を充填する前の
脱塩室の容積である。)に対する割合(百分率)を「通
水時容積率」と称す場合がある。 【0014】脱塩室のイオン交換体の充填密度を高める
と、イオン交換体同士及びイオン交換体とイオン交換膜
との接点数が増え、脱塩室内でのイオンの移動が容易に
なり、処理水の比抵抗が向上する。また、このようにイ
オン交換体の充填密度を高めると、濃縮室もスペーサー
を介して脱塩室のイオン交換体の膨潤により圧縮される
ことにより、脱塩室から濃縮室へのイオンの移動が速く
なり、脱塩が円滑に進行し、このことによっても、処理
水の比抵抗が向上する。 【0015】しかし、特開平10−216729号公報
に記載されるように自由状態で脱塩室容積に対して10
3〜170%のイオン交換体を充填すると過充填となっ
て脱塩室の圧力損失が増え、処理水量が低下する上に、
濃縮室スペーサーのシールが不十分となる問題があり、
処理水の比抵抗が低下する場合がある。 【0016】本発明では、通水時容積率が10〜1
%となるように脱塩室にイオン交換体を充填するた
め、比抵抗18MΩ・cm以上の処理水を安定かつ確実
に得ることができる。 【0017】このような本発明の電気脱イオン装置は、
吸水により膨潤すると乾燥時の110〜130%程度に
容積が大きくなるようなイオン交換体を用い、このイオ
ン交換体を乾燥状態で、脱塩室の容積に対して80〜9
5%(以下、この割合を「乾燥充填率」と称す場合があ
る。)となるように、脱塩室に充填して通水時容積率が
10〜115%、好ましくは110%程度となるよう
にして作製される。 【0018】 【発明の実施の形態】以下に本発明の実施の形態を詳細
に説明する。 【0019】本発明の電気脱イオン装置は、通水時容積
率が10〜115%となるように脱塩室にイオン交換
体を充填すること以外は、図2に示す一般的な電気脱イ
オン装置と同様の構成とされている。 【0020】この通水時容積率が10%未満では、イ
オン交換体の充填量が不足して十分に比抵抗の高い処理
水を得ることができない。通水時容積率が115%を超
えるとイオン交換体の充填量が多過ぎて、濃縮室スペー
サーのシールが不十分となり、やはり処理水の比抵抗が
低下する。従って、通水時容積率は105〜115%、
好ましくは110%程度となるように充填する。 【0021】このような電気脱イオン装置を作製するに
は、吸水により膨潤すると乾燥時の110〜130%程
度に容積が大きくなるようなイオン交換体を用い、この
イオン交換体を脱塩室に乾燥充填率80〜95%となる
ように充填し、通水時の膨潤状態において通水時容積率
が10〜115%となるようにするのが好ましい。 【0022】このような充填率で脱塩室にイオン交換体
を充填すると、電気脱イオン装置の通水使用時にはイオ
ン交換体の吸水による膨潤で脱塩室を仕切るイオン交換
膜は濃縮室側に膨らんで、脱塩室はイオン交換体充填前
の厚みよりも厚みが増すことになるが、この厚みの増加
量は、各々濃縮室側に0.1〜1.0mm、合計で0.
2〜2.0mm程度であることが好ましい。 【0023】なお、脱塩室に充填するイオン交換体とし
ては、イオン交換樹脂、イオン交換繊維等を用いること
ができ、その充填方法には特に制限はなく、常法に従っ
て行うことができる。例えば、イオン交換樹脂をメタノ
ール洗浄し、真空乾燥機にかけて乾燥後、乾燥樹脂を脱
塩室に収納して電気脱イオン装置を組み立て、その後通
水して樹脂に水分を吸収させて膨潤させる方法を採用す
ることができる。 【0024】 【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。 【0025】実施例1 イオン交換樹脂として、ダウケミカル社製モノスフィア
(650C、550A)を用い、陽イオン交換樹脂/陰
イオン交換樹脂=40/60(湿潤状態での容積比)で
混合したものを、まず、10%食塩水に浸漬して塩型に
変換した後、メタノールに浸漬して水分を溶媒置換し、
これを真空乾燥機に入れて約1.5torrで2〜3時
間乾燥後、デシケーター中に保管した。 【0026】この乾燥樹脂は吸水により膨潤して乾燥時
の容積に比べて129%となるものである。この樹脂を
用いて図1に示す寸法の脱塩室及び濃縮室を有する電気
脱イオン装置を製作した。 【0027】電気脱イオン装置の組み立てに当っては、
まず、脱塩室フレーム21の両側に両面テープ24を貼
り、陽イオン交換膜22を貼り、次に乾燥状態のイオン
交換樹脂26を充填し、次に陰イオン交換膜23を貼っ
て脱塩室の構成単位を作製した。この脱塩室の構成単位
3枚と濃縮室スペーサー25(シール部25Bに取り付
けられたメッシュ部25Aは20メッシュ)2枚を交互
に重ねて150kgf・cmのトルクで締め付けて電気
脱イオン装置を作製し、脱塩室及び濃縮室に導電率8μ
s/cmの水を10分間供給してイオン交換樹脂を十分
に湿潤化させて膨潤させた。 【0028】各部材の寸法は図1に示す通りであり、脱
塩室の容積は665mm×(2.5+0.18+0.1
8)mm×28mm×4リブ=213ccである。 【0029】この脱塩室に乾燥したイオン交換樹脂を1
92cc充填した。従って、乾燥充填率は90%(=1
92÷213×100)である。 【0030】脱塩室は通水時においては、樹脂の膨潤で
両側の濃縮室側へイオン交換膜が膨らんで厚みが増え
る。この通水時のイオン交換体の容積に相当する通水時
の脱塩室の容積を調べるために、電気脱イオン装置の通
水後の解体の際に、樹脂を取り出す前に両側のイオン交
換膜が膨らんでいる状態で脱塩室厚さ(両側のイオン交
換膜を含む)をノギスで実測し、脱塩室の厚さをノギス
の実測値から両イオン交換膜の厚さを差し引いて求め
た。その結果、イオン交換膜にはシワがよっている部分
もあったが、ノギスの実測値は平均で3.6mmであ
り、脱塩室の厚さは3.2mm(3.6−(0.2+
0.2))であるとされた。従って、通水時の脱塩室の
容積は、238cc(=665mm×3.2mm×28
mm×4リブ)であると考えられる。 【0031】従って、通水時容積率は112%(=23
8÷213×100)である。 【0032】この電気脱イオン装置に導電率8μs/c
m,シリカ284ppb,pH7の水を電圧8.4V,
電流0.45Aの条件で通水して脱塩処理を行った。 【0033】このときの処理水量及び脱塩室の圧力損失
と、得られた処理水の水質は表1に示す通りであった。 【0034】実施例2,3、比較例1.2 乾燥充填率を変え、通水時容積率を表1に示す値とした
こと以外は実施例1と同様にして電気脱イオン装置を組
み立て、同様に脱塩処理を行って、得られた処理水の水
質を表1に示した。 【0035】 【表1】 【0036】 【発明の効果】以上詳述した通り、本発明の電気脱イオ
ン装置によれば、著しく高純度の処理水を安定かつ確実
に製造することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a condensing chamber and a desalinating method in which a plurality of anion exchange membranes and cation exchange membranes are alternately arranged between a cathode and an anode. The present invention relates to an electrodeionization device (electric regeneration type deionization device) in which chambers are alternately formed.
The present invention relates to an electrodeionization apparatus in which the packing density of an ion exchanger packed in a deionization chamber of the electrodeionization apparatus is improved to improve the quality of the obtained deionized water. [0002] Conventionally, semiconductor manufacturing plants, liquid crystal manufacturing plants,
Production of deionized water used in various industries or research facilities such as the pharmaceutical industry, food industry, electric power industry, etc., does not require regeneration like ion exchange resin, and enables complete continuous water sampling. Electrodeionizers are frequently used because they have the excellent feature of being able to efficiently obtain extremely high-purity water. In an electrodeionization apparatus, a plurality of cation exchange membranes and anion exchange membranes are alternately arranged between electrodes to alternately form a desalting chamber and a concentrating chamber. Is filled. In this electrodeionization apparatus, the water to be treated flows into the desalting chamber while applying a voltage between the anode and the cathode, and the concentrated water flows into the concentration chamber to remove impurity ions in the water to be treated. Produce ionized water. FIG. 2 is an exploded view showing the basic structure of the electrodeionization apparatus. [0005] A cathode electrode plate 2 is arranged along the end plate 1 on the cathode side, and a frame-shaped cathode spacer 3 is superimposed on the periphery of the cathode electrode plate 2. On the cathode spacer 3, a cation exchange membrane 4, a frame 5 for forming a desalting chamber, an anion exchange membrane 6, and a frame 7 for forming a concentration chamber are stacked in this order. A large number of the cation exchange membrane 4, the frame 5 for forming the desalting chamber, the anion exchange membrane 6, and the frame 7 for forming the concentrating chamber are stacked as one unit. That is, the membrane 4, the frame 5, the membrane 6,
The frames 7 are continuously and repeatedly laminated. An anode electrode plate 9 is superimposed on the last anion exchange membrane 6 via a frame-shaped anode spacer 8, and an anode-side end plate 10 is superimposed thereon to form a laminate. This laminate is fastened with bolts or the like. [0006] The inner space of the desalting chamber frame 5 is a desalting chamber, and the desalting chamber is filled with an ion exchanger 5R such as an ion exchange resin. The space inside the frame 7 for the concentration chamber is a concentration chamber. In this concentration chamber, a mesh spacer 7M and the like are arranged. In such a device, a direct current is passed between the anode 9 and the cathode 2, and the water to be treated (raw water) is passed through the treated water inflow line 11 into the desalination chamber, and the water is concentrated. Water is passed through the concentrated water inflow line 12 into the concentration chamber. The water to be treated that has flowed into the deionization chamber flows down the packed bed of the ion exchange resin. At that time, impurity ions in the water to be treated are removed to become deionized water, which flows out through the deionized water outflow line 13. I do. On the other hand, the concentrated water passed through the concentration chamber receives impurity ions moving through the ion exchange membranes 4 and 6 when flowing down the concentration chamber, and concentrates as concentrated water in which the impurity ions are concentrated. It flows out from the water outflow line 14. Electrode water flows through the electrode chambers via introduction lines 15 and 16 and extraction lines 17 and 18, respectively. Japanese Patent Application Laid-Open No. Hei 10-216729 discloses that in such an electrodeionization apparatus, in order to reduce the electric resistance and stabilize the treatment, an ion exchanger and an ion exchange membrane filled in a deionization chamber are used. Between 0.1 and 20 kg / c
It describes that a pressure of m 2 is generated to increase the adhesion between the ion exchangers and between the ion exchanger and the ion exchange membrane. According to the publication, the ion exchanger filled in the desalination chamber is converted into a form having a smaller volume than that of the regeneration type, and the ion exchanger regeneration type volume in the free state is 103% of the volume of the desalination chamber. % Of the ion exchanger is described. However, in the publication,
The volume of the ion exchanger during passage of water (in use) has not been studied. [0010] However, Japanese Patent Application Laid-Open No.
As described in JP-A-216729, the ion exchanger regeneration type volume in a free state is 103 to
Even if the ion exchanger is filled to 170%, treated water having good water quality is not always obtained, and there is a problem in terms of treatment stability. The present invention solves the above-mentioned conventional problems and improves the state of filling of the ion exchanger in the desalination chamber of the electrodeionization apparatus, whereby high-quality treated water can be obtained stably and reliably. It is an object of the present invention to provide an electrodeionization device as described above. The electrodeionization apparatus of the present invention comprises an anion exchange membrane and a cation exchange membrane between a cathode chamber having a cathode and an anode chamber having an anode. Are alternately arranged to form a desalination chamber and a concentration chamber, and in an electrodeionization apparatus in which the desalination chamber is filled with an ion exchanger, water is absorbed.
If it swells more, the volume will be about 110 to 130% when dry
Using an ion exchanger dried to be large,
80-95% of the volume of the desalting chamber when the on-exchanger is dried
A filled electrodeionization apparatus, water flow when the volume of the ion exchanger is characterized in that it is a 10 5-1 15% desalting chamber volume. In the following, the volume of the ion exchanger filled in the desalting chamber when water is passed (the volume of the ion exchanger corresponds to the volume of the desalting chamber when water is passed) is removed. The ratio (percentage) to the volume of the salt chamber (the volume of the desalination chamber is the volume of the desalination chamber before filling with the ion exchanger) may be referred to as the “volume ratio during water passage”. When the packing density of the ion exchanger in the desalting chamber is increased, the number of contacts between the ion exchangers and between the ion exchanger and the ion exchange membrane is increased, and the movement of ions in the desalting chamber is facilitated. The specific resistance of water is improved. When the packing density of the ion exchanger is increased in this way, the concentration chamber is also compressed by the swelling of the ion exchanger in the desalting chamber via the spacer, so that the movement of ions from the desalting chamber to the concentrating chamber is prevented. The desalination proceeds smoothly, which also improves the specific resistance of the treated water. However, as described in Japanese Patent Application Laid-Open No. Hei 10-216729, 10
When 3 to 170% of the ion exchanger is filled, it becomes overfilled, the pressure loss in the desalting chamber increases, and the amount of treated water decreases.
There is a problem that the seal of the enrichment chamber spacer is insufficient,
The specific resistance of the treated water may decrease. In the present invention, the volume ratio at the time of passing water is 10 5 to 11.
Since the desalting chamber is filled with the ion exchanger so as to have a concentration of 5 %, treated water having a specific resistance of 18 MΩ · cm or more can be obtained stably and reliably. Such an electrodeionization apparatus of the present invention comprises:
An ion exchanger whose volume is increased to about 110 to 130% of that when dried by swelling due to water absorption is used, and the ion exchanger is dried in an amount of 80 to 9 with respect to the volume of the desalting chamber.
5% as a (hereinafter, this ratio when referred to as a "dry filling rate" is.), Water flow when the volume ratio and filled in the desalting compartment 10 5-1 15%, preferably about 110% It is produced so that Embodiments of the present invention will be described below in detail. The electrodeionization apparatus of the present invention, except that the filling ion exchangers in the manner desalting water flow when the volume ratio becomes 10 5-1 15%, general electric shown in FIG. 2 It has the same configuration as the deionization device. If the volume ratio at the time of passing water is less than 10 5 %, the filling amount of the ion exchanger is insufficient, so that treated water having a sufficiently high specific resistance cannot be obtained. Water flow when the volume ratio is too much loading of the ion exchanger than 1 15%, the sealing of the concentrating compartment spacer is insufficient, again resistivity of the treated water is reduced. Therefore, the volume ratio at the time of passing water is 105-115%,
Preferably you filled so that about 110%. In order to manufacture such an electrodeionization apparatus, an ion exchanger whose volume is increased to about 110 to 130% when dried when swollen by water absorption is used, and this ion exchanger is placed in a desalting chamber. drying was packed so that the packing ratio 80% to 95%, water flow when the volume ratio in the swollen state at the time of passing water preferably set to be 10 5-1 15%. When the ion exchanger is filled in the desalting chamber at such a filling rate, the ion exchange membrane which partitions the desalting chamber by swelling due to water absorption of the ion exchanger when water is used in the electrodeionization apparatus is located on the side of the concentration chamber. The thickness of the desalting chamber becomes larger than the thickness before filling the ion exchanger, and the thickness increases by 0.1 to 1.0 mm on the side of the enrichment chamber, respectively.
It is preferably about 2 to 2.0 mm. As the ion exchanger to be filled in the desalting chamber, an ion exchange resin, ion exchange fiber or the like can be used, and the filling method is not particularly limited, and can be performed according to a conventional method. For example, a method of washing an ion-exchange resin with methanol, drying it in a vacuum dryer, storing the dried resin in a desalting chamber, assembling an electrodeionization apparatus, and then passing water to absorb water in the resin and swell the resin. Can be adopted. The present invention will be described more specifically below with reference to examples and comparative examples. Example 1 A monosphere (650C, 550A) manufactured by Dow Chemical Co., Ltd. was used as an ion exchange resin, and was mixed at a cation exchange resin / anion exchange resin = 40/60 (volume ratio in a wet state). Is first converted into a salt form by immersion in 10% saline, and then immersed in methanol to replace the solvent with water.
This was dried in a vacuum dryer at about 1.5 torr for about 2 to 3 hours, and then stored in a desiccator. The dried resin swells due to water absorption and becomes 129% of the volume at the time of drying. Using this resin, an electrodeionization apparatus having a desalination chamber and a concentration chamber having the dimensions shown in FIG. 1 was manufactured. In assembling the electrodeionization apparatus,
First, a double-sided tape 24 is applied to both sides of the desalting chamber frame 21, a cation exchange membrane 22 is applied, and then a dry ion exchange resin 26 is filled. Was produced. An electric deionization apparatus is manufactured by alternately stacking three constituent units of the desalting chamber and two spacers of the concentration chamber spacer 25 (the mesh part 25A attached to the seal part 25B is 20 mesh) and tightening with a torque of 150 kgf · cm. And the conductivity of 8μ in the desalting and concentration chambers.
Water of s / cm was supplied for 10 minutes to sufficiently wet and swell the ion exchange resin. The dimensions of each member are as shown in FIG. 1, and the volume of the desalting chamber is 665 mm × (2.5 + 0.18 + 0.1
8) mm × 28 mm × 4 ribs = 213 cc. Dried ion exchange resin is placed in this desalting chamber for 1 hour.
92 cc was filled. Therefore, the dry filling rate is 90% (= 1).
92 ÷ 213 × 100). When water is passed through the desalting chamber, the ion exchange membrane expands toward the enrichment chambers on both sides due to swelling of the resin, and the thickness thereof increases. In order to check the volume of the desalination chamber at the time of water flow, which is equivalent to the volume of the ion exchanger at the time of water flow, when disassembling the electrodeionization device after water flow, ion exchange on both sides before removing the resin With the membrane inflated, measure the thickness of the desalination chamber (including the ion exchange membranes on both sides) with a vernier caliper, and calculate the thickness of the desalination chamber by subtracting the thickness of both ion exchange membranes from the actual caliper value. Was. As a result, the ion-exchange membrane had some wrinkled portions, but the measured value of the caliper was 3.6 mm on average, and the thickness of the desalting chamber was 3.2 mm (3.6- (0.2+
0.2)). Therefore, the volume of the desalination chamber at the time of passing water is 238 cc (= 665 mm × 3.2 mm × 28
mm × 4 ribs). Therefore, the volume ratio when passing water is 112% (= 23).
8 ÷ 213 × 100). This electrodeionization apparatus has a conductivity of 8 μs / c.
m, silica 284 ppb, pH 7 water at a voltage of 8.4 V,
Water was passed under the condition of a current of 0.45 A to perform a desalination treatment. At this time, the amount of treated water, the pressure loss in the desalting chamber, and the quality of the treated water obtained were as shown in Table 1. Examples 2 and 3 and Comparative Example 1.2 An electrodeionization apparatus was assembled in the same manner as in Example 1 except that the dry filling rate was changed and the volume ratio during water passage was set to the value shown in Table 1. In the same manner, desalination treatment was performed, and the quality of the resulting treated water is shown in Table 1. [Table 1] As described in detail above, according to the electrodeionization apparatus of the present invention, treated water of extremely high purity can be produced stably and reliably.

【図面の簡単な説明】 【図1】実施例で製作した電気脱イオン装置の脱塩室と
濃縮室を示す断面図である。 【図2】電気脱イオン装置の一般的な構成を示す分解斜
視図である。 【符号の説明】 4 カチオン交換膜 5 フレーム 5R イオン交換体 6 アニオン交換膜 7 フレーム 7M メッシュスペーサ 21 脱塩室フレーム 22 陽イオン交換膜 23 陰イオン交換膜 24 両面テープ 25 濃縮室スペーサー 26 イオン交換樹脂
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view showing a desalination chamber and a concentration chamber of an electrodeionization apparatus manufactured in an example. FIG. 2 is an exploded perspective view showing a general configuration of the electrodeionization apparatus. [Description of Signs] 4 Cation exchange membrane 5 Frame 5R Ion exchanger 6 Anion exchange membrane 7 Frame 7M Mesh spacer 21 Deionization chamber frame 22 Cation exchange membrane 23 Anion exchange membrane 24 Double-sided tape 25 Concentration chamber spacer 26 Ion exchange resin

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C02F 1/469 B01D 61/48 C02F 1/42 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) C02F 1/469 B01D 61/48 C02F 1/42

Claims (1)

(57)【特許請求の範囲】 【請求項1】 陰極を備えてなる陰極室と陽極を備えて
なる陽極室との間に陰イオン交換膜と陽イオン交換膜と
を交互に配列して脱塩室と濃縮室とを形成し、該脱塩室
にイオン交換体を充填した電気脱イオン装置において、吸水により膨潤すると乾燥時の110〜130%程度に
容積が大きくなるように乾燥させたイオン交換体を用
い、該イオン交換体を乾燥状態で該脱塩室の容積の80
〜95%充填した電気脱イオン装置であって、 該イオン交換体の通水時容積が該脱塩室容積の10
15%であることを特徴とする電気脱イオン装置。
(57) Claims 1. An anion exchange membrane and a cation exchange membrane are alternately arranged between a cathode chamber having a cathode and an anode chamber having an anode. In an electrodeionization apparatus in which a salt chamber and a concentrating chamber are formed and the desalting chamber is filled with an ion exchanger, when swollen by water absorption, it becomes about 110 to 130% of the dry state.
Use an ion exchanger dried to increase the volume.
When the ion exchanger is dried, the volume of the desalting chamber is reduced to 80%.
An electrodeionization apparatus filled with 9595%, wherein the volume of the ion exchanger when water is passed is 10 5 of the volume of the desalination chamber.
An electrodeionization device characterized in that it is 1 15 %.
JP28704499A 1999-10-07 1999-10-07 Electrodeionization equipment Expired - Fee Related JP3508647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28704499A JP3508647B2 (en) 1999-10-07 1999-10-07 Electrodeionization equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28704499A JP3508647B2 (en) 1999-10-07 1999-10-07 Electrodeionization equipment

Publications (2)

Publication Number Publication Date
JP2001104960A JP2001104960A (en) 2001-04-17
JP3508647B2 true JP3508647B2 (en) 2004-03-22

Family

ID=17712334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28704499A Expired - Fee Related JP3508647B2 (en) 1999-10-07 1999-10-07 Electrodeionization equipment

Country Status (1)

Country Link
JP (1) JP3508647B2 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6607647B2 (en) 2001-04-25 2003-08-19 United States Filter Corporation Electrodeionization apparatus with expanded conductive mesh electrode and method
US6649037B2 (en) 2001-05-29 2003-11-18 United States Filter Corporation Electrodeionization apparatus and method
JP5738505B2 (en) * 2001-07-10 2015-06-24 ジーイー ウォーター アンド プロセス テクノロジーズ カナダ Method for filling a filler containing an ion exchanger
US7572359B2 (en) 2001-10-15 2009-08-11 Siemens Water Technologies Holding Corp. Apparatus for fluid purification and methods of manufacture and use thereof
US7404884B2 (en) * 2003-04-25 2008-07-29 Siemens Water Technologies Holding Corp. Injection bonded articles and methods
US20050103717A1 (en) 2003-11-13 2005-05-19 United States Filter Corporation Water treatment system and method
US7846340B2 (en) 2003-11-13 2010-12-07 Siemens Water Technologies Corp. Water treatment system and method
US8377279B2 (en) 2003-11-13 2013-02-19 Siemens Industry, Inc. Water treatment system and method
US7083733B2 (en) 2003-11-13 2006-08-01 Usfilter Corporation Water treatment system and method
US7862700B2 (en) 2003-11-13 2011-01-04 Siemens Water Technologies Holding Corp. Water treatment system and method
US7563351B2 (en) 2003-11-13 2009-07-21 Siemens Water Technologies Holding Corp. Water treatment system and method
US7658828B2 (en) 2005-04-13 2010-02-09 Siemens Water Technologies Holding Corp. Regeneration of adsorption media within electrical purification apparatuses
EP1885655B1 (en) 2005-06-01 2014-12-17 Evoqua Water Technologies LLC Water treatment process by intermittent sanitization
US10252923B2 (en) 2006-06-13 2019-04-09 Evoqua Water Technologies Llc Method and system for water treatment
US8277627B2 (en) 2006-06-13 2012-10-02 Siemens Industry, Inc. Method and system for irrigation
US10213744B2 (en) 2006-06-13 2019-02-26 Evoqua Water Technologies Llc Method and system for water treatment
US20080067069A1 (en) 2006-06-22 2008-03-20 Siemens Water Technologies Corp. Low scale potential water treatment
US7820024B2 (en) 2006-06-23 2010-10-26 Siemens Water Technologies Corp. Electrically-driven separation apparatus
US7744760B2 (en) 2006-09-20 2010-06-29 Siemens Water Technologies Corp. Method and apparatus for desalination
JP4826912B2 (en) * 2006-11-24 2011-11-30 栗田工業株式会社 Storage method of electrodeionization equipment
EP2222899A2 (en) 2007-11-30 2010-09-01 Siemens Water Technologies Corp. Systems and methods for water treatment
JP2012250202A (en) * 2011-06-06 2012-12-20 Nippon Rensui Co Ltd Electric regeneration system pure water producing apparatus
JP6496146B2 (en) * 2015-01-13 2019-04-03 オルガノ株式会社 Electric deionized water production equipment
JP6873735B2 (en) * 2017-02-22 2021-05-19 オルガノ株式会社 Electric deionized water production equipment and water treatment equipment and water treatment method using this
JP2018134600A (en) * 2017-02-22 2018-08-30 オルガノ株式会社 Electric deionized water production apparatus and water treatment apparatus and method using the same
EP3672916A4 (en) 2017-08-21 2021-05-19 Evoqua Water Technologies LLC Treatment of saline water for agricultural and potable use

Also Published As

Publication number Publication date
JP2001104960A (en) 2001-04-17

Similar Documents

Publication Publication Date Title
JP3508647B2 (en) Electrodeionization equipment
JP3385553B2 (en) Electric deionized water production apparatus and deionized water production method
US6197174B1 (en) Method and apparatus for electrodeionization of water using mixed bed and single phase ion exchange materials in the diluting compartment
US5868915A (en) Electrodeionization apparatus and method
US5316637A (en) Electrodeionization apparatus
US2794777A (en) Electrolytic deionization
CA2459840A1 (en) Apparatus for electrodeionization of water
JP2000504619A (en) Module device for liquid deionization
JP2004082092A (en) Electric deionizing apparatus
WO1999048820A1 (en) Electric desalting apparatus
JP2008055388A (en) Electric deionized water making apparatus and its operation method
JP2001079553A (en) Method for packing ion exchanger in electric deionizer, and electric deionizer
JP4609924B2 (en) Electric deionized water production equipment
JP2699256B2 (en) Electric regeneration type continuous ion exchange device and its use
JP2002273439A (en) Desalting method and device therefor
JP3729349B2 (en) Electric regenerative desalination equipment
JPH081165A (en) Electrolytic cell
US20230149857A1 (en) Improved chlorine tolerance of continuous electrodeionization modules
JP3188511B2 (en) Electrodialysis machine
JP3480661B2 (en) Water treatment method for electric deionized water production equipment
JP2003326269A (en) Electric regenerative demineralizer
JP2001321773A (en) Apparatus and method for making electro-deionized water
CN2567203Y (en) First-level multi-section electric deion device of water concentration partition plate inserted film pair structure
JP4016663B2 (en) Operation method of electrodeionization equipment
JP2003126862A (en) Apparatus and method for electric deionization

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031215

R150 Certificate of patent or registration of utility model

Ref document number: 3508647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees