JP2002273439A - Desalting method and device therefor - Google Patents

Desalting method and device therefor

Info

Publication number
JP2002273439A
JP2002273439A JP2001083906A JP2001083906A JP2002273439A JP 2002273439 A JP2002273439 A JP 2002273439A JP 2001083906 A JP2001083906 A JP 2001083906A JP 2001083906 A JP2001083906 A JP 2001083906A JP 2002273439 A JP2002273439 A JP 2002273439A
Authority
JP
Japan
Prior art keywords
water
raw water
flow
double layer
electric double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001083906A
Other languages
Japanese (ja)
Inventor
Makoto Nomura
誠 埜村
Nobuhiro Oda
信博 織田
Nobuhiro Matsushita
聿宏 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2001083906A priority Critical patent/JP2002273439A/en
Publication of JP2002273439A publication Critical patent/JP2002273439A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To provide a desalting method and a device therefor which can pick a desalted water having desired electrical conductivity homogeneously and efficiently. SOLUTION: In this desalting method, raw water M is allowed to pass through a liquid passage type electrical double layer capacitor 4 which impresses a direct voltage on an activated carbon layers comprising primarily high specific surface activated carbon which are disposed opposite to each other via an electrode, from a raw water source 2 and thereby, the desalted water is obtained. Furthermore in this desalting method and device therefor, the electrical conductivity of the desalted water M0 which is drawn from the liquid passage type electrical double layer capacitor 4 is measured by an electrical conductivity measuring means 6, the measured value is transmitted to a control device 7, when the measured value is a prescribed set value which is set by the control device 7 or more, the control device 7 commands a supplying pump P so as to reduce the amount of the raw water M introduced into the liquid passage type electrical double layer capacitor 4 and, when the measured value is the prescribed set value or less, the control device 7 commands and controls a supplying pump P so as to increase the amount of the raw water M introduced into the liquid passage type electrical double layer capacitor 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、発電所等のボイラ
ー給水、半導体製造工程、燃料電池発電等に用いられる
純水の製造や、冷却塔用水の製造・循環使用、各種排水
の回収に用いられる脱塩方法及びその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for the supply of boiler water for power plants, the production of semiconductors, the production of pure water used for fuel cell power generation, the production and circulation of water for cooling towers, and the recovery of various wastewaters. To a desalination method and an apparatus therefor.

【0002】[0002]

【従来の技術】脱塩水やいわゆる純水は、半導体製造工
場、原子力発電所、燃料電池発電装置等で広く使用され
ている。かかる脱塩水や純水の製造装置としては、従
来、イオン交換膜やイオン交換樹脂を用いた方法が良く
知られている。これらイオン交換膜やイオン交換樹脂を
用いた脱塩水や純水製造方法は、通常、所定のサイクル
で膜や樹脂を再生させたり、交換したりする必要があ
り、作業効率の点や経済的な面においてその改善が望ま
れていた。
2. Description of the Related Art Demineralized water and so-called pure water are widely used in semiconductor manufacturing plants, nuclear power plants, fuel cell power generators and the like. As such a device for producing demineralized water or pure water, a method using an ion exchange membrane or an ion exchange resin is well known. Deionized water and pure water production methods using these ion-exchange membranes and ion-exchange resins usually require regeneration or exchange of the membranes and resins in a predetermined cycle, which leads to work efficiency and economical costs. In terms of surface, the improvement was desired.

【0003】このようなことから、近年これらに代え
て、原水中のイオン性物質を安定して除去し得る方法と
して、通液型電気二重層コンデンサを使用する方法が提
案されている(特開平6−325983号公報)。この
通液型電気二重層コンデンサは、間に通液路を挟んで2
つの高比表面積の導電体層を有し、これら導電体層の外
側に集電極を配置した構成を有するものであり、集電極
に電圧を加えることによって、原水中のイオンを導電体
層に電気的に吸着させ、塩濃度が減少した処理水を得る
ことができるようになっている。このような高比表面積
の導電体としては、活性炭が好適である。通液型電気二
重層コンデンサにおいては、以下に示す処理過程を経て
流入水中のイオン性物質が除去される。この処理過程
を、流入水に含まれるイオン性物質が塩化ナトリウムで
あり、前記高比表面積の導電体が活性炭である場合を例
にして、図5(a)、(b)を用いて説明する。
In view of the above, instead of these methods, a method using a flow-through type electric double-layer capacitor has recently been proposed as a method capable of stably removing ionic substances in raw water (Japanese Patent Laid-Open No. Hei 10 (1994) -208). No. 6-325983). This liquid-flow type electric double-layer capacitor has a liquid flow path between
It has a structure in which two high specific surface area conductive layers are provided, and a collecting electrode is arranged outside these conductive layers. By applying a voltage to the collecting electrodes, ions in raw water are transferred to the conductive layer. , Water can be obtained with reduced salt concentration. Activated carbon is suitable as such a conductor having a high specific surface area. In the flow-through type electric double layer capacitor, ionic substances in the inflow water are removed through the following process. This process will be described with reference to FIGS. 5 (a) and 5 (b), taking as an example a case where the ionic substance contained in the influent water is sodium chloride and the conductor having a high specific surface area is activated carbon. .

【0004】図5(a)に示すように、電圧印加時にお
いて、流入水中のナトリウムイオンは陰極側の集電極3
4に接する活性炭層33に電気的に吸着され、塩素イオ
ンは陽極側の集電極34に接する活性炭層33に電気的
に吸着される。このため、出口から得られる浄水(処理
水)は、その塩化ナトリウム濃度が著しく低下したもの
となる。また、通水を長時間続けると、活性炭層33に
対するイオンの吸着が飽和に近づくため、出口から得ら
れる処理水の塩化ナトリウム濃度が高くなる。そこで、
吸着飽和に達する前に陽極側と陰極側とを短絡(ショー
ト)させるか、あるいは逆接続すれば、図5(b)に示
すように活性炭33に吸着されていたナトリウムイオン
および塩素イオンが脱離し、流入水中の塩化ナトリウム
濃度よりはるかに高濃度の塩化ナトリウムを含む流出水
が出口より排出される。このときの流速を遅くすれば、
少ない流水量で活性炭層に吸着された塩化ナトリウムを
排出できるので好ましい。
[0005] As shown in FIG. 5 (a), when a voltage is applied, sodium ions in the influent water are removed from the collector electrode 3 on the cathode side.
The chlorine ions are electrically adsorbed to the activated carbon layer 33 in contact with the collector electrode 34 on the anode side. For this reason, the purified water (treated water) obtained from the outlet has a significantly reduced sodium chloride concentration. In addition, if the water flow is continued for a long time, the adsorption of ions to the activated carbon layer 33 approaches saturation, so that the concentration of sodium chloride in the treated water obtained from the outlet increases. Therefore,
If the anode side and the cathode side are short-circuited or short-circuited before reaching the adsorption saturation, or if they are reversely connected, sodium ions and chlorine ions adsorbed on the activated carbon 33 are desorbed as shown in FIG. Outflow water containing sodium chloride having a concentration much higher than the concentration of sodium chloride in the inflow water is discharged from the outlet. If the flow velocity at this time is reduced,
This is preferable because sodium chloride adsorbed on the activated carbon layer can be discharged with a small amount of flowing water.

【0005】本発明の純水製造装置に用いる通液型電気
二重層コンデンサに特に制限はないが、例えば次の二種
類のものを代表例として挙げることができる。第一の通
液型電気二重層コンデンサとして、電気絶縁性多孔質通
液性シートからなるセパレータを挟んで、高比表面積導
電体として高比表面積活性炭を主材とする活性炭層を配
置し、その活性炭層の外側に集電極を配置し、さらにそ
の集電極の外側に押え板を配置した構成を有する平板形
状のものが挙げられる。フラットな活性炭層を用い、各
部材を配置して圧締した平板形状の構造とすることによ
り、活性炭層を均等に圧縮でき、通液時の液の偏流を効
果的に防止することができる。そのため、イオン性物質
の除去率の安定化が図られ、しかもその除去率を極限に
まで高めることができる。
There is no particular limitation on the flow-through type electric double layer capacitor used in the pure water production apparatus of the present invention, but the following two types can be given as typical examples. As a first liquid-permeation type electric double-layer capacitor, an activated carbon layer mainly composed of activated carbon having a high specific surface area as a conductor having a high specific surface area is arranged with a separator made of an electrically insulating porous liquid-permeable sheet interposed therebetween. A flat plate-shaped one having a configuration in which a collecting electrode is arranged outside the activated carbon layer and a pressing plate is further arranged outside the collecting electrode is used. By using a flat activated carbon layer and forming a plate-shaped structure in which the members are arranged and pressed together, the activated carbon layer can be compressed uniformly, and the drift of the liquid during passage can be effectively prevented. Therefore, the removal rate of the ionic substance is stabilized, and the removal rate can be increased to the limit.

【0006】図6は、かかる平板型の通液型電気二重層
コンデンサの分解図の一例を示したものであり、図7
は、その組み立て図を示したものである。なお、図6及
び図7において、図5と共通する部品は同一符号を付し
て詳細な説明は省略する。この平板型の通液型電気二重
層コンデンサ31のセパレータ32としては、ろ紙、多
孔質高分子膜、織布、不織布など、液体の通過が容易で
かつ電気絶縁性を有する有機質または無機質のシートか
らなるものが用いられる。セパレータ32の厚さは、
0.01〜0.5mm程度、殊に0.02〜0.3mm程度
が好ましい。
FIG. 6 shows an example of an exploded view of such a plate-type liquid-flow type electric double layer capacitor.
Shows the assembly drawing. 6 and 7, parts common to those in FIG. 5 are denoted by the same reference numerals, and detailed description is omitted. The separator 32 of the flat type liquid-permeation type electric double-layer capacitor 31 is made of an organic or inorganic sheet such as a filter paper, a porous polymer membrane, a woven fabric, a nonwoven fabric, etc., through which liquid can easily pass and which has electrical insulation. Is used. The thickness of the separator 32 is
It is preferably about 0.01 to 0.5 mm, particularly preferably about 0.02 to 0.3 mm.

【0007】活性炭層33としては、高比表面積活性炭
を主材とする層が用いられる。高比表面積活性炭とは、
BET比表面積が好ましくは1000m2/g以上、よ
り好ましくは1500m2/g以上、さらに好ましくは
2000〜2500m2/gの活性炭を言う。BET比
表面積が余りに小さいときは、イオン性物質を含む液体
を通したときのイオン性物質の除去率が低下し易くな
る。なおBET比表面積が余りに大きくなるとイオン性
物質の除去率がかえって低下する傾向があるので、BE
T比表面積を必要以上に大きくするには及ばない。使用
する活性炭の形状は、粉粒状、繊維状など任意である。
粉粒状の場合には平板状またはシート状に成形して用
い、繊維状の場合には布状に加工して用いることが好ま
しい。粉粒状活性炭を平板状またはシート状に成形して
用いることは、繊維状の活性炭を布状に加工して用いる
場合に比べて、コストの点からは格段に有利である。平
板状またはシート状への成形は、たとえば、粉粒状活性
炭をバインダー成分(ポリテトラフルオロエチレン、フ
ェノール樹脂、カーボンブラック等)および/または分
散媒(溶媒等)と混合して板状に成形してから、適宜熱
処理することにより得られる。活性炭層33として平板
状またはシート状のものを用いる場合は、必要に応じこ
れに穿孔加工を施しておくこともできる。なお、平板状
またはシート状の活性炭を用いる技術については、特開
昭63−107011号公報、特開平3−122008
号公報、特開平3−228814号、特開昭63−11
0622号、特開昭63−226019号公報、特開昭
64−1219号公報などにも開示があるので、それら
の公報に開示のものを参考にすることもできる。活性炭
層33の厚さは、0.1〜3mm程度、殊に0.5〜2m
m程度とすることが好ましいが、必ずしもこの範囲内に
限られるものではない。
As the activated carbon layer 33, a layer mainly composed of activated carbon having a high specific surface area is used. What is high specific surface area activated carbon?
BET specific surface area is preferably 1000 m 2 / g or more, more preferably 1500 m 2 / g or more, more preferably refers to activated carbon 2000~2500m 2 / g. If the BET specific surface area is too small, the removal rate of the ionic substance when passing through the liquid containing the ionic substance tends to decrease. If the BET specific surface area is too large, the ionic substance removal rate tends to decrease rather.
It is not sufficient to increase the T specific surface area more than necessary. The shape of the activated carbon to be used is arbitrary, such as powdery and granular, and fibrous.
In the case of powder and granules, it is preferably used after being formed into a flat plate or sheet, and in the case of fibrous, it is preferably used after being processed into a cloth. The use of powdered or granular activated carbon formed into a flat plate or a sheet is significantly more advantageous in terms of cost than the case where fibrous activated carbon is processed into a cloth. For the formation into a flat plate or a sheet, for example, powdered granular activated carbon is mixed with a binder component (polytetrafluoroethylene, phenol resin, carbon black, etc.) and / or a dispersion medium (solvent, etc.) and formed into a plate shape. From an appropriate heat treatment. When the activated carbon layer 33 is formed in a flat or sheet shape, it may be perforated if necessary. The technique using flat or sheet activated carbon is disclosed in JP-A-63-107011, and JP-A-3-122008.
JP-A-3-228814, JP-A-63-11
No. 0622, JP-A-63-226019, JP-A-64-1219, etc., the disclosures of these publications can also be referred to. The thickness of the activated carbon layer 33 is about 0.1 to 3 mm, particularly 0.5 to 2 m.
m is preferable, but is not necessarily limited to this range.

【0008】集電極34としては、銅板、アルミニウム
板、カーボン板、フォイル状グラファイトなどの電気良
導体であって、活性炭層33との緊密な接触が可能なも
のが好ましい。集電極34の厚さに特に限定はないが、
0.1〜0.5mm程度のものが好ましい。印加を容易に
するため、集電極34には端子(リード)34aを設け
るのが通常である。
The collecting electrode 34 is preferably an electric conductor such as a copper plate, an aluminum plate, a carbon plate, and foil-like graphite, which can be in close contact with the activated carbon layer 33. The thickness of the collecting electrode 34 is not particularly limited,
Those having a thickness of about 0.1 to 0.5 mm are preferable. In general, terminals (leads) 34a are provided on the collector electrode 34 to facilitate application.

【0009】押え板36としては、プラスチックス板な
どの電気絶縁性材料からできた変形しにくい平板が用い
られる。この押え板36には、液入口37、液出口3
8、固定用ボルト孔39などを適宜設けることができ
る。集電極34と押え板36との間には、枠状のガスケ
ット35を介在させることが望ましい。そのようなガス
ケット35を独立に設ける代りに、押え板36側にシー
ル機能を有する部材を設けておくこともできる。上記の
部材を用いて、図6に示すように、押え板36 /(ガ
スケット35 /)集電極34 /活性炭層33 /セパ
レータ32 /活性炭層33 /集電極34/(ガスケッ
ト35 /)押え板36の構成を有する平板型の通液型
電気二重層コンデンサ31が組み立てられる。
As the holding plate 36, a flat plate made of an electrically insulating material such as a plastics plate, which is hardly deformed, is used. The holding plate 36 has a liquid inlet 37 and a liquid outlet 3.
8, fixing bolt holes 39 and the like can be appropriately provided. It is desirable to interpose a frame-shaped gasket 35 between the collector electrode 34 and the holding plate 36. Instead of providing such a gasket 35 independently, a member having a sealing function may be provided on the holding plate 36 side. Using the above members, as shown in FIG. 6, a holding plate 36 / (gasket 35 /) collecting electrode 34 / activated carbon layer 33 / separator 32 / active carbon layer 33 / collecting electrode 34 / (gasket 35 /) holding plate 36 Is assembled.

【0010】第二の通液型電気二重層コンデンサの一例
として多処理室型の通液型電気二重層コンデンサ50
を、図8の模式的拡大断面図を用いて説明する。多処理
室型の通液型電気二重層コンデンサ50は、反対側に離
間して設けられた二つの末端プレート51、52と、絶
縁層53、54を挟んでそれぞれ隣接した、二つの片面
末端電極55、56とを有している。それぞれの片面末
端電極55、56は、チタンシートからなる集電極の片
面に導電性エポキシ等のバインダで高比表面積の導電体
の活性炭層64からなるシートが接合されている。二つ
の片面末端電極55、56の間に両面中間電極57〜6
3が、相互に等距離だけ離間して配設されている。それ
ぞれの両面電極(例えば57)は、チタンシートからな
る集電極の両側に活性炭層64として活性炭シートを接
合したものである。この中間電極の数は限定されず、必
要な容量が得られる表面積となるよう適宜調節する(図
8は7つの両面中間電極57〜63だけが図示されてい
る)。
As an example of a second liquid-flow type electric double-layer capacitor, a multi-processing chamber liquid-flow type electric double-layer capacitor 50 is provided.
Will be described with reference to the schematic enlarged sectional view of FIG. The multi-processing chamber type flow-through electric double layer capacitor 50 is composed of two end plates 51 and 52 spaced apart from each other on the opposite side, and two single-sided end electrodes adjacent to each other with the insulating layers 53 and 54 interposed therebetween. 55 and 56. Each of the single-sided terminal electrodes 55 and 56 has a collector made of a titanium sheet and a sheet made of an activated carbon layer 64 of a conductor having a high specific surface area joined to one side of the collector by a binder such as conductive epoxy. A two-sided intermediate electrode 57-6 between two one-sided end electrodes 55 and 56
3 are arranged equidistant from each other. Each double-sided electrode (for example, 57) is formed by joining an activated carbon sheet as an activated carbon layer 64 on both sides of a collector electrode made of a titanium sheet. The number of the intermediate electrodes is not limited, and is appropriately adjusted so as to have a surface area capable of obtaining a required capacity (FIG. 8 shows only seven double-sided intermediate electrodes 57 to 63).

【0011】このような構成の多処理室型の通液型電気
二重層コンデンサ50の各電極を交互にアノード、カソ
ードとする。すなわち、例えば片面末端電極55、中間
電極58、60、63をアノードとし、中間電極57、
59、61、62および片面末端電極56をカソードと
する。すると、それぞれ隣接した電極対(アノードおよ
びカソード)は、独立した処理室を形成する。
The electrodes of the multi-processing chamber type liquid-flow type electric double layer capacitor 50 having such a configuration are alternately used as an anode and a cathode. That is, for example, the one-sided terminal electrode 55 and the intermediate electrodes 58, 60, 63 are used as anodes, and the intermediate electrode 57,
59, 61, 62 and the single-sided terminal electrode 56 are used as cathodes. Then, each adjacent electrode pair (anode and cathode) forms an independent processing chamber.

【0012】したがって、この多処理室型の通液型電気
二重層コンデンサ50に原水を導入すると、まず、矢印
Aで示すように、第1の処理室81を通る原水が、電極
表面に対してほぼ平行に流れる。すると、両側の電極が
分極されていることにより、イオンは原水中から静電的
に除去され、電極55および57の活性炭層表面に形成
された電気二重層に保持される。
Therefore, when the raw water is introduced into the multi-processing chamber type liquid-flow type electric double layer condenser 50, first, as shown by the arrow A, the raw water passing through the first processing chamber 81 is applied to the electrode surface. Flow almost parallel. Then, since the electrodes on both sides are polarized, the ions are electrostatically removed from the raw water, and are retained in the electric double layer formed on the activated carbon layer surfaces of the electrodes 55 and 57.

【0013】原水は、続いて、矢印Bで示すように孔8
0を通って次の処理室82の中に流れる。ここでは、中
間電極57および58によって形成される処理室の分極
により、原水中のイオンがさらに除去される。そして、
原水は、矢印C〜Gに示すように残りの各処理室を連続
的に通過させられ、イオンが除去される。その後、矢印
Hで示すように、処理水は、片面末端電極56、絶縁層
54等を通過し、導出口を介して多処理室型の通液型電
気二重層コンデンサ50から導出される。
The raw water is then supplied to the hole 8 as indicated by the arrow B.
0 and flows into the next processing chamber 82. Here, the ions in the raw water are further removed by the polarization of the processing chamber formed by the intermediate electrodes 57 and 58. And
The raw water is continuously passed through the remaining processing chambers as shown by arrows C to G, and the ions are removed. Thereafter, as indicated by an arrow H, the treated water passes through the one-sided terminal electrode 56, the insulating layer 54, and the like, and is drawn out from the multi-processing chamber type liquid-flow type electric double layer capacitor 50 through the outlet.

【0014】このように、多処理室型である前記図8で
図示した第二の通液型電気二重層コンデンサ50にあっ
ても、前記図6、7の第一の例で示した平板型の通液型
電気二重層コンデンサ31と同様に、カルシウムやマグ
ネシウム等の金属イオンをはじめとして各種のイオンを
原水から除去することができる。そして、継続運転によ
り、各種イオンが多孔性の炭素エアロゲルシート等の如
き活性炭層64の表面に蓄積され、脱塩処理吸着機能が
飽和し、原水に含有する各種イオンの除去が不可能とな
る。そこで、適当な時期をみて、[アノード]−[カソ
ード]の各電極対をショートさせるか、あるいは電極対
に脱塩処理時とは逆電圧を印加して、多孔性の活性炭層
64の表面に蓄積された各種イオンを脱離せしめて再生
する。そして、再生後、再度脱塩処理に運転される。以
後、引き続き各電極に印加する通電操作を繰り返して、
脱塩処理−再生処理を繰り返し行って、継続運転するも
のである。
As described above, even in the second liquid-passing type electric double layer capacitor 50 shown in FIG. 8 which is a multi-processing chamber type, the flat type shown in the first example of FIGS. As in the case of the liquid-pass type electric double layer capacitor 31, various ions including metal ions such as calcium and magnesium can be removed from the raw water. Then, due to the continuous operation, various ions are accumulated on the surface of the activated carbon layer 64 such as a porous carbon airgel sheet, so that the desalting treatment adsorption function is saturated and it becomes impossible to remove various ions contained in the raw water. Therefore, at an appropriate time, the [anode]-[cathode] electrode pair is short-circuited, or a reverse voltage is applied to the electrode pair during desalination to apply a voltage to the surface of the porous activated carbon layer 64. The accumulated various ions are desorbed and regenerated. Then, after the regeneration, the operation is performed again for the desalination treatment. Thereafter, the energizing operation to be continuously applied to each electrode is repeated,
The desalination process and the regeneration process are repeatedly performed to continuously operate.

【0015】かくして、上記した如き通液型電気二重層
コンデンサ31や50に原水を通液して、集電極に通電
することにより、原水中のカルシウムイオンやマグネシ
ウムイオンを高比表面積の活性炭層33や64に捕獲
し、これらカルシウムイオンやマグネシウムイオンが除
去された脱塩水又は純水を採取するものである。この間
高比表面積活性炭や多孔性の炭素エアロゲル等の活性炭
層には前記カルシウムイオンやマグネシウムイオンが蓄
積されてきて、イオン吸着能が飽和してくるので、適宜
前記集電極間をショートせしめたり、逆電圧を印加し
て、高比表面積の活性炭層33や64よりこれに蓄積さ
れた前記カルシウムイオンやマグネシウムイオンを脱離
せしめて装置外に排除せしめる再生処理をする。これら
の操作を繰り返すことにより、継続して脱塩水あるいは
純水を得るものである。
Thus, the raw water is passed through the above-mentioned liquid-permeable electric double layer capacitors 31 and 50 and the current is passed through the collector electrode, so that calcium ions and magnesium ions in the raw water can be activated carbon layer 33 having a high specific surface area. And deionized water or pure water from which calcium and magnesium ions have been removed. During this time, the calcium ions and magnesium ions are accumulated in the activated carbon layer such as high specific surface area activated carbon or porous carbon aerogel, and the ion adsorption ability is saturated. A voltage is applied to perform a regeneration process in which the calcium ions and magnesium ions accumulated in the activated carbon layers 33 and 64 having a high specific surface area are desorbed and eliminated from the apparatus. By repeating these operations, desalinated water or pure water is continuously obtained.

【0016】然るに、近年、原子炉用水や、半導体製造
工業に使用する純水として不純物含量の微量な超高純度
の超純水の出現が望まれている。例えば、水電解用水と
しては、導電率が1mS/m以下の純水が用いられ、中
高圧ボイラ用としては、0.1mS/m又はそれ以下の
導電率の純水が用いられている。又原子炉用水としては
0.01mS/m以下の導電率の純水が必要とされ、更
に半導体製造工業用の水としては、導電率が0.01m
S/m以下の超純水が必要とされている。従って、この
ため上記した通液型電気二重層コンデンサを、効果的に
運転することが望まれている。
However, in recent years, there has been a demand for the appearance of ultrapure ultrapure water with a small amount of impurities as nuclear reactor water or pure water used in the semiconductor manufacturing industry. For example, pure water having a conductivity of 1 mS / m or less is used as water for water electrolysis, and pure water having a conductivity of 0.1 mS / m or less is used for a medium-high pressure boiler. Further, pure water having a conductivity of 0.01 mS / m or less is required as water for a nuclear reactor, and water having a conductivity of 0.01 mS / m is used as water for the semiconductor manufacturing industry.
Ultrapure water of S / m or less is required. Therefore, it is desired to effectively operate the above-mentioned flow-through type electric double layer capacitor.

【0017】然るに、上記した通液型電気二重層コンデ
ンサは、電極に印加する電圧によってイオン吸着能力が
決まるが、この能力は通液型電気二重層コンデンサに流
入するイオン濃度にも依存し、一定ではない。
In the above-mentioned liquid-permeable electric double layer capacitor, the ion adsorption capacity is determined by the voltage applied to the electrodes. This ability also depends on the concentration of ions flowing into the liquid-permeable electric double layer capacitor and is constant. is not.

【0018】一方、脱塩される原水のイオン濃度は、導
電率として一般の淡水では3〜30mS/mであり、海
水は1,000〜5,000mS/mで必ずしも一定して
おらず、通液型電気二重層コンデンサで得られる脱塩水
や純水の水質に変動をもたらしていた。特に高純度水の
採取においては、大きな問題であった。
On the other hand, the ion concentration of the raw water to be desalted is 3 to 30 mS / m in general fresh water and 1,000 to 5,000 mS / m in seawater, which is not necessarily constant. The quality of the demineralized water and pure water obtained with the liquid-type electric double-layer capacitor fluctuated. In particular, there was a big problem in collecting high-purity water.

【0019】[0019]

【発明が解決しようとする課題】本発明は、上記した現
状に鑑みなされたもので、通液型電気二重層コンデンサ
を使用して所望する純度の脱塩水又は純水を安定した状
態で、かつ効率よく採取する脱塩水又は純水の製造方法
と装置を提供することを本発明の課題とするものであ
る。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and uses a flow-through type electric double layer capacitor to stabilize desalinated water or pure water having a desired purity in a stable state. It is an object of the present invention to provide a method and an apparatus for producing desalinated water or pure water that can be efficiently collected.

【0020】[0020]

【課題を解決するための手段】上記した本発明の課題を
解決し、目的を達成するため、請求項1に係わる発明の
脱塩方法は、通液型電気二重層コンデンサに原水を通水
する脱塩方法であって、原水及び/又は処理水のイオン
濃度に応じて該通液型電気二重層コンデンサの通水量を
制御することを特徴とするものである。
In order to solve the above-mentioned problems of the present invention and to achieve the object, a desalination method according to the first aspect of the present invention is to pass raw water through a flow-through type electric double layer condenser. A desalination method, characterized in that the flow rate of the flow-through type electric double layer condenser is controlled in accordance with the ion concentration of raw water and / or treated water.

【0021】又、請求項2に係わる発明の脱塩装置は、
通液型電気二重層コンデンサと、原水及び/又は処理水
のイオン濃度を測定する手段と、イオン濃度の測定値に
基づいて通液型電気二重層コンデンサの通水量を調整す
る手段とを有することを特徴とするものである。
Further, the desalination apparatus according to the second aspect of the present invention comprises:
Having a flow-through type electric double-layer condenser, a means for measuring the ion concentration of raw water and / or treated water, and a means for adjusting the flow rate of the flow-through type electric double-layer condenser based on the measured value of the ion concentration It is characterized by the following.

【0022】[0022]

【発明の実施の形態】以下、本発明の脱塩装置の実施の
形態について図面を参照して説明する。図1及び図2
は、本発明の脱塩装置の第1の実施の形態のを説明する
系統概略図である。図1において、本発明の脱塩装置1
は、原水Mを貯液した貯槽の如き原水源2が供給ポンプ
Pを介して導入管路3により脱塩装置である通液型電気
二重層コンデンサ4に連結され、該通液型電気二重層コ
ンデンサ4には脱塩水M0を導出して採取する導出管路
5が配設されている。そして、前記導出管路5には、採
取される脱塩水M0の水質を検査する導電率検出計の如
き導電率測定手段6が設けられ、該導電率測定手段6で
得られた測定値は制御装置7に送られる。制御装置7
は、前記導電率測定手段6の測定値(Em)が設定導電
率(Ec)より大きい時は、前記導入管路3に設けた供
給ポンプPの供給吐出量を減じるように信号を送信し、
又一方前記導電率測定手段6の測定値(Em)が設定導
電率(Ec)より小さい時は、前記導入管路3に設けた
供給ポンプPの供給吐出量を増大するように信号を送信
することにより、採取する脱塩水M0の水質を一定に保
持するものである。あるいは、原水Mのイオン濃度が高
いほど、原水Mの量を少なくするよう連続的、段階的に
制御してもよい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the desalination apparatus of the present invention will be described below with reference to the drawings. 1 and 2
1 is a schematic system diagram illustrating a desalination apparatus according to a first embodiment of the present invention. In FIG. 1, a desalination apparatus 1 of the present invention is shown.
The raw water source 2 such as a storage tank storing the raw water M is connected via a feed pump P to a flow-through type electric double-layer condenser 4 as a desalination device by an introduction pipe 3, The condenser 4 is provided with an outlet pipe 5 for extracting and collecting the desalinated water M0. The outlet pipe 5 is provided with a conductivity measuring means 6 such as a conductivity detector for inspecting the quality of the demineralized water M0 to be sampled, and the measured value obtained by the conductivity measuring means 6 is controlled. It is sent to the device 7. Control device 7
When the measured value (Em) of the conductivity measuring means 6 is larger than the set conductivity (Ec), a signal is transmitted so as to reduce the supply and discharge amount of the supply pump P provided in the introduction conduit 3;
On the other hand, when the measured value (Em) of the conductivity measuring means 6 is smaller than the set conductivity (Ec), a signal is transmitted so as to increase the supply discharge amount of the supply pump P provided in the introduction conduit 3. Thus, the quality of the desalted water M0 to be collected is kept constant. Alternatively, the control may be performed continuously and stepwise so that the amount of the raw water M decreases as the ion concentration of the raw water M increases.

【0023】なお、上記図1の第1の実施の形態では、
通液型電気二重層コンデンサ4への導入量を調節するた
めの流量調整手段として、導入管路3に設けた供給ポン
プPの供給吐出量を調整する装置について説明したが、
第1の実施形態の変形の態様として、図2に図示する如
く供給ポンプPの吐出側の導入管路3に流量調整弁8を
設けて、制御装置7からの信号を流量調整弁8に送信し
て、該流量調整弁8の開度を調整するようにしてもよ
い。
In the first embodiment shown in FIG. 1,
A device for adjusting the supply and discharge amount of the supply pump P provided in the introduction conduit 3 has been described as a flow rate adjusting means for adjusting the introduction amount to the flow-through type electric double layer condenser 4,
As a modification of the first embodiment, as shown in FIG. 2, a flow control valve 8 is provided in the introduction pipe 3 on the discharge side of the supply pump P, and a signal from the control device 7 is transmitted to the flow control valve 8. Then, the opening of the flow control valve 8 may be adjusted.

【0024】図3及び図4は、本発明の第2の実施の形
態を説明する系統概略図を示すものである。この第2の
実施の形態の特徴は、通液型電気二重層コンデンサに導
入する原水量を、導入する原水の水質により調節するよ
うにして、原水を脱塩する通液型電気二重層コンデンサ
に、過度な脱塩負荷を与えずに、常に適切な脱塩機能で
動作せしめて、長時間にわたって、均質な脱塩水や純水
を採取するようにしたものである。なお、図中、図1及
び図2と共通する構成機器については図1及び図2の第
1の実施の形態と同一符号を付し詳細な説明は省略す
る。
FIG. 3 and FIG. 4 are system schematic diagrams for explaining a second embodiment of the present invention. The feature of the second embodiment is that the amount of raw water introduced into the flow-through type electric double layer capacitor is adjusted according to the quality of the raw water to be introduced, so that the flow-through type electric double layer capacitor that desalinates the raw water can be used. The apparatus is designed to always operate with an appropriate desalination function without giving an excessive desalination load, and to collect uniform deionized water or pure water for a long time. In the drawings, the same components as those in FIGS. 1 and 2 are denoted by the same reference numerals as those in the first embodiment in FIGS. 1 and 2, and detailed description is omitted.

【0025】図3において、本発明の第2の実施形態の
脱塩装置11は、原水Mを貯液する貯槽の如き原水源2
が導電率検出計の如き導電率測定手段6、供給ポンプP
を介して導入管路3により通液型電気二重層コンデンサ
4に連結され、該通液型電気二重層コンデンサ4には脱
塩水M0を採取する導出管路5が配設されている。そし
て、前記導入管路3に配設した導電率検出計の如き導電
率測定手段6での原水Mの導電率の測定値(Em)は、
制御装置7に送信され、該制御装置7において設定した
導電率(Ec)と比較されて、導電率検出計の如き導電
率測定手段6の測定値(Em)が設定導電率(Ec)より
大きい時は、前記導入管路3に設けた供給ポンプPの供
給吐出量を減じるように信号を送信し、又一方前記導電
率検出計の如き導電率測定手段6の測定値(Em)が設
定導電率(Ec)より小さい時は、前記導入管路3に設
けた供給ポンプPの供給吐出量を増大するように信号を
送信する。このようにして、原水を脱塩する通液型電気
二重層コンデンサ4には、導入される原水Mの水質によ
って、供給される原水Mの量を増減制御して供給され、
常に該通液型電気二重層コンデンサ4での脱塩負荷を適
切に保つようにされている。
In FIG. 3, a desalination apparatus 11 according to a second embodiment of the present invention includes a raw water source 2 such as a storage tank for storing raw water M.
Is a conductivity measuring means 6, such as a conductivity detector, and a supply pump P
Is connected to the flow-through type electric double layer condenser 4 by the introduction line 3 through which the outlet line 5 for collecting the demineralized water M0 is provided. The measured value (Em) of the conductivity of the raw water M by the conductivity measuring means 6 such as a conductivity detector arranged in the introduction conduit 3 is as follows:
The measured value (Em) of the conductivity measuring means 6 such as a conductivity detector is transmitted to the control device 7 and compared with the conductivity (Ec) set by the control device 7 to be larger than the set conductivity (Ec). At this time, a signal is transmitted so as to reduce the supply discharge amount of the supply pump P provided in the introduction conduit 3, and the measured value (Em) of the conductivity measuring means 6 such as the conductivity detector is set to the set conductivity. When the ratio is smaller than the ratio (Ec), a signal is transmitted so as to increase the supply discharge amount of the supply pump P provided in the introduction conduit 3. In this way, the amount of the raw water M to be supplied is supplied to the flow-through electric double layer condenser 4 for desalinating the raw water by controlling the amount of the supplied raw water M depending on the quality of the introduced raw water M,
The desalting load in the flow-through type electric double layer capacitor 4 is always kept appropriately.

【0026】又、上記図3の第2の実施の形態では、原
水Mの水質によって、通液型電気二重層コンデンサ4へ
の原水導入量を調節するための流量調整手段として、導
入管路3に設けた供給ポンプPの供給吐出量を調整する
装置について説明したが、第2の実施形態の変形の態様
として、図4に図示する如く供給ポンプPの吐出側の導
入管路3に流量調整弁8を設けて、制御装置7からの信
号を流量調整弁8に送信するようにしてもよい。即ち、
導電率検出計の如き導電率測定手段6の測定値(Em)
が設定導電率(Ec)より大きい時は、前記導入管路3
に設けた流量調整弁8よりの流出量を減じるように信号
を流量調整弁8に送信し、又一方前記導電率検出計の如
き導電率測定手段6の測定値(Em)が設定導電率(E
c)より小さい時は、前記導入管路3に設けた流量調整
弁8の流出量を増大するように信号を流量調整弁8に送
信する。このように、本発明の第2の実施の形態の装置
では、原水を脱塩する通液型電気二重層コンデンサに、
過度な脱塩負荷を与えずに、常に適切な脱塩機能で動作
せしめて、適切な水質の脱塩水を長時間にわたって、採
取するようにしたものである。
In the second embodiment shown in FIG. 3, the introduction pipe 3 is used as flow control means for adjusting the amount of raw water introduced into the flow-through type electric double layer condenser 4 depending on the quality of the raw water M. Although the apparatus for adjusting the supply and discharge amount of the supply pump P provided in the second embodiment has been described, as a modification of the second embodiment, as shown in FIG. A valve 8 may be provided to transmit a signal from the control device 7 to the flow control valve 8. That is,
Measurement value (Em) of conductivity measuring means 6 such as a conductivity detector
Is larger than the set conductivity (Ec), the introduction conduit 3
A signal is sent to the flow control valve 8 so as to reduce the amount of outflow from the flow control valve 8 provided on the other hand, and the measured value (Em) of the conductivity measuring means 6 such as the conductivity detector is set to a set conductivity (Em). E
c) If smaller, a signal is transmitted to the flow control valve 8 so as to increase the outflow amount of the flow control valve 8 provided in the introduction conduit 3. As described above, in the device according to the second embodiment of the present invention, the flow-through type electric double layer capacitor for desalinating raw water is provided with:
The system is designed to always operate with an appropriate desalination function without giving an excessive desalination load, and to collect desalinated water of appropriate quality for a long time.

【0027】なお、上記した第1及び第2の実施の形態
で、設定した脱塩水の導電率や原水の導電率によって導
入する原水の流量を制御運転しても、所望の導電率を有
する期待した脱塩水に達しない場合は、装置の故障、も
しくは寿命とした表示及び/又は出力信号を出すように
しても良い。なお又、採取する脱塩水の水質や、脱塩す
べき原水の水質を評価するため、原水又は脱塩水のイオ
ン濃度を測定するには、イオン電極イオンクロマトグラ
フィなどによりナトリウムイオンやカルシウムイオン濃
度を測定して、その合計を求めても良いが、導電率を測
定して総量を把握することが簡便であり、好ましいこと
から、導電率測定手段を用いた。しかし、本発明におけ
るイオン濃度の測定は、導電率の測定装置の特定の形式
に限定されるものでなく、如何なる形式の導電率測定装
置を採用しても実施することができることは勿論であ
る。
In the first and second embodiments, even if the flow rate of the introduced raw water is controlled by the set conductivity of the desalted water or the conductivity of the raw water, the expected conductivity having the desired conductivity can be obtained. If the water does not reach the demineralized water, an indication and / or an output signal indicating the failure of the device or the service life may be output. In addition, in order to evaluate the quality of the demineralized water to be collected and the quality of the raw water to be desalinated, to measure the ion concentration of the raw water or the desalinated water, measure the sodium ion and calcium ion concentrations by ion electrode ion chromatography or the like. Then, the total may be obtained. However, since it is easy and preferable to measure the conductivity to determine the total amount, a conductivity measuring means was used. However, the measurement of the ion concentration in the present invention is not limited to a specific type of conductivity measuring device, and it goes without saying that any type of conductivity measuring device can be employed.

【0028】[0028]

【実施例】以下本発明の脱塩方法の実施例について、図
1乃至図4に図示した第1及び第2の実施の形態におけ
る脱塩装置の系統概略図を参照して説明する。なお、通
液型電気二重層コンデンサとしては、図6、図7に図示
した平板型の通液型電気二重層コンデンサ31、及び図
8に図示した多処理室型通液型電気二重層コンデンサ5
0のいずれの装置も同様に使用することができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the desalting method of the present invention will be described below with reference to schematic diagrams of the desalination apparatus in the first and second embodiments shown in FIGS. The liquid-flow type electric double-layer capacitors include a flat liquid-flow type electric double-layer capacitor 31 shown in FIGS. 6 and 7, and a multi-processing chamber liquid-flow type electric double-layer capacitor 5 shown in FIG.
Any of the 0 devices can be used as well.

【0029】[実施例1]実施例1として、図1及び図
2に図示した第1の実施の形態の脱塩装置を使用した、
脱塩方法について説明する。図1の装置1において、先
ず制御装置7に採取しようとする脱塩水の水質として、
所望する導電率(Ec)を設定する。例えば原子炉用水
として使用するための脱塩水として、0.01mS/m
の導電率に設定する。次いで通液型電気二重層コンデン
サ4に通電して電極に電圧を印加するとともに、供給ポ
ンプPを駆動して、原水Mを貯液した貯槽の如き原水源
2から原水Mを該供給ポンプPにより導入管路を3を介
して通液型電気二重層コンデンサ4に供給する。そして
該通液型電気二重層コンデンサ4に導入された原水M
は、該原水M中に存在するカルシウムイオンやマグネシ
ウムイオンが、通液型電気二重層コンデンサ4の多孔性
の活性炭(図6の平板型通液型電気二重層コンデンサ)
や多孔性の炭素エアロゲル複合体(図8の多処理室型通
液型電気二重層コンデンサ)等の活性炭層33、64に
吸着除去されて、脱塩水M0として導出管5より導出し
て採取される。
Example 1 As Example 1, the desalination apparatus of the first embodiment shown in FIGS. 1 and 2 was used.
The desalting method will be described. In the apparatus 1 of FIG. 1, first, the water quality of the desalinated water to be collected by the control device 7 is as follows.
Set the desired conductivity (Ec). For example, as desalinated water for use as reactor water, 0.01 mS / m
Is set to a conductivity of Next, a current is applied to the flow-through type electric double layer capacitor 4 to apply a voltage to the electrodes, and the supply pump P is driven to supply the raw water M from the raw water source 2 such as a storage tank storing the raw water M by the supply pump P. The supply line is supplied to the liquid-flow type electric double layer condenser 4 via 3. Then, the raw water M introduced into the flow-through type electric double layer condenser 4
Means that calcium ions and magnesium ions present in the raw water M are porous activated carbon of the liquid-flow type electric double-layer condenser 4 (the flat liquid-flow type electric double-layer condenser of FIG. 6).
And the porous carbon airgel composite (multi-processing chamber type flow-through type electric double layer condenser in FIG. 8), etc., are adsorbed and removed by the activated carbon layers 33 and 64, and are extracted from the outlet pipe 5 as demineralized water M0 and collected. You.

【0030】このような運転操作の間、導出管路5に配
設した導電率測定手段6が、常に導出管路5に導出され
てくる脱塩水M0の導電率(Em)の変化を測定してい
て、それを制御装置7に送信している。そして、採取さ
れる脱塩水M0の測定導電率(Em)が、前記設定した導
電率(Ec)の0.01mS/mより大きい時は、前記導
入管路3に設けた供給ポンプPの供給吐出量を減じるよ
うに信号を送信し、又一方前記導電率測定手段6の測定
値(Em)が設定導電率(Ec)より小さい時は、前記導
入管路3に設けた供給ポンプPの供給吐出量を増大する
ように信号を送信し、設定した導電率(Ec)との比較
の上、導出される脱塩水M0の導電率(Em)により通液
型電気二重層コンデンサ4に導入する原水Mの量を制御
して、採取する脱塩水M0の水質を一定に保持して脱塩
水を製造する方法である。
During such an operation, the conductivity measuring means 6 disposed in the outlet line 5 measures the change in the conductivity (Em) of the demineralized water M0 which is always led out to the outlet line 5. And transmits it to the control device 7. When the measured conductivity (Em) of the sampled demineralized water M0 is larger than the set conductivity (Ec) of 0.01 mS / m, the supply and discharge of the supply pump P provided in the introduction pipe 3 is performed. When the measured value (Em) of the conductivity measuring means 6 is smaller than the set conductivity (Ec), the supply and discharge of the supply pump P provided in the introduction conduit 3 is performed. A signal is transmitted so as to increase the amount, and after comparing the conductivity with the set conductivity (Ec), the conductivity (Em) of the demineralized water M0 is determined and the raw water M to be introduced into the flow-through type electric double layer condenser 4 is determined. Is controlled to maintain the quality of the demineralized water M0 to be collected at a constant level to produce demineralized water.

【0031】なお、図1の装置における通液型電気二重
層コンデンサ4に供給する原水Mの流量を、供給ポンプ
Pの駆動操作により供給吐出量を制御するのに代えて、
図2に図示する如く、供給ポンプPの吐出側に流量調整
弁8を設けて、該流量調整弁8に制御装置7より増減信
号を送信して、流量調整弁8の開度を適宜制御せしめて
も、同様に通液型電気二重層コンデンサ4に導入する原
水Mの量を調整することができる。
The flow rate of the raw water M supplied to the flow-through type electric double layer condenser 4 in the apparatus shown in FIG.
As shown in FIG. 2, a flow control valve 8 is provided on the discharge side of the supply pump P, and an increase / decrease signal is transmitted from the control device 7 to the flow control valve 8 so that the opening of the flow control valve 8 is appropriately controlled. Even in this case, the amount of the raw water M introduced into the flow-through type electric double layer condenser 4 can be similarly adjusted.

【0032】以上のように、実施例1の脱塩方法では、
導出される脱塩水M0の導電率(Em)により通液型電気
二重層コンデンサ4に導入する原水Mの量を制御して、
採取する脱塩水M0の水質を一定に保持するものである
ので、均質な脱塩水が採取されて供給することができる
ばかりでなく、脱塩に使用する通液型電気二重層コンデ
ンサ4が保有するイオン吸着能に余分な脱塩負荷を与え
ること無く適切に保持して運転することができる。
As described above, in the desalting method of Example 1,
The amount of raw water M to be introduced into the flow-through type electric double layer condenser 4 is controlled by the conductivity (Em) of the derived demineralized water M0,
Since the quality of the demineralized water M0 to be collected is kept constant, not only can the uniform demineralized water be collected and supplied, but also the liquid-flow type electric double layer condenser 4 used for desalination possesses. The operation can be appropriately maintained without giving an extra desalting load to the ion adsorption capacity.

【0033】[実施例2]実施例2として、図3及び図
4に図示した第2の実施の形態の脱塩装置を使用した、
脱塩方法について説明する。図3の装置11において、
先ず制御装置7に通液型電気二重層コンデンサ4に導入
する原水Mの水質を如何なる値の導電率で規定して設定
するかを決める。例えば、一般の淡水では3〜30mS
/mの導電率であり、それ故、導入する原水Mの導電率
10mS/mに設定する。次いで通液型電気二重層コン
デンサ4に通電して電極に電圧を印加するとともに、供
給ポンプPを駆動して、原水Mを貯液した貯槽の如き原
水源2から原水Mを該供給ポンプPにより導入管路を3
を介して通液型電気二重層コンデンサ4に供給する。そ
して該通液型電気二重層コンデンサ4に導入された原水
Mは、該原水M中に存在するカルシウムイオンやマグネ
シウムイオンが、通液型電気二重層コンデンサ4の多孔
性の活性炭(図6の平板型通液型電気二重層コンデン
サ)や多孔性の炭素エアロゲル複合体(図8の多処理室
型通液型電気二重層コンデンサ)等の活性炭層33、6
4に吸着されて脱塩され、脱塩水M0として導出管5よ
り導出されて採取する。
Example 2 As Example 2, the desalination apparatus of the second embodiment shown in FIGS. 3 and 4 was used.
The desalting method will be described. In the device 11 of FIG.
First, the control device 7 determines what value the conductivity of the raw water M to be introduced into the flow-through type electric double layer condenser 4 by specifying the conductivity thereof. For example, 3-30 mS for general freshwater
/ M, so that the conductivity of the raw water M to be introduced is set to 10 mS / m. Next, a current is applied to the flow-through type electric double layer capacitor 4 to apply a voltage to the electrodes, and the supply pump P is driven to supply the raw water M from the raw water source 2 such as a storage tank storing the raw water M by the supply pump P. Introduce 3
Is supplied to the liquid-flow type electric double layer capacitor 4. The raw water M introduced into the flow-through type electric double layer capacitor 4 is based on the fact that calcium ions and magnesium ions existing in the raw water M are converted into porous activated carbon (the flat plate of FIG. Activated carbon layers 33 and 6 such as a liquid-flow type electric double-layer capacitor) and a porous carbon airgel composite (multi-processing chamber type liquid-type electric double layer capacitor in FIG. 8).
The water is adsorbed on the desalting water 4 and is desalted.

【0034】このような運転操作の間、導入管路3の供
給ポンプPの吸入側に配設した導電率測定手段6が、常
に原水源2から導入管路3に導出され、供給ポンプPに
吸入される原水Mの導電率(Em)の変化を測定してい
て、それを制御装置7に送信されている。そして、導入
管路3における供給ポンプPの吸入側の原水Mの測定導
電率(Em)が、前記設定した導電率(Ec)の10mS
/mより大きい時は、前記導入管路3に設けた供給ポン
プPの供給吐出量を減じるよう、制御装置7から供給ポ
ンプPに信号が送信され、又一方前記導電率測定手段6
の測定値(Em)が設定導電率(Ec)より小さい時は、
前記導入管路3に設けた供給ポンプPの供給吐出量を増
大するように信号が送信され、設定した導電率(Ec)
との比較の上、通液型電気二重層コンデンサに導入され
る原水Mの導電率(Em)により該通液型電気二重層コ
ンデンサ4に導入する原水Mの量を制御して、脱塩処理
に際して通液型電気二重層コンデンサ4に過度な負荷を
与えないで脱塩水M0を採取し、水質を一定に保持して
脱塩水を製造する方法である。
During such an operation, the conductivity measuring means 6 disposed on the suction side of the supply pump P of the introduction line 3 is always led out of the raw water source 2 to the introduction line 3 and is connected to the supply pump P. The change in the conductivity (Em) of the raw water M to be inhaled is measured and transmitted to the control device 7. Then, the measured conductivity (Em) of the raw water M on the suction side of the supply pump P in the introduction conduit 3 is 10 mS of the set conductivity (Ec).
/ M, a signal is sent from the control device 7 to the supply pump P so as to reduce the supply and discharge amount of the supply pump P provided in the introduction conduit 3, while the conductivity measuring means 6
When the measured value (Em) is smaller than the set conductivity (Ec),
A signal is transmitted so as to increase the supply discharge amount of the supply pump P provided in the introduction conduit 3, and the set conductivity (Ec) is set.
In comparison with the above, the amount of the raw water M introduced into the liquid-flow type electric double layer condenser 4 is controlled by the conductivity (Em) of the raw water M introduced into the liquid-flow type electric double layer condenser to perform desalination treatment. In this method, the desalinated water M0 is collected without applying an excessive load to the flow-through type electric double layer condenser 4, and the water quality is kept constant to produce the desalinated water.

【0035】なお、図3の装置における通液型電気二重
層コンデンサ4に供給する原水Mの流量の制御を、供給
ポンプPの供給吐出量を制御するのに代えて、図4に図
示する如く、供給ポンプPの吐出側に流量調整弁8を設
けて、該流量調整弁8に制御装置7より増減信号を送信
して、流量調整弁8の開度を適宜制御せしめても、同様
に通液型電気二重層コンデンサ4に導入する原水Mの量
を調整することができる。
The control of the flow rate of the raw water M supplied to the flow-through type electric double layer condenser 4 in the apparatus shown in FIG. 3 is performed instead of controlling the supply discharge amount of the supply pump P as shown in FIG. Even if a flow control valve 8 is provided on the discharge side of the supply pump P, and an increase / decrease signal is transmitted from the control device 7 to the flow control valve 8, the opening of the flow control valve 8 is appropriately controlled, The amount of the raw water M introduced into the liquid type electric double layer capacitor 4 can be adjusted.

【0036】本発明の実施例2の脱塩方法では、原水を
脱塩する通液型電気二重層コンデンサに、過度な脱塩負
荷を与えずに、常に良好な脱塩機能を保持して動作させ
て、適切な水質の脱塩水を長時間にわたって脱塩水M0
の水質を一定に保持することができ、常に均質な脱塩水
が採取されて供給することができる。しかも、被脱塩処
理に供せられる原水の水質が変動しても適宜、即座に対
応できて、通液型電気二重層コンデンサに過度な脱塩負
荷を与えずに常に適切な脱塩処理が遂行されて、均質な
脱塩水を採取することができる。
In the desalination method according to the second embodiment of the present invention, an operation is performed while always maintaining a good desalination function without applying an excessive desalination load to the flow-through type electric double layer condenser for desalinating raw water. Then, the desalinated water having appropriate water quality is supplied for a long time to the desalinated water M0.
Can be maintained at a constant level, and uniform demineralized water can always be collected and supplied. Moreover, even if the quality of the raw water supplied to the desalination process fluctuates, it can be immediately and appropriately responded to, so that appropriate desalination process can always be performed without applying an excessive desalination load to the flow-through type electric double layer capacitor. Once performed, a homogeneous demineralized water can be collected.

【0037】[0037]

【発明の効果】本発明の脱塩方法と製造装置は上記した
如き形態で実施され、以下に記載する如き効果を奏す
る。水の脱塩装置として通液型電気二重層コンデンサを
使用するので、導電率の低い脱塩水を安定した状態で採
取することができ、特に高純度水を必要とする原子炉用
水や、半導体製造用水に製造には極めて効果的である。
The desalting method and the production apparatus according to the present invention are implemented in the above-described embodiment, and have the following effects. Since a flow-through electric double layer capacitor is used as a water desalination device, desalinated water with low conductivity can be collected in a stable state, especially for nuclear reactor water that requires high-purity water and semiconductor manufacturing. It is extremely effective in producing water.

【0038】そして、原水を脱塩する通液型電気二重層
コンデンサより導出される脱塩水の導電率を測定して、
所望する設定導電率を基準として、脱塩水の導電率の変
動に対応して通液型電気二重層コンデンサに導入する原
水の量を制御したので、通液型電気二重層コンデンサの
脱塩機能に余分な負荷を与えること無く適切に保持して
運転することができて、所望する導電率を保持した脱塩
水を、継続して採取することができる。しかも低導電率
で水質の高い良好な脱塩水を一定した状態で採取供給す
ることができる。
Then, the conductivity of the demineralized water derived from the flow-through electric double layer condenser for desalinating raw water is measured,
Based on the desired set conductivity, the amount of raw water introduced into the flow-through type electric double layer capacitor was controlled according to the fluctuation of the conductivity of the demineralized water. It is possible to operate while appropriately maintaining the operation without applying an extra load, and it is possible to continuously collect the desalinated water having the desired conductivity. Moreover, it is possible to collect and supply good demineralized water having low conductivity and high water quality in a constant state.

【0039】又、本発明の脱塩方法では、原水を脱塩す
る通液型電気二重層コンデンサに導入する原水の量を、
原水の導電率の変動に応じて変化制御せしめるようにし
たので、通液型電気二重層コンデンサに、過度な脱塩負
荷を与えずに、常に適切な脱塩機能で動作せしめて、適
切な水質の脱塩水を長時間にわたって、脱塩水M0の水
質を一定に保持して採取することができ、常に均質な脱
塩水を供給することができる。しかも、被脱塩処理に供
せられる原水の水質が変動しても適宜即座に対応でき
て、通液型電気二重層コンデンサに過度な脱塩負荷を与
えずに常に適切な脱塩処理が遂行されて、均質な脱塩水
を採取することができる。
In the desalination method of the present invention, the amount of raw water introduced into the flow-through electric double layer condenser for desalinating raw water is as follows:
Since the change is controlled according to the fluctuations in the conductivity of the raw water, the flow-through electric double layer capacitor is always operated with an appropriate desalination function without applying an excessive desalination load, and the Can be collected over a long period of time while maintaining the quality of the demineralized water M0 at a constant level, and it is possible to always supply homogeneous demineralized water. In addition, even if the water quality of the raw water supplied for the desalination process fluctuates, it can respond immediately and appropriately, and always perform the appropriate desalination process without applying an excessive desalination load to the flow-through type electric double layer capacitor. As a result, uniform demineralized water can be collected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1の実施の形態の脱塩装置の一例
を説明する系統概略図。
FIG. 1 is a schematic system diagram illustrating an example of a desalination apparatus according to a first embodiment of the present invention.

【図2】 第1の実施の形態の変形形態の脱塩装置の一
例を説明する系統概略図。
FIG. 2 is a schematic system diagram illustrating an example of a desalination apparatus according to a modification of the first embodiment.

【図3】 本発明の第2の実施の形態の脱塩装置の一例
を説明する系統概略図。
FIG. 3 is a schematic system diagram illustrating an example of a desalination apparatus according to a second embodiment of the present invention.

【図4】 第2の実施の形態の変形形態の脱塩装置の一
例を説明する系統概略図。
FIG. 4 is a schematic system diagram illustrating an example of a desalination apparatus according to a modification of the second embodiment.

【図5】 通液型電気二重層コンデンサの脱塩処理原理
説明図。
FIG. 5 is an explanatory view of the principle of desalination of a liquid-flow type electric double layer capacitor.

【図6】 本発明の脱塩方法に使用する第一の例の通液
型電気二重層コンデンサの分解図。
FIG. 6 is an exploded view of a first embodiment of a flow-through type electric double layer capacitor used in the desalination method of the present invention.

【図7】 第一の例の通液型電気二重層コンデンサの組
立側部断面図。
FIG. 7 is an assembly side sectional view of the first embodiment of the flow-through type electric double layer capacitor.

【図8】 本発明の脱塩方法に使用する第二の例の通液
型電気二重層コンデンサの模式的拡大断面図。
FIG. 8 is a schematic enlarged cross-sectional view of a flow-through type electric double layer capacitor of a second example used in the desalination method of the present invention.

【符号の説明】 1、11…本発明の脱塩装置、 2…原水源、 3…導
入管路、4…通液型電気二重層コンデンサ、 5…導出
管路、6…導電率測定手段、 7…制御装置、 8…流
量調整弁、P…供給ポンプ、 M…原水、 M0…脱塩
水、31…平板型の通液型電気二重層コンデンサ、 3
3…活性炭層、34…集電極、 37…液入口、 38
…液出口、50…多処理室型の通液型電気二重層コンデ
ンサ、55、56…片面末端電極、57、58、59、
60、61、62、63…両面中間電極、64…活性炭
層、 81、82、83、84…処理室
[Description of Signs] 1, 11: desalination apparatus of the present invention, 2: raw water source, 3: introduction line, 4: liquid-flow type electric double layer condenser, 5: discharge line, 6: conductivity measuring means, 7: Control device, 8: Flow control valve, P: Supply pump, M: Raw water, M0: Demineralized water, 31: Flat-plate type liquid-flow type electric double layer condenser, 3
3 ... activated carbon layer, 34 ... collecting electrode, 37 ... liquid inlet, 38
... liquid outlet, 50 ... multi-processing chamber type flow-through type electric double layer capacitor, 55, 56 ... single-sided terminal electrode, 57, 58, 59,
60, 61, 62, 63: double-sided intermediate electrode; 64: activated carbon layer; 81, 82, 83, 84: processing chamber

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松下 聿宏 東京都新宿区西新宿三丁目4番7号 栗田 工業株式会社内 Fターム(参考) 4D061 DA01 DA05 DA08 DB13 EA10 EB14 EB29 EB37 EB39 GA06 GC02  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor: Hiroshi Matsushita F-term (reference) 4-3-06 Nishi-Shinjuku, Shinjuku-ku, Tokyo 4D061 DA01 DA05 DA08 DB13 EA10 EB14 EB29 EB37 EB39 GA06 GC02

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 通液型電気二重層コンデンサに原水を通
水する脱塩方法であって、原水及び/又は処理水のイオ
ン濃度に応じて該通液型電気二重層コンデンサの通水量
を制御することを特徴とする脱塩方法。
1. A desalination method for passing raw water through a flow-through type electric double layer condenser, wherein the flow rate of the flow-through type electric double layer condenser is controlled according to the ion concentration of the raw water and / or treated water. Desalting method characterized by performing.
【請求項2】 通液型電気二重層コンデンサと、原水及
び/又は処理水のイオン濃度を測定する手段と、イオン
濃度の測定値に基づいて通液型電気二重層コンデンサの
通水量を調整する手段とを有することを特徴とする脱塩
装置。
2. A flow-through type electric double layer condenser, means for measuring an ion concentration of raw water and / or treated water, and adjusting a flow rate of the flow-through type electric double layer condenser based on a measured value of the ion concentration. And a desalination device.
JP2001083906A 2001-03-22 2001-03-22 Desalting method and device therefor Withdrawn JP2002273439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001083906A JP2002273439A (en) 2001-03-22 2001-03-22 Desalting method and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001083906A JP2002273439A (en) 2001-03-22 2001-03-22 Desalting method and device therefor

Publications (1)

Publication Number Publication Date
JP2002273439A true JP2002273439A (en) 2002-09-24

Family

ID=18939662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001083906A Withdrawn JP2002273439A (en) 2001-03-22 2001-03-22 Desalting method and device therefor

Country Status (1)

Country Link
JP (1) JP2002273439A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101762A (en) * 2008-10-24 2010-05-06 Chubu Electric Power Co Inc Method for decontaminating radioactive metal waste
WO2013038933A1 (en) * 2011-09-15 2013-03-21 栗田工業株式会社 Water treatment method
JP2013108104A (en) * 2011-11-17 2013-06-06 Permelec Electrode Ltd Electrolytic synthesis device, electrolytic treating device, electrolytic synthesis method, and electrolytic treatment method
WO2014020758A1 (en) * 2012-08-03 2014-02-06 三菱重工メカトロシステムズ株式会社 Desalination treatment device, and operation method for desalination treatment device
WO2014171383A1 (en) * 2013-04-15 2014-10-23 有限会社ターナープロセス Device and method for reducing ion concentration in aqueous liquid held in system, and apparatus equipped with said device
WO2014185114A1 (en) * 2013-05-15 2014-11-20 シャープ株式会社 Functional water production apparatus
KR20170005292A (en) 2015-07-02 2017-01-12 한국에너지기술연구원 Powder for capacitive deionization electrode, capacitive deionization electrode prepared by the same, and capacitive deionization system comprising the same
CN113401982A (en) * 2020-03-16 2021-09-17 佛山市云米电器科技有限公司 Water quality control method, household water purifying device and computer readable storage medium
WO2022097691A1 (en) * 2020-11-06 2022-05-12 大同メタル工業株式会社 Cdi device
WO2022097690A1 (en) * 2020-11-06 2022-05-12 大同メタル工業株式会社 Recovery system

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101762A (en) * 2008-10-24 2010-05-06 Chubu Electric Power Co Inc Method for decontaminating radioactive metal waste
WO2013038933A1 (en) * 2011-09-15 2013-03-21 栗田工業株式会社 Water treatment method
JP2013063364A (en) * 2011-09-15 2013-04-11 Kurita Water Ind Ltd Water treatment method
TWI548595B (en) * 2011-09-15 2016-09-11 栗田工業股份有限公司 Water treatment method
JP2013108104A (en) * 2011-11-17 2013-06-06 Permelec Electrode Ltd Electrolytic synthesis device, electrolytic treating device, electrolytic synthesis method, and electrolytic treatment method
JPWO2014020758A1 (en) * 2012-08-03 2016-07-11 三菱重工メカトロシステムズ株式会社 Desalination treatment apparatus and method of operating desalination treatment apparatus
WO2014020758A1 (en) * 2012-08-03 2014-02-06 三菱重工メカトロシステムズ株式会社 Desalination treatment device, and operation method for desalination treatment device
JP5678388B1 (en) * 2013-04-15 2015-03-04 有限会社ターナープロセス Apparatus and method for reducing ion concentration of aqueous liquid held in system, and apparatus including the apparatus
WO2014171383A1 (en) * 2013-04-15 2014-10-23 有限会社ターナープロセス Device and method for reducing ion concentration in aqueous liquid held in system, and apparatus equipped with said device
WO2014185114A1 (en) * 2013-05-15 2014-11-20 シャープ株式会社 Functional water production apparatus
KR20170005292A (en) 2015-07-02 2017-01-12 한국에너지기술연구원 Powder for capacitive deionization electrode, capacitive deionization electrode prepared by the same, and capacitive deionization system comprising the same
CN113401982A (en) * 2020-03-16 2021-09-17 佛山市云米电器科技有限公司 Water quality control method, household water purifying device and computer readable storage medium
WO2022097691A1 (en) * 2020-11-06 2022-05-12 大同メタル工業株式会社 Cdi device
WO2022097690A1 (en) * 2020-11-06 2022-05-12 大同メタル工業株式会社 Recovery system
JP2022075339A (en) * 2020-11-06 2022-05-18 大同メタル工業株式会社 Recovery system
JP7105290B2 (en) 2020-11-06 2022-07-22 大同メタル工業株式会社 recovery system

Similar Documents

Publication Publication Date Title
US5538611A (en) Planar, flow-through, electric, double-layer capacitor and a method of treating liquids with the capacitor
JP4394957B2 (en) Water purification apparatus and method
JP3302443B2 (en) Flat-plate flow-through type electric double layer capacitor and liquid processing method using the same
US20110024354A1 (en) Desalination system and method
CN102249380B (en) Efficient liquid flow type membrane capacitance desalter
JP4286931B2 (en) Liquid-permeable capacitor and liquid processing method using the same
US20080078672A1 (en) Hybrid Capacitive Deionization and Electro-Deionization (CDI-EDI) Electrochemical Cell for Fluid Purification
JP2002273439A (en) Desalting method and device therefor
KR20120030834A (en) Apparatus for treating water using capacitive deionization
JPH07100391A (en) Electric regeneration type continuous ion exchange device and its use method
JP2002336863A (en) Method and apparatus for making desalted water
JP2002336865A (en) Desalting apparatus and desalting method
JP2003200166A (en) Operation method for liquid passing type electric double- layered condenser desalting apparatus
JP2002336859A (en) Desalted water making method
JP2002273437A (en) Desalting device
JP2002210467A (en) Device and method for manufacturing demineralized water
JP2002210468A (en) Demineralizing device and demineralizing method
JP2002273432A (en) Device for producing desalted water and method of producing desalted water
JP3988462B2 (en) Desalination method
JP2002210334A (en) Apparatus for desalting and method for desalting
JP2005087898A (en) Electrostatic deionization apparatus and electrostatic deionization method
JP2002336864A (en) Desalted water making method and desalted water making apparatus
JP4016663B2 (en) Operation method of electrodeionization equipment
JP2002336866A (en) Desalting apparatus and desalting method
JP4006389B2 (en) Electrostatic deionization apparatus and electrostatic deionization method

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603