JP2018134600A - Electric deionized water production apparatus and water treatment apparatus and method using the same - Google Patents

Electric deionized water production apparatus and water treatment apparatus and method using the same Download PDF

Info

Publication number
JP2018134600A
JP2018134600A JP2017031282A JP2017031282A JP2018134600A JP 2018134600 A JP2018134600 A JP 2018134600A JP 2017031282 A JP2017031282 A JP 2017031282A JP 2017031282 A JP2017031282 A JP 2017031282A JP 2018134600 A JP2018134600 A JP 2018134600A
Authority
JP
Japan
Prior art keywords
exchanger
anion
cation
exchange membrane
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017031282A
Other languages
Japanese (ja)
Inventor
賢治 柴崎
Kenji Shibazaki
賢治 柴崎
日高 真生
Masanari Hidaka
真生 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2017031282A priority Critical patent/JP2018134600A/en
Publication of JP2018134600A publication Critical patent/JP2018134600A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Physical Water Treatments (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the removal efficiency of anionic components without lowering the removal efficiency of cationic components.SOLUTION: In a desalting chamber D, at least one anion exchanger filled portion A filled with an anion exchanger and at least one cation exchanger filled portion K filled with a cation exchanger are alternately arranged along the flow passage of water to be treated. An anion exchange membrane and a cation exchange membrane have flexibility. When the total volume of the anion exchanger filled portion A is defined as Va, the total volume of the cation exchanger filled portion K is defined as Vk, the volume of the anion exchanger filled portion A at the time when the anion exchanger and the cation exchanger are not filled in the desalting chamber D is defined as Va0, the volume of the cation exchanger filled portion K at the time when the anion exchanger and the cation exchanger are not filled in the desalting chamber D is defined as Vk0, the anion exchanger filling rate Ra is defined as Va/Va0, and the cation exchanger filling rate Rk is defined as Vk/Vk0, Ra>Rk≥1 is satisfied.SELECTED DRAWING: Figure 2

Description

本発明は、電気式脱イオン水製造装置とこれを用いた水処理装置及び水処理方法に関し、特にアニオン交換体とカチオン交換体の脱塩室への充填に関する。   The present invention relates to an electrical deionized water production apparatus, a water treatment apparatus and a water treatment method using the same, and more particularly to filling an anion exchanger and a cation exchanger into a desalting chamber.

従来、イオン交換体のイオン交換基の薬剤による再生が不要な電気式脱イオン水製造装置(以下、EDIともいう)が開発され、実用化されている。EDIは、互いに対向する陰極室及び陽極室と、陰極室と陽極室との間に位置する脱塩室と、脱塩室に隣接する一対の濃縮室と、を有する。脱塩室は、陽極室側をアニオン交換膜によって、陰極室側をカチオン交換膜によって仕切られている。特許文献1には、脱塩室が、アニオン交換体が充填されたアニオン交換体充填部と、カチオン交換体が充填されたカチオン交換体充填部とに区画された混床式のEDIが開示されている。被処理水はアニオン交換体充填部とカチオン交換体充填部でアニオン成分とカチオン成分を除去されて、脱イオン水となる。   2. Description of the Related Art Conventionally, an electric deionized water production apparatus (hereinafter also referred to as EDI) that does not require regeneration with an ion exchange group agent of an ion exchanger has been developed and put into practical use. EDI has a cathode chamber and an anode chamber facing each other, a desalting chamber located between the cathode chamber and the anode chamber, and a pair of concentration chambers adjacent to the desalting chamber. In the desalting chamber, the anode chamber side is partitioned by an anion exchange membrane and the cathode chamber side is partitioned by a cation exchange membrane. Patent Document 1 discloses a mixed-bed EDI in which a desalting chamber is divided into an anion exchanger filling portion filled with an anion exchanger and a cation exchanger filling portion filled with a cation exchanger. ing. The water to be treated is deionized water by removing the anion component and the cation component in the anion exchanger filling portion and the cation exchanger filling portion.

特許第5719842号公報Japanese Patent No. 5719842

脱イオン水の用途によっては、カチオン成分よりアニオン成分を優先的に除去することが望まれることがある。このような場合、アニオン交換体充填部とカチオン交換体充填部の体積比(樹脂の充填比率)を変更することが一般的である。例えば、アニオン交換体充填部とカチオン交換体充填部の体積比が5:5であるEDIにおいて、その比率を6:4に変更することでアニオン成分をより効率的に除去することができる。しかし、この場合、カチオン成分の除去効率が低下する。   Depending on the application of deionized water, it may be desired to remove the anionic component preferentially over the cationic component. In such a case, it is common to change the volume ratio (resin filling ratio) of the anion exchanger filling portion and the cation exchanger filling portion. For example, in EDI in which the volume ratio of the anion exchanger packed part to the cation exchanger packed part is 5: 5, the anion component can be more efficiently removed by changing the ratio to 6: 4. However, in this case, the removal efficiency of the cation component decreases.

そこで、本発明はカチオン成分の除去効率を低下させることなく、アニオン成分の除去効率を高めることができる電気式脱イオン水製造装置を提供することを目的とする。   Then, an object of this invention is to provide the electrical deionized water manufacturing apparatus which can raise the removal efficiency of an anion component, without reducing the removal efficiency of a cation component.

本発明の電気式脱イオン水製造装置は、互いに対向する陽極室及び陰極室と、陽極室と陰極室との間に位置し、陽極室側のアニオン交換膜と陰極室側のカチオン交換膜とで仕切られ、被処理水が流通する脱塩室と、アニオン交換膜及びカチオン交換膜を介してそれぞれ脱塩室に隣接する一対の濃縮室と、を有している。脱塩室には、アニオン交換体が充填された少なくとも一つのアニオン交換体充填部と、カチオン交換体が充填された少なくとも一つのカチオン交換体充填部とが、被処理水の流通経路に沿って交互に配置されている。アニオン交換膜とカチオン交換膜は可撓性を有している。アニオン交換体充填部の総容積をVa、カチオン交換体充填部の総容積をVk、脱塩室にアニオン交換体とカチオン交換体が充填されていないときのアニオン交換体充填部の容積をVa0、脱塩室にアニオン交換体とカチオン交換体が充填されていないときのカチオン交換体充填部の容積をVk0、アニオン交換体充填率RaをVa/Va0、カチオン交換体充填率RkをVk/Vk0とするとき、Ra>Rk≧1である。   The electric deionized water production apparatus of the present invention is located between an anode chamber and a cathode chamber facing each other, an anode chamber and a cathode chamber, an anion exchange membrane on the anode chamber side, and a cation exchange membrane on the cathode chamber side. And a pair of concentration chambers adjacent to the desalting chamber through an anion exchange membrane and a cation exchange membrane, respectively. In the desalting chamber, at least one anion exchanger filling part filled with an anion exchanger and at least one cation exchanger filling part filled with a cation exchanger are provided along the flow path of the water to be treated. Alternatingly arranged. The anion exchange membrane and the cation exchange membrane are flexible. The total volume of the anion exchanger packed part is Va, the total volume of the cation exchanger packed part is Vk, the volume of the anion exchanger packed part when the anion exchanger and the cation exchanger are not filled in the desalting chamber is Va0, When the anion exchanger and the cation exchanger are not filled in the desalting chamber, the volume of the cation exchanger filling portion is Vk0, the anion exchanger filling rate Ra is Va / Va0, and the cation exchanger filling rate Rk is Vk / Vk0. In this case, Ra> Rk ≧ 1.

本発明によれば、アニオン交換体充填率Raはカチオン交換体充填率Rkよりも大きくされている(Ra>Rk)ため、アニオン成分の除去効率を高めることができる。また、カチオン交換体充填部に充填されるカチオン交換体の容積は、脱塩室にアニオン交換体とカチオン交換体が充填されていないときのカチオン交換体充填部の容積と同じか、それより大きくなっている(Rk≧1)。従って、カチオン成分の除去効率の低下が抑制される。よって、本発明によれば、カチオン成分の除去効率を低下させることなく、アニオン成分の除去効率を高めることができる電気式脱イオン水製造装置を提供することができる。   According to the present invention, since the anion exchanger filling factor Ra is larger than the cation exchanger filling factor Rk (Ra> Rk), the removal efficiency of the anion component can be increased. The volume of the cation exchanger filled in the cation exchanger filling part is the same as or larger than the volume of the cation exchanger filling part when the anion exchanger and the cation exchanger are not filled in the desalting chamber. (Rk ≧ 1). Therefore, a decrease in the removal efficiency of the cation component is suppressed. Therefore, according to this invention, the electrical deionized water manufacturing apparatus which can improve the removal efficiency of an anion component can be provided, without reducing the removal efficiency of a cation component.

本発明の第1の実施形態に係るEDIの概略構成図である。It is a schematic block diagram of EDI which concerns on the 1st Embodiment of this invention. 図1に示す脱塩室の拡大斜視図である。It is an expansion perspective view of the desalination chamber shown in FIG. 本発明の第2の実施形態に係るEDIの概略構成図である。It is a schematic block diagram of EDI which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係るEDIの概略構成図である。It is a schematic block diagram of EDI which concerns on the 3rd Embodiment of this invention. 図4に示す脱塩室の拡大斜視図である。It is an expansion perspective view of the desalting chamber shown in FIG. 本発明の第4の実施形態に係るEDIの概略構成図である。It is a schematic block diagram of EDI which concerns on the 4th Embodiment of this invention.

(第1の実施形態)
以下、図面を参照して、本発明のEDIの第1の実施形態について説明する。
(First embodiment)
Hereinafter, an EDI embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の第1の実施形態に係るEDI4の概略構成図である。EDI4は、互いに対向する陽極室E1及び陰極室E2と、陽極室E1と陰極室E2との間に位置し、陽極室E1側の第1のアニオン交換膜a1と陰極室E2側の第1のカチオン交換膜k1とで仕切られ、アニオン交換体とカチオン交換体が充填された脱塩室Dと、第1のカチオン交換膜k1及び第1のアニオン交換膜a1を介してそれぞれ脱塩室Dに隣接する一対の濃縮室C1,C2と、を有している。以下、第1のアニオン交換膜a1を介して脱塩室Dに隣接する陽極室E1側の濃縮室を第1の濃縮室C1といい、第1のカチオン交換膜k1を介して脱塩室Dに隣接する陰極室E2側の濃縮室を第2の濃縮室C2という。陽極室E1と第1の濃縮室C1は第2のカチオン交換膜k2によって仕切られ、陰極室E2と第2の濃縮室C2は第2のアニオン交換膜a2によって仕切られている。陽極室E1及び陰極室E2には電極水が、第1及び第2の濃縮室C1,C2には濃縮水が、脱塩室Dには被処理水が流れる。これらの水はEDI4の内部を上下方向に流れる。脱塩室の数に制限はなく、2以上の脱塩室を設けることもできる。この場合、陽極室E1と陰極室E2との間に濃縮室と脱塩室が交互に配置され、複数の脱塩室が並列または直列に配置される。   FIG. 1 is a schematic configuration diagram of an EDI 4 according to the first embodiment of the present invention. The EDI 4 is located between the anode chamber E1 and the cathode chamber E2 facing each other, the anode chamber E1 and the cathode chamber E2, and the first anion exchange membrane a1 on the anode chamber E1 side and the first chamber on the cathode chamber E2 side. Desalination chamber D partitioned by cation exchange membrane k1 and filled with anion exchanger and cation exchanger, and desalting chamber D via first cation exchange membrane k1 and first anion exchange membrane a1, respectively. It has a pair of adjacent concentrating chambers C1, C2. Hereinafter, the enrichment chamber on the anode chamber E1 side adjacent to the desalination chamber D via the first anion exchange membrane a1 is referred to as a first enrichment chamber C1, and the desalination chamber D via the first cation exchange membrane k1. The concentration chamber adjacent to the cathode chamber E2 side is referred to as a second concentration chamber C2. The anode chamber E1 and the first concentration chamber C1 are partitioned by the second cation exchange membrane k2, and the cathode chamber E2 and the second concentration chamber C2 are partitioned by the second anion exchange membrane a2. Electrode water flows in the anode chamber E1 and the cathode chamber E2, concentrated water flows in the first and second concentration chambers C1 and C2, and water to be treated flows in the desalting chamber D. These waters flow up and down in the EDI 4. The number of desalting chambers is not limited, and two or more desalting chambers can be provided. In this case, the concentration chambers and the desalting chambers are alternately arranged between the anode chamber E1 and the cathode chamber E2, and a plurality of desalting chambers are arranged in parallel or in series.

陽極室E1には陽極(図示せず)が、陰極室E2には陰極(図示せず)が収容されている。陽極と陰極はステンレスなどの金属の網状体あるいは板状体からなっている。陽極室E1と陰極室E2に供給される電極水は電極近傍での電気分解により、それぞれ水酸化物イオンと水素イオンを発生させる。EDI4の電気抵抗を抑えるため、陽極室E1と陰極室E2にはイオン交換体が充填されていることが好ましい。   An anode (not shown) is accommodated in the anode chamber E1, and a cathode (not shown) is accommodated in the cathode chamber E2. The anode and the cathode are made of a net or plate of a metal such as stainless steel. The electrode water supplied to the anode chamber E1 and the cathode chamber E2 generates hydroxide ions and hydrogen ions, respectively, by electrolysis near the electrodes. In order to suppress the electrical resistance of EDI4, the anode chamber E1 and the cathode chamber E2 are preferably filled with an ion exchanger.

第1及び第2の濃縮室C1,C2を流れる濃縮水は、濃縮水供給管L3から供給される。脱塩室Dで除去されたイオン成分は第1及び第2の濃縮室C1,C2に移動し、濃縮水とともに濃縮水排水管L4からEDI4の外部に排出される。EDI4の電気抵抗を抑えるために、第1及び第2の濃縮室C1,C2にはイオン交換体が充填されていることが好ましい。ただし、本実施形態では、後述するように、脱塩室Dに従来よりも多くのカチオン交換体が充填され、この結果第1のカチオン交換膜k1と第1のアニオン交換膜a1が面外に張り出す。第1及び第2の濃縮室C1,C2に充填されるイオン交換体の量は、第1のカチオン交換膜k1と第1のアニオン交換膜a1が面外に張り出し、十分な量のカチオン交換体が充填できるように調整することが好ましい。   The concentrated water flowing through the first and second concentration chambers C1 and C2 is supplied from the concentrated water supply pipe L3. The ionic components removed in the desalting chamber D move to the first and second concentration chambers C1 and C2, and are discharged out of the EDI 4 from the concentrated water drain pipe L4 together with the concentrated water. In order to suppress the electric resistance of EDI4, it is preferable that the first and second concentration chambers C1 and C2 are filled with an ion exchanger. However, in this embodiment, as will be described later, the desalting chamber D is filled with more cation exchangers than before, and as a result, the first cation exchange membrane k1 and the first anion exchange membrane a1 are out of plane. Overhang. The amount of the ion exchanger filled in the first and second concentrating chambers C1 and C2 is such that the first cation exchange membrane k1 and the first anion exchange membrane a1 project out of the plane and a sufficient amount of cation exchanger. It is preferable to adjust so that can be filled.

被処理水は被処理水供給管L1を通って脱塩室Dに流入し、脱塩室Dでイオン成分(アニオン成分及びカチオン成分)を除去され、脱イオン水(処理水)として処理水排出管L2に排出される。被処理水から除去されたアニオン成分(Cl、CO 2−、HCO 、SiO等)は第1のアニオン交換膜a1を通って第1の濃縮室C1に移動し、被処理水から除去されたカチオン成分(Na、Ca2+、Mg2+等)は第1のカチオン交換膜k1を通って第2の濃縮室C2に移動する。ホウ素はアニオン成分と類似した性質を有し、脱塩室Dに充填されたアニオン交換体で除去され、第1の濃縮室C1に移動する。 The treated water flows into the desalting chamber D through the treated water supply pipe L1, the ionic components (anionic components and cationic components) are removed in the desalting chamber D, and the treated water is discharged as deionized water (treated water). It is discharged to the tube L2. Anion components (Cl , CO 3 2− , HCO 3 , SiO 2, etc.) removed from the water to be treated move to the first concentration chamber C1 through the first anion exchange membrane a1 to be treated water. The cation components (Na + , Ca 2+ , Mg 2+, etc.) removed from the water move to the second concentration chamber C2 through the first cation exchange membrane k1. Boron has a property similar to that of the anion component, and is removed by the anion exchanger filled in the desalting chamber D and moves to the first concentration chamber C1.

脱塩室Dはアニオン交換体が充填されたアニオン交換体充填部Aと、カチオン交換体が充填されたカチオン交換体充填部Kとに区画されている。すなわち、脱塩室には、アニオン交換体が充填された少なくとも一つのアニオン交換体充填部Aと、カチオン交換体が充填された少なくとも一つのカチオン交換体充填部Kとが、処理水の流通経路に沿って交互に配置されている。アニオン交換体とカチオン交換体はそれぞれ粒状のアニオン交換樹脂とカチオン交換樹脂からなっているが、イオン交換作用を奏する限り、イオン交換繊維、モノリス状有機多孔質イオン交換体などの他のイオン交換体を用いることもできる。アニオン交換体充填部Aとカチオン交換体充填部Kの数は限定されないが、少なくとも一つのアニオン交換体充填部Aと、少なくとも一つのカチオン交換体充填部Kとが、脱塩室Dに上下方向に一列にかつ交互に配置されていればよい。本実施形態では、第1のアニオン交換体充填部A1と、第1のカチオン交換体充填部K1と、第2のアニオン交換体充填部A2とがこの順で設けられ、被処理水は第1のアニオン交換体充填部A1、第1のカチオン交換体充填部K1、第2のアニオン交換体充填部A2の順に通過する。図示は省略するが、第1のアニオン交換体充填部A1の上流側に別のカチオン交換体充填部を設けることもできる(被処理水はカチオン交換体、アニオン交換体、カチオン交換体、アニオン交換体の順に流れる)。アニオン交換体充填部A1、A2とカチオン交換体充填部Kとの間に物理的な障壁はなく、これらの充填部はアニオン交換体とカチオン交換体をそれぞれ単独で充填することで形成される(いわゆる複床形態)。   The desalting chamber D is partitioned into an anion exchanger filling portion A filled with an anion exchanger and a cation exchanger filling portion K filled with a cation exchanger. That is, in the desalting chamber, at least one anion exchanger filling portion A filled with an anion exchanger and at least one cation exchanger filling portion K filled with a cation exchanger are disposed in the flow path of treated water. Are arranged alternately. The anion exchanger and the cation exchanger are each composed of a granular anion exchange resin and a cation exchange resin, but other ion exchangers such as ion exchange fibers and monolithic organic porous ion exchangers, as long as they have an ion exchange effect. Can also be used. The number of the anion exchanger filling portion A and the cation exchanger filling portion K is not limited, but at least one anion exchanger filling portion A and at least one cation exchanger filling portion K are arranged in the desalting chamber D in the vertical direction. Need only be arranged in a row and alternately. In the present embodiment, the first anion exchanger filling part A1, the first cation exchanger filling part K1, and the second anion exchanger filling part A2 are provided in this order, and the water to be treated is the first. The anion exchanger filling part A1, the first cation exchanger filling part K1, and the second anion exchanger filling part A2. Although illustration is omitted, another cation exchanger filling part can be provided on the upstream side of the first anion exchanger filling part A1 (the treated water is a cation exchanger, an anion exchanger, a cation exchanger, an anion exchange). Flows in the order of the body). There is no physical barrier between the anion exchanger filling parts A1 and A2 and the cation exchanger filling part K, and these filling parts are formed by filling the anion exchanger and the cation exchanger, respectively ( So-called multiple floor form).

アニオン交換膜とカチオン交換膜は薄い膜であるため、面外方向、すなわち陽極側及び陰極側に可撓性を有している。本実施形態ではアニオン交換体の充填量を増やしており、この結果第1のアニオン交換膜a1と第1のカチオン交換膜k1は面外方向、すなわち隣接する濃縮室C1,C2側に張り出す。具体的には第1のアニオン交換膜a1は第1の濃縮室C1側に張り出し、第1のカチオン交換膜k1は第2の濃縮室C2側に張り出す。   Since the anion exchange membrane and the cation exchange membrane are thin membranes, they have flexibility in the out-of-plane direction, that is, the anode side and the cathode side. In this embodiment, the filling amount of the anion exchanger is increased, and as a result, the first anion exchange membrane a1 and the first cation exchange membrane k1 are projected in the out-of-plane direction, that is, the adjacent concentration chambers C1 and C2. Specifically, the first anion exchange membrane a1 projects to the first concentration chamber C1 side, and the first cation exchange membrane k1 projects to the second concentration chamber C2 side.

ここで、アニオン交換体とカチオン交換体の充填率を以下のように定義する。図2は脱塩室Dの概略斜視図であり、図2(a)はアニオン交換体とカチオン交換体が充填されていないときの、図2(b)はアニオン交換体とカチオン交換体が充填されているときの脱塩室Dと第1のアニオン交換膜a1及び第1のカチオン交換膜k1を示している。図2(a)に示すように、アニオン交換体とカチオン交換体が充填されていないときは、第1のアニオン交換膜a1と第1のカチオン交換膜k1は面外方向に変形しておらず、陽極室E1の中心と陰極室E2の中心を結ぶ直線に対して概ね直交する平面内にある。図2(b)に示すように、アニオン交換体とカチオン交換体が充填されているときは、第1のアニオン交換膜a1と第1のカチオン交換膜k1は面外方向に張り出している。   Here, the filling rate of the anion exchanger and the cation exchanger is defined as follows. FIG. 2 is a schematic perspective view of the desalting chamber D. FIG. 2 (a) shows a case where the anion exchanger and the cation exchanger are not filled. FIG. 2 (b) shows a case where the anion exchanger and the cation exchanger are filled. The desalting chamber D, the first anion exchange membrane a1 and the first cation exchange membrane k1 are shown. As shown in FIG. 2A, when the anion exchanger and the cation exchanger are not filled, the first anion exchange membrane a1 and the first cation exchange membrane k1 are not deformed in the out-of-plane direction. In a plane substantially orthogonal to a straight line connecting the center of the anode chamber E1 and the center of the cathode chamber E2. As shown in FIG. 2B, when the anion exchanger and the cation exchanger are filled, the first anion exchange membrane a1 and the first cation exchange membrane k1 are projected in the out-of-plane direction.

図2(b)において符号を以下のように定義する。
Va:アニオン交換体充填部Aの総容積
Va1:第1のアニオン交換体充填部A1の容積
Va2:第2のアニオン交換体充填部A2の容積
Vk:カチオン交換体充填部Kの総容積
Vk1:第1のカチオン交換体充填部K1の容積
Ha:アニオン交換体の総充填高さ
Hk:カチオン交換体の総充填高さ
W:脱塩室Dにアニオン交換体とカチオン交換体が充填されていないときの第1のアニオン交換膜a1と第1のカチオン交換膜k1の間隔
S 脱塩室Dの奥行き
総容積は、複数のアニオン交換体充填部または複数のカチオン交換体充填部がある場合に、複数のアニオン交換体充填部の容積の合計、あるいは複数のカチオン交換体充填部の容積の合計を意味する。従って、図2(b)の場合、Va=Va1+Va2、Vk=Vk1である。総充填高さは、複数のアニオン交換体充填部または複数のカチオン交換体充填部がある場合に、複数のアニオン交換体充填部の高さの合計、あるいは複数のカチオン交換体充填部の高さの合計を意味する。従って、図2(b)の場合、Ha=Ha1+Ha2、Hk=Hk1である。なお、高さは被処理水の流れる方向と平行な方向に定義される。
In FIG. 2B, symbols are defined as follows.
Va: total volume of the anion exchanger filling part A Va1: volume of the first anion exchanger filling part A1 Va2: volume of the second anion exchanger filling part A2 Vk: total volume of the cation exchanger filling part Kk1: Volume Ha of first cation exchanger filling portion K1: Total filling height of anion exchanger Hk: Total filling height of cation exchanger W: Desalination chamber D is not filled with anion exchanger and cation exchanger When the interval S between the first anion exchange membrane a1 and the first cation exchange membrane k1 Depth of the desalting chamber D The total volume is obtained when there are a plurality of anion exchanger filling portions or a plurality of cation exchanger filling portions. It means the sum of the volumes of the plurality of anion exchanger packed portions or the sum of the volumes of the plurality of cation exchanger packed portions. Therefore, in the case of FIG. 2B, Va = Va1 + Va2 and Vk = Vk1. The total packing height is the sum of the heights of the plurality of anion exchanger packing parts or the height of the plurality of cation exchanger packing parts when there are a plurality of anion exchanger packing parts or a plurality of cation exchanger packing parts. Means the sum of Therefore, in the case of FIG. 2B, Ha = Ha1 + Ha2 and Hk = Hk1. The height is defined in a direction parallel to the direction in which the water to be treated flows.

図2(a)において、アニオン交換体充填部Aの容積をVa0、カチオン交換体充填部Kの容積をVk0とする。Va0は、図2(b)におけるアニオン交換体充填部Aの、アニオン交換体とカチオン交換体が充填されていないときの容積であり、Vk0は、図2(b)におけるカチオン交換体充填部Kの、アニオン交換体とカチオン交換体が充填されていないときの容積である。第1のアニオン交換体充填部A1のアニオン交換体が充填されていないときの容積をVa01、第2のアニオン交換体充填部A2のアニオン交換体が充填されていないときの容積をVa02、第1のカチオン交換体充填部K1のアニオン交換体が充填されていないときの容積をVk01とすると、Va0=Va01+Va02、Vk=Vk01である。アニオン交換体の総充填高さHaとカチオン交換体の総充填高さHkは、図2(a)と(b)で同じであるため、Va0=Ha×S×W、Vk0=Hk×S×Wとなる。脱塩室Dの奥行きSは、陽極室E1の中心と陰極室E2の中心を結ぶ直線と、被処理水の流れる方向の両者と直交する方向に定義され、アニオン交換体とカチオン交換体が充填されているか否かに拘らず一定である。   In FIG. 2A, the volume of the anion exchanger filling portion A is Va0, and the volume of the cation exchanger filling portion K is Vk0. Va0 is the volume of the anion exchanger filling portion A in FIG. 2 (b) when the anion exchanger and cation exchanger are not filled, and Vk0 is the cation exchanger filling portion K in FIG. 2 (b). The volume when the anion exchanger and the cation exchanger are not filled. The volume when the anion exchanger of the first anion exchanger filling part A1 is not filled is Va01, the volume when the anion exchanger of the second anion exchanger filling part A2 is not filled is Va02, the first Assuming that the volume when the anion exchanger of the cation exchanger filling portion K1 is not filled is Vk01, Va0 = Va01 + Va02 and Vk = Vk01. Since the total filling height Ha of the anion exchanger and the total filling height Hk of the cation exchanger are the same in FIGS. 2A and 2B, Va0 = Ha × S × W, Vk0 = Hk × S × W. The depth S of the desalting chamber D is defined in a direction orthogonal to both the straight line connecting the center of the anode chamber E1 and the center of the cathode chamber E2 and the direction in which the water to be treated flows, and is filled with an anion exchanger and a cation exchanger. It is constant whether or not it is done.

以上より、アニオン交換体充填率Raとカチオン交換体充填率Rkは以下のように定義される。
アニオン交換体充填率Ra=Va/Va0=Va/(Ha×S×W)
カチオン交換体充填率Rk=Vk/Vk0=Vk/(Hk×S×W)
本実施形態ではVk>Vk0、かつVa>Va0であるが、VkについてはVk=Vk0であってもよい。
From the above, the anion exchanger filling factor Ra and the cation exchanger filling factor Rk are defined as follows.
Anion exchanger filling factor Ra = Va / Va0 = Va / (Ha × S × W)
Cation exchanger filling rate Rk = Vk / Vk0 = Vk / (Hk × S × W)
In this embodiment, Vk> Vk0 and Va> Va0. However, Vk may be Vk = Vk0.

さらに、本実施形態ではRa>Rkが成り立つ。Vk≧Vk0であることから、結局Ra>Rk≧1が成り立つ。このようにカチオン交換体とアニオン交換体を充填することで、アニオン成分をより効率的に除去することができる。カチオン交換体についても一定の充填量が確保されるため、カチオン成分を除去する能力が低下することもない。。また、RaとRkは共に1以上であることが好ましく、これによってイオン交換体とイオン交換膜の密着性が確保され、イオンを効率よく濃縮室に移送することができる。なお、上述の定義から明らかなとおり、Ra>Rkはアニオン交換体の充填量がカチオン交換体の充填量より多いこと(Va>Vk)を意味しない。換言すれば、Ra>Rkはアニオン交換体充填部Aの幅方向寸法の平均値が、カチオン交換体充填部Kの幅方向寸法の平均値より大きいことを意味する。   Furthermore, Ra> Rk is satisfied in the present embodiment. Since Vk ≧ Vk0, Ra> Rk ≧ 1 is satisfied. Thus, anion components can be more efficiently removed by filling the cation exchanger and the anion exchanger. Since a constant filling amount is ensured for the cation exchanger, the ability to remove the cation component does not decrease. . Moreover, it is preferable that both Ra and Rk are 1 or more, and thereby, the adhesion between the ion exchanger and the ion exchange membrane is ensured, and ions can be efficiently transferred to the concentration chamber. As is clear from the above definition, Ra> Rk does not mean that the anion exchanger is more charged than the cation exchanger (Va> Vk). In other words, Ra> Rk means that the average value of the dimension in the width direction of the anion exchanger packing part A is larger than the average value of the dimension in the width direction of the cation exchanger packing part K.

EDI4の上流側には被処理水から塩類などの不純物を除去する逆浸透膜(RO膜)装置2と、脱炭酸膜装置3とが設けられている。脱炭酸膜装置3は例えば被処理水の炭酸濃度を5mgCO/L以下にすることができる。さらに、EDI4の下流側にはカートリッジポリッシャ5が設けられている。カートリッジポリッシャ5はボンベなどの容器にイオン交換樹脂を充填したもので、被処理水中のイオンを除去する。薬品再生は行われず、樹脂のイオン交換機能が失われたときに容器内の樹脂を交換して再使用される。カートリッジポリッシャ5はNaイオンなどのカチオン成分を除去するため少なくともカチオン交換体を含む。RO装置2と脱炭酸膜装置3とカートリッジポリッシャ5は、EDI4とともに水処理装置1の一部を構成する。本発明によれば、例えばホウ素とNaイオンを含む被処理水中のホウ素を主にEDI4で除去し、EDI4で除去しきれなかったNaイオンをカートリッジポリッシャ5で除去することができる。 A reverse osmosis membrane (RO membrane) device 2 that removes impurities such as salts from the water to be treated and a decarbonation membrane device 3 are provided upstream of the EDI 4. For example, the decarbonation apparatus 3 can reduce the carbon dioxide concentration of the water to be treated to 5 mg CO 2 / L or less. Further, a cartridge polisher 5 is provided on the downstream side of the EDI 4. The cartridge polisher 5 is a container such as a cylinder filled with an ion exchange resin, and removes ions in the water to be treated. The chemical regeneration is not performed, and when the ion exchange function of the resin is lost, the resin in the container is replaced and reused. The cartridge polisher 5 contains at least a cation exchanger for removing cation components such as Na ions. The RO device 2, the decarbonation device 3 and the cartridge polisher 5 constitute a part of the water treatment device 1 together with the EDI 4. According to the present invention, for example, boron in the water to be treated containing boron and Na ions can be mainly removed by EDI 4, and Na ions that could not be removed by EDI 4 can be removed by cartridge polisher 5.

(第2の実施形態)
図3は、本発明の第2の実施形態に係るEDI4の概略構成図である。第2の実施形態はアニオン交換体充填部Aに第1のバイポーラ膜BP1が設けられている点を除き、第1の実施形態と同じである。具体的には、アニオン交換体充填部Aの陰極側に第1のバイポーラ膜BP1が設けられている。第1のバイポーラ膜BP1はアニオン交換膜BPaとカチオン交換膜BPkとを貼り合わせることで形成される。第1のバイポーラ膜BP1のアニオン交換膜BPaはアニオン交換体と接している。バイポーラ膜は水分解反応を促進し電流をより流しやすくする作用がある。第1のバイポーラ膜BP1を設けることで、アニオン成分の除去効率が高められる。
(Second Embodiment)
FIG. 3 is a schematic configuration diagram of the EDI 4 according to the second embodiment of the present invention. The second embodiment is the same as the first embodiment except that the first bipolar membrane BP1 is provided in the anion exchanger filling portion A. Specifically, the first bipolar membrane BP1 is provided on the cathode side of the anion exchanger filling portion A. The first bipolar membrane BP1 is formed by bonding an anion exchange membrane BPa and a cation exchange membrane BPk. The anion exchange membrane BPa of the first bipolar membrane BP1 is in contact with the anion exchanger. The bipolar membrane has the effect of promoting water splitting reaction and facilitating current flow. By providing the first bipolar film BP1, the removal efficiency of the anion component is increased.

(第3の実施形態)
図4は、本発明の第3の実施形態に係るEDI4の概略構成図である。図5は脱塩室Dの概略斜視図であり、図5(a)はアニオン交換体とカチオン交換体が充填されていないときの、図5(b)はアニオン交換体とカチオン交換体が充填されたときの脱塩室Dとアニオン交換膜及びカチオン交換膜を示している。第3の実施形態は脱塩室Dが2つの小脱塩室D1、D2に分割されている点を除き、第1の実施形態と同じである。具体的には、脱塩室Dは、第1のアニオン交換膜a1と第1のカチオン交換膜k1との間に位置する中間イオン交換膜xと、第1のアニオン交換膜a1と中間イオン交換膜xとによって仕切られた第1の小脱塩室D1と、第1のカチオン交換膜k1と中間イオン交換膜xとによって仕切られた第2の小脱塩室D2と、を有している。中間イオン交換膜xは、アニオン交換膜もしくはカチオン交換膜の単一膜、または、アニオン交換膜とカチオン交換膜の両方を備えた複合膜のいずれであってもよい。第1の小脱塩室D1と第2の小脱塩室D2は接続流路L5で直列接続されており、被処理水は第1の小脱塩室D1から第2の小脱塩室D2に流れる。
(Third embodiment)
FIG. 4 is a schematic configuration diagram of the EDI 4 according to the third embodiment of the present invention. FIG. 5 is a schematic perspective view of the desalting chamber D. FIG. 5 (a) shows a case where the anion exchanger and the cation exchanger are not filled. FIG. 5 (b) shows a case where the anion exchanger and the cation exchanger are filled. The desalting chamber D, anion exchange membrane, and cation exchange membrane are shown. The third embodiment is the same as the first embodiment except that the desalting chamber D is divided into two small desalting chambers D1 and D2. Specifically, the desalting chamber D includes an intermediate ion exchange membrane x positioned between the first anion exchange membrane a1 and the first cation exchange membrane k1, and the first anion exchange membrane a1 and the intermediate ion exchange. A first small desalting chamber D1 partitioned by a membrane x; and a second small desalting chamber D2 partitioned by a first cation exchange membrane k1 and an intermediate ion exchange membrane x. . The intermediate ion exchange membrane x may be either an anion exchange membrane or a single membrane of a cation exchange membrane, or a composite membrane having both an anion exchange membrane and a cation exchange membrane. The first small desalination chamber D1 and the second small desalination chamber D2 are connected in series by a connection channel L5, and the water to be treated is supplied from the first small desalination chamber D1 to the second small desalination chamber D2. Flowing into.

このように脱塩室Dが2つの小脱塩室に区画された構成は、被処理水の多段処理が可能であり、脱イオン性能の向上に効果的である。しかも第1の小脱塩室D1と第2の小脱塩室D2との間に濃縮室を設ける必要がないため、陽極・陰極間の印加電圧が抑えられ、消費電力が下がり、運転費の低減を図ることが可能である。   In this way, the configuration in which the desalting chamber D is partitioned into two small desalting chambers enables multi-stage treatment of water to be treated, and is effective in improving deionization performance. Moreover, since it is not necessary to provide a concentrating chamber between the first small desalting chamber D1 and the second small desalting chamber D2, the applied voltage between the anode and the cathode can be suppressed, the power consumption is reduced, and the operating cost is reduced. Reduction can be achieved.

脱塩室Dには、少なくとも一つのアニオン交換体充填部Aと少なくとも一つのカチオン交換体充填部Kとが、被処理水の流通経路に沿って交互に配置されている。本実施形態では、第1の小脱塩室D1にアニオン交換体が充填され、第2の小脱塩室D2には被処理水の流れ方向に関して上流側にカチオン交換体が、下流側にアニオン交換体が充填されている。従って、被処理水は第1のアニオン交換体充填部A1、第2のカチオン交換体充填部K2、第2のアニオン交換体充填部A2の順に通過する。第1の小脱塩室D1の上流側にアニオン交換体を、下流側にカチオン交換体を充填し、第2の小脱塩室D2にはアニオン交換体を充填し、第1の小脱塩室D1から第2の小脱塩室D2に被処理水が流れるようにすることもできる。   In the desalting chamber D, at least one anion exchanger filling portion A and at least one cation exchanger filling portion K are alternately arranged along the flow path of the water to be treated. In this embodiment, the first small desalting chamber D1 is filled with an anion exchanger, the second small desalting chamber D2 has an cation exchanger on the upstream side and an anion on the downstream side in the flow direction of the water to be treated. The exchanger is filled. Therefore, the water to be treated passes in the order of the first anion exchanger filling part A1, the second cation exchanger filling part K2, and the second anion exchanger filling part A2. The first small desalination chamber D1 is filled with an anion exchanger, the downstream side is filled with a cation exchanger, the second small desalination chamber D2 is filled with an anion exchanger, It is possible to cause the water to be treated to flow from the chamber D1 to the second small desalting chamber D2.

本実施形態においては、少なくとも一つのアニオン交換体充填部Aと少なくとも一つのカチオン交換体充填部Kが配置されている小脱塩室毎にRa>Rk≧1が成り立つ。すなわち、本実施形態では第1の小脱塩室D1にはアニオン交換体だけが充填され、第2の小脱塩室D2にはカチオン交換体とアニオン交換体が充填されているため、第2の小脱塩室D2でRa>Rk≧1が成り立つ。図5(b)において符号を以下のように定義する。
Va1:第1のアニオン交換体充填部A1の容積
Va2:第2のアニオン交換体充填部A2の容積
Vk1:第1のカチオン交換体充填部K1の容積(本実施形態ではVk1=0である)
Vk2:第2のカチオン交換体充填部K2の容積
Ha1:第1の小脱塩室D1に充填されたアニオン交換体の総充填高さ
Hk1:第1の小脱塩室D1に充填されたカチオン交換体の総充填高さ(本実施形態ではHk1=0である)
Ha2:第2の小脱塩室D2に充填されたアニオン交換体の総充填高さ
Hk2:第2の小脱塩室D2に充填されたカチオン交換体の総充填高さ
W1:脱塩室Dにアニオン交換体とカチオン交換体が充填されていないときの第1のアニオン交換膜a1と中間イオン交換膜xとの間隔
W2:脱塩室Dにアニオン交換体とカチオン交換体が充填されていないときの中間イオン交換膜xと第1のカチオン交換膜k1との間隔
S:脱塩室Dの奥行き
ここで、第2の小脱塩室D2について考えると、
Va0=Ha2×S×W2
Vk0=Hk2×S×W2
であり、
アニオン交換体充填率Ra=Va2/(Ha2×S×W2)
カチオン交換体充填率RkVk2/(Hk2×S×W2)となる。
In the present embodiment, Ra> Rk ≧ 1 holds for each small desalting chamber in which at least one anion exchanger filling portion A and at least one cation exchanger filling portion K are arranged. That is, in the present embodiment, only the anion exchanger is filled in the first small desalting chamber D1, and the second small desalting chamber D2 is filled with the cation exchanger and the anion exchanger. Ra> Rk ≧ 1 holds in the small desalting chamber D2. In FIG. 5B, symbols are defined as follows.
Va1: Volume of the first anion exchanger filling portion A1 Va2: Volume of the second anion exchanger filling portion A2 Vk1: Volume of the first cation exchanger filling portion K1 (in this embodiment, Vk1 = 0)
Vk2: Volume Ha2 of the second cation exchanger filling portion K2: Total filling height of the anion exchanger filled in the first small desalting chamber D1 Hk1: Cations charged in the first small desalting chamber D1 Total filling height of the exchanger (Hk1 = 0 in this embodiment)
Ha2: Total filling height of the anion exchanger filled in the second small desalting chamber D2 Hk2: Total filling height of the cation exchanger filled in the second small desalting chamber D2 W1: Desalination chamber D The space between the first anion exchange membrane a1 and the intermediate ion exchange membrane x when the anion exchanger and the cation exchanger are not filled in W2: the desalting chamber D is not filled with the anion exchanger and the cation exchanger Interval S between the intermediate ion exchange membrane x and the first cation exchange membrane k1: Depth of the desalting chamber D Here, when considering the second small desalting chamber D2,
Va0 = Ha2 × S × W2
Vk0 = Hk2 × S × W2
And
Anion exchanger filling factor Ra = Va2 / (Ha2 × S × W2)
The cation exchanger filling factor RkVk2 / (Hk2 × S × W2).

第1の小脱塩室D1にカチオン交換体とアニオン交換体が充填されている場合も同様である。第1の小脱塩室D1と第2の小脱塩室D2のそれぞれにカチオン交換体とアニオン交換体が充填されている場合は、第1の小脱塩室D1と第2の小脱塩室D2のそれぞれについてRa>Rk≧1が成り立つ。   The same applies when the first small desalting chamber D1 is filled with a cation exchanger and an anion exchanger. When each of the first small desalting chamber D1 and the second small desalting chamber D2 is filled with a cation exchanger and an anion exchanger, the first small desalting chamber D1 and the second small desalting chamber D1 Ra> Rk ≧ 1 holds for each of the chambers D2.

(第4の実施形態)
図6は、本発明の第4の実施形態に係るEDI4の概略構成図である。第4の実施形態はアニオン交換体充填部Aに第1のバイポーラ膜BP1が設けられる点を除き、第3の実施形態と同じである。具体的には、アニオン交換体充填部Aの陰極側に第1のバイポーラ膜BP1が設けられ、第1のバイポーラ膜BP1のアニオン交換膜BPaがアニオン交換体と接している。一般にアニオン交換体はカチオン交換体より電気抵抗が高く、電流が流れにくい。このため電流がカチオン交換体に流れやすくなり、この偏流の影響によりアニオン成分の除去効率が低下する可能性がある。バイポーラ膜はアニオン交換膜とカチオン交換膜の接合面における水の解離反応を促進するため、電流をより流しやすくする作用がある。このため、アニオン交換体充填部Aに第1のバイポーラ膜BP1を設けることで偏流が改善される。
(Fourth embodiment)
FIG. 6 is a schematic configuration diagram of EDI 4 according to the fourth embodiment of the present invention. The fourth embodiment is the same as the third embodiment except that the first bipolar membrane BP1 is provided in the anion exchanger filling portion A. Specifically, the first bipolar membrane BP1 is provided on the cathode side of the anion exchanger filling portion A, and the anion exchange membrane BPa of the first bipolar membrane BP1 is in contact with the anion exchanger. In general, an anion exchanger has a higher electric resistance than a cation exchanger, and current hardly flows. For this reason, it becomes easy for an electric current to flow into a cation exchanger, and the removal efficiency of an anion component may fall under the influence of this drift. The bipolar membrane promotes the dissociation reaction of water at the junction surface between the anion exchange membrane and the cation exchange membrane, and thus has an effect of facilitating current flow. For this reason, the drift is improved by providing the first bipolar membrane BP1 in the anion exchanger filling portion A.

1 水処理装置
2 RO装置
3 脱炭酸膜装置
4 電気式脱イオン水製造装置(EDI)
5 カートリッジポリッシャ
D 脱塩室
D1 第1の小脱塩室
D2 第2の小脱塩室
C1 第1の濃縮室
C2 第2の濃縮室
E1 陽極室
E2 陰極室
a1 第1のアニオン交換膜
a2 第2のアニオン交換膜
k1 第1のカチオン交換膜
k2 第2のカチオン交換膜
x 中間イオン交換膜
DESCRIPTION OF SYMBOLS 1 Water treatment apparatus 2 RO apparatus 3 Decarbonation film apparatus 4 Electric deionized water production apparatus (EDI)
5 Cartridge Polisher D Desalination Chamber D1 First Small Desalination Chamber D2 Second Small Desalination Chamber C1 First Concentration Chamber C2 Second Concentration Chamber E1 Anode Chamber E2 Cathode Chamber a1 First Anion Exchange Membrane a2 First 2 anion exchange membranes k1 first cation exchange membrane k2 second cation exchange membrane x intermediate ion exchange membrane

Claims (8)

互いに対向する陽極室及び陰極室と、
前記陽極室と前記陰極室との間に位置し、前記陽極室側のアニオン交換膜と前記陰極室側のカチオン交換膜とで仕切られ、被処理水が流通する脱塩室と、
前記アニオン交換膜及び前記カチオン交換膜を介してそれぞれ前記脱塩室に隣接する一対の濃縮室と、を有し、
前記脱塩室には、アニオン交換体が充填された少なくとも一つのアニオン交換体充填部と、カチオン交換体が充填された少なくとも一つのカチオン交換体充填部とが、前記被処理水の流通経路に沿って交互に配置され、
前記アニオン交換膜と前記カチオン交換膜は可撓性を有し、
前記アニオン交換体充填部の総容積をVa、
前記カチオン交換体充填部の総容積をVk、
前記脱塩室に前記アニオン交換体と前記カチオン交換体が充填されていないときの前記アニオン交換体充填部の容積をVa0、
前記脱塩室に前記アニオン交換体と前記カチオン交換体が充填されていないときの前記カチオン交換体充填部の容積をVk0、
アニオン交換体充填率RaをVa/Va0、
カチオン交換体充填率RkをVk/Vk0とするとき、
Ra>Rk≧1である、電気式脱イオン水製造装置。
An anode chamber and a cathode chamber facing each other;
Located between the anode chamber and the cathode chamber, partitioned by the anion exchange membrane on the anode chamber side and the cation exchange membrane on the cathode chamber side, and a desalting chamber through which water to be treated flows;
A pair of concentration chambers adjacent to the desalting chamber through the anion exchange membrane and the cation exchange membrane, respectively,
In the desalting chamber, at least one anion exchanger filling part filled with an anion exchanger and at least one cation exchanger filling part filled with a cation exchanger are provided in the flow path of the treated water. Alternately arranged along the
The anion exchange membrane and the cation exchange membrane have flexibility,
Va is the total volume of the anion exchanger packed portion.
The total volume of the cation exchanger packed portion is Vk,
Va0 is the volume of the anion exchanger filling portion when the desalting chamber is not filled with the anion exchanger and the cation exchanger,
The volume of the cation exchanger filling portion when the anion exchanger and the cation exchanger are not filled in the desalting chamber is Vk0,
Anion exchanger filling rate Ra is Va / Va0,
When the cation exchanger filling rate Rk is Vk / Vk0,
Electric deionized water production apparatus in which Ra> Rk ≧ 1.
前記アニオン交換体の総充填高さをHa、
前記カチオン交換体の総充填高さをHk、
前記脱塩室に前記アニオン交換体と前記カチオン交換体が充填されていないときの前記アニオン交換膜と前記カチオン交換膜の間隔をW、
前記脱塩室の奥行きをSとしたときに、
前記アニオン交換体充填率RaはVa/(Ha×S×W)、
前記カチオン交換体充填率RkはVk/(Hk×S×W)である、請求項1に記載の電気式脱イオン水製造装置。
The total filling height of the anion exchanger is Ha,
The total filling height of the cation exchanger is Hk,
The spacing between the anion exchange membrane and the cation exchange membrane when the desalting chamber is not filled with the anion exchanger and the cation exchanger is W,
When the depth of the desalting chamber is S,
The anion exchanger filling factor Ra is Va / (Ha × S × W),
2. The electric deionized water production apparatus according to claim 1, wherein the cation exchanger filling rate Rk is Vk / (Hk × S × W).
互いに対向する陽極室及び陰極室と、
前記陽極室と前記陰極室との間に位置し、前記陽極室側のアニオン交換膜と前記陰極室側のカチオン交換膜とで仕切られ、被処理水が流通する脱塩室と、
前記アニオン交換膜及び前記カチオン交換膜を介してそれぞれ前記脱塩室に隣接する一対の濃縮室と、を有し、
前記脱塩室は、前記アニオン交換膜と前記カチオン交換膜との間に位置する中間イオン交換膜と、前記アニオン交換膜と前記中間イオン交換膜とによって仕切られた第1の小脱塩室と、前記カチオン交換膜と前記中間イオン交換膜とによって仕切られ、前記第1の小脱塩室と直列に接続された第2の小脱塩室と、を有し、
前記第1の小脱塩室と前記第2の小脱塩室に少なくとも一方には、アニオン交換体が充填された少なくとも一つのアニオン交換体充填部と、カチオン交換体が充填された少なくとも一つのカチオン交換体充填部とが、前記被処理水の流通経路に沿って交互に配置され、
前記アニオン交換膜と前記カチオン交換膜は可撓性を有し、
前記少なくとも一つのアニオン交換体充填部と、前記少なくとも一つのカチオン交換体充填部とが配置された小脱塩室において、
前記アニオン交換体充填部の総容積をVa、
前記カチオン交換体充填部の総容積をVk、
前記小脱塩室に前記アニオン交換体と前記カチオン交換体が充填されていないときの前記アニオン交換体充填部の容積をVa0、
前記小脱塩室に前記アニオン交換体と前記カチオン交換体が充填されていないときの前記カチオン交換体充填部の容積をVk0、
アニオン交換体充填率RaをVa/Va0、
カチオン交換体充填率RkをVk/Vk0とするとき、
Ra>Rk≧1である、電気式脱イオン水製造装置。
An anode chamber and a cathode chamber facing each other;
Located between the anode chamber and the cathode chamber, partitioned by the anion exchange membrane on the anode chamber side and the cation exchange membrane on the cathode chamber side, and a desalting chamber through which water to be treated flows;
A pair of concentration chambers adjacent to the desalting chamber through the anion exchange membrane and the cation exchange membrane, respectively,
The demineralization chamber includes an intermediate ion exchange membrane positioned between the anion exchange membrane and the cation exchange membrane, a first small desalination chamber partitioned by the anion exchange membrane and the intermediate ion exchange membrane, A second small desalting chamber partitioned by the cation exchange membrane and the intermediate ion exchange membrane and connected in series with the first small desalting chamber,
At least one of the first small desalting chamber and the second small desalting chamber is filled with at least one anion exchanger filled with an anion exchanger, and at least one filled with a cation exchanger. The cation exchanger filling parts are alternately arranged along the flow path of the treated water,
The anion exchange membrane and the cation exchange membrane have flexibility,
In a small desalting chamber in which the at least one anion exchanger packing and the at least one cation exchanger packing are disposed,
Va is the total volume of the anion exchanger packed portion.
The total volume of the cation exchanger packed portion is Vk,
Va0 represents the volume of the anion exchanger filling portion when the small desalting chamber is not filled with the anion exchanger and the cation exchanger,
The volume of the cation exchanger filling portion when the small desalting chamber is not filled with the anion exchanger and the cation exchanger is Vk0,
Anion exchanger filling rate Ra is Va / Va0,
When the cation exchanger filling rate Rk is Vk / Vk0,
Electric deionized water production apparatus in which Ra> Rk ≧ 1.
前記少なくとも一つのアニオン交換体充填部と、前記少なくとも一つのカチオン交換体充填部とが配置された小脱塩室において、
前記アニオン交換体の総充填高さをHa、
前記カチオン交換体の総充填高さをHk、
前記小脱塩室に前記アニオン交換体と前記カチオン交換体が充填されていないときの前記アニオン交換膜と前記カチオン交換膜の間隔をW、
前記小脱塩室の奥行きをSとしたときに、
前記アニオン交換体充填率RaはVa/(Ha×S×W)、
前記カチオン交換体充填率RkはVk/(Hk×S×W)である、請求項3に記載の電気式脱イオン水製造装置。
In a small desalting chamber in which the at least one anion exchanger packing and the at least one cation exchanger packing are disposed,
The total filling height of the anion exchanger is Ha,
The total filling height of the cation exchanger is Hk,
The interval between the anion exchange membrane and the cation exchange membrane when the small desalting chamber is not filled with the anion exchanger and the cation exchanger is W,
When the depth of the small desalting chamber is S,
The anion exchanger filling factor Ra is Va / (Ha × S × W),
The electric deionized water production apparatus according to claim 3, wherein the cation exchanger filling rate Rk is Vk / (Hk × S × W).
請求項1から4のいずれか1項に記載の電気式脱イオン水製造装置と、
前記電気式脱イオン水製造装置の下流側に設けられ、少なくともカチオン交換体を含むイオン交換装置と、を有する、水処理装置。
The electric deionized water production apparatus according to any one of claims 1 to 4,
A water treatment apparatus comprising: an ion exchange apparatus provided at a downstream side of the electric deionized water production apparatus and including at least a cation exchanger.
前記イオン交換装置はさらにアニオン交換体を含む、請求項5に記載の水処理装置。   The water treatment apparatus according to claim 5, wherein the ion exchange apparatus further includes an anion exchanger. 前記電気式脱イオン水製造装置の上流側に設けられた脱炭酸膜装置を有する、請求項5または6に記載の水処理装置。   The water treatment apparatus according to claim 5 or 6, further comprising a decarbonation membrane apparatus provided upstream of the electric deionized water production apparatus. 請求項5から7のいずれか1項に記載の水処理装置を用いた水処理方法であって、ホウ素を含む被処理水を前記電気式脱イオン水製造装置に供給する工程と、前記被処理水を前記電気式脱イオン水製造装置で処理する工程と、前記電気式脱イオン水製造装置の処理水を前記イオン交換装置で処理する工程と、を含む、水処理方法。   A water treatment method using the water treatment device according to any one of claims 5 to 7, wherein a step of supplying treated water containing boron to the electric deionized water production device; A water treatment method, comprising: treating water with the electric deionized water production apparatus; and treating the treated water of the electric deionized water production apparatus with the ion exchange device.
JP2017031282A 2017-02-22 2017-02-22 Electric deionized water production apparatus and water treatment apparatus and method using the same Pending JP2018134600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017031282A JP2018134600A (en) 2017-02-22 2017-02-22 Electric deionized water production apparatus and water treatment apparatus and method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017031282A JP2018134600A (en) 2017-02-22 2017-02-22 Electric deionized water production apparatus and water treatment apparatus and method using the same

Publications (1)

Publication Number Publication Date
JP2018134600A true JP2018134600A (en) 2018-08-30

Family

ID=63365044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017031282A Pending JP2018134600A (en) 2017-02-22 2017-02-22 Electric deionized water production apparatus and water treatment apparatus and method using the same

Country Status (1)

Country Link
JP (1) JP2018134600A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001104960A (en) * 1999-10-07 2001-04-17 Kurita Water Ind Ltd Electric deionizing apparatus
JP2002530191A (en) * 1998-11-25 2002-09-17 イーセル コーポレイション Water deionization method and apparatus using mixed bed and single phase ion exchange material in dilution chamber
JP2004033976A (en) * 2002-07-05 2004-02-05 Kurita Water Ind Ltd Deionized water manufacturing method and apparatus therefor
JP2009160555A (en) * 2008-01-09 2009-07-23 Kurita Water Ind Ltd Electric deionizer
WO2011152226A1 (en) * 2010-06-03 2011-12-08 オルガノ株式会社 Electric device for production of deionized water

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002530191A (en) * 1998-11-25 2002-09-17 イーセル コーポレイション Water deionization method and apparatus using mixed bed and single phase ion exchange material in dilution chamber
JP2001104960A (en) * 1999-10-07 2001-04-17 Kurita Water Ind Ltd Electric deionizing apparatus
JP2004033976A (en) * 2002-07-05 2004-02-05 Kurita Water Ind Ltd Deionized water manufacturing method and apparatus therefor
JP2009160555A (en) * 2008-01-09 2009-07-23 Kurita Water Ind Ltd Electric deionizer
WO2011152226A1 (en) * 2010-06-03 2011-12-08 オルガノ株式会社 Electric device for production of deionized water

Similar Documents

Publication Publication Date Title
JP3385553B2 (en) Electric deionized water production apparatus and deionized water production method
US8871073B2 (en) Electrodeionization apparatus for producing deionized water
JP2010201361A (en) Apparatus for manufacturing electric deionized water and method for manufacturing deionized water using the apparatus
JP5295927B2 (en) Electric deionized water production equipment
JP5695926B2 (en) Electric deionized water production equipment
JP5114307B2 (en) Electric deionized water production equipment
WO1997046491A1 (en) Process for producing deionized water by electrical deionization technique
JP6148675B2 (en) Desalination system and method
JP2006015260A (en) Electric deionized water manufacturing apparatus
JP5379025B2 (en) Electric deionized water production equipment
JP3781352B2 (en) Electric deionized water production apparatus and deionized water production method
JP5940387B2 (en) Electric deionized water production apparatus and deionized water production method
JP4597388B2 (en) Electric deionized water production apparatus and deionized water production method
JP2007125455A (en) Operation method of electric deionized water production apparatus and electric deionized water production apparatus
JP5415966B2 (en) Electric deionized water production apparatus and deionized water production method
JP2018134600A (en) Electric deionized water production apparatus and water treatment apparatus and method using the same
JP4552273B2 (en) Electrodeionization equipment
JP2013039510A (en) Electric deionized water production apparatus
JP4497388B2 (en) Electric deionized water production apparatus and deionized water production method
JP6873735B2 (en) Electric deionized water production equipment and water treatment equipment and water treatment method using this
JP4915843B2 (en) Electric softening device, softening device and soft water production method
TW201936516A (en) Electrical deionized water production apparatus
JP6034736B2 (en) Electric deionized water production equipment
JP4453972B2 (en) Electrodeionization apparatus and operation method of electrodeionization apparatus
JP6994351B2 (en) Electric deionized water production equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210525