JP4826912B2 - Storage method of electrodeionization equipment - Google Patents

Storage method of electrodeionization equipment Download PDF

Info

Publication number
JP4826912B2
JP4826912B2 JP2006317270A JP2006317270A JP4826912B2 JP 4826912 B2 JP4826912 B2 JP 4826912B2 JP 2006317270 A JP2006317270 A JP 2006317270A JP 2006317270 A JP2006317270 A JP 2006317270A JP 4826912 B2 JP4826912 B2 JP 4826912B2
Authority
JP
Japan
Prior art keywords
exchange resin
water
chamber
electrodeionization apparatus
exchange membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006317270A
Other languages
Japanese (ja)
Other versions
JP2008126207A (en
Inventor
邦博 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2006317270A priority Critical patent/JP4826912B2/en
Publication of JP2008126207A publication Critical patent/JP2008126207A/en
Application granted granted Critical
Publication of JP4826912B2 publication Critical patent/JP4826912B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

本発明は、食塩製造工業、廃液処理関連工業、医薬品製造工業、半導体製造工業、食品工業などの産業分野の他、ボイラー、研究施設などの純水利用施設で用いられる電気脱イオン装置を、長期通水通電停止期間中の性能低下を防止して安定に保管する方法に関する。   The present invention provides an electrodeionization apparatus for use in pure water utilization facilities such as boilers and research facilities in addition to industrial fields such as salt production industry, waste liquid treatment related industry, pharmaceutical production industry, semiconductor production industry, and food industry. The present invention relates to a method for stably storing a product while preventing a decrease in performance during the period when electricity flow is stopped.

陽極を備える陽極室と、陰極を備える陰極室との間に、カチオン交換膜とアニオン交換膜とを交互に配列し、陽極側がアニオン交換膜で区画され陰極側がカチオン交換膜で区画された脱塩室と、陽極側がカチオン交換膜で区画され陰極側がアニオン交換膜で区画された濃縮室とを形成し、電圧を印加することにより脱塩室内に供給される被処理水中のイオンを、濃縮室内に供給される液体中へ移動させて、被処理水を脱イオン処理する電気脱イオン装置が知られている。通常、この電気脱イオン装置の脱塩室にはイオン交換樹脂等のイオン交換体が充填されており、濃縮室にもイオン交換体が充填される場合もある。   Desalination in which a cation exchange membrane and an anion exchange membrane are alternately arranged between an anode chamber having an anode and a cathode chamber having a cathode, the anode side being partitioned by an anion exchange membrane and the cathode side being partitioned by a cation exchange membrane And a concentration chamber in which the anode side is partitioned by a cation exchange membrane and the cathode side is partitioned by an anion exchange membrane, and ions in the for-treatment water supplied into the desalting chamber by applying a voltage are placed in the concentration chamber. There is known an electrodeionization apparatus that moves into a supplied liquid and deionizes the water to be treated. Usually, the demineralization chamber of the electrodeionization apparatus is filled with an ion exchanger such as an ion exchange resin, and the concentration chamber may also be filled with an ion exchanger.

従来、このような電気脱イオン装置を、不使用時に長期保管する場合には、装置内に使用溶液をそのまま満たして保管するか、或いは別の保管液を満たして保管することが行われている。保管液としては、例えば50%プロピレングリコール溶液などが用いられている。   Conventionally, when such an electrodeionization apparatus is stored for a long time when not in use, the apparatus is stored with the use solution as it is or filled with another storage solution. . For example, a 50% propylene glycol solution is used as the storage solution.

しかし、電気脱イオン装置の通水通電を停止して1週間以上の長期間保管する場合、停止期間中のイオン交換膜やイオン交換体の性能低下で、再起動時の装置の運転に必要な電圧が上昇したり、TOC(有機体炭素)の流出で処理水質が低下し、再起動後、処理水の採水までに長時間を必要とするといった問題があった。   However, when the electrodeionization device is turned off and stored for a long period of one week or longer, the performance of the ion exchange membrane or ion exchanger during the outage is deteriorated, which is necessary for the operation of the device at the restart. There was a problem that the voltage increased or the quality of the treated water decreased due to the outflow of TOC (organic carbon), and it took a long time to collect treated water after restarting.

保管期間中の装置性能低下を防止するために、装置内を薬液で満たす方法が考えられるが、この場合には、超純水等を製造する電気脱イオン装置にあっては、再起動後の処理水中に薬液などの不純物が混ざり、所定の水質を得るためには、再起動後長時間要するおそれがある。   In order to prevent degradation of the device performance during the storage period, a method of filling the inside of the device with a chemical solution can be considered, but in this case, in an electrodeionization device that produces ultrapure water etc., after restarting There is a possibility that it takes a long time after restarting to obtain a predetermined water quality by mixing impurities such as chemicals in the treated water.

特開2001−179261号公報には、電気脱イオン装置の通水通電を停止して長期間保管する場合に、イオン交換膜等の品質低下を防止することを目的として、装置内の液体を排出し、イオン交換膜及びイオン交換樹脂の含水率を運転時の30%以下にして保管する方法が記載されている。
特開2001−179261号公報
Japanese Patent Laid-Open No. 2001-179261 discloses that the liquid in the apparatus is discharged for the purpose of preventing the quality deterioration of the ion exchange membrane and the like when the energization of the electrodeionization apparatus is stopped and stored for a long time. In addition, a method is described in which the moisture content of the ion exchange membrane and the ion exchange resin is stored at 30% or less during operation.
JP 2001-179261 A

しかしながら、特開2001−179261号公報記載の方法では、含水率を下げることによりイオン交換膜が破断する恐れがあり、好ましくない。   However, the method described in JP-A-2001-179261 is not preferable because the ion exchange membrane may be broken by lowering the water content.

本発明は、上記従来技術の問題点を解決して、電気脱イオン装置の長期通水通電停止保管期間中に、その性能の低下を防止して安定に保管し、運転再開時に、所定の処理水水質を得るために要する時間を短縮する電気脱イオン装置の保管方法を提供することを目的とする。   The present invention solves the above-mentioned problems of the prior art, prevents the deterioration of the performance during the long-term water energization stop storage period of the electrodeionization device, stably stores it, and performs predetermined processing when restarting operation. It aims at providing the storage method of the electrodeionization apparatus which shortens the time required in order to obtain water quality.

本発明者らは、上記課題を解決すべく鋭意検討した結果、次のような知見を得た。
イオン交換樹脂塔などにおいても、数ヶ月以上の長期保存時に性能低下することがある。その原因としては、塔内にアニオン交換樹脂とカチオン交換樹脂が混在しているため、保管期間中にカチオン交換樹脂からのTOCなどの溶出物により、アニオン交換樹脂の表面が汚染を受けることが考えられている。
As a result of intensive studies to solve the above problems, the present inventors have obtained the following knowledge.
Even in an ion exchange resin tower or the like, the performance may deteriorate during long-term storage for several months or more. The reason for this is that the anion exchange resin and cation exchange resin are mixed in the column, and the surface of the anion exchange resin may be contaminated by effluent such as TOC from the cation exchange resin during the storage period. It has been.

一方で、電気脱イオン装置の脱塩室に充填されたイオン交換樹脂は、通電時に電気再生により大部分が再生型(OH形、H形)となっている。再生型ではイオン交換樹脂が膨潤して体積が増える。例えば、カチオン交換樹脂は108%、アニオン交換樹脂は120%も膨潤により体積が増える。そして、再生型になると、網目構造が密から疎になり、イオン交換樹脂の内部に閉じ込められたTOC成分が溶出しやすくなる。このため、停止期間が長くなると、イオン交換樹脂から溶出するTOC量が増え、この結果、運転再開時にTOC吐き出しに時間がかかり、処理水の採水までに要する時間が長くなる。   On the other hand, most of the ion exchange resin filled in the demineralization chamber of the electrodeionization apparatus is regenerative (OH type, H type) due to electric regeneration when energized. In the regenerative type, the ion exchange resin swells and the volume increases. For example, the volume increases due to swelling of cation exchange resin by 108% and anion exchange resin by 120%. And if it becomes a reproduction | regeneration type, a network structure will become dense from sparse, and it will become easy to elute the TOC component confined inside the ion exchange resin. For this reason, when the stop period becomes longer, the amount of TOC eluted from the ion exchange resin increases. As a result, it takes time to discharge the TOC when the operation is resumed, and the time required for sampling the treated water becomes longer.

そこで、本発明者らは、イオン交換樹脂を再生型ではなく非再生型として膨潤を抑えることにより、保管期間中の樹脂からのTOCの溶出量を少なくすることができ、長期保管後の装置運転再開時におけるTOC吐き出し時間を短縮することができることを見出し、本発明を完成させた。   Therefore, the present inventors can reduce the TOC elution amount from the resin during the storage period by suppressing the swelling by making the ion exchange resin not the regenerative type but the non-regenerative type, and the operation of the apparatus after long-term storage. The present inventors have found that the TOC discharge time at the time of resumption can be shortened and completed the present invention.

本発明(請求項1)の電気脱イオン装置の保管方法は、陽極と陰極との間にアニオン交換膜とカチオン交換膜とを交互に配列して該アニオン交換膜とカチオン交換膜との間に脱塩室と濃縮室とを形成し、少なくとも脱塩室にイオン交換体を充填してなる電気脱イオン装置を、通水通電せずに長期間保管する際に、前記イオン交換体を塩形に変換して保管する電気脱イオン装置の保管方法であって、前記イオン交換体がアニオン交換樹脂とカチオン交換樹脂との混合物であって、前記電気脱イオン装置の通水通電停止後に、該電気脱イオン装置に充填されたイオン交換樹脂に対して1倍当量以上の食塩水を通水して該アニオン交換樹脂の99%以上をCl形に、該カチオン交換樹脂の99%以上をNa形にそれぞれ変換して保管することを特徴とする。 In the storage method of the electrodeionization apparatus of the present invention (Claim 1), an anion exchange membrane and a cation exchange membrane are alternately arranged between an anode and a cathode, and the anion exchange membrane and the cation exchange membrane are arranged between the anion exchange membrane and the cation exchange membrane. When an electrodeionization apparatus that forms a desalination chamber and a concentration chamber and is filled with an ion exchanger at least in the desalination chamber is stored for a long time without passing water, the ion exchanger is in a salt form. A method of storing an electrodeionization apparatus that converts to an ionizer and stores the ion exchanger, wherein the ion exchanger is a mixture of an anion exchange resin and a cation exchange resin, Passing a salt solution at least 1 equivalent to the ion exchange resin filled in the deionizer, 99% or more of the anion exchange resin is converted to Cl form, and 99% or more of the cation exchange resin is converted to Na form. wherein the store by converting each To.

請求項の電気脱イオン装置の保管方法は、請求項1において、前記イオン交換体を塩形に変換した後、該電気脱イオン装置に導電率1mS/m以下の純水を封入して保管することを特徴とする。 Storage method of electrodeionization apparatus of claim 2, Oite to claim 1, wherein after converting the ion exchanger in salt form, the electric conductivity 1 mS / m or less pure water is sealed in electrical deionization apparatus It is characterized by being stored.

本発明の電気脱イオン装置の保管方法によれば、電気脱イオン装置の通水通電を停止して長期間保管する際の、イオン交換体の膨潤によるTOC溶出量の増加を効果的に抑制することにより、運転再開時のTOC吐き出し時間を短縮し、処理水を早期に採水することが可能となる。   According to the storage method of the electrodeionization apparatus of the present invention, an increase in the TOC elution amount due to swelling of the ion exchanger is effectively suppressed when the electrodeionization apparatus is turned off and stored for a long time. Thus, it is possible to shorten the TOC discharge time when resuming the operation and to collect the treated water at an early stage.

以下に本発明の電気脱イオン装置の保管方法の実施の形態を詳細に説明する。   The embodiment of the storage method of the electrodeionization apparatus of this invention is described in detail below.

本発明の保管方法が適用される電気脱イオン装置は、陽極を備える陽極室と、陰極を備える陰極室との間に、カチオン交換膜とアニオン交換膜とを交互に配列し、陽極側がアニオン交換膜で区画され陰極側がカチオン交換膜で区画された脱塩室と、陽極側がカチオン交換膜で区画され陰極側がアニオン交換膜で区画された濃縮室とを形成し、電圧を印加することにより脱塩室内に供給される被処理水中のイオンを、濃縮室内に供給される液体中へ移動させることにより被処理水を脱イオン処理する一般的な電気脱イオン装置であり、特に制限はない。   In the electrodeionization apparatus to which the storage method of the present invention is applied, a cation exchange membrane and an anion exchange membrane are alternately arranged between an anode chamber having an anode and a cathode chamber having a cathode, and the anode side is anion-exchanged. A desalination chamber partitioned by a membrane and a cathode side partitioned by a cation exchange membrane and a concentration chamber partitioned by a cation exchange membrane and an anode side partitioned by an anion exchange membrane are formed and desalted by applying voltage. This is a general electrodeionization apparatus that deionizes the water to be treated by moving ions in the water to be treated supplied into the liquid into the liquid supplied into the concentration chamber, and is not particularly limited.

このような電気脱イオン装置の脱塩室内には、アニオン交換樹脂とカチオン交換樹脂とを混合してなるイオン交換樹脂等のイオン交換体が充填されているが、濃縮室にもこのようなイオン交換体が充填されていても良い。   An ion exchanger such as an ion exchange resin obtained by mixing an anion exchange resin and a cation exchange resin is filled in the demineralization chamber of such an electrodeionization apparatus. The exchanger may be filled.

本発明においては、このような電気脱イオン装置の通水通電を停止して長期間、例えば1ヶ月以上保管する場合に、脱塩室内のイオン交換体を塩形に変換して保管する。   In the present invention, the ion exchanger in the demineralization chamber is converted into a salt form and stored when the energization of such an electrodeionization apparatus is stopped and stored for a long period of time, for example, one month or more.

塩室内のアニオン交換樹脂とカチオン交換樹脂との混合イオン交換樹脂を塩形に変換する場合には食塩水を、脱塩室に通水する用いる食塩水の濃度は0.5〜5重量%で、通水する食塩水量は、食塩の量として、脱塩室内のイオン交換樹脂の1〜10倍当量であることが好ましい。用いる食塩水の濃度が低過ぎると、イオン交換樹脂を塩形に変換するために要する食塩水量が多く通水時間を長く要し好ましくなく、逆に濃度が高過ぎても意味がない。また、通水量が少な過ぎると脱塩室内のイオン交換樹脂を十分に塩形に変換することができず、多過ぎても効果に差異はなく、徒に通水時間が長くなり好ましくない。 In the case of converting the mixed ion exchange resin of the anion exchange resin and the cation exchange resin in the desalting chamber into a salt form, saline is passed through the desalting chamber . The concentration of the salt solution to be used is 0.5 to 5% by weight, and the amount of salt solution to be passed is preferably 1 to 10 times the amount of the ion exchange resin in the desalting chamber as the amount of salt. If the concentration of the salt solution to be used is too low, the amount of salt solution required to convert the ion exchange resin to the salt form is large, which is not preferable because it requires a long water passage time. Conversely, it is meaningless if the concentration is too high. On the other hand, if the water flow rate is too small, the ion exchange resin in the desalting chamber cannot be converted into the salt form sufficiently, and if it is too much, there is no difference in effect, and the water flow time is undesirably long.

なお、通水速度には特に制限はないが、速過ぎると差圧がついて入口圧力が高くなり、許容耐圧を上回る結果となり、遅過ぎると液の偏流が生じることから、通水SVで20〜50hr−1程度であることが好ましい。 In addition, although there is no restriction | limiting in particular in a water flow rate, if it is too fast, a differential pressure will be added and an inlet pressure will become high, and it will result in exceeding an allowable pressure | voltage resistance, and if it is too slow, a liquid drift will arise. It is preferably about 50 hr −1 .

このようにして食塩水を通水することにより、脱塩室内のアニオン交換樹脂の99%以上、好ましくは実質的に100%がCl形に、またカチオン交換樹脂の99%以上、好ましくは実質的に100%がNa形に変換された状態として、保管する。 By passing the saline solution in this manner, 99% or more, preferably substantially 100% of the anion exchange resin in the desalting chamber is in the Cl form, and 99% or more, preferably substantially, of the cation exchange resin. as a state in which 100% is converted into Na form, the you store.

また、このようにしてイオン交換樹脂を塩形に変換した後に、装置内の食塩水を導電率1mS/m以下の水で押し出して置換し、脱塩室、濃縮室及び電極室のすべてに導電率1mS/m以下の水を封入して保管することが好ましい。   In addition, after the ion exchange resin is converted into a salt form in this way, the saline solution in the apparatus is replaced with water having a conductivity of 1 mS / m or less, and all the desalting chamber, concentration chamber and electrode chamber are electrically conductive. It is preferable to enclose and store water with a rate of 1 mS / m or less.

保管後の運転再開に際しては、そのまま通水通電を再開すれば良いが、その際、本発明によれば、保管中のイオン交換樹脂からのTOC溶出が防止されているため、運転再開時の処理水中へのTOC溶出量が少なく、この結果、所望とする高純度の処理水を早期に採用することができるようになる。   When restarting the operation after storage, it is only necessary to restart the energization as it is. However, according to the present invention, since the TOC elution from the ion exchange resin during storage is prevented, the processing at the time of restarting the operation is performed. The amount of TOC elution into water is small, and as a result, desired high-purity treated water can be adopted early.

以下に実施例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

なお、以下の実施例及び比較例において、試験用電気脱イオン装置としては、脱塩室は幅320mm、長さ600mm、厚み5.2mmのセルを10枚、濃縮室は幅320mm、長さ600mm、厚み4mmのセルを11枚で構成される処理量1m/hrの電気脱イオン装置を用いた。 In the following examples and comparative examples, as a test electrodeionization apparatus, the demineralization chamber has 10 cells with a width of 320 mm, a length of 600 mm, and a thickness of 5.2 mm, and the concentration chamber has a width of 320 mm and a length of 600 mm. An electrodeionization apparatus having a treatment amount of 1 m 3 / hr composed of 11 cells having a thickness of 4 mm was used.

この電気脱イオン装置のイオン交換膜及び脱塩室に充填するアニオン交換樹脂及びカチオン交換樹脂としては次のものを用いた。また、濃縮室にも脱塩室と同じイオン交換樹脂を充填した。
アニオン交換膜:(株)アストム製「ネオセプタAHA」
カチオン交換膜:(株)アストム製「ネオセプタCMB」
アニオン交換樹脂:ダウケミカル社製「SBR−PC」
カチオン交換樹脂:ダウケミカル社製「650C」
The following were used as the anion exchange resin and cation exchange resin filled in the ion exchange membrane and demineralization chamber of this electrodeionization apparatus. The concentration chamber was also filled with the same ion exchange resin as the desalting chamber.
Anion exchange membrane: "Neocepta AHA" manufactured by Astom Co., Ltd.
Cation exchange membrane: "Neocepta CMB" manufactured by Astom Co., Ltd.
Anion exchange resin: “SBR-PC” manufactured by Dow Chemical
Cation exchange resin: “650C” manufactured by Dow Chemical

イオン交換樹脂の充填割合は、脱塩室はアニオン交換樹脂:カチオン交換樹脂=60:40、濃縮室はアニオン交換樹脂:カチオン交換樹脂=60:40とした(いずれも体積比)。   The filling rate of the ion exchange resin was anion exchange resin: cation exchange resin = 60: 40 in the desalting chamber, and anion exchange resin: cation exchange resin = 60: 40 in the concentration chamber (both volume ratio).

実施例1
まず、水道水を逆浸透膜分離装置で処理して得られる透過水(RO処理水:導電率0.5mS/m)を電気脱イオン装置の被処理水として通水し、電流10A、電圧40Vで運転を行った。得られた処理水の比抵抗は18MΩ・cmであった。
その後、通水通電を停止した後、脱塩室に1重量%食塩水を250L/hrで1時間通水した。この通水条件は、脱塩室に充填されたイオン交換樹脂の5倍当量の食塩を含む水をSV=25hr−1で通水する条件となる。その後、被処理水であるRO処理水(導電率0.5mS/m)で食塩水を置換し、このRO処理水を脱塩室、濃縮室及び電極室に封入して6ヶ月間保管した。保管時の脱塩室内のイオン交換樹脂の塩形比率は表1に示す通りであった。
保管後、通水通電を再開し、通水通電再開と同時に電気脱イオン装置の被処理水と処理水のTOC濃度差からTOC溶出量の経時変化を調べ、結果を図1に示した。
Example 1
First, the permeated water (RO treated water: conductivity 0.5 mS / m) obtained by treating tap water with a reverse osmosis membrane separator is passed as treated water of an electrodeionization apparatus, and has a current of 10 A and a voltage of 40 V. I drove in. The specific resistance of the treated water obtained was 18 MΩ · cm.
Thereafter, the water flow was stopped, and then 1 wt% saline was passed through the desalting chamber at 250 L / hr for 1 hour. This water passage condition is a condition in which water containing salt equivalent to five times the ion exchange resin filled in the desalting chamber is passed at SV = 25 hr −1 . Thereafter, the saline solution was replaced with RO treatment water (conductivity 0.5 mS / m), which was to be treated, and this RO treatment water was sealed in a desalting chamber, a concentration chamber, and an electrode chamber and stored for 6 months. The salt form ratio of the ion exchange resin in the desalting chamber during storage was as shown in Table 1.
After storage, water flow energization was resumed, and simultaneously with the resumption of water flow energization, the time-dependent change in the TOC elution amount was examined from the TOC concentration difference of the treated water and treated water of the electrodeionization apparatus, and the results are shown in FIG.

比較例1
実施例1において、通水通電停止後、食塩水を通水せず、そのままの状態で保管したこと以外は同様にして運転再開後のTOC溶出量の経時変化を調べ、結果を図1に示した。
なお、このときの保管時の脱塩室内のイオン交換樹脂の塩形比率は表1に示す通りであった。
Comparative Example 1
In Example 1, the change in the TOC elution amount with time after restarting was examined in the same manner except that the saline solution was not passed and stored as it was after the water flow was stopped, and the results are shown in FIG. It was.
The salt form ratio of the ion exchange resin in the desalting chamber at the time of storage was as shown in Table 1.

Figure 0004826912
Figure 0004826912

実施例1及び比較例1の結果から次のことが分かる。
比較例1のように比抵抗が十分に低い処理水が得られるようになってから装置の運転を停止してそのまま保管すると、運転再開時にTOC溶出量が増える。その結果、TOC溶出が殆どなくなってTOC溶出量1ppb以下の高純度水を供給できるまでに約30時間を要する。これに対して、実施例1では、運転再開時のTOC溶出量が少なく、通水約16時間後にはTOC溶出量1ppb以下の高純度水の供給が可能となった。
The following can be seen from the results of Example 1 and Comparative Example 1.
If treated water is stopped after storing treated water having sufficiently low specific resistance as in Comparative Example 1, the amount of TOC elution increases when operation is resumed. As a result, it takes about 30 hours until TOC elution is almost eliminated and high purity water having a TOC elution amount of 1 ppb or less can be supplied. On the other hand, in Example 1, the amount of TOC elution at the time of resuming operation was small, and high-purity water having a TOC elution amount of 1 ppb or less could be supplied after about 16 hours of water flow.

一般的に、超純水分野ではTOC濃度1ppb以下を供給水の基準としているところが多く、また、運転再開後、24時間以内にこのような純水を供給できることが望まれている。
本発明によれば、電気脱イオン装置内のイオン交換樹脂を塩形に変換して保管することにより、保管期間中のTOCの溶出量を低減して電気脱イオン装置の装置の立ち上げに要する時間を大幅に短縮することができる。
In general, in the field of ultrapure water, there are many places where the TOC concentration is 1 ppb or less, and it is desired that such pure water can be supplied within 24 hours after resuming operation.
According to the present invention, the ion exchange resin in the electrodeionization apparatus is converted into a salt form and stored, thereby reducing the amount of TOC eluted during the storage period and required for starting up the electrodeionization apparatus. Time can be significantly reduced.

実施例1及び比較例1におけるTOC溶出量の経時変化を示すグラフである。4 is a graph showing changes with time in the TOC elution amount in Example 1 and Comparative Example 1.

Claims (2)

陽極と陰極との間にアニオン交換膜とカチオン交換膜とを交互に配列して該アニオン交換膜とカチオン交換膜との間に脱塩室と濃縮室とを形成し、少なくとも脱塩室にイオン交換体を充填してなる電気脱イオン装置を、通水通電せずに長期間保管する際に、前記イオン交換体を塩形に変換して保管する電気脱イオン装置の保管方法であって、
前記イオン交換体がアニオン交換樹脂とカチオン交換樹脂との混合物であって、前記電気脱イオン装置の通水通電停止後に、該電気脱イオン装置に充填されたイオン交換樹脂に対して1倍当量以上の食塩水を通水して該アニオン交換樹脂の99%以上をCl形に、該カチオン交換樹脂の99%以上をNa形にそれぞれ変換して保管することを特徴とする電気脱イオン装置の保管方法。
An anion exchange membrane and a cation exchange membrane are alternately arranged between the anode and the cathode to form a desalination chamber and a concentration chamber between the anion exchange membrane and the cation exchange membrane, and at least ions in the desalination chamber An electrodeionization apparatus filled with an exchanger is a storage method of an electrodeionization apparatus for storing the ion exchanger by converting it into a salt form when storing for a long time without passing water ,
The ion exchanger is a mixture of an anion exchange resin and a cation exchange resin, and after the passage of water through the electrodeionization device is stopped, the ion exchange resin is charged at least 1 equivalent to the ion exchange resin. Storage of an electrodeionization apparatus characterized in that 99% or more of the anion exchange resin is converted to Cl form and 99% or more of the cation exchange resin is converted to Na form by passing a saline solution of Method.
請求項1において、前記イオン交換体を塩形に変換した後、該電気脱イオン装置に導電率1mS/m以下の純水を封入して保管することを特徴とする電気脱イオン装置の保管方法。 Oite to claim 1, said after converting the ion exchanger in salt form, electrodeionization apparatus, characterized in that the storage by sealing Conductivity 1 mS / m or less in pure water to the electric deionizer Storage method.
JP2006317270A 2006-11-24 2006-11-24 Storage method of electrodeionization equipment Active JP4826912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006317270A JP4826912B2 (en) 2006-11-24 2006-11-24 Storage method of electrodeionization equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006317270A JP4826912B2 (en) 2006-11-24 2006-11-24 Storage method of electrodeionization equipment

Publications (2)

Publication Number Publication Date
JP2008126207A JP2008126207A (en) 2008-06-05
JP4826912B2 true JP4826912B2 (en) 2011-11-30

Family

ID=39552577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006317270A Active JP4826912B2 (en) 2006-11-24 2006-11-24 Storage method of electrodeionization equipment

Country Status (1)

Country Link
JP (1) JP4826912B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3508647B2 (en) * 1999-10-07 2004-03-22 栗田工業株式会社 Electrodeionization equipment

Also Published As

Publication number Publication date
JP2008126207A (en) 2008-06-05

Similar Documents

Publication Publication Date Title
EP0946301B1 (en) Electrodeionization apparatus and method
MXPA04005925A (en) Fractional deionization process.
JP2011110515A (en) Method and apparatus for purifying ion exchange resin
JP2004167291A (en) Electric deionization apparatus
JP4997678B2 (en) Electrodeionization equipment
EP1640344B1 (en) Pure water production system
JP2006015260A (en) Electric deionized water manufacturing apparatus
JP3966103B2 (en) Operation method of electrodeionization equipment
JP2007268331A (en) Apparatus for manufacturing electrically deionized water
JP4826912B2 (en) Storage method of electrodeionization equipment
JP2011121027A (en) Electric type deionized water producing apparatus
US20230149857A1 (en) Improved chlorine tolerance of continuous electrodeionization modules
JP2003001258A (en) Electrolytic deionizing apparatus
JP4505965B2 (en) Pure water production method
JP6496146B2 (en) Electric deionized water production equipment
JP3501339B2 (en) Electric deionized water production equipment
JP4624066B2 (en) Operation method of electric deionized water production apparatus and electric deionized water production apparatus
JP2007245120A (en) Electrically operated apparatus for producing deionized water
JP4016663B2 (en) Operation method of electrodeionization equipment
JP5355460B2 (en) Electric deionized water production equipment
JP2007283228A (en) Electric deionizer
JP6034736B2 (en) Electric deionized water production equipment
TW524714B (en) Deion device and deion method with the deion device
JP3979889B2 (en) How to produce deionized water
JP4660890B2 (en) Operation method of electrodeionization equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4826912

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150