JPH02159326A - Method for recovering silver component - Google Patents

Method for recovering silver component

Info

Publication number
JPH02159326A
JPH02159326A JP31377088A JP31377088A JPH02159326A JP H02159326 A JPH02159326 A JP H02159326A JP 31377088 A JP31377088 A JP 31377088A JP 31377088 A JP31377088 A JP 31377088A JP H02159326 A JPH02159326 A JP H02159326A
Authority
JP
Japan
Prior art keywords
silver
addition
stirring
polymer flocculant
silver component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31377088A
Other languages
Japanese (ja)
Other versions
JP2751932B2 (en
Inventor
Isao Yamamoto
勲 山本
Isao Kuriyama
栗山 功
Takeshi Okada
猛 岡田
Toshiharu Wake
敏治 和気
Tatsu Sakuma
佐久間 達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Konica Minolta Inc
Original Assignee
Organo Corp
Konica Minolta Inc
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Konica Minolta Inc, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP63313770A priority Critical patent/JP2751932B2/en
Publication of JPH02159326A publication Critical patent/JPH02159326A/en
Application granted granted Critical
Publication of JP2751932B2 publication Critical patent/JP2751932B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To continuously and stably recover silver components even if the concn. and kind of the components are changed by adding the three kinds ot high molecular flocculants, namely the condensate-type cationic, polymerizate- type cationic, and anionic flocculants, to the water contg. the silver components. CONSTITUTION:The condensate-type cationic high molecular flocculant, the polymerizate-type cationic high molecular flocculant, and the anionic high molecular flocculant are added to the water contg. silver components. The kind, addition rate, adding order, and agitation of the flocculants are appropriately specified, and treatment is carried out. The silver components are flocculated by the treatment, separated, and recovered. The method can be applied to a wide range of pH.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は写真感光材、写真製版、銀メツキ、銀合金等の
製造時に発生する銀成分含有水から銀成分を回収する際
の回収方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a recovery method for recovering silver components from silver component-containing water generated during the production of photosensitive materials, photoengraving, silver plating, silver alloys, etc. It is something.

〈従来の技術〉 写真感光材、写真製版、銀メツキ、銀合金等の製造時に
発生する排水等には、銀醋塩、銀化合物、コロイド恨等
の種々の銀成分が含まれており、このような銀成分含有
水から銀成分を回収する場合、従来は当該含有水を遠心
分離したり、あるいは当該含有水に起泡剤を添加して浮
上分離したりして銀成分を固液分離する方法が行われて
いる。また当該含有水にアルミニウム塩、鉄塩等の無機
凝集剤とアニオン性高分子凝集剤を添加するか、pHを
酸性側に調整後、重合型カチオン性高分子凝集剤とアニ
オン性高分子凝集剤を添加して銀成分を凝集させ、当該
凝集物を固液分離した後、当該凝集物のスラッジを脱水
処理する方法も提案されている。
<Prior art> Drainage generated during the production of photosensitive materials, photoengraving, silver plating, silver alloys, etc. contains various silver components such as silver salts, silver compounds, and colloidal particles. When recovering silver components from water containing silver components, conventionally, the silver components are separated into solid-liquid by centrifuging the water containing silver components, or by adding a foaming agent to the water and flotation separation. method is being done. In addition, an inorganic flocculant such as an aluminum salt or iron salt and an anionic polymer flocculant are added to the water contained, or after adjusting the pH to the acidic side, a polymeric cationic polymer flocculant and an anionic polymer flocculant are added to the water. A method has also been proposed in which the silver component is agglomerated by adding silver, the agglomerates are separated into solid and liquid, and then the sludge of the agglomerates is dehydrated.

上記従来の回収方法のうち遠心分離法は粒径が0、5μ
以下の銀成分については、これを分離し回収することが
困難であり銀成分の回収率が銀成分の粒径の大小に左右
されるという欠点がある。
Among the conventional collection methods mentioned above, the centrifugation method has a particle size of 0.5 μm.
The following silver components have the drawback that it is difficult to separate and recover them, and the recovery rate of the silver component depends on the particle size of the silver component.

また浮上分離法は銀成分の種類によっては、起泡剤を添
加しても、これを浮上させることができず、回収率が低
いという欠点がある。さらに無機凝集剤とアニオン性高
分子凝集剤を添加する処理方法は脱水処理した銀成分含
有スラッジ中に、添加した無機凝集剤に起因するアルミ
ニウム、鉄等が共存し銀の精製が困難であるばかりでな
く精製に高い経費を要するという欠点がある。またI)
Hを酸性側に調整後、重合型カチオン性高分子凝集剤と
アニオン性高分子凝集剤を添加する処理方法は細かい銀
成分の捕捉ができず銀成分の回収率が低いばかりでなく
、固液分離した銀成分含有スラッジの強度および脱水性
が劣るため脱水処理が困難である。また処理pHが低い
ため機器、種類の腐食が発生するとともに脱水濾液pH
の中和処理が必要になるという欠点がある。
Furthermore, the flotation separation method has the disadvantage that depending on the type of silver component, it may not be possible to float it even if a foaming agent is added, resulting in a low recovery rate. Furthermore, in the treatment method of adding an inorganic flocculant and an anionic polymer flocculant, aluminum, iron, etc. caused by the added inorganic flocculant coexist in the dehydrated silver component-containing sludge, making it difficult to purify silver. However, it has the disadvantage of requiring high costs for refining. Also I)
The treatment method in which a polymeric cationic polymer flocculant and an anionic polymer flocculant are added after adjusting H to the acidic side not only fails to capture fine silver components and has a low silver component recovery rate, but also results in solid-liquid Dewatering treatment is difficult because the separated silver component-containing sludge has poor strength and dewatering properties. In addition, due to the low processing pH, corrosion of equipment and types occurs, and the dehydration filtrate pH
The drawback is that it requires neutralization treatment.

さらに前記した各凝集剤を用いる処理方法は、以下のよ
うな欠点がある。
Furthermore, the treatment methods using the above-mentioned flocculants have the following drawbacks.

すなわち銀成分がゼラチン質と結合して保護コロイドを
形成しているような場合は、従来ではこのままでは凝集
することが困難なので酵素を添加してゼラチン質を分解
してから凝集処理する必要があるが、操作が繁雑となる
ばかりでなく処理コストが増加するという欠点がある。
In other words, if the silver component combines with gelatin to form a protective colloid, it is difficult to agglomerate it as it is, so it is necessary to add enzymes to break down the gelatin before performing the aggregation treatment. However, it has the disadvantage that not only the operation becomes complicated but also the processing cost increases.

また上述した各処理方法の共通の欠点として、銀成分の
濃度あるいは銀成分の種類が大きく変化する場合は、こ
れらの変化に追随することが困難となり、これを連続処
理する際に銀成分の回収率が大きく変化するという問題
がある。
In addition, a common drawback of each of the above-mentioned processing methods is that if the concentration of silver components or the type of silver components changes significantly, it becomes difficult to follow these changes, and it is difficult to recover the silver components during continuous processing. The problem is that the rate varies greatly.

〈発明が解決しようとする問題点〉 本発明は上述した従来技術の欠点を解決し、銀含有水中
から可及的に銀を回収するとともに、銀成分の濃度およ
び銀成分の種類が大きく変化しても回収率に影響を与え
ず、さらに回収した銀の精製が容易であり、かつ機器、
種類の酸腐食や脱水濾液の中和処理が必要になる程の酸
性側にしなくとも処理可能で、さらにたとえ銀成分がゼ
ラチン質と結合した保護コロイドを形成していても、酵
素等を添加することなく、これを効果的に回収できる銀
成分の回収方法を提供することを目的とするものである
<Problems to be Solved by the Invention> The present invention solves the above-mentioned drawbacks of the prior art, recovers as much silver as possible from silver-containing water, and eliminates large changes in the concentration and type of silver components. However, it does not affect the recovery rate, and it is easy to purify the recovered silver.
It can be processed without acidic acid corrosion or neutralization of dehydrated filtrate, and even if the silver component is combined with gelatin to form a protective colloid, enzymes etc. can be added. The object of the present invention is to provide a method for recovering silver components that can be effectively recovered without causing any damage.

〈問題点を解決するための手段〉 上記目的を実現するためになされた本発明よりなる銀成
分含有水からの銀成分回収方法は、銀成分含有水に縮合
型カチオン性高分子凝集剤と重合型カチオン性高分子凝
集剤とアニオン性高分子凝集剤を添加して銀成分含有水
から銀成分を回収することを特徴とするものである。
<Means for Solving the Problems> The method of recovering silver components from silver component-containing water according to the present invention, which has been made in order to realize the above object, is a method of recovering silver components from silver component-containing water by adding a condensation type cationic polymer flocculant and polymerization to silver component-containing water. The method is characterized in that silver components are recovered from silver component-containing water by adding a cationic polymer flocculant and an anionic polymer flocculant.

〈作用〉 以下に本発明をさらに詳細に説明する。<Effect> The present invention will be explained in more detail below.

銀成分含有水は種々の工程から排出され、一般に残留す
る銀成分を何らかの方法で回収し必要に応じ再利用する
。この場合、残留する銀成分をいかに効率良く回収する
かとともに、いかに効率良く脱水し精製するかが重要な
技術課題である。
Water containing silver components is discharged from various processes, and the remaining silver components are generally recovered by some method and reused as necessary. In this case, important technical issues are how to efficiently recover the remaining silver component, as well as how to efficiently dehydrate and purify it.

しかしながら通常、銀成分含有水には界面活性剤、乳化
剤、漂白剤等多くの化学物質も同時に含有されており、
さらに前述したごとくゼラチン質と保護コロイドを形成
している銀成分も存在しているので、その中より銀成分
を効率良く取り出すことは容易ではない。
However, silver-containing water usually also contains many chemical substances such as surfactants, emulsifiers, and bleaching agents.
Furthermore, as mentioned above, there is also a silver component that forms a protective colloid with gelatin, so it is not easy to efficiently extract the silver component from among them.

本発明者等は種々の凝集剤、固液分離装置、脱水装置を
使用して銀成分含有水から効率良く銀成分を回収する方
法を検討した結果、極めて処理効果の高い処理方法を見
出した。
The present inventors investigated methods for efficiently recovering silver components from silver component-containing water using various flocculants, solid-liquid separation devices, and dehydration devices, and as a result, discovered a treatment method with extremely high treatment effects.

すなわち銀成分含有水に縮合型カチオン性高分子凝集側
と重合型カチオン性高分子凝集剤とアニオン性高分子凝
集剤の3種類の高分子凝集剤を添加し、銀成分を凝集さ
せ、これを固液分離するものである。
That is, three types of polymer flocculants, a condensed cationic polymer flocculant, a polymerized cationic polymer flocculant, and an anionic polymer flocculant, are added to silver component-containing water to flocculate the silver component. It separates solid and liquid.

なお上記3種類の高分子凝集剤を用いる本発明により、
前述したゼラチン質と保護コロイドを形成した銀成分も
、保護コロイドのままこれらを凝集し、固液分離可能な
粗大粒子とすることができる。
In addition, according to the present invention using the above three types of polymer flocculants,
The silver component that has formed a protective colloid with the gelatin described above can also be aggregated as a protective colloid to form coarse particles that can be separated into solid and liquid.

本発明は銀成分含有水に上記3種類の凝集剤を添加して
種々の形態を存する銀成分を凝集し、当該凝集物を分離
して回収するものであるが、3種類の凝集剤の内、ひと
つでも欠けると本発明の目的を達成し得ない。
In the present invention, the above three types of flocculants are added to silver component-containing water to flocculate silver components in various forms, and the aggregates are separated and recovered. Among the three types of flocculants, If even one of them is missing, the object of the present invention cannot be achieved.

たとえば締金型カチオン性高分子凝集剤だけを添加した
場合は、当該凝集剤の使用量が大幅に増加するばかりで
なく、凝集物(以下フロックという)が細かくなり、当
該フロックを′a集沈殿で分離する場合は、その沈降速
度が遅く沈殿槽の容量をかなり大きくせねばならない。
For example, when only a clamp-type cationic polymer flocculant is added, not only does the amount of flocculant used increase significantly, but the flocs (hereinafter referred to as flocs) become finer. In case of separation, the sedimentation rate is slow and the capacity of the sedimentation tank must be considerably large.

また縮合型カチオン性高分子凝集剤とアニオン性高分子
凝集剤の2種類の凝集剤を添加した場合も、フロ・ツク
が粗大化せず結果として充分な銀成分の回収率が得られ
ない。
Further, even when two types of flocculants, a condensation type cationic polymer flocculant and an anionic polymer flocculant, are added, the flocs do not become coarse and as a result, a sufficient recovery rate of the silver component cannot be obtained.

また重合型カチオン性高分子凝集剤だけを添加した場合
は、生成するフロックが粗大化するものの当該フロック
中に含有される銀成分が少なく、換言すれば凝集し得な
い銀成分が残留し結果として充分な銀成分の回収率が得
られない。
In addition, when only a polymeric cationic polymer flocculant is added, although the flocs produced become coarse, the silver components contained in the flocs are small.In other words, silver components that cannot be flocculated remain, resulting in A sufficient recovery rate of silver components cannot be obtained.

また重合型カチオン性高分子凝集剤とアニオン性高分子
凝集剤の2種類の凝集剤を添加した場合は、生成される
フロックがゴム状となり、当該フロックの脱水が困難と
なる。
Furthermore, when two types of flocculants, a polymerized cationic polymer flocculant and an anionic polymer flocculant, are added, the flocs produced become rubber-like, making it difficult to dehydrate the flocs.

また縮合型カチオン性高分子凝集剤と重合型カチオン性
高分子凝集剤の2種類の凝集剤を添加し、アニオン性高
分子凝集剤を用いない場合は、フロック強度が充分でな
く脱水工程に支障をきたすとともに、充分な銀成分の回
収率が得られない。
In addition, if two types of flocculants, a condensed cationic polymer flocculant and a polymerized cationic polymer flocculant, are added and an anionic polymer flocculant is not used, the floc strength will not be sufficient and the dewatering process will be hindered. At the same time, a sufficient recovery rate of the silver component cannot be obtained.

なお銀含有水にアニオン性高分子凝集剤だけを添加した
場合は銀成分の凝集作用そのものが生じない。
Note that when only an anionic polymer flocculant is added to silver-containing water, the aggregation effect of the silver component itself does not occur.

したがって銀成分含有水に高分子凝集剤を添加して、銀
成分を凝集させて効率良く分離するためには、上述した
3種類の高分子凝集剤を添加することが必須の条件とな
る。
Therefore, in order to add a polymer flocculant to silver component-containing water to flocculate and efficiently separate the silver component, it is essential to add the three types of polymer flocculants described above.

また上述した3種類の高分子凝集剤を添加して、銀成分
を凝集させることにより処理対象となる銀成分含有水の
性状、すなわち銀成分の濃度あるいは銀成分の種類が変
化してもこれを連続的に安定して処理することができる
In addition, by adding the three types of polymer flocculants mentioned above to flocculate the silver components, even if the properties of the silver component-containing water to be treated change, that is, the concentration of the silver component or the type of the silver component. Can be processed continuously and stably.

なお本発明において銀成分含有水に当該3種類の高分子
凝集剤を添加する典型的な順序は、縮合型カチオン性高
分子凝集剤をa、重合型カチオン性高分子凝集剤をb、
アニオン性高分子凝集剤をCとした場合、以下の通りで
ある。
In addition, in the present invention, the typical order in which the three types of polymer flocculants are added to silver component-containing water is a condensed cationic polymer flocculant (a), a polymerized cationic polymer flocculant (b), and a.
When the anionic polymer flocculant is C, it is as follows.

イ、C添加−攪拌一す添加−攪拌−C添加−攪拌口、b
添加→攪拌−C添加−撹拌−C添加−攪拌ハ、a、b同
時添加−攪拌−C添加−攪拌二、a添加→攪拌−C添加
−攪拌一す添加−攪拌ホ、b添加−攪拌−C添加−攪拌
→a添加−撹拌なお縮合型カチオン性高分子凝集剤と重
合型カチオン性高分子凝集剤とアニオン性高分子凝集剤
と同時に添加することは、カチオン性高分子凝集剤とア
ニオン性高分子凝集剤とが反応し合って凝集反応に関与
しなくなるので好ましくなく、また銀成分含有水にアニ
オン性高分子凝集剤を先に添加することは通常の場合凝
集効果が低下して好ましくないが、アニオン性高分子凝
集剤の種類によっては採用できる場合がある。
B, Addition of C - Stirring - Addition - Stirring - Addition of C - Stirring port, b
Addition → Stirring - Addition of C - Stirring - Addition of C - Stirring c, a, b simultaneous addition - Stirring - Addition of C - Stirring 2, Addition of a → Stirring - Addition of C - Stirring 1 Addition - Stirring E, Addition of b - Stirring - Addition of C - Stirring -> Addition of a - Stirring Adding a condensation type cationic polymer flocculant, a polymerization type cationic polymer flocculant, and an anionic polymer flocculant at the same time is a cationic polymer flocculant and anionic polymer flocculant. This is undesirable because it will react with the polymeric flocculant and will no longer participate in the flocculation reaction, and it is also undesirable to add the anionic polymeric flocculant to silver component-containing water first because it will reduce the flocculating effect. However, depending on the type of anionic polymer flocculant, it may be possible to adopt it.

以下に本発明に用いる3種類の高分子凝集剤をさらに詳
しく説明すると、まず縮合型カチオン性高分子凝集剤と
してはポリアルキレンポリアミン縮合物、ポリアミン−
エピクロルヒドリン縮金物、エピクロルヒドリン−エチ
レンイミン縮合物、ポリエチレンイミン等のポリアミン
系凝集剤、アニリン−ホルムアルデヒド縮金物、ジシア
ンジアミド−ホルムアルデヒド縮金物、尿素−グアニジ
ンホルムアルデヒド縮合物等のアミン−ホルムアルデヒ
ド縮合系凝集剤を用いることができる。
The three types of polymer flocculants used in the present invention will be explained in more detail below. First, the condensation type cationic polymer flocculants include polyalkylene polyamine condensates, polyamine-
Use polyamine-based flocculants such as epichlorohydrin condensates, epichlorohydrin-ethyleneimine condensates, and polyethyleneimine, amine-formaldehyde condensates such as aniline-formaldehyde condensates, dicyandiamide-formaldehyde condensates, and urea-guanidine formaldehyde condensates. Can be done.

また重合型カチオン性高分子凝集剤としてはポリアミノ
アルキルアクリレート、ポリアクリルアミドのカチオン
変性物、ポリビニルイミダゾール、キトサン等を用いる
ことができ、コロイド当量値が+3.0 m e g 
/ g以上のものが好ましい。
Further, as the polymerizable cationic polymer flocculant, polyaminoalkyl acrylate, cationic modified polyacrylamide, polyvinylimidazole, chitosan, etc. can be used, and the colloid equivalent value is +3.0 m e g
/g or more is preferable.

またアニオン性高分子凝集剤としては、ポリアクリルア
ミドの部分加水分解物、アクリル酸ナトリウムとアクリ
ルアミドの共重合物、ポリアクリル酸ナトリウム、ポリ
アクリルアミドのスルホン化物を用いることができる。
Further, as the anionic polymer flocculant, a partially hydrolyzed product of polyacrylamide, a copolymer of sodium acrylate and acrylamide, a sodium polyacrylate, and a sulfonated product of polyacrylamide can be used.

なおフロックの粘性をなくすためアニオン性高分子凝集
剤としてはポリアクリル酸ナトリウムと他のアニオン性
高分子凝集剤を併用することが好ましい。
In order to eliminate the viscosity of the flocs, it is preferable to use sodium polyacrylate and another anionic polymer flocculant together as the anionic polymer flocculant.

本発明は上述した3種類の高分子凝集剤を添加して銀成
分を凝集させ、当該フロックを分離するものであるが、
各高分子凝集剤の最適な種類およびその最適な添加率お
よび最適な攪拌条件は、凝集剤の種類、添加率、攪拌条
件を変化させてジャーテストを行い、フロック径、フロ
ック強度、フロックの沈降速度、上澄水の銀濃度、上澄
水のC3T値等から決定する。
The present invention adds the three types of polymer flocculants mentioned above to flocculate the silver component and separate the flocs.
The optimal type of each polymer flocculant, its optimal addition rate, and optimal stirring conditions were determined by conducting a jar test by varying the type of flocculant, addition rate, and stirring conditions, and determining the floc diameter, floc strength, and floc sedimentation. It is determined from the speed, silver concentration of supernatant water, C3T value of supernatant water, etc.

次に本発明の凝集pHについて説明すると、上述した3
種類の凝集剤を用いることにより酸性からアルカリ性ま
で効果的に銀成分を凝集させることができ、したがって
前述した重合型カチオン性高分子凝集剤とアニオン性高
分子凝集剤の2種類の凝集剤を添加する従来の処理方法
のように、pHを特に酸性側にする必要がな゛い。
Next, to explain the aggregation pH of the present invention, the above-mentioned 3
By using different types of flocculants, it is possible to effectively flocculate silver components from acidity to alkalinity.Therefore, two types of flocculants, the polymerized cationic polymer flocculant and anionic polymer flocculant mentioned above, are added. There is no need to make the pH particularly acidic, unlike in conventional treatment methods.

また本発明においては凝集可能pHの幅が広いので、銀
含有水そのものが有するpHにて凝集処理が可能であり
、特に酸性やアルカリ性にするための中和薬剤を必要と
しないという利点もある。
In addition, in the present invention, since the pH range at which aggregation is possible is wide, aggregation treatment can be performed at the pH of the silver-containing water itself, and there is also the advantage that a neutralizing agent to make it acidic or alkaline is not required.

本発明は銀含有水に上述した3種類の凝集剤を添加して
銀成分を凝集し、当該フロックを分離するものであり、
その分離法としては、場合によっては当該凝集剤を添加
して凝集させた後、セラミック濾過装置や中空糸膜濾過
装置や回転式吸引濾過装置等の各種の濾過装置で直接フ
ロックを分離することもでき、特にフロックの強度が大
で、粘性が小さい場合は振動ふるいを用いてフロックを
分離することができる。
The present invention adds the above-mentioned three types of flocculants to silver-containing water to flocculate the silver component and separate the flocs,
In some cases, the flocs may be separated by adding the flocculant to cause flocculation, and then directly separating the flocs using various filtration devices such as ceramic filtration devices, hollow fiber membrane filtration devices, and rotary suction filtration devices. Especially when the flocs have high strength and low viscosity, the flocs can be separated using a vibrating screen.

また銀成分を凝集させてフロックを得た後、浮上分離装
置や、凝集沈殿装置でフロックを濃縮してスラッジ化す
ることも好適に用いられる。
It is also suitably used to agglomerate the silver component to obtain flocs, and then concentrate the flocs in a flotation separator or coagulation-sedimentation apparatus to form a sludge.

たとえばフロックに気泡が含有されて軽いフロックが得
られる場合は浮上分離装置を用いると良く、またフロッ
クの密度、粒子径が大きく、その沈降性が良い場合は凝
集沈殿装置を用いると良い。
For example, if the floc contains air bubbles and a light floc can be obtained, a flotation separator may be used, and if the floc has a large density and particle size and has good sedimentation properties, a coagulation-sedimentation device may be used.

また浮上分離装置や凝集沈殿装置で得られた銀含有スラ
ッジを脱水して脱水ケーキを得る場合、スクリュウ式脱
水機、遠心式脱水機、ベルト式脱水機等のいずれでも良
く、銀含有スラッジの性状により使い分ける。発明者等
が実験を行った範囲ではスクリュウ式脱水機が処理量、
脱水ケーキ含水率、銀成分の回収率で優れていたがこれ
に限定されるものではない。この銀成分を含有した脱水
ケーキをたとえば500−1,000℃の熱処理で精製
することにより金属銀を効率良く回収することができる
In addition, when obtaining a dehydrated cake by dewatering silver-containing sludge obtained in a flotation separator or coagulation-sedimentation device, any of the screw type dehydrators, centrifugal dehydrators, belt type dehydrators, etc. may be used, and the properties of the silver-containing sludge Use depending on the situation. In the range of experiments conducted by the inventors, the screw type dehydrator has a throughput of
Although the moisture content of the dehydrated cake and the recovery rate of silver components were excellent, the present invention is not limited thereto. Metallic silver can be efficiently recovered by purifying this dehydrated cake containing silver components by heat treatment at, for example, 500-1,000°C.

く効果〉 以上説明したように本発明によれば銀成分の濃度および
銀成分の種類が大きく変化しても回収率に影響を与えず
銀含有水より銀成分を効率良く確実にかつ連続的に回収
することができ、る。
As explained above, according to the present invention, even if the concentration of silver components and the type of silver components change greatly, the recovery rate is not affected and silver components can be efficiently, reliably, and continuously removed from silver-containing water. It can be recovered.

また本発明は無機凝集剤を用いないので銀の精製が容易
であり、さらに特にpHを酸性側にしなくとも銀成分を
効果的に凝集することができるので、機器、種類の酸腐
食が生じることなく、かつ脱水濾液の中和処理を考慮す
る必要がない等の種々の効果を奏する。
In addition, since the present invention does not use an inorganic flocculant, it is easy to purify silver, and furthermore, the silver component can be effectively flocculated without making the pH particularly acidic, so acid corrosion of equipment and types does not occur. There are various effects, such as eliminating the need to consider neutralization of the dehydrated filtrate.

またゼラチン質と保護コロイドを形成した銀成分も、こ
れを酵素を添加して分解することなく、保護コロイドの
まま凝集させることができるので、従来のように酵素を
添加する操作を省略することができ、処理操作を単純化
することができる。
In addition, the silver component that has formed a protective colloid with gelatin can be aggregated as a protective colloid without adding enzymes to decompose it, so the conventional process of adding enzymes can be omitted. processing operations can be simplified.

以下に本発明の詳細な説明するが本発明は以下の実施例
に限定されるものではない。
The present invention will be described in detail below, but the present invention is not limited to the following examples.

実施例 写真感光材を製造する工程で排出される第1表に示した
組成よりなる銀成分含有水を用い、下記するA−1に示
すような従来の凝集方法および比較例、本発明よりなる
凝集方法にて連続的に銀成分を凝集し、また得られるス
ラッジを各種の脱水機で連続的に脱水処理した。その結
果を第2表に示す。
Examples Using silver component-containing water having the composition shown in Table 1 which is discharged in the process of producing photographic light-sensitive materials, conventional agglomeration methods and comparative examples as shown in A-1 below and those according to the present invention were carried out. The silver component was continuously agglomerated using a coagulation method, and the resulting sludge was continuously dehydrated using various dehydrators. The results are shown in Table 2.

なお下記するA〜■において、aは縮合型カチオン性高
分子凝集剤、bは重合型カチオン性高分子凝集剤、Cは
アニオン性高分子凝集剤、dは無機凝集剤を示す。
In the following A to ■, a represents a condensed cationic polymer flocculant, b represents a polymerized cationic polymer flocculant, C represents an anionic polymer flocculant, and d represents an inorganic flocculant.

第1表  銀成分含有水の組成 A、(従来方法) (1)使用凝集剤 硫酸バンド・・・・・・d (添加量300mg/6) ポリアクリルアミド部分加水分解物・・・・・・C(コ
ロイド当1f直、−2,8m e q / g、添加量
10■/1) (2)添加順序 d添加−攪拌−C添加−攪拌−凝集沈殿(3)凝集pH 5,9 (4)固液分離装置 凝集沈殿装置 (5)スラッジの脱水機 遠心式脱水機 B、(従来方法) (1)使用凝集剤 ポリジメチルアミノメタクリレート・・・・・・b(コ
ロイド当量イ直、+ 4.8 m e q / g、添
加量80■/1) ポリアクリルアミド部分加水分解物・・・・・・C(コ
ロイド当量イ直、−2,8m e q / g、添加量
10■/N) (2)添加順序 中和剤添加(硫酸)−攪拌一す添加−撹拌−C添加−攪
拌−凝集沈殿 (3)凝集pH 4,0 (4)固液分離装置 凝集沈殿装置 (5)スラッジの脱水機 遠心式脱水機 C2(本発明方法) (1)使用凝集剤 ジシアンジアミド−ホルムアルデヒド縮合物・・・・a
(添加量60■/l) ポリジメチルアミノメタクリレート・・・・・・b(コ
ロイド当量値、+4.8meq/g、添加量20■/l
) ポリアクリル酸ナトリウム・・・・・・C(添加量3■
/l) ポリアクリルアミド部分加水分解物・・・・・・C′(
コロイド当量イ直、−2,3m e q / g、添加
量2■/1) (2)添加順序 a添加−撹拌一す添加−撹拌−c、c’添加−攪拌一浮
上分離 (3)凝集p H 6,2 (4)固液分離装置 浮上分離装置 (5)スラッジの脱水機 スクリュウ式脱水機 D、(本発明方法) (1)使用凝集剤 ポリエチレンポリアミン・・・・・・a(添加量60m
g/j2) ポリジメチルアミノメタクリレート・・・・・・b(コ
ロイド当量(直、+ 4.0 m e q / g、添
加N20■/Iり ポリアクリル酸ナトリウム・・・・・・C(添加量3■
/It’) ポリアクリルアミド部分加水分解物・・・・・・C′(
コロイド当量値、−2,8meq/g、添加量2■/1
) (2)添加順序 a添加−攪拌一す添加−攪拌−c、c’添加−攪拌一浮
上分離 (3)凝集pH 6,2 (4)固液分離装置 浮上分離装置 (5)スラッジの脱水機 スクリュウ式脱水機 E、(比較例) (1)使用凝集剤 ジシアンジアミド−ホルムアルデヒド縮合物・・・・(
添加量100可/A) ポリアクリル酸ナトリウム・・・・・・C(添加量5■
/l) ポリアクリルアミド部分加水分解物、−−−+ −(’
(コロイド当量値、−2,8m e q / g、添加
量5■/1) (2)添加順序 a添加−攪拌−c、c’添加−攪拌一浮上分離(3)凝
集pH 6,3 (4)固液分離装置 浮上分離装置 (5)スラッジの脱水機 スクリュウ式脱水機 F、(比較例) (1)使用凝集剤 ポリジメチルアミノメタクリレート・・・・・・b(コ
ロイド当量値、+ 4.8m e q / g、添加量
80■/l) ポリアクリル酸ナトリウム・・・・・・C(添加量3■
/l) ポリアクリルアミド部分加水分解物・・・・・・C′(
コロイド当量イ直、−2,8m e Q / g、添加
量2■/l1) (2)添加順序 す添加−攪拌−c、c’添加−撹拌一浮上分離(3)凝
集p)i 6.3 (4)固液分離装置 浮上分離装置 (5)スラッジの脱水機 スクリュウ式脱水機 G、(本発明方法) (1)使用凝集剤 ジシアンジアミド−ホルムアルデヒド縮合物・・・・a
(添加量60■/l) ポリジメチルアミノメタクリレート・・・・・・b(コ
ロイド当量値、+4.8meq/g、添加量20■/l
) ポリアクリル酸ナトリウム・・・・・・C(添加量6■
/1) (2)添加順序 a添加−攪拌一す添加−攪拌−C添加−攪拌−浮上分離 (3)凝集pH 6,3 (4)固液分離装置 浮上分離装置 (5)スラッジの脱水機 スクリュウ式脱水機 Hl(本発明方法) (1)使用凝集剤 ジシアンジアミド−ホルムアルデヒド縮合物・・・、a
(添加量60n+g/j?) ポリジメチルアミノメタクリレート・・・・・・b(コ
ロイド当量イ直、+ 4.8 m e q / g、添
加量20■/l) ポリアクリルアミド部分加水分解物・・・・・・C(コ
ロイド当量イ直、−2,8m e q / g、添加量
5■/1) (2)添加順序 a、b添加−攪拌−C添加−撹拌−浮上分離(3)凝集
pH 6,3 (4)固液分離装置 浮上分離装置 (5)スラッジの脱水機 スクリュウ式脱水機 I、(本発明方法) (1)使用凝集剤 ジシア縮合物ミド−ホルムアルデヒド縮金物・・・・a
(添加量60■/l) ポリジメチルアミノメタクリレ−1〜・・・・・・b(
コロイド当量値、+ 2.0 m e q / g・添
加量30曙/l) ポリアクリル酸ナトリウム・・・・・・C(添加量3■
/l) ポリアクリルアミド部分加水分解物・・・・・・C′(
コロイド当量イ直、−2,8m e q / g、添加
量2mg/1) (2)添加順序 a添加→撹拌→b添加−攪拌−c、c’添加−攪拌一浮
上分離 (3)凝集pH 6,3 (4)固液分離装置 浮上分離装置 (5)スラッジの脱水機 スクリエウ式脱水機 第2表 処理結果
Table 1 Composition of silver component-containing water A, (conventional method) (1) Flocculant sulfate band used...d (addition amount 300mg/6) Polyacrylamide partial hydrolyzate...C (1f direct per colloid, -2.8 m eq / g, addition amount 10 / 1) (2) Addition order d addition - stirring - C addition - stirring - coagulation precipitation (3) Coagulation pH 5,9 (4) Solid-liquid separator coagulation sedimentation device (5) Sludge dehydrator Centrifugal dehydrator B, (conventional method) (1) Coagulant used polydimethylamino methacrylate...b (colloid equivalent, +4. 8 m eq / g, addition amount 80 ■ / 1) Polyacrylamide partial hydrolyzate ... C (colloid equivalent direct, -2.8 m eq / g, addition amount 10 ■ / N) ( 2) Addition order Addition of neutralizing agent (sulfuric acid) - Stirring - Addition - Stirring - Addition of C - Stirring - Coagulation and precipitation (3) Coagulation pH 4,0 (4) Solid-liquid separation device Coagulation and precipitation device (5) Dehydration of sludge Centrifugal dehydrator C2 (method of the present invention) (1) Coagulant used: dicyandiamide-formaldehyde condensate...a
(Additional amount 60■/l) Polydimethylamino methacrylate b (colloid equivalent value, +4.8meq/g, addition amount 20■/l
) Sodium polyacrylate...C (Additional amount 3■
/l) Polyacrylamide partial hydrolyzate...C'(
Colloid equivalent: -2,3 m eq / g, addition amount: 2 / 1) (2) Addition order: a addition - stirring - addition - stirring - c, c' addition - stirring - floating separation (3) Coagulation pH 6,2 (4) Solid-liquid separator flotation separator (5) Sludge dehydrator Screw type dehydrator D, (method of the present invention) (1) Coagulant used polyethylene polyamine...a (addition) Amount 60m
g/j2) Polydimethylamino methacrylate...B (colloidal equivalent (direct, +4.0 m eq/g, added N20/I) Sodium polyacrylate...C (added) Amount 3■
/It') Polyacrylamide partial hydrolyzate...C'(
Colloid equivalent value, -2.8meq/g, addition amount 2■/1
) (2) Addition order a Addition - Stirring - Addition - Stirring - Addition c, c' - Stirring - Floating separation (3) Coagulation pH 6,2 (4) Solid-liquid separator flotation separation device (5) Dehydration of sludge Machine screw type dehydrator E, (comparative example) (1) Coagulant used: dicyandiamide-formaldehyde condensate (
Addition amount 100 possible/A) Sodium polyacrylate...C (addition amount 5■
/l) polyacrylamide partial hydrolyzate, ---+ -('
(Colloid equivalent value, -2,8 m eq / g, addition amount 5 / 1) (2) Addition order a addition - stirring - c, c' addition - stirring - flotation separation (3) Coagulation pH 6,3 ( 4) Solid-liquid separator flotation separator (5) Sludge dehydrator Screw type dehydrator F, (comparative example) (1) Coagulant polydimethylamino methacrylate used b (colloid equivalent value, + 4 .8m eq / g, addition amount 80■/l) Sodium polyacrylate...C (additional amount 3■
/l) Polyacrylamide partial hydrolyzate...C'(
Colloid equivalent: -2,8 m e Q / g, addition amount: 2 / l1) (2) Addition order - Stirring - c, c' Addition - Stirring - Flotation separation (3) Agglomeration p)i 6. 3 (4) Solid-liquid separator flotation separator (5) Sludge dehydrator Screw type dehydrator G, (method of the present invention) (1) Coagulant used dicyandiamide-formaldehyde condensate...a
(Additional amount 60■/l) Polydimethylamino methacrylate b (colloid equivalent value, +4.8meq/g, addition amount 20■/l
) Sodium polyacrylate...C (Additional amount 6■
/1) (2) Addition order a Addition - Stirring One addition - Stirring - Addition C - Stirring - Floating separation (3) Coagulation pH 6,3 (4) Solid-liquid separator Floating separation device (5) Sludge dehydrator Screw type dehydrator Hl (method of the present invention) (1) Coagulant used: dicyandiamide-formaldehyde condensate..., a
(Amount added: 60n+g/j?) Polydimethylaminomethacrylate...b (Colloid equivalent, +4.8 m eq/g, amount added: 20■/l) Polyacrylamide partial hydrolyzate... ...C (colloid equivalent: -2,8 m eq / g, addition amount 5 / 1) (2) Addition order a, b addition - stirring - C addition - stirring - flotation separation (3) Coagulation pH 6,3 (4) Solid-liquid separator flotation separator (5) Sludge dehydrator Screw type dehydrator I, (method of the present invention) (1) Coagulant used Disia condensate Mido-formaldehyde condensate... a
(Additional amount 60■/l) Polydimethylamino methacrylate-1~・・・・・・b(
Colloid equivalent value, + 2.0 m eq / g・Additional amount 30 Akebono/l) Sodium polyacrylate・・・・・・C (Additional amount 3■
/l) Polyacrylamide partial hydrolyzate...C'(
Colloid equivalent: -2,8m eq/g, addition amount: 2mg/1) (2) Addition order: a addition → stirring → b addition - stirring - c, c' addition - stirring - flotation separation (3) Coagulation pH 6,3 (4) Solid-liquid separator flotation separator (5) Sludge dehydrator Screw type dehydrator Table 2 Treatment results

Claims (1)

【特許請求の範囲】[Claims] 銀成分含有水に縮合型カチオン性高分子凝集剤と重合型
カチオン性高分子凝集剤とアニオン性高分子凝集剤を添
加して銀成分含有水から銀成分を回収することを特徴と
する銀成分の回収方法。
A silver component characterized in that a condensed cationic polymer flocculant, a polymerized cationic polymer flocculant, and an anionic polymer flocculant are added to silver component-containing water to recover a silver component from silver component-containing water. collection method.
JP63313770A 1988-12-14 1988-12-14 Recovery method of silver component Expired - Fee Related JP2751932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63313770A JP2751932B2 (en) 1988-12-14 1988-12-14 Recovery method of silver component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63313770A JP2751932B2 (en) 1988-12-14 1988-12-14 Recovery method of silver component

Publications (2)

Publication Number Publication Date
JPH02159326A true JPH02159326A (en) 1990-06-19
JP2751932B2 JP2751932B2 (en) 1998-05-18

Family

ID=18045316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63313770A Expired - Fee Related JP2751932B2 (en) 1988-12-14 1988-12-14 Recovery method of silver component

Country Status (1)

Country Link
JP (1) JP2751932B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003027339A1 (en) * 2001-09-26 2003-04-03 Oretek Limited Metal ion recovery
JP2013173991A (en) * 2012-02-27 2013-09-05 Mitsubishi Rayon Co Ltd Method for recovering silver in effluent
US20150152520A1 (en) * 2013-12-03 2015-06-04 Tetra Recycling, Inc. Method of Recovering Silver and Paper from Silver-Coated Paper Film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9403703B2 (en) * 2009-06-24 2016-08-02 Georgia-Pacific Chemicals Llc Guanidine-based polymers for separation processes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5124822A (en) * 1974-08-24 1976-02-28 Sharp Kk Taagetsutono yakitsukihogosochi
JPS5334624A (en) * 1976-09-14 1978-03-31 Konishiroku Photo Ind Method of recovering silver from waste solution
JPS61143527A (en) * 1984-12-14 1986-07-01 Kurita Water Ind Ltd Treatment of metal-containing water

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5124822A (en) * 1974-08-24 1976-02-28 Sharp Kk Taagetsutono yakitsukihogosochi
JPS5334624A (en) * 1976-09-14 1978-03-31 Konishiroku Photo Ind Method of recovering silver from waste solution
JPS61143527A (en) * 1984-12-14 1986-07-01 Kurita Water Ind Ltd Treatment of metal-containing water

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003027339A1 (en) * 2001-09-26 2003-04-03 Oretek Limited Metal ion recovery
JP2013173991A (en) * 2012-02-27 2013-09-05 Mitsubishi Rayon Co Ltd Method for recovering silver in effluent
US20150152520A1 (en) * 2013-12-03 2015-06-04 Tetra Recycling, Inc. Method of Recovering Silver and Paper from Silver-Coated Paper Film
US9394584B2 (en) * 2013-12-03 2016-07-19 Tetra Recycling, Inc. Method of recovering silver and paper from silver-coated paper film

Also Published As

Publication number Publication date
JP2751932B2 (en) 1998-05-18

Similar Documents

Publication Publication Date Title
US4816166A (en) Flocculation of coal particles and coal slimes
US5725780A (en) Method for using novel high solids polymer compositions as flocculation aids
JP3550955B2 (en) Sludge treatment equipment
JP2000254659A (en) Treatment of cmp waste liquid
JPH02159326A (en) Method for recovering silver component
JP2019198806A (en) Water treatment method, and water treatment device
JP2005125153A (en) Method and apparatus for treating fluorine-containing waste water
JP3496773B2 (en) Advanced treatment method and apparatus for organic wastewater
JP7117101B2 (en) Water treatment method and device
CN113072230A (en) Heavy metal wastewater treatment method for aluminum product production
JP2968124B2 (en) Recovery method of silver component
JPH1099867A (en) Treatment of waste water
JPH0924400A (en) Method for dehydrating digested sludge
JPH1147758A (en) Treatment of water containing minute suspended substance
JP3740423B2 (en) Method for treating waste liquid containing emulsion polymerization polymer
JPS6125700A (en) Dehydrating method of organic sludge
JP2005007246A (en) Treatment method for organic waste water
JPH1133563A (en) Treatment of used paper pulp waste water
JPH10118665A (en) Treatment of nh4 type cmp waste solution
JPH11152527A (en) Recovering method of silver component
JP3815593B2 (en) Method for dewatering sludge mainly composed of inorganic particles and refining agent for dewatering
JP2002126755A (en) Coagulating separation method and coagulating separation treatment device
JP2002143900A (en) Dehydration method for sludge
JPH0130560B2 (en)
JP2003112004A (en) Flocculation method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees