JP3111508B2 - Treatment method for wastewater containing heavy metals - Google Patents

Treatment method for wastewater containing heavy metals

Info

Publication number
JP3111508B2
JP3111508B2 JP03164424A JP16442491A JP3111508B2 JP 3111508 B2 JP3111508 B2 JP 3111508B2 JP 03164424 A JP03164424 A JP 03164424A JP 16442491 A JP16442491 A JP 16442491A JP 3111508 B2 JP3111508 B2 JP 3111508B2
Authority
JP
Japan
Prior art keywords
sludge
heavy metal
pipe
membrane
alkali
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03164424A
Other languages
Japanese (ja)
Other versions
JPH057880A (en
Inventor
勇 加藤
悟 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP03164424A priority Critical patent/JP3111508B2/en
Publication of JPH057880A publication Critical patent/JPH057880A/en
Application granted granted Critical
Publication of JP3111508B2 publication Critical patent/JP3111508B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は重金属含有廃水の処理方
法に係り、特に重金属含有廃水から重金属を効率的に除
去し、優れた処理水質の処理水を得ると共に、高濃度で
脱水性に優れた汚泥を得ることができる重金属含有廃水
の処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating heavy metal-containing wastewater, and more particularly to a method for efficiently removing heavy metals from heavy metal-containing wastewater to obtain treated water having excellent treated water quality and having a high concentration and excellent dewaterability. The present invention relates to a method for treating heavy metal-containing wastewater capable of obtaining waste sludge.

【0002】[0002]

【従来の技術】重金属含有廃水の処理法として、最近に
なって、下記,の新技術が提案され、一部実用化さ
れている。 重金属含有廃水にマグネシウム化合物を
添加した後、pHをアルカリ性に調節し、生成した不溶
化物を精密濾過膜(MF膜)で膜分離する方法(特開平
2−157090号公報)。 重金属含有廃水にアル
カリ剤を直接添加せずに、後工程のシックナーの排泥の
一部と混合して添加する方法(特公昭61−156号公
報。以下「アルカリ汚泥法」と称す。)。
2. Description of the Related Art Recently, the following new techniques have been proposed as a method for treating heavy metal-containing wastewater, and some of them have been put to practical use. A method in which a magnesium compound is added to heavy metal-containing wastewater, the pH is adjusted to alkaline, and the resulting insolubilized product is subjected to membrane separation using a microfiltration membrane (MF membrane) (JP-A-2-157090). A method in which the alkali agent is not directly added to the heavy metal-containing wastewater but mixed with a part of the sludge of a thickener in a subsequent process and added (Japanese Patent Publication No. 61-156; hereinafter, referred to as "alkaline sludge method").

【0003】上記の方法は、従来のシックナーに代
り、MF膜を用いるものであり、これにより装置設置面
積の低減、処理水質の向上を可能とするものである。
The above-mentioned method uses an MF membrane instead of a conventional thickener, thereby making it possible to reduce the installation area of the apparatus and improve the quality of treated water.

【0004】この方法は具体的には第2図に示す方法で
実施される。
[0004] This method is specifically implemented by the method shown in FIG.

【0005】第2図において、21は原水(重金属含有
廃水)の導入管22及び薬剤の供給管23を備えるpH
調整槽、24は循環槽、25はMF膜26を備えるMF
膜分離装置、27は逆洗水槽、28はpH計、29は循
環ポンプであり、これらが、配管30,31,32で連
結されている。33は処理水の排出管である。
In FIG. 2, reference numeral 21 denotes a pH provided with an inlet pipe 22 for raw water (heavy metal-containing wastewater) and a supply pipe 23 for chemicals.
Adjustment tank, 24 is a circulation tank, 25 is MF provided with MF film 26
A membrane separation device, 27 is a backwash water tank, 28 is a pH meter, and 29 is a circulating pump, which are connected by pipes 30, 31, and 32. 33 is a discharge pipe of the treated water.

【0006】この方法では、pH調整槽21に導入管2
2より原水(重金属含有廃水)を導入すると共に、供給
管23よりマグネシウム化合物(例えばMg塩)及び必
要に応じてpH調整剤を供給してpHをアルカリ性に調
節し、重金属含有廃水を凝集処理する。凝集処理水は循
環槽24を経て、配管30にてポンプ29の動力でMF
膜分離装置25に供給される。MF膜分離装置25に
て、MF膜26を通過した処理水は配管32、逆洗水槽
27及び排出管33を経て系外に排出される。一方、M
F膜分離装置25の濃縮液は配管31を経て循環槽24
に循環される。
In this method, the introduction pipe 2 is connected to the pH adjusting tank 21.
Raw water (heavy metal-containing wastewater) is introduced from 2, and a magnesium compound (eg, Mg salt) and a pH adjuster are supplied from the supply pipe 23 to adjust the pH to alkaline, thereby coagulating the heavy metal-containing wastewater. . The coagulated water passes through the circulation tank 24 and is supplied to the pipe 30 through the MF by the power of the pump 29.
It is supplied to the membrane separation device 25. In the MF membrane separation device 25, the treated water that has passed through the MF membrane 26 is discharged out of the system through a pipe 32, a backwash water tank 27, and a discharge pipe 33. On the other hand, M
The concentrated liquid of the F membrane separation device 25 passes through the pipe 31 and is
Circulated to

【0007】これに対して、前記の方法は、第3図に
示す方法で実施される。第3図において、41は原水
(重金属含有廃水)の導入管42及び中和剤供給管43
を備える中和槽、44は凝集槽、45はシックナー、4
6はアルカリ剤供給管47及び汚泥返送管48が接続さ
れた中和剤の反応槽であり、49,50は被処理水の移
送配管、51は処理水の排出管である。この方法では、
反応槽46において、汚泥返送管48より返送された返
送汚泥と供給管47から供給されるアルカリ剤が混合さ
れて調製された中和剤混合物(以下「アルカリ汚泥」と
称す。)が、供給管43より中和槽41に供給され、導
入管42からの原水と混合されて中和処理される。この
液は、次いで、配管49を経て凝集槽44に導入されて
凝集処理され、更に配管50を経てシックナー45に導
入され沈降分離される。シックナーの上澄水は配管51
より処理水として排出される。一方、沈降した汚泥は配
管48より反応槽46に返送される。
On the other hand, the above-mentioned method is implemented by the method shown in FIG. In FIG. 3, reference numeral 41 denotes a raw water (heavy metal-containing wastewater) introduction pipe 42 and a neutralizing agent supply pipe 43.
, A coagulation tank, 45 a thickener, 4
Reference numeral 6 denotes a reaction tank for the neutralizing agent to which the alkali agent supply pipe 47 and the sludge return pipe 48 are connected, 49 and 50 are transfer pipes of the water to be treated, and 51 is a discharge pipe of the treated water. in this way,
In the reaction tank 46, a neutralizing agent mixture (hereinafter, referred to as “alkali sludge”) prepared by mixing return sludge returned from the sludge return pipe 48 and an alkali agent supplied from the supply pipe 47 is supplied to the supply pipe. The mixture is supplied from 43 to a neutralization tank 41, mixed with raw water from an introduction pipe 42, and neutralized. Next, this liquid is introduced into the coagulation tank 44 via a pipe 49 and subjected to coagulation treatment, and further introduced into a thickener 45 via a pipe 50 to be settled and separated. Thickener supernatant water is pipe 51
It is discharged as treated water. On the other hand, the settled sludge is returned to the reaction tank 46 from the pipe 48.

【0008】このアルカリ汚泥法は、汚泥濃度が高く、
その脱水性も高いという利点を有する。
[0008] This alkali sludge method has a high sludge concentration,
It has the advantage that its dehydration is also high.

【0009】即ち、通常、重金属含有廃水の処理にあた
り、中和後の重金属水酸化物の汚泥分離手段としてシッ
クナーを用いた場合のシックナー排泥濃度は20000
〜50000mg/lであり、しかも、通常の中和によ
り生成する汚泥は、例えば、鉄イオンの場合、下記のよ
うな水酸化ゲルとなっており、水分は水酸化物の高分子
ゲルに包含されているため、濃縮が困難である。
That is, in the treatment of heavy metal-containing wastewater, the concentration of the thickener sludge when the thickener is used as a sludge separating means for the heavy metal hydroxide after neutralization is usually 20,000.
The sludge generated by ordinary neutralization is, for example, the following hydroxide gel in the case of iron ions, and the water content is contained in the hydroxide polymer gel. Therefore, concentration is difficult.

【0010】[0010]

【化1】 Embedded image

【0011】これに対して、アルカリ汚泥法における中
和反応は、汚泥表面に吸着されたアルカリと金属イオン
との中和反応であるため、Fe(OH)3,Fe(O
H)2,Cu(OH)2 ,Zn(OH)2 などの単分子
水酸化物が汚泥表面に析出することから、水酸化ゲルと
ならず、30〜40重量%の高濃度かつ脱水性の良いシ
ックナー排泥が得られるのである。
On the other hand, since the neutralization reaction in the alkali sludge method is a neutralization reaction between the alkali adsorbed on the sludge surface and the metal ions, Fe (OH) 3 , Fe (O
Since monomolecular hydroxides such as H) 2 , Cu (OH) 2 and Zn (OH) 2 precipitate on the sludge surface, they do not form a hydroxide gel, but have a high concentration of 30 to 40% by weight and a dehydrating property. You get good thickener sludge.

【0012】[0012]

【発明が解決しようとする課題】上記従来法のうち、M
F膜を用いるの方法では、膜透過(濾過)速度が低い
ために、多数のMF膜が必要となり、設備費が高くなる
という欠点がある。また、循環濃縮水の汚泥濃度が高く
なると極端に透過速度が低下するため、高濃度汚泥が得
られないという欠点もある。因みに、の方法により、
孔径0.2μmのMF膜(チューブラー)を用いて、膜
入口圧2kg/cm2 、循環水量8.5l/minで処
理した場合の、汚泥(水酸化第二鉄汚泥)濃度に対する
フラックス(透過流束)の経時変化は第4図に示す通り
である。第4図より、汚泥濃度の上昇に併ない透過速度
は減少し、SS=50000mg/l以上では特に低下
が著しいことが明らかである。
SUMMARY OF THE INVENTION Among the above conventional methods, M
The method using the F membrane has a drawback that a large number of MF membranes are required due to a low membrane permeation (filtration) rate, and equipment costs are increased. Further, when the concentration of the sludge in the circulating concentrated water is high, the permeation rate is extremely reduced, so that there is a disadvantage that high-concentration sludge cannot be obtained. By the way,
The flux (permeation) with respect to the concentration of sludge (ferric hydroxide sludge) when treated with an MF membrane (tubular) having a pore diameter of 0.2 μm at a membrane inlet pressure of 2 kg / cm 2 and a circulating water volume of 8.5 l / min. The change over time of the flux is as shown in FIG. From FIG. 4, it is clear that the permeation rate decreases with the increase in the sludge concentration, and the decrease is particularly remarkable when SS = 50,000 mg / l or more.

【0013】一方、のアルカリ汚泥法では、高濃度で
脱水性の良好な汚泥が得られるが、シックナーを必要と
し、装置設置面積を低減することができず、工業的に不
利である。
On the other hand, in the alkaline sludge method, sludge having a high concentration and good dehydration properties can be obtained, but a thickener is required, and the installation area of the apparatus cannot be reduced, which is industrially disadvantageous.

【0014】本発明は上記従来法の問題点を解決し、重
金属含有廃水の処理にあたり、シックナーを用いること
なく、MF膜により高い膜透過速度にて処理することに
より、脱水性の良好な高濃度汚泥を得ることを可能とす
る重金属含有廃水の処理方法を提供することを目的とす
る。
The present invention solves the above-mentioned problems of the conventional method. In the treatment of heavy metal-containing wastewater, the MF membrane is treated at a high membrane permeation rate without using a thickener, thereby providing a high-density and high-density dewatering property. An object of the present invention is to provide a method for treating heavy metal-containing wastewater, which makes it possible to obtain sludge.

【0015】[0015]

【課題を解決するための手段】本発明の重金属含有廃水
の処理方法は、重金属含有廃水にアルカリを添加して不
溶物を生成させた後、MF膜分離装置に供給し、該膜分
離装置で膜分離して処理水と濃縮液とに分離する重金属
含有廃水の処理方法において、前記不溶物を生成させた
液を循環槽を経て膜分離装置に供給し、該分離された濃
縮液を該循環槽に供給し、該循環槽内の液の一部を前記
アルカリと混合し、得られたアルカリ混合物(アルカリ
汚泥)を重金属含有水に添加することを特徴とする。
DISCLOSURE OF THE INVENTION The heavy metal-containing wastewater of the present invention
Is to add an alkali to the heavy metal-containing wastewater to generate insolubles, and then supply the wastewater to an MF membrane separation apparatus,
In the method for treating heavy metal-containing wastewater in which the treated water and the concentrated liquid are separated by membrane separation in a separation device , the insolubles are generated.
The liquid is supplied to the membrane separation device through the circulation tank, and the separated
The reduced solution was supplied to the circulation tank, a portion of the liquid of the circulating tank is mixed with the <br/> alkali, resulting alkaline mixture (alkaline
(Sludge) is added to the heavy metal-containing water.

【0016】以下に本発明を図面を参照して詳細に説明
する。第1図は本発明の実施の一例を示す系統図であ
る。
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a system diagram showing an embodiment of the present invention.

【0017】第1図において、1は原水(重金属含有
水)の導入管であり、中和層2に原水を導入する配管1
Aと循環槽3に原水を導入する配管1Bとに分岐してい
る。4は中和槽2内の液を循環槽に送給する配管であ
り、5は循環槽3内の液をMF膜6Aを有するMF膜分
離装置6に送給する配管である。7は処理水の排出管、
8は濃縮液の排出管、9は濃縮液を循環槽3へ送給する
配管である。10は循環槽3内の液を反応槽11に送給
する配管であり、12はアルカリを反応槽11に供給す
る配管である。13は反応槽11からアルカリが混合さ
れたアルカリ汚泥を中和槽2に送給する配管である。
In FIG. 1, reference numeral 1 denotes a pipe for introducing raw water (water containing heavy metals), and a pipe 1 for introducing raw water to the neutralization layer 2.
A and a pipe 1B for introducing raw water into the circulation tank 3. Reference numeral 4 denotes a pipe for supplying the liquid in the neutralization tank 2 to the circulation tank, and reference numeral 5 denotes a pipe for supplying the liquid in the circulation tank 3 to the MF membrane separation device 6 having the MF membrane 6A. 7 is a treated water discharge pipe,
Reference numeral 8 denotes a discharge pipe for the concentrate, and reference numeral 9 denotes a pipe for feeding the concentrate to the circulation tank 3. 10 is a pipe for supplying the liquid in the circulation tank 3 to the reaction tank 11, and 12 is a pipe for supplying alkali to the reaction tank 11. Reference numeral 13 denotes a pipe for feeding alkali sludge mixed with alkali from the reaction tank 11 to the neutralization tank 2.

【0018】本実施例において、導入管1からの原水は
一部が配管1Aより中和槽2へ、残部は配管1Bより循
環槽3に供給される。中和槽2では、原水は反応槽11
から配管13を経て供給されるアルカリ汚泥により中和
された後、配管4、循環槽3、配管5を経てMF膜分離
装置6に導入され、膜分離処理される。しかして、膜分
離処理の透過水は処理水として配管7より排出される。
一方、濃縮液は、その一部が配管8より排出され、残部
は循環槽3に循環される。この循環槽3内の液は、配管
10を経て反応槽11に返送され、含有される汚泥が配
管12より供給されるアルカリと混合される。このアル
カリ汚泥は配管13より中和槽2に送給される。
In the present embodiment, part of the raw water from the introduction pipe 1 is supplied to the neutralization tank 2 from the pipe 1A, and the remainder is supplied to the circulation tank 3 from the pipe 1B. In the neutralization tank 2, the raw water is supplied to the reaction tank 11
After being neutralized by alkaline sludge supplied through a pipe 13 from the MF membrane separator 6 through a pipe 4, a circulation tank 3, and a pipe 5, and subjected to a membrane separation treatment. Thus, the permeated water of the membrane separation treatment is discharged from the pipe 7 as treated water.
On the other hand, part of the concentrated liquid is discharged from the pipe 8, and the remaining part is circulated to the circulation tank 3. The liquid in the circulation tank 3 is returned to the reaction tank 11 via the pipe 10, and the contained sludge is mixed with the alkali supplied from the pipe 12. This alkaline sludge is fed from the pipe 13 to the neutralization tank 2.

【0019】中和槽2においては、アルカリ汚泥によ
り、原水中の重金属イオンが効果的に不溶化され、脱水
性に優れた改質汚泥が生成する。
In the neutralization tank 2, the heavy metal ions in the raw water are effectively insolubilized by the alkali sludge, and a modified sludge having excellent dehydration properties is produced.

【0020】ところで改質汚泥は十分に改質が進んだも
のでは、最大径5μm程度の粒子となる。このものは、
MF膜分離装置への液送給のための循環ポンプ(図示せ
ず)で破砕され粒径1μm以下の微細粒子となるものと
推定される。この微細粒子の一部はMF膜の細孔を塞閉
させ、膜透過速度を低下させるものと考えられるが、こ
れらの微細粒子に無機凝集剤を作用させて粗粒子化を行
なえば、この透過速度の低下を防止することができる。
そこで、本実施例では、塩化鉄、硫酸バンド等の無機凝
集剤を添加する代りに、濃縮液が循環される循環槽3
に、原水の一部を注入(以下これを「分注」と称する場
合がある。)し、原水に含まれる重金属イオンを無機凝
集剤として作用させている。このように、原水の分注を
行なうことにより、膜の透過速度を更に20〜50%向
上させることができる。
By the way, the reformed sludge which has been sufficiently reformed becomes particles having a maximum diameter of about 5 μm. This one is
It is presumed that the particles are crushed by a circulation pump (not shown) for feeding the liquid to the MF membrane separation device to become fine particles having a particle size of 1 μm or less. It is considered that some of these fine particles close the pores of the MF membrane and reduce the membrane permeation rate. However, if an inorganic coagulant is applied to these fine particles to make them coarse, A decrease in speed can be prevented.
Therefore, in this embodiment, instead of adding an inorganic coagulant such as an iron chloride or a sulfuric acid band, a circulating tank 3 in which a concentrated solution is circulated is used.
Then, a part of raw water is injected (hereinafter, this may be referred to as “dispensing”), and heavy metal ions contained in the raw water act as an inorganic coagulant. By dispensing raw water in this manner, the permeation rate of the membrane can be further improved by 20 to 50%.

【0021】なお、原水の分注量は少な過ぎると上記効
果が得られず、逆に、多過ぎると濾過性の悪い水酸化ゲ
ルの増加をきたし、循環水のpHが低くなるため、分注
量は導入原水量に対して2〜20%、特に5〜10%と
するのが好ましい。
If the amount of the raw water is too small, the above effect cannot be obtained. Conversely, if the amount is too large, the amount of hydroxide gel having poor filterability increases, and the pH of the circulating water becomes low. The amount is preferably 2 to 20%, particularly 5 to 10%, based on the amount of the introduced raw water.

【0022】このような方法において、反応槽11への
アルカリの添加量は、中和槽2のpHが8.0〜11.
0程度となる量であることが好ましい。また、MF膜分
離装置6から循環槽3への濃縮液循環量、循環槽3から
反応槽11への液返送量は、次のような割合とするのが
好ましい。 濃縮液循環量:原水量に対して20〜60倍 液返送量:原水量に対して0.5〜3.0% なお、本発明において、処理対象となる重金属含有廃水
としては、重金属イオンや、重金属とキレート剤との重
金属錯体等を含む廃水であり、例えばメッキ廃水、鋼板
の酸洗廃水などが挙げられる。重金属としては、銅、亜
鉛、ニッケル、カドミウム、マンガン、鉛、鉄等があ
る。一般に、重金属錯体を含む廃水は酸性のものが多い
が、本発明において、処理対象廃水のpHは4以下の酸
性廃水であり、pHの高い廃水においてはpHを一旦2
〜3に調整すればよい。
In such a method, the amount of alkali to be added to the reaction tank 11 is adjusted such that the pH of the neutralization tank 2 is 8.0 to 11.1.
The amount is preferably about 0. Further, the circulating amount of the concentrated liquid from the MF membrane separation device 6 to the circulation tank 3 and the liquid return amount from the circulation tank 3 to the reaction tank 11 are preferably set to the following ratios. Concentrated liquid circulation amount: 20 to 60 times the raw water amount Liquid return amount: 0.5 to 3.0% based on the raw water amount In the present invention, heavy metal-containing wastewater to be treated includes heavy metal ions and And wastewater containing a heavy metal complex of a heavy metal and a chelating agent, such as plating wastewater and pickling wastewater of a steel sheet. Heavy metals include copper, zinc, nickel, cadmium, manganese, lead, iron and the like. Generally, wastewater containing heavy metal complexes is often acidic, but in the present invention, the pH of wastewater to be treated is an acidic wastewater of 4 or less, and the pH of wastewater having a high pH is once reduced to 2 pH.
It may be adjusted to ~ 3.

【0023】また、これらの廃水に添加するアルカリと
しては、水酸化ナトリウム、消石灰等のアルカリ剤が挙
げられる。
As the alkali to be added to these wastewaters, there may be mentioned alkali agents such as sodium hydroxide and slaked lime.

【0024】本発明において、MF膜の材質としては特
に限定されず、その操作条件にも特に制限はない。MF
膜の孔径は処理効率、処理水質の向上の面から0.1〜
1μm程度とするのが好ましい。また、MF膜による膜
分離方式についても特に制限はなく、全量式、クロス・
フロー式のいずれでも良いが、膜分離装置への流入水の
濁質濃度が高い場合には、膜面に対して平行に原水を流
入させるクロス・フロー式とするのが好ましい。クロス
・フロー式によれば、濁質濃度の高い原水であっても膜
の目詰りを低減することができる。
In the present invention, the material of the MF membrane is not particularly limited, and the operating conditions are not particularly limited. MF
The pore size of the membrane is 0.1 to 0.1 from the viewpoint of improving treatment efficiency and treatment water quality.
The thickness is preferably about 1 μm. Also, there is no particular limitation on the membrane separation method using the MF membrane.
Any type of flow type may be used, but when the turbid concentration of the inflow water into the membrane separation device is high, it is preferable to use a cross flow type in which raw water flows in parallel to the membrane surface. According to the cross flow method, clogging of the membrane can be reduced even in raw water having a high turbid concentration.

【0025】なお、本発明の方法を実施する際、MF膜
分離装置への通水によりMF膜表面には不溶化物のケー
キ層が形成され、経時的に濾過速度が低下する。このた
め、一定時間毎に逆洗水槽(図示せず)から処理水を膜
の透過側からMF膜分離装置に返送して逆洗を行なうの
が好ましい。
When the method of the present invention is carried out, a cake layer of an insolubilized substance is formed on the surface of the MF membrane due to the passage of water through the MF membrane separation apparatus, and the filtration rate decreases with time. For this reason, it is preferable to perform the backwashing by returning the treated water from the backwash water tank (not shown) from the permeation side of the membrane to the MF membrane separation device at regular intervals.

【0026】[0026]

【作用】MF膜で分離された濃縮水を循環槽に供給し、
この循環槽内の液をアルカリと混合することにより、前
述のアルカリ汚泥法における場合と同様に、濃縮循環
中の汚泥表面にアルカリが吸着される。この汚泥表面に
吸着されたアルカリを重金属含有廃水に添加すると、廃
水中の金属イオンは、汚泥表面のアルカリと反応して単
分子水酸化物として汚泥表面に析出する。このものは、
濾過性に優れ、膜透過流束を低下させることがなく、透
過速度を高く維持することができる。
[Function] The concentrated water separated by the MF membrane is supplied to the circulation tank,
By mixing the liquid in the circulating tank with the alkali, the alkali is adsorbed on the sludge surface in the concentrated circulating water, as in the case of the alkali sludge method described above. When the alkali adsorbed on the sludge surface is added to the heavy metal-containing wastewater, metal ions in the wastewater react with the alkali on the sludge surface and precipitate on the sludge surface as monomolecular hydroxides. This one is
It has excellent filterability and can maintain a high permeation rate without lowering the membrane permeation flux.

【0027】[0027]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
The present invention will be described more specifically below with reference to examples and comparative examples.

【0028】実施例1〜3 第1図に示す本発明の方法に従って、下記水質の重金属
含有廃水の処理を行なった。原水水質 pH =1.7 Fe3+=500mg/l Cr3+=100g/l Ni =20g/l なお、中和槽容量は10リットル、循環槽容量は40リ
ットル、MF膜(チューブラー)の管径は5.5mm、
孔径は0.2μmとし、膜の入口圧は2kg/cm2
運転した。アルカリ汚泥反応槽(1リットル容量)のア
ルカリは中和槽に設置したpH計に連動して注入を行な
った。運転条件は、表1に示す通りであり、実施例1に
おいては原水の循環槽への分注を行なわず、実施例2,
3においては2リットル/hrの割合で分注を行なっ
た。
Examples 1 to 3 In accordance with the method of the present invention shown in FIG. 1, wastewater containing heavy metals having the following water quality was treated. Raw water quality pH = 1.7 Fe 3+ = 500 mg / l Cr 3+ = 100 g / l Ni = 20 g / l The capacity of the neutralization tank is 10 liters, the capacity of the circulation tank is 40 liters, and the MF membrane (tubular) The pipe diameter is 5.5mm,
The pore size was 0.2 μm, and the membrane was operated at an inlet pressure of 2 kg / cm 2 . The alkali in the alkali sludge reaction tank (1 liter capacity) was injected in conjunction with a pH meter installed in the neutralization tank. The operating conditions are as shown in Table 1. In Example 1, the raw water was not dispensed into the circulation tank.
In No. 3, dispensing was performed at a rate of 2 liter / hr.

【0029】MF膜分離装置の透過速度の経時変化を表
1に示す。
Table 1 shows the change over time in the transmission speed of the MF membrane separation device.

【0030】比較例1,2 第2図に示す方法により、表1に示す運転条件にて、実
施例1で処理したと同水質の原水について処理を行な
い、MF膜分離装置の透過速度の経時変化を表1に示し
た。
Comparative Examples 1 and 2 Raw water having the same water quality as that of Example 1 was treated under the operating conditions shown in Table 1 by the method shown in FIG. The changes are shown in Table 1.

【0031】[0031]

【表1】 [Table 1]

【0032】表1より明らかなように、本発明の方法に
よれば、膜分離装置の透過速度が従来の約2倍以上と、
大幅に向上し、汚泥濃度が高い割合でも、効率的に処理
を行なうことができる。
As is apparent from Table 1, according to the method of the present invention, the permeation speed of the membrane separation device is about twice or more of the conventional one,
The efficiency is greatly improved, and the treatment can be performed efficiently even at a high sludge concentration.

【0033】[0033]

【発明の効果】以上詳述した通り、本発明の重金属含有
廃水の処理方法によれば、装置設置面積の大きいシック
ナーを用いることなく、MF膜分離装置を用いて処理す
る方法において、透過速度を高く維持することができ
る。このため、膜の設置数を低減し、設備コストの低廉
化を図ることが可能とされる。また、汚泥濃度を高くす
ることも可能とされ、しかも脱水性の良好な汚泥を得る
ことができるため、後工程の汚泥脱水機への負荷を軽減
し、処理コストの低廉化、処理効率の向上を図ることが
できる。このようなことから、本発明によれば、重金属
含有廃水を、簡単な操作で、効率的に処理し、著しく水
質の高い高度処理水を、大量にかつ迅速に回収すること
ができる。
As described in detail above, according to the method for treating heavy metal-containing wastewater of the present invention, the permeation speed can be reduced by using a MF membrane separation apparatus without using a thickener having a large installation area. Can be kept high. For this reason, it is possible to reduce the number of membranes to be installed and to reduce the equipment cost. In addition, it is possible to increase the sludge concentration, and it is possible to obtain sludge with good dewatering properties, so that the load on the sludge dewatering machine in the subsequent process is reduced, processing costs are reduced, and processing efficiency is improved. Can be achieved. For this reason, according to the present invention, heavy metal-containing wastewater can be efficiently treated with a simple operation, and highly treated water with extremely high water quality can be recovered in a large amount and quickly.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1図は本発明の重金属含有廃水の処理方法の
一実施例を示す系統図である。
FIG. 1 is a system diagram showing one embodiment of a method for treating heavy metal-containing wastewater of the present invention.

【図2】第2図は従来例を示す系統図である。FIG. 2 is a system diagram showing a conventional example.

【図3】第3図は従来例を示す系統図である。FIG. 3 is a system diagram showing a conventional example.

【図4】第4図はSS濃度に対するMF膜のフラックス
の経時変化を示すグラフである。
FIG. 4 is a graph showing the change over time of the flux of the MF film with respect to the SS concentration.

【符号の説明】[Explanation of symbols]

2 中和槽 3 循環槽 6 MF膜分離装置 11 反応槽 2 Neutralization tank 3 Circulation tank 6 MF membrane separation device 11 Reaction tank

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C02F 9/00 504 C02F 9/00 504B (58)調査した分野(Int.Cl.7,DB名) C02F 1/62,1/44,9/02 B01D 61/14 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 identification symbol FI C02F 9/00 504 C02F 9/00 504B (58) Fields investigated (Int. Cl. 7 , DB name) C02F 1 / 62,1 / 44,9 / 02 B01D 61/14

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重金属含有廃水にアルカリを添加して不
溶物を生成させた後、精密濾過膜分離装置に供給し、該
膜分離装置で膜分離して、処理水と濃縮液とに分離する
重金属含有廃水の処理方法において、前記不溶物を生成させた液を循環槽を経て膜分離装置に
供給し、 該分離された濃縮液を該循環槽に供給し、 該循環槽内の 液の一部を前記アルカリと混合し、得られ
アルカリ混合物を重金属含有水に添加することを特徴
とする重金属含有廃水の処理方法。
An alkali is added to a heavy metal-containing wastewater to
After generating the solution, a microfiltration membraneTo the separation device,
Membrane separation deviceSeparation into treated water and concentrated liquid by membrane separation
In the method for treating heavy metal-containing wastewater,The liquid in which the insolubles are generated is passed through a circulation tank to a membrane separation device.
Supply, Supplying the separated concentrate to the circulation tank, In the circulation tank Part of the liquidSaidMixed with alkali and obtained
WasalkaliCharacterized by adding the mixture to heavy metal-containing water
Heavy metal-containing wastewater treatment method.
JP03164424A 1991-07-04 1991-07-04 Treatment method for wastewater containing heavy metals Expired - Lifetime JP3111508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03164424A JP3111508B2 (en) 1991-07-04 1991-07-04 Treatment method for wastewater containing heavy metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03164424A JP3111508B2 (en) 1991-07-04 1991-07-04 Treatment method for wastewater containing heavy metals

Publications (2)

Publication Number Publication Date
JPH057880A JPH057880A (en) 1993-01-19
JP3111508B2 true JP3111508B2 (en) 2000-11-27

Family

ID=15792892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03164424A Expired - Lifetime JP3111508B2 (en) 1991-07-04 1991-07-04 Treatment method for wastewater containing heavy metals

Country Status (1)

Country Link
JP (1) JP3111508B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013244456A (en) * 2012-05-25 2013-12-09 Mitsubishi Rayon Co Ltd Wastewater treatment method
JPWO2012098924A1 (en) * 2011-01-20 2014-06-09 三菱レイヨン株式会社 Waste water treatment apparatus, treatment method, and waste water treatment system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4457458B2 (en) * 2000-03-29 2010-04-28 栗田工業株式会社 Water treatment equipment
DE10255994A1 (en) 2002-11-30 2004-06-09 Sms Demag Ag Method and device for hot-dip coating a metal strand
JP4482488B2 (en) * 2005-05-20 2010-06-16 オルガノ株式会社 Method and apparatus for treating inorganic wastewater
JP7259620B2 (en) * 2019-07-27 2023-04-18 三菱マテリアル株式会社 Method for treating lead-containing outside water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012098924A1 (en) * 2011-01-20 2014-06-09 三菱レイヨン株式会社 Waste water treatment apparatus, treatment method, and waste water treatment system
JP2013244456A (en) * 2012-05-25 2013-12-09 Mitsubishi Rayon Co Ltd Wastewater treatment method

Also Published As

Publication number Publication date
JPH057880A (en) 1993-01-19

Similar Documents

Publication Publication Date Title
US6582605B2 (en) Method of treating industrial waste waters
JP3909793B2 (en) Method and apparatus for treating organic wastewater containing high-concentration salts
US4014787A (en) Wastewater treatment
JP3870712B2 (en) Circulating cooling water treatment method and treatment apparatus
CN109019959A (en) A kind of processing unit of strong complex state heavy metal wastewater thereby and its discharge and reuse technology
JP3903746B2 (en) Circulating cooling water treatment method
JPH0714512B2 (en) Treatment method of wastewater containing heavy metals
JP3111508B2 (en) Treatment method for wastewater containing heavy metals
JP3409322B2 (en) Pure water production method
Thiruvenkatachari et al. Flocculation—cross-flow microfiltration hybrid system for natural organic matter (NOM) removal using hematite as a flocculent
JP2830164B2 (en) Wastewater treatment method
JP3325689B2 (en) Treatment method for metal-containing wastewater
JPH10180008A (en) Membrane separation device
JP3303332B2 (en) Treatment method for wastewater containing heavy metals
JPH057881A (en) Treatment of waste water containing heavy metal
JP4576760B2 (en) Circulating cooling water treatment method
JP2006263553A (en) Method for treating anionic organic material-containing waste water
JP5693992B2 (en) Method for recovering dissolved iron from wastewater containing various metal ions
JP3829364B2 (en) Wastewater aggregation treatment method
JP3412641B2 (en) Coagulation treatment of low turbidity wastewater from power plants
JP3186094B2 (en) Treatment method for wastewater containing heavy metals
JP3630126B2 (en) Method of treating water containing fluorine and manganese ions
JP4482488B2 (en) Method and apparatus for treating inorganic wastewater
JP4061671B2 (en) Thermal power plant wastewater treatment method
JPH0632834B2 (en) Organic wastewater treatment method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 11