WO2012098924A1 - Wastewater treatment apparatus, wastewater treatment method, and wastewater treatment system - Google Patents

Wastewater treatment apparatus, wastewater treatment method, and wastewater treatment system Download PDF

Info

Publication number
WO2012098924A1
WO2012098924A1 PCT/JP2012/050014 JP2012050014W WO2012098924A1 WO 2012098924 A1 WO2012098924 A1 WO 2012098924A1 JP 2012050014 W JP2012050014 W JP 2012050014W WO 2012098924 A1 WO2012098924 A1 WO 2012098924A1
Authority
WO
WIPO (PCT)
Prior art keywords
wastewater
treatment
membrane separation
membrane
oxidation
Prior art date
Application number
PCT/JP2012/050014
Other languages
French (fr)
Japanese (ja)
Inventor
朋樹 川岸
哲也 大城
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to JP2012505914A priority Critical patent/JP6331186B2/en
Publication of WO2012098924A1 publication Critical patent/WO2012098924A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/16Nature of the water, waste water, sewage or sludge to be treated from metallurgical processes, i.e. from the production, refining or treatment of metals, e.g. galvanic wastes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/04Oxidation reduction potential [ORP]

Definitions

  • the present invention relates to a wastewater treatment apparatus, a treatment method, and a wastewater treatment system for treating wastewater containing heavy metals.
  • the following methods are generally used.
  • the waste water W 0 once stored in the storage tank 11 is insolubilized in the insolubilization tank 31.
  • an insolubilizing agent such as a hydroxylating agent (alkaline agent) or a sulfiding agent is added to the waste water, and the heavy metal is made into an insolubilized material such as a hydroxide or sulfide that is hardly soluble in water.
  • an insoluble material such as an inorganic flocculant (such as polyaluminum chloride (PAC)) or a polymer flocculant is added to the wastewater insolubilized in the agglomeration tank 71. Agglomerate.
  • the insolubilized material agglomerated in the precipitation tank 61 is settled and separated, and the supernatant liquid W 4 is filtered with a filter 45 such as a sand filter as necessary, and the filtered water W 1 is further passed to the pH adjustment tank 51. neutralized discharged as treated water W 3 from Te.
  • a filter 45 such as a sand filter
  • Electroless plating such as electroless nickel plating has been widely performed.
  • Electroless plating is characterized by using a reducing agent, and deposits a metal using the electrons of the reducing agent. According to this method, it is possible to plate even a non-conductive substance.
  • the plating solution contains a compound (for example, a chelating agent) that forms a metal complex by coordination with heavy metal.
  • a compound for example, a chelating agent
  • an insolubilizing treatment is performed by adding an insolubilizing agent to the wastewater.
  • the waste water contains a compound that forms a metal complex such as a chelating agent (hereinafter sometimes referred to as “complex-forming compound”)
  • complex-forming compound a compound that forms a metal complex such as a chelating agent
  • heavy metals such as nickel form a metal complex with the complex-forming compound, and the waste water Dissolve in.
  • this metal complex leaks without being filtered with a filter, it is thought that processing efficiency falls.
  • acidic zinc plating it is considered that the treatment efficiency is lowered because a large amount of ammonia is contained in the bath and the heavy metal forms ammonia and an ammine complex.
  • an insolubilizing agent is generated by adding an insolubilizing agent to the wastewater, and then supplied to a membrane separation device.
  • a separation method has been proposed (see, for example, Patent Documents 1 and 2).
  • a method of removing multiple trace components such as iron, manganese, silica, and fluorine in the wastewater at once, after adding aluminum sulfate (flocculant) and oxidizing agent to the wastewater stored in the treatment tank There has been reported a method of membrane filtration of solid matter produced by a separation membrane filter soaked in (see, for example, Patent Document 3).
  • metal surface cleaning process In the plating processing industry and the metal surface treatment industry, a process for cleaning the metal surface to be processed (metal surface cleaning process) is always provided.
  • This metal surface cleaning process includes a rinsing process for cleaning the surface with pure water or the like, and an oil cleaning process for cleaning the surface oil with water containing a cleaning component.
  • wastewater discharged from the plating processing industry and the metal surface treatment industry is treated by conventional techniques (coagulation or sand filtration), if this treated water is reused in the metal surface cleaning process, the following problems occur. Arise. (1) The SS component and the unreacted flocculant remain only by sand filtration, and these adhere to the product to be processed. (2) Since metal ions have not been sufficiently removed, metal components adhere to the workpiece.
  • the present invention has been made in view of the above circumstances, and wastewater containing a compound that forms a heavy metal and a metal complex can be treated to a high degree without adding a flocculant, and the concentration of heavy metal can be sufficiently reduced.
  • a treatment device, a treatment method, and a wastewater treatment system are provided.
  • the wastewater treatment apparatus of the present invention is an apparatus for treating wastewater containing at least a heavy metal and a compound that forms a metal complex by coordination with the heavy metal, and oxidizes the compound that forms the metal complex in the wastewater.
  • the oxidation treatment step includes a means for adding at least one oxidizing agent selected from the group consisting of hypochlorous acid, chlorous acid, perchloric acid, and salts thereof. Furthermore, it is preferable that the oxidation treatment means includes a pH adjustment means for adjusting the pH of the wastewater.
  • the wastewater treatment method of the present invention is a method for treating wastewater containing at least a heavy metal and a compound that forms a metal complex by coordination with the heavy metal, the compound forming the metal complex in the wastewater. And an insolubilization treatment step for insolubilizing heavy metals in the oxidized wastewater, and a membrane separation step for membrane separation of the insolubilized wastewater. Furthermore, it is preferable to have a sedimentation separation step for separating and separating heavy metals in the wastewater that has been insolubilized between the insolubilization treatment step and the membrane separation step.
  • the oxidation treatment step is preferably performed by adding at least one oxidizing agent selected from the group consisting of hypochlorous acid, chlorous acid, perchloric acid, and salts thereof.
  • an oxidizing agent is added after adjusting the pH of the wastewater to 4 or more and 8 or less. Furthermore, it is preferable to detect the end point of the addition of the oxidizing agent to the wastewater by the redox potential.
  • the waste water treatment system of the present invention is characterized in that the treated water treated by the treatment apparatus of the present invention is reused in a metal surface cleaning step of plating or metal surface treatment.
  • wastewater containing a compound that forms a heavy metal and a metal complex can be treated at a high level without adding a flocculant, and the heavy metal concentration can be sufficiently reduced.
  • the treated water obtained by the wastewater treatment apparatus and treatment method of the present invention has a very low metal content.
  • a flocculant is not used for wastewater treatment, the outflow of unreacted aggregates is not mixed into the treated water. Therefore, according to the wastewater treatment system of the present invention, the treated water treated by using the treatment apparatus and the treatment method of the present invention is circulated to the metal surface cleaning process that is a wastewater generation source, thereby affecting the product to be processed.
  • the treated water can be used effectively without giving water.
  • FIG. 1 is a schematic configuration diagram showing an example of a wastewater treatment apparatus of the present invention.
  • the wastewater treatment apparatus 1 in this example includes, in order from the upstream side, a storage unit 10 that temporarily stores wastewater W 0 , an oxidation treatment unit 20, an insolubilization treatment unit 30, a membrane separation unit 40, and a pH adjustment unit 50. It comprises. 2 to 4, the same components as those in FIG. 1 are denoted by the same reference numerals, and the description thereof may be omitted.
  • the waste water W 0 to be treated in the present invention is, for example, a waste liquid (treated water) generated from a metal surface treatment factory such as a plating factory, and forms a metal complex by coordination with heavy metals and the heavy metals.
  • Compounds hereinafter referred to as “complex-forming compounds”.
  • heavy metals include chromium, copper, zinc, cadmium, nickel, mercury, lead, iron, and manganese. These heavy metals may be contained alone, but are usually contained in a state where a plurality of heavy metals are mixed.
  • the complex-forming compound is a compound that forms a metal complex centered on a heavy metal atom by coordination with any of the heavy metals.
  • complex forming compounds include acidic cleaning ingredients such as citric acid, gluconic acid, oxalic acid, tartaric acid, succinic acid, cyanide and salts thereof; EDTA, ethylenediamine, triethanolamine, and ammonia (including ammonium salts), etc. And amines.
  • acidic cleaning ingredients such as citric acid, gluconic acid, oxalic acid, tartaric acid, succinic acid, cyanide and salts thereof
  • EDTA ethylenediamine, triethanolamine, and ammonia (including ammonium salts), etc.
  • ammonia including ammonium salts
  • the waste water W 0 may contain a surfactant, a Lewis acid other than the complex forming compound, and the like as a cleaning component and a pH adjusting component.
  • the storage means 10 is a means for temporarily storing waste water W 0 generated from a metal surface treatment factory or the like.
  • the storage means 10 includes a storage tank 11.
  • the storage tank 11 is not particularly limited as long as it can store the waste water W 0.
  • Oxidation means 20 is a means for oxidizing the complex forming compound in the waste water W 0.
  • the oxidation treatment means 20 in this example includes an oxidation tank 21 that stores the waste water W 0 sent from the storage means 10, an oxidant addition means 22 that adds an oxidant to the waste water W 0 in the oxidation tank 21, and an oxidation tank 21. It comprises a water gauge 23 for inspecting the quality of waste water W 0 in, and a stirring blade 24 for stirring the waste water W 0 in the oxidation vessel 21.
  • the oxidizing agent adding means is not particularly limited as long as it can add an oxidizing agent, and specific examples thereof include an electromagnetic metering pump, a diaphragm pump, and a magnet pump. Among these pumps, an electromagnetic metering pump is more preferable.
  • These pump wetted parts are made of chemical-resistant materials. Specific examples of materials having chemical resistance include PVC (vinyl chloride), PVDF (polyvinylidene fluoride), PTFE (polytetrafluoroethylene), ABS, PS (polystyrene), PE (polyethylene), PP (polypropylene), For example, ceramic.
  • the oxidation tank 21 is not particularly limited as long as it can store the wastewater W 0 , but is preferably made of a material that is not easily deteriorated by the oxidizing agent.
  • the oxidizing agent adding means 22 is not particularly limited as long as an oxidizing agent can be added.
  • the water quality meter 23 inspects the water quality of the waste water W 0 in the oxidation tank 21. By examining the water quality, it is possible to grasp the excess and deficiency of the added amount of the oxidant, and in particular, it is effective for suppressing the excessive addition of the oxidant.
  • Examples of the water quality meter 23 include an oxidation-reduction potentiometer and an oxidant concentration meter.
  • a densitometer for measuring the concentration of the complex-forming compound instead of or in combination with these electrometers and densitometers. However, the densitometer for measuring the concentration of the complex-forming compound is used when treating the waste water W 0 containing the complex-forming compound capable of measuring the concentration such as ammonia.
  • the oxidation treatment means 20 of this example is provided with one water quality meter 23, it may be provided with a plurality of types of water quality meters according to the water quality inspection method.
  • an oxidation-reduction potentiometer is generally used as a specific means of the water quality meter.
  • the oxidizing agent include at least one oxidizing agent selected from the group consisting of hypochlorous acid, chlorous acid, perchloric acid, and salts thereof.
  • the oxidation treatment means 20 may include a pH adjustment means for adjusting the pH of the waste water.
  • the pH adjusting means the same means as the pH adjusting means 50 described later can be adopted.
  • the pH of the waste water in the oxidation treatment means 20 is preferably 4 to 8, and more preferably 4 to 6. Thereby, the oxidizing power by an oxidizing agent can be improved without generating chlorine gas.
  • the insolubilization treatment means 30 is a means for insolubilizing heavy metals in the waste water W 0 oxidized by the oxidation treatment means 20.
  • the insolubilization means that heavy metal ions that are liberated in the waste water W 0 are precipitated by using a hardly soluble compound (insolubilized product).
  • the insolubilized material means a material having a very low solubility, such as a hydroxide or a sulfide.
  • the insolubilization treatment means 30 of this example includes an insolubilization tank 31 for storing the waste water W 0 sent from the oxidation treatment means 20, an insolubilization agent addition means 32 for adding an insolubilization agent to the waste water W 0 in the insolubilization tank 31, and an insolubilization tank. It comprises a water meter 33 for checking the quality of waste water W 0 in the 31, and a stirring blade 34 for stirring the waste water W 0 in the insolubilized tank 31.
  • the insolubilizing tank 31 is not particularly limited as long as it can store the wastewater W 0 , but is preferably made of a material that is not easily deteriorated by the insolubilizing agent.
  • materials that are not easily deteriorated by the insolubilizer include stainless steel, FRP, PVC (vinyl chloride), PVDF (polyvinylidene fluoride), PTFE (polytetrafluoroethylene), ABS, PS (polystyrene), and PE (polyethylene). ), PP (polypropylene), and ceramic.
  • a storage tank, an insolubilizing agent addition means, a stirrer and a pH meter are used.
  • the insolubilizing agent adding means 32 is not particularly limited as long as an insolubilizing agent can be added.
  • an insolubilizing agent can be added.
  • a sodium hydroxide solution storage tank having chemical resistance, an electromagnetic metering pump having a chemical resistance, a diaphragm pump, a magnet pump, etc. Is used.
  • a sodium sulfide solution storage tank having chemical resistance and an electromagnetic metering pump, diaphragm pump, or magnet pump having chemical resistance are used.
  • the water quality meter 33 inspects the water quality of the waste water W 0 in the insolubilization tank 31. By examining the water quality, it is possible to grasp the excess or deficiency of the amount of the insolubilizing agent added, and it is particularly effective for suppressing the excessive addition of the insolubilizing agent.
  • Examples of the water quality meter 33 include a pH meter.
  • the insolubilization processing means 30 of this example includes one water quality meter 33, a plurality of types of water quality meters may be provided depending on the water quality inspection method.
  • the membrane separation unit 40 is a unit that separates the waste water W 0 insolubilized by the insolubilization unit 30 into filtered water W 1 and membrane separation concentrated water W 2 .
  • the membrane separation means 40 in this example is a system in which pressure is applied by a pressure pump P1, and includes a filtration membrane 41.
  • the filtration membrane 41 include a hollow fiber membrane, a flat membrane, a tubular membrane, and a monolith type membrane. A hollow fiber membrane is preferable because of its high volume filling rate.
  • a hollow fiber membrane When a hollow fiber membrane is used as the filtration membrane 41, examples of the material include cellulose, polyolefin, polysulfone, polyvinylidene fluoride difluoride (PVDF), and polytetrafluoroethylene (PTFE). Among the materials described above, polyvinylidene fluoride difluoride (PVDF) and polytetrafluoroethylene (PTFE) are preferable as the material for the hollow fiber membrane. When a monolithic membrane is used as the filtration membrane 41, a ceramic membrane can be used.
  • a hollow fiber membrane element made of polyvinylidene difluoride is immersed in a water tank for membrane separation, and the secondary side (filtered water side) of the membrane element is connected to a filtration pump. Is used.
  • a device provided with aeration means for cleaning the membrane surface is used below the membrane element.
  • the average pore diameter of the micropores formed in the filtration membrane 41 is generally 0.001 to 0.1 ⁇ m for a membrane called an ultrafiltration membrane, and 0.1 to 1 ⁇ m for an average pore size for a membrane commonly called a microfiltration membrane. In the present invention, these films are preferably used. Since the particle diameter of the insolubilized material generated by insolubilizing heavy metal is generally 0.1 to 100 ⁇ m, the average pore diameter of the fine pores of the filtration membrane 41 is preferably 0.03 ⁇ m or more. . When the average pore diameter is less than 0.03 ⁇ m, the pressure required for membrane separation increases, and the operating energy becomes excessive. The average pore diameter of the fine pores of the filtration membrane 41 is more preferably 0.1 ⁇ m or more.
  • the average pore diameter of the fine pores of the filtration membrane 41 is preferably 3 ⁇ m or less.
  • the average pore diameter of the fine pores of the filtration membrane 41 is more preferably 10 ⁇ m or less.
  • the membrane separation means 40 separates the waste water W 0 into filtered water W 1 from which insolubilized substances have been removed and membrane separation concentrated water W 2 from which insoluble substances have been concentrated. Filtered water W 1 is transferred to a pH adjustment means which will be described later, is pH adjusted. On the other hand, membrane separation concentrated water W 2 is typically dehydrated by the dehydration means (not shown), it is treated as industrial wastes such as dehydrated cake.
  • the pH adjusting unit 50 is a unit that adjusts the pH of the filtered water W 1 membrane-separated by the membrane separating unit 40 to a pH suitable for discharge into a river or the like.
  • the pH-adjusted filtered water W 1 is treated. It is discharged as water W 3.
  • the film since the sufficiently remove the insolubles by separation means 40, heavy metals and neutralize the pH of the filtered water W 1 there is no fear of remelting.
  • the pH adjusting means 50 includes a pH adjusting tank 51, a pH meter (not shown), an acid addition device, and an alkali addition device (both not shown).
  • the pH adjusting tank 51 is not particularly limited as long as it can store the filtered water W 1.
  • the material of the pH adjusting tank 51 is stainless steel, FRP, PVC (vinyl chloride), PVDF (polyvinylidene fluoride), PTFE (polytetrafluoroethylene), ABS, PS (polystyrene), PE (polyethylene), Examples include PP (polypropylene) and ceramic.
  • the pH meter, the acid addition device, and the alkali addition device are not particularly limited as long as they are used for pH adjustment.
  • a storage tank As specific means of the pH adjusting means, a storage tank, an acid addition means, an alkali addition means, a stirrer, and a pH meter are used.
  • a chemical storage tank having chemical resistance and an electromagnetic metering pump, diaphragm pump, or magnet pump having chemical resistance are used.
  • alkali addition device alkali addition means
  • a chemical storage tank having chemical resistance and an electromagnetic metering pump, diaphragm pump, or magnet pump having chemical resistance are used.
  • the wastewater treatment apparatus 1 of the present invention can oxidize the complex-forming compound in the wastewater W 0 by the oxidation treatment means 20, the heavy metal produced by the insolubilization treatment means 30 can be insolubilized without adding a flocculant.
  • the particle diameter of the product can be increased. Therefore, the filtration membrane 41 of the downstream membrane separation means 40 is less likely to be blocked by the insolubilized material, and the membrane separation means 40 can be stably operated over a long period of time.
  • Processing apparatus 1 of the waste water of the present invention suitable for is a device for processing waste water W 0 containing heavy metals and complexing compounds, in particular process waste water discharged from an electroless plating process such as electroless nickel plating It is.
  • the wastewater treatment apparatus of the present invention is not limited to the treatment apparatus 1 shown in FIG.
  • the processing apparatus 1 of FIG. 1 is provided with the pH adjustment unit 50
  • pH of the filtered water W 1 is as long as pH suitable for discharge into rivers or the like, may not include the pH adjustment unit 50 .
  • the oxidation treatment means 20 when a chlorine-based oxidant is added from the oxidant addition means 22, an odor component such as chlorine gas or chloramine due to ammonia oxidation may be generated. Therefore, it is desirable to appropriately install gas recovery means according to the generated concentration.
  • the gas recovery means include a scrubber or an activated carbon gas purification device.
  • the processing apparatus 1 of FIG. 1 includes the full-volume type membrane separation means 40, but may be a cross-flow type membrane separation means 40 as shown in FIG. 2.
  • a part of the membrane separation concentrated water W 2 separated by the membrane separation means 40 is returned to the insolubilization tank 31 of the insolubilization treatment means 30 in the previous stage.
  • a part of the concentrated water W 2 may be returned to the oxidation tank 21 of the oxidation treatment tank 20 or the storage tank 11 of the storage means 10.
  • the membrane separation means 40 provided in the wastewater treatment apparatuses 1 and 2 shown in FIGS. 1 and 2 are both pressurized, but the membrane separation means 40 may be an immersion type as shown in FIG.
  • Membrane separation means 40 of the processor 3 of waste water shown in Figure 3 a membrane separation tank 42 for storing the waste water W 0 sent from the insolubilization treatment unit 30, the membrane module 43 provided in the membrane separation tank 42, membrane And an aeration means 44 for cleaning.
  • a suction pump P ⁇ b> 2 is connected to the membrane module 43, and a blower B is connected to the air diffuser 44.
  • Examples of the membrane module 43 include a normal membrane module used for a separation operation such as water treatment.
  • filtered water W 1 and the membrane separation concentrated water W waste water W 0 by suction filtration through pores of the filtration membrane of the waste water W 0 of the membrane in the separation tank 42 by the suction pump P2 membrane module 43 2 and separated.
  • the air diffuser 44 is provided below the membrane module 43 and discharges the air supplied from the blower B into the membrane separation tank 42.
  • the filtration membrane is washed.
  • a part of the membrane separation concentrated water W 2 separated by the membrane separation means 40 may be returned to the insolubilization tank 31, the oxidation tank 21, and the storage tank 11.
  • the wastewater treatment apparatus of the present invention removes heavy metals in wastewater W 0 insolubilized by the insolubilization treatment means 30 between the insolubilization treatment means 30 and the membrane separation means 40. It is preferable to provide sedimentation separation means 60 for sedimentation separation.
  • the sedimentation separation means 60 of the wastewater treatment apparatus 4 shown in FIG. 4 includes a sedimentation tank 61 that accumulates the wastewater W 0 sent from the insolubilization treatment means 30.
  • the structure of the precipitation tank 61 is not particularly limited, and an effective surface area may be increased by installing an inclined plate inside the precipitation tank 61. Moreover, what is necessary is just to set suitably about the volume of the sedimentation tank 61 according to the solid content density
  • the waste water W 0 is separated into the supernatant liquid W 4 and the precipitated concentrated water W 5 by the sedimentation separation means 60.
  • the supernatant liquid W 4 is transferred to the subsequent membrane separation means 40 and further membrane-separated into filtrate water W 1 and membrane separation concentrated water W 2 .
  • the supernatant W 4 contains fine heavy metal insolubilized material that has not been completely settled and removed by the sedimentation separation means 60, but the fine insolubilized material is removed by the membrane separation means 40.
  • precipitated the concentrate W 5 is usually dehydrated by the dehydration means (not shown), it is treated as industrial wastes such as dehydrated cake.
  • the sedimentation separation means 60 is provided between the insolubilization treatment means 30 and the membrane separation means 40 as in the wastewater treatment apparatus 4 shown in FIG. 4, it is insolubilized before the membrane separation by the membrane separation means 40.
  • the majority of heavy metals in waste water W 0 can be removed from the waste water W 0. Accordingly, since the amount of particles removed by the membrane separation means 40 is reduced, the burden on the membrane separation means 40 is reduced, and a more stable filtration operation can be continued.
  • the wastewater treatment apparatus 4 shown in FIG. 4 includes the same membrane separation means 40 as the treatment apparatus 1 shown in FIG. 1, but the membrane separation means 40 of the treatment apparatuses 2 and 3 shown in FIGS. May be the same.
  • the wastewater treatment apparatus of the present invention can treat wastewater to a high degree even without a coagulation means for adding a flocculant to the wastewater to coagulate the insolubilized material, and can sufficiently reduce the heavy metal concentration.
  • aggregating means may be provided.
  • the target treated water quality is 0.1 mg / L or less for nickel, for example.
  • the installation location is between the insolubilization processing means and the membrane separation means, and in the case where the sedimentation separation means is provided, between the insolubilization processing means and the sedimentation separation means.
  • the aggregating means include a method of adding an inorganic aggregating agent such as polyaluminum chloride or a polymer aggregating agent.
  • the wastewater treatment method of the present invention includes an oxidation treatment step for oxidizing a complex-forming compound in wastewater, an insolubilization treatment step for insolubilizing heavy metals in the oxidized wastewater, and membrane separation for membrane separation of the insoluble wastewater. Process.
  • an example of the wastewater treatment method of the present invention will be specifically described using the wastewater treatment apparatus 1 shown in FIG.
  • the waste water W 0 is temporarily stored in the storage tank 11 of the storage means 10.
  • the waste water W 0 stored in the storage tank 11 is transferred to the oxidation tank 21 of the oxidation treatment means 20, and an oxidizing agent is added to oxidize the complex-forming compound in the waste water W 0 .
  • Examples of the oxidizing agent used in the oxidation treatment step include hypochlorous acid, chlorous acid, perchloric acid or a salt thereof, and hydrogen peroxide.
  • hypochlorous acid, chlorous acid, perchloric acid or a salt thereof, or a mixed solution thereof is preferable, and a sodium hypochlorite solution is particularly preferable from the viewpoints of handleability and availability. If hypochlorous acid, chlorous acid, perchloric acid or a salt thereof, or a mixed solution thereof is used as an oxidizing agent, the oxidation reaction easily proceeds quickly, and the overall processing speed can be increased.
  • the particle size of the heavy metal insolubilized product produced in the insolubilizing treatment step tends to increase.
  • the particle size of the insolubilized material is larger, it is possible to suppress clogging of the pores of the filtration membrane in the membrane separation step described later, and the membrane flux can be maintained high.
  • the waste water W 0 is waste water containing nickel as a heavy metal such as electroless nickel plating waste water, dissolved nickel ions are converted into nickel oxyhydroxide (NiO (OH) by adding an oxidizing agent such as sodium hypochlorite. )) Oxidized.
  • nickel oxyhydroxide generally has a lower solubility than nickel hydroxide (Ni (OH) 2 )
  • sodium hypochlorite or a solution thereof is an oxidizing agent when performing advanced wastewater treatment. Is particularly preferred.
  • the addition of the oxidizing agent to the waste water W 0 is a purpose to be oxidizing the complex forming compound contained in the wastewater W 0, adding an excess oxidizing agent becomes excessive consumption of chemicals. Moreover, when an oxidizing agent is added excessively, there exists a possibility that the filtration membrane used at the membrane separation process mentioned later may be oxidized with the remaining oxidizing agent. In addition, when an oxidizing agent is excessively added, the amount of sludge that is finally generated tends to increase. From the above, when the oxidation treatment process that all oxidized complex forming compound contained in the wastewater W 0, it is desirable to stop the addition of the oxidizing agent to the waste water W 0, to control the excessive addition Good. Examples of the method for detecting the end point of the addition of the oxidizing agent include a method of monitoring the oxidation-reduction potential using the water quality meter 23, monitoring the oxidizing agent concentration, or monitoring the concentration of the complex-forming compound.
  • the complex-forming compound capable of being oxidized and decomposed in the wastewater W 0 when the oxidation-reduction potential increases can be easily determined to be all oxidized, and the addition of the oxidizing agent may be stopped at this point.
  • the complex-forming compound in the waste water W 0 is a substance that can be monitored by a water quality meter such as ammonia, the substance is continuously monitored, and the addition of the oxidizing agent is stopped when the concentration of the complex-forming compound is sufficiently reduced do it.
  • the oxidation-reduction potential meter used as the water quality meter 23 is preferably monitored by the oxidation-reduction potential because it is easy to use.
  • the redox potential can be monitored continuously (continuous measurement), while the oxidant and complexing compound concentrations can be monitored batchwise (samples taken at regular intervals). Therefore, the oxidation-reduction potential monitoring can detect the oxidant addition end point more instantaneously than other methods.
  • the following is preferable. That is, it is preferable to measure in advance the oxidation-reduction potential at the timing when the oxidant concentration increases (the addition of oxidant becomes excessive). Thereby, since the value of the oxidation-reduction potential measured in advance can be used as a criterion, it is possible to more easily determine the timing of stopping the addition of the oxidizing agent.
  • the addition amount of the oxidizing agent is insufficient in the monitoring of the oxidation-reduction potential or the monitoring of the oxidizing agent concentration.
  • the amount of oxidant necessary to oxidize all the complex-forming compounds is predicted from the concentration of the complex-forming compounds in the wastewater W 0 , and a larger amount of oxidant than the predicted amount is required. Added. Then, if it is determined that the oxidizing agent is excessive by monitoring the oxidation-reduction potential or monitoring the oxidizing agent concentration, the addition of the oxidizing agent may be stopped or the addition amount may be reduced.
  • the oxidation treatment process may include a pH adjustment process for adjusting the pH of the wastewater.
  • the pH adjusting means the same means as in the pH adjusting step described later can be adopted.
  • the pH of the waste water in the oxidation treatment step is preferably 4 to 8, and more preferably 4 to 6. Thereby, the oxidizing power by an oxidizing agent can be improved without generating chlorine gas.
  • the oxidized waste water W 0 is transferred to the insolubilization tank 31 of the insolubilization treatment means 30, and an insolubilizing agent is added to insolubilize heavy metals in the waste water W 0 .
  • an insolubilizing agent is added to insolubilize heavy metals in the waste water W 0 .
  • the insolubilization method there are a hydroxide method using a hydroxylating agent and a sulfide method using a sulfiding agent.
  • hydrogen sulfide may be generated, and therefore the hydroxide method is preferable as the insolubilization treatment.
  • the hydroxide method is a method in which a hydroxylating agent (hydroxide ion) and a target metal are reacted and precipitated as a metal hydroxide having low solubility.
  • a hydroxylating agent hydrooxide ion
  • a target metal reacted and precipitated as a metal hydroxide having low solubility.
  • the hydroxylating agent sodium hydroxide, sodium carbonate, calcium hydroxide, magnesium hydroxide and the like are used. Sodium hydroxide is more preferable because sludge generation is reduced.
  • the sulfide method is a method in which a sulfiding agent (sulfide ion) and a target metal are reacted and precipitated as a metal sulfide having low solubility.
  • a sulfiding agent sulfide ion
  • a target metal reacted and precipitated as a metal sulfide having low solubility.
  • the sulfiding agent include sodium sulfide and hydrogen sulfide.
  • insolubilization When insolubilization is performed by a hydroxide method, heavy metals have different pH ranges where the solubility is lowest depending on each metal species. Therefore, in order to increase the removal rate of heavy metals, an insolubilizing agent (hydroxylating agent) is added until the pH reaches the lowest solubility. At that time, the addition amount of the insolubilizing agent is controlled by measuring the pH of the waste water W 0 in the insolubilizing tank 31 by the water quality meter 33. However, the composition and concentration of heavy metals in waste water W 0 to be supplied to the waste water treatment apparatus, if you are found to be constant at all times, can also be controlled by a certain amount injected insolubilizing agent .
  • region where solubility becomes the lowest may differ with the other components to coexist. Therefore, in practice, it is desirable to control the pH by conducting a preliminary test using the waste water W 0 to be treated and adding an insolubilizing agent so as to be in the most suitable pH range.
  • the pre-test is a test for determining pH conditions that can achieve the target treated water quality with the least amount of insolubilizer used.
  • Membrane separation process In the membrane separation step, the waste water W 0 that has been insolubilized is transferred to the membrane separation means 40, and the filtered water W 1 from which the insoluble matter has been removed by the filtration membrane 41 and the membrane separation concentrated water W 2 in which the insoluble matter has been concentrated.
  • Filtered water W 1 may be pH adjusted by the pH adjustment step described below as required.
  • membrane separation concentrated water W 2 is usually dehydrated, it is treated as industrial wastes such as dehydrated cake.
  • ⁇ PH adjustment step In pH adjustment step, transferring the filtered water W 1 to pH adjustment tank 51 of the pH adjusting means 50, the pH of the filtered water W 1 is adjusted to pH suitable for discharge into rivers.
  • the filtered water W 1 is usually alkaline, so it is preferable to neutralize it.
  • the filtered water W 1 whose pH has been adjusted is discharged as treated water W 3 .
  • acids such as hydrochloric acid, sulfuric acid, and carbon dioxide are used as a pH adjuster for neutralization.
  • an alkali such as sodium hydroxide, sodium carbonate, calcium hydroxide, and magnesium hydroxide is added as a pH adjuster, and the pH is adjusted to be in a neutral region. Readjust. Incidentally, since the sufficiently remove the insolubles by membrane separation process, heavy metals and neutralize the pH of the filtered water W 1 there is no possibility to re-dissolve.
  • the oxidation treatment step is performed before the insolubilization treatment step, and the complex forming compound in the wastewater is oxidized, so that the insolubilization treatment in the insolubilization treatment step is performed by the complex forming compound. Hard to be disturbed. Therefore, wastewater can be treated at a high level and the heavy metal concentration in the treated water can be sufficiently reduced.
  • the particles of the insolubilized heavy metal produced therefrom are fine and the sedimentation rate tends to be very slow. Further, if fine particles are filtered in the membrane separation step, the pores of the membrane are easily blocked, and it is difficult to continue membrane filtration stably for a long period of time.
  • the complex-forming compound in the wastewater is oxidized by the oxidation treatment step before the insolubilization treatment step, so that it is generated by the insolubilization treatment step without adding a flocculant.
  • the particle size of the heavy metal insolubilized material can be increased. Therefore, in the membrane separation step performed after the insolubilization treatment step, the filtration membrane is hardly clogged with the insolubilized material, and the membrane separation step can be performed stably over a long period of time.
  • the wastewater treatment method of the present invention is a method for treating wastewater containing heavy metals and complex-forming compounds, and is particularly suitable for treating wastewater discharged from an electroless plating step such as electroless nickel plating.
  • the wastewater treatment method of the present invention is not limited to the method described above.
  • it performs the pH adjustment step after the membrane separation step, if the pH at which the pH of the filtered water W 1 is suitable for discharge into rivers or the like, pH adjustment step may not be performed.
  • the oxidant addition method is exemplified as the oxidation treatment method in the oxidation treatment step.
  • an ozone oxidation method, a photocatalyst method, or a biological oxidation method may be used.
  • an oxidizing agent addition method is preferable as the oxidation treatment method.
  • the ozone oxidation method is a method of oxidizing and decomposing organic substances using the oxidizing power of ozone generated from an ozone generator or the like.
  • the photocatalytic method is a method of oxidizing and decomposing organic substances using an oxidizing power generated when a photocatalyst such as titanium dioxide is irradiated with ultraviolet rays.
  • the biological oxidation method is a method of oxidizing and decomposing organic substances using an oxidizing action by microorganisms, such as an activated sludge method.
  • an oxidizing agent addition method using a chlorine-based oxidizing agent is adopted as an oxidation treatment method, odorous components such as chlorine gas or chloramine due to ammonia oxidation are generated, so gas recovery can be performed according to the generated concentration. It is desirable to do it.
  • the method using the whole-volume type membrane separation means 40 as shown in FIG. 1 is exemplified as the membrane separation method in the membrane separation step, but for example, a cross-flow type membrane as shown in FIG. Separation means 40 or immersion type membrane separation means 40 may be used.
  • the full-volume type membrane separation means 40 shown in FIG. 1 and the cross-flow type membrane separation means 40 shown in FIG. 2 employ a pressure type, and the primary side of the membrane is high with the filtration membrane 41 sealed in a container. Can be pressurized with pressure. Therefore, the membrane can be separated with a high permeation flux, and the required membrane area can be reduced.
  • the filtration membrane 41 tends to be clogged. Therefore, it is preferable to carry out when the insolubilized substance concentration of the liquid to be treated is low.
  • the submerged membrane separation means 40 shown in FIG. 3 performs filtration by immersing the membrane module 43 in the liquid to be treated and setting the secondary side of the membrane to a negative pressure. Therefore, although the permeation flux is lower than that of the pressurization type, membrane separation can be performed without clogging the filtration membrane even if the concentration of insolubilized material is high.
  • the wastewater treatment method of the present invention uses, for example, the treatment device 4 shown in FIG. 4 to settle and separate heavy metals in the insolubilized wastewater W 0 between the insolubilization treatment step and the membrane separation step. It is preferable to have.
  • the sedimentation process transferred to waste water W 0 which is insolubilized on the precipitation layer 61 of the settling device 60, to precipitate the insoluble matter of heavy metals, is separated into a supernatant and W 4 and precipitation concentrated water W 5.
  • the supernatant W 4 is transferred to a membrane separation step, and further membrane-separated into filtered water W 1 and membrane separation concentrated water W 2 .
  • the complex-forming compound in the wastewater is oxidized by the oxidation treatment step before the insolubilization treatment step, so that it is generated by the insolubilization treatment step without adding a flocculant.
  • the particle diameter of the heavy metal insolubilized material can be increased, and the sedimentation rate can be increased. Therefore, heavy metals can be precipitated in a short time in the sedimentation separation step, and therefore there is no need to increase the size of the precipitation tank.
  • the wastewater treatment method of the present invention can treat wastewater to a high degree without adding a flocculant and can sufficiently reduce the concentration of heavy metals. Good.
  • the smaller the amount of the flocculant added the lower the cost of chemicals and the amount of sludge that can be generated, so that the disposal cost of sludge can also be reduced. Therefore, it is preferable not to add the flocculant when the target treated water quality can be achieved without adding the flocculant.
  • the target treated water quality is 0.1 mg / L or less for nickel, for example.
  • the timing of addition of a flocculant is between an insolubilization treatment process and a membrane separation process, and when performing a sedimentation separation process, it is between an insolubilization treatment process and a sedimentation separation process.
  • FIG. 7 is a schematic configuration diagram showing an example of the wastewater treatment system of the present invention.
  • the wastewater treatment system in FIG. 7 is a system that reuses treated water obtained from the wastewater treatment apparatus shown in FIG. 1 in a process for cleaning the metal surface of a product to be processed (metal surface cleaning process).
  • the metal surface cleaning step includes an oil cleaning tank for cleaning the object to be processed before plating, and a primary cleaning tank and a secondary cleaning tank for cleaning the object to be processed after plating. Waste water generated in each washing tank is temporarily stored in the storage means 10 and then processed by the waste water treatment apparatus.
  • the obtained treated water is reused in the metal surface cleaning step.
  • Treated water may be used either before or after plating.
  • FIGS. 8 to 10 a system for reusing treated water obtained using the wastewater treatment apparatus of FIGS. 2 to 4 may be used.
  • Example 1 As waste water, nickel-containing waste water discharged from the electroless nickel plating process was used. The nickel concentration in the wastewater was 6.5 mg / L. Further, this wastewater contained ammonia as a complex-forming compound. The concentration of ammonia was 3.8 mg / L as ammonia nitrogen (NH 3 —N) concentration. 0.5 mL of sodium hypochlorite solution (effective chlorine concentration: 12% by mass) was added as an oxidizing agent to 500 mL of the nickel-containing waste water, and the mixture was stirred for 15 minutes to oxidize ammonia (oxidation process).
  • sodium hypochlorite solution effective chlorine concentration: 12% by mass
  • particle distribution was measured about the insolubilized material of nickel produced
  • the measurement was performed using a laser diffraction / scattering particle size distribution measuring apparatus (“LA-920” manufactured by Horiba, Ltd.), and the particle size was measured based on the volume and the frequency distribution was measured.
  • Table 1 shows the mode diameter of the insolubilized material (particle diameter having the largest appearance ratio).
  • Example 2 An oxidation treatment process was performed in the same manner as in Example 1. To the nickel-containing wastewater after the oxidation treatment step, 2.5 mL of a sodium sulfide nonahydrate aqueous solution adjusted to 0.1 mol / L as an insolubilizing agent was added and stirred for 30 minutes to form an insolubilized nickel (insolubilized) Processing step). Subsequently, the membrane separation step was performed in the same manner as in Example 1, the concentrations of nickel and ammonia nitrogen in the filtered water were measured, and the particle distribution of the nickel insolubilized material was measured. These results are shown in Table 1.
  • Example 3 In the membrane separation step, an oxidation treatment step and an insolubilization treatment step were performed in the same manner as in Example 1 except that a polyethylene porous hollow fiber membrane (manufactured by Mitsubishi Rayon Co., Ltd., fractional pore size 0.03 ⁇ m) was used as the filtration membrane. The membrane separation process was performed, and the concentration of nickel in the filtered water was measured. The results are shown in Table 1.
  • Example 4 Example, except that polyaluminum chloride was added as an inorganic flocculant between the insolubilization step and the membrane separation step so that the flocculant concentration in the wastewater was 300 mg / L and gently stirred for 15 minutes.
  • the oxidation treatment process, the insolubilization treatment process, and the membrane separation process were performed in the same manner as in Example 1, and the nickel concentration in the filtrate was measured. The results are shown in Table 1.
  • Example 3 and 4 as in Examples 1 and 2, it was easily estimated that ammonia was decomposed, so the concentration of ammonia nitrogen in the filtered water was not measured. Further, in Examples 3 and 4, as in Examples 1 and 2, it was easily estimated that the particle diameter of the insolubilized material showed a large value, and therefore the particle diameter of the insolubilized material was not measured.
  • the concentration of ammonia nitrogen in the filtered water was the same as the concentration of ammonia nitrogen in the waste water, indicating that the complex forming compound ammonia was not decomposed.
  • Comparative Example 3 as in Comparative Examples 1 and 2, it was easily estimated that the particle size of the insolubilized material showed a small value, so the particle size of the insolubilized material was not measured.
  • ammonia in the wastewater was decomposed as sodium hypochlorite was added.
  • the amount of sodium hypochlorite added was 5 mL to 20 mL, the oxidation-reduction potential remained constant at approximately 630 mV, and during that period, the free residual chlorine concentration also remained at a low concentration of 1.5 mg / L or less.
  • the amount of sodium hypochlorite added reached 30 mL, the oxidation-reduction potential rose rapidly to 1113 mV, and the free residual chlorine concentration also increased to 16 mg / L.
  • the oxidation-reduction potential of the wastewater is measured in the oxidation treatment step, and the addition of sodium hypochlorite is stopped when the oxidation-reduction potential reaches 650 mV.
  • the free residual chlorine concentration can be reduced to 30 mg / L or less, and excessive addition of an oxidizing agent (sodium hypochlorite) can be easily suppressed.
  • wastewater containing a compound that forms a heavy metal and a metal complex can be treated at a high level without adding a flocculant, and the heavy metal concentration can be sufficiently reduced.
  • the treated water obtained by the wastewater treatment apparatus and treatment method of the present invention has a very low metal content.
  • a flocculant is not used for wastewater treatment, the outflow of unreacted aggregates is not mixed into the treated water. Therefore, according to the wastewater treatment system of the present invention, the treated water treated by using the treatment apparatus and the treatment method of the present invention is circulated to the metal surface cleaning process that is a wastewater generation source, thereby affecting the product to be processed.
  • the treated water can be used effectively without giving water.

Abstract

A wastewater treatment apparatus (1) of the present invention is provided with: an oxidation treatment means (20) for oxidizing a metal complex-forming compound contained in wastewater (W0) that contains at least a heavy metal and the metal complex-forming compound; an insolubilization treatment means (30) for insolubilizing the heavy metal in the oxidized wastewater (W0); and a membrane separation means (40) for separating the insolubilized wastewater (W0) through a membrane. In addition, a wastewater treatment method of the present invention uses the above-described wastewater treatment apparatus. The present invention is capable of providing a wastewater treatment apparatus, a wastewater treatment method and a wastewater treatment system, each of which is capable of highly treating wastewater that contains a heavy metal and a metal complex-forming compound without adding a flocculant to the wastewater, and each of which is capable of sufficiently decreasing the heavy metal concentration.

Description

廃水の処理装置、処理方法、および廃水処理システムWaste water treatment apparatus, treatment method, and waste water treatment system
 本発明は、重金属を含む廃水を処理するための廃水の処理装置、処理方法、および廃水処理システムに関する。
 本願は、2011年1月20日に、日本に出願された特願2011-009902号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a wastewater treatment apparatus, a treatment method, and a wastewater treatment system for treating wastewater containing heavy metals.
This application claims priority based on Japanese Patent Application No. 2011-009902 filed in Japan on January 20, 2011, the contents of which are incorporated herein by reference.
 従来、電解メッキ工程から排出されるメッキ廃水など、重金属を含む廃水中から重金属を除去する方法としては、以下に示す方法が一般的であった。
 例えば図6に示すように、まず、貯留槽11に一旦貯留された廃水Wを不溶化槽31にて不溶化処理する。具体的には、水酸化剤(アルカリ剤)や硫化剤等の不溶化剤を廃水に添加し、重金属を水に難溶解性の水酸化物や硫化物等の不溶化物とする。この不溶化物は粒子径が小さいため、凝集槽71にて不溶化処理された廃水に無機凝集剤(例えばポリ塩化アルミニウム(PAC)など)や高分子凝集剤等の凝集剤を添加して、不溶化物を凝集させる。ついで、沈殿槽61にて凝集させた不溶化物を沈降分離し、必要に応じて上澄み液Wを砂濾過装置等の濾過器45にて濾過し、さらに濾過水WをpH調整槽51にて中和してから処理水Wとして排出する。
Conventionally, as a method for removing heavy metals from waste water containing heavy metals such as plating waste water discharged from an electrolytic plating process, the following methods are generally used.
For example, as shown in FIG. 6, first, the waste water W 0 once stored in the storage tank 11 is insolubilized in the insolubilization tank 31. Specifically, an insolubilizing agent such as a hydroxylating agent (alkaline agent) or a sulfiding agent is added to the waste water, and the heavy metal is made into an insolubilized material such as a hydroxide or sulfide that is hardly soluble in water. Since the insolubilized material has a small particle size, an insoluble material such as an inorganic flocculant (such as polyaluminum chloride (PAC)) or a polymer flocculant is added to the wastewater insolubilized in the agglomeration tank 71. Agglomerate. Next, the insolubilized material agglomerated in the precipitation tank 61 is settled and separated, and the supernatant liquid W 4 is filtered with a filter 45 such as a sand filter as necessary, and the filtered water W 1 is further passed to the pH adjustment tank 51. neutralized discharged as treated water W 3 from Te.
 近年、無電解ニッケルメッキなどの無電解メッキが広く行われている。無電解メッキは還元剤を用いることを特徴とし、この還元剤の電子を利用して金属を析出させるものである。この方法によれば、不導体の物質に対してもメッキが可能である。
 しかし、この無電解メッキ工程から排出される廃水を処理する場合、上述した従来の方法では十分な処理が困難であり、廃水中の重金属濃度を低減しにくかった。
In recent years, electroless plating such as electroless nickel plating has been widely performed. Electroless plating is characterized by using a reducing agent, and deposits a metal using the electrons of the reducing agent. According to this method, it is possible to plate even a non-conductive substance.
However, when treating the wastewater discharged from this electroless plating step, it is difficult to sufficiently treat the conventional method described above, and it is difficult to reduce the heavy metal concentration in the wastewater.
 これは、無電解ニッケルメッキなどの無電解メッキにおいては、メッキ液中に重金属と配位結合して金属錯体を形成する化合物(例えばキレート剤など)が含まれていることが一因と考えられる。
 上述したように、メッキ廃水を処理する際は、廃水に不溶化剤を添加して不溶化処理を行う。廃水中にキレート剤などの金属錯体を形成する化合物(以下、「錯体形成化合物」という場合がある。)が含まれていると、ニッケル等の重金属が錯体形成化合物と金属錯体を形成し、廃水中に溶解する。このため、この金属錯体が濾過器で濾別されることなくリークするため処理効率が低下すると考えられる。
 また、酸性亜鉛メッキを行う場合においても、浴中にアンモニアが多量に含まれており、重金属がアンモニアとアンミン錯体を形成するため、処理効率が低下すると考えられる。
In electroless plating such as electroless nickel plating, this may be due to the fact that the plating solution contains a compound (for example, a chelating agent) that forms a metal complex by coordination with heavy metal. .
As described above, when treating plating wastewater, an insolubilizing treatment is performed by adding an insolubilizing agent to the wastewater. If the waste water contains a compound that forms a metal complex such as a chelating agent (hereinafter sometimes referred to as “complex-forming compound”), heavy metals such as nickel form a metal complex with the complex-forming compound, and the waste water Dissolve in. For this reason, since this metal complex leaks without being filtered with a filter, it is thought that processing efficiency falls.
Further, even when acidic zinc plating is performed, it is considered that the treatment efficiency is lowered because a large amount of ammonia is contained in the bath and the heavy metal forms ammonia and an ammine complex.
 そこで、重金属イオンや、重金属とキレート剤との重金属錯体等を含む廃水を処理する方法として、廃水に不溶化剤を添加して不溶化物を生成させた後、膜分離装置に供給することによって固液分離する方法が提案されている(例えば特許文献1、2参照)。
 また、廃水中の鉄、マンガン、シリカ、ふっ素などの複数の微量成分を一挙に除去する方法として、処理槽に貯留した廃水に硫酸アルミニウム(凝集剤)と酸化剤を添加した後、処理槽内に浸漬した分離膜フィルターによって生じた固形物を膜濾過する方法が報告されている(例えば特許文献3参照)。
 さらに、銅等の低濃度重金属を含む廃水を処理する方法として、硫化剤による不溶化処理の後に、酸化剤による酸化処理を行い、スラッジの凝集性を向上される方法が報告されている。(例えば特許文献4参照)。
Therefore, as a method of treating wastewater containing heavy metal ions, heavy metal complexes of heavy metals and chelating agents, etc., an insolubilizing agent is generated by adding an insolubilizing agent to the wastewater, and then supplied to a membrane separation device. A separation method has been proposed (see, for example, Patent Documents 1 and 2).
In addition, as a method of removing multiple trace components such as iron, manganese, silica, and fluorine in the wastewater at once, after adding aluminum sulfate (flocculant) and oxidizing agent to the wastewater stored in the treatment tank, There has been reported a method of membrane filtration of solid matter produced by a separation membrane filter soaked in (see, for example, Patent Document 3).
Furthermore, as a method for treating waste water containing low-concentration heavy metals such as copper, a method for improving the sludge cohesiveness by performing an oxidation treatment with an oxidizing agent after an insolubilization treatment with a sulfurizing agent has been reported. (For example, refer to Patent Document 4).
特許第3111508号公報Japanese Patent No. 3111508 特開平2-157090号公報JP-A-2-157090 特開2010-36180号公報JP 2010-36180 A 特開2007-69068号公報JP 2007-69068 A
 しかしながら、特許文献1、2に記載の方法であっても、廃水中に錯体形成化合物が含まれている場合、除去対象となる重金属が錯体形成化合物と金属錯体を形成するため、不溶化剤による不溶化反応が阻害されやすく、十分な処理効果が得られにくかった。 However, even in the methods described in Patent Documents 1 and 2, when a complex-forming compound is contained in the wastewater, the heavy metal to be removed forms a metal complex with the complex-forming compound, so insolubilization with an insolubilizing agent The reaction was easily inhibited, and it was difficult to obtain a sufficient treatment effect.
 特許文献3に記載の方法では、凝集剤を添加するため薬剤費用が増える。また、凝集剤を添加するとスラッジが発生するため、スラッジを処分するための費用もかかる。
 また、特許文献3に記載の方法では、分離膜フィルターが浸漬した処理槽に酸化剤を添加するため、廃水中の重金属が酸化され、分離膜フィルターの表面に析出しやすかった。
 金属酸化物が膜表面に析出すると膜の細孔が閉塞されるため、膜濾過流束が低下するといった問題があった。さらに、樹脂製の分離膜フィルターを用いた場合には、膜が酸化剤によって劣化する恐れもあった。
In the method described in Patent Document 3, since the flocculant is added, the drug cost increases. Moreover, since sludge is generated when a flocculant is added, the cost for disposal of the sludge is also increased.
Further, in the method described in Patent Document 3, since an oxidizing agent is added to the treatment tank in which the separation membrane filter is immersed, heavy metals in the wastewater are easily oxidized and easily deposited on the surface of the separation membrane filter.
When metal oxide is deposited on the membrane surface, the pores of the membrane are blocked, resulting in a problem that the membrane filtration flux is lowered. Further, when a resin separation membrane filter is used, the membrane may be deteriorated by the oxidizing agent.
 特許文献4に記載の方法では、発生したスラッジの凝集性を向上することはできても、廃水中に錯体形成化合物が含まれている場合は重金属が錯体形成化合物と金属錯体を形成するため、硫化剤による不溶化反応が阻害されやすく、十分な処理効果が得られにくかった。
 また、廃水中の重金属濃度を十分に低減するためには、硫化剤や凝集剤を多量に添加する必要があるが、薬剤費用が増えたり、スラッジが多量に発生するためスラッジの処分費用が増えたりする。
In the method described in Patent Document 4, even if the coagulation of the generated sludge can be improved, when the complex forming compound is contained in the wastewater, the heavy metal forms a metal complex with the complex forming compound. The insolubilization reaction by the sulfiding agent was easily inhibited, and it was difficult to obtain a sufficient treatment effect.
In addition, in order to sufficiently reduce the concentration of heavy metals in wastewater, it is necessary to add a large amount of a sulfurizing agent and a flocculant. However, the cost of chemicals increases and the amount of sludge generated increases the disposal cost of sludge. Or
メッキ加工業、および金属表面処理業では、加工対象の金属表面を洗浄する工程(金属表面洗浄工程)が必ず設けられている。
この金属表面洗浄工程は、純水等で表面を洗浄するリンス工程や、洗浄成分を含む水で表面の油分を洗浄する油分洗浄工程などが含まれる。
メッキ加工業、および金属表面処理業から排出される排水を、従来技術(凝集、または砂濾過)で処理した場合に、この処理水を前記金属表面洗浄工程にて再利用すると、以下の問題が生じる。
(1)砂濾過処理しただけでは、SS分や未反応凝集剤が残存しており、加工対象品にこれらが付着する。
(2)金属イオンが十分に除去できてないため、金属成分が加工対象品に付着する。
In the plating processing industry and the metal surface treatment industry, a process for cleaning the metal surface to be processed (metal surface cleaning process) is always provided.
This metal surface cleaning process includes a rinsing process for cleaning the surface with pure water or the like, and an oil cleaning process for cleaning the surface oil with water containing a cleaning component.
When wastewater discharged from the plating processing industry and the metal surface treatment industry is treated by conventional techniques (coagulation or sand filtration), if this treated water is reused in the metal surface cleaning process, the following problems occur. Arise.
(1) The SS component and the unreacted flocculant remain only by sand filtration, and these adhere to the product to be processed.
(2) Since metal ions have not been sufficiently removed, metal components adhere to the workpiece.
 本発明は上記事情に鑑みてなされたもので、重金属および金属錯体を形成する化合物を含む廃水に対して、凝集剤を添加しなくても高度に処理でき、重金属濃度を十分に低減できる廃水の処理装置、処理方法、および廃水処理システムを提供する。 The present invention has been made in view of the above circumstances, and wastewater containing a compound that forms a heavy metal and a metal complex can be treated to a high degree without adding a flocculant, and the concentration of heavy metal can be sufficiently reduced. A treatment device, a treatment method, and a wastewater treatment system are provided.
 本発明の廃水の処理装置は、重金属、および前記重金属と配位結合して金属錯体を形成する化合物を少なくとも含む廃水を処理する装置であって、廃水中の前記金属錯体を形成する化合物を酸化処理する酸化処理手段と、酸化処理した廃水中の重金属を不溶化処理する不溶化処理手段と、不溶化処理した廃水を膜分離する膜分離手段とを備える。
 さらに、前記不溶化処理手段と膜分離手段との間に、不溶化処理した廃水中の重金属を沈降分離する沈降分離手段を備えることが好ましい。
さらに、前記酸化処理工程が、次亜塩素酸、亜塩素酸、過塩素酸、およびこれらの塩からなる群より選ばれる少なくとも1種の酸化剤の添加手段を備えることが好ましい。
さらに、前記酸化処理手段が、廃水のpHを調整するpH調整手段を備えることが好ましい。
The wastewater treatment apparatus of the present invention is an apparatus for treating wastewater containing at least a heavy metal and a compound that forms a metal complex by coordination with the heavy metal, and oxidizes the compound that forms the metal complex in the wastewater. An oxidation treatment means for treating, an insolubilization treatment means for insolubilizing heavy metals in the oxidized wastewater, and a membrane separation means for membrane-separating the insoluble wastewater.
Furthermore, it is preferable to provide a sedimentation separation means for sedimenting and separating heavy metals in the wastewater that has been insolubilized between the insolubilization treatment means and the membrane separation means.
Furthermore, it is preferable that the oxidation treatment step includes a means for adding at least one oxidizing agent selected from the group consisting of hypochlorous acid, chlorous acid, perchloric acid, and salts thereof.
Furthermore, it is preferable that the oxidation treatment means includes a pH adjustment means for adjusting the pH of the wastewater.
 また、本発明の廃水の処理方法は、重金属、および前記重金属と配位結合して金属錯体を形成する化合物を少なくとも含む廃水を処理する方法であって、廃水中の前記金属錯体を形成する化合物を酸化処理する酸化処理工程と、酸化処理した廃水中の重金属を不溶化処理する不溶化処理工程と、不溶化処理した廃水を膜分離する膜分離工程とを有する。
 さらに、前記不溶化処理工程と膜分離工程との間に、不溶化処理した廃水中の重金属を沈降分離する沈降分離工程を有することが好ましい。
 また、前記酸化処理工程が、次亜塩素酸、亜塩素酸、過塩素酸、およびこれらの塩からなる群より選ばれる少なくとも1種の酸化剤の添加によりなされることが好ましい。
さらに、前記酸化処理工程において、廃水のpHを4以上8以下に調整した後酸化剤を添加するであることを特徴とすることが好ましい。
 さらに、前記酸化剤の廃水への添加終了点を酸化還元電位にて検知することが好ましい。
The wastewater treatment method of the present invention is a method for treating wastewater containing at least a heavy metal and a compound that forms a metal complex by coordination with the heavy metal, the compound forming the metal complex in the wastewater. And an insolubilization treatment step for insolubilizing heavy metals in the oxidized wastewater, and a membrane separation step for membrane separation of the insolubilized wastewater.
Furthermore, it is preferable to have a sedimentation separation step for separating and separating heavy metals in the wastewater that has been insolubilized between the insolubilization treatment step and the membrane separation step.
The oxidation treatment step is preferably performed by adding at least one oxidizing agent selected from the group consisting of hypochlorous acid, chlorous acid, perchloric acid, and salts thereof.
Furthermore, it is preferable that in the oxidation treatment step, an oxidizing agent is added after adjusting the pH of the wastewater to 4 or more and 8 or less.
Furthermore, it is preferable to detect the end point of the addition of the oxidizing agent to the wastewater by the redox potential.
また、本発明の廃水処理システムは、本発明の処理装置により処理された処理水を、メッキ加工または金属表面処理の、金属表面洗浄工程にて再利用することを特徴とする。 The waste water treatment system of the present invention is characterized in that the treated water treated by the treatment apparatus of the present invention is reused in a metal surface cleaning step of plating or metal surface treatment.
 本発明の廃水の処理装置および処理方法によれば、重金属および金属錯体を形成する化合物を含む廃水に対して、凝集剤を添加しなくても高度に処理でき、重金属濃度を十分に低減できる。
本発明の廃水の処理装置および処理方法で得られた処理水は、金属含有量が極めて少ない。また廃水処理に凝集剤を使用しないため、未反応凝集物の流出が、処理水に混入することも無い。
従って、本発明の廃水処理システムによれば、本発明の処理装置および処理方法を用いて処理した処理水を、排水発生元である前記金属表面洗浄工程に循環することによって、加工対象品に影響を与えることなく、処理水を有効に利用することが可能となる。
According to the wastewater treatment apparatus and treatment method of the present invention, wastewater containing a compound that forms a heavy metal and a metal complex can be treated at a high level without adding a flocculant, and the heavy metal concentration can be sufficiently reduced.
The treated water obtained by the wastewater treatment apparatus and treatment method of the present invention has a very low metal content. Moreover, since a flocculant is not used for wastewater treatment, the outflow of unreacted aggregates is not mixed into the treated water.
Therefore, according to the wastewater treatment system of the present invention, the treated water treated by using the treatment apparatus and the treatment method of the present invention is circulated to the metal surface cleaning process that is a wastewater generation source, thereby affecting the product to be processed. The treated water can be used effectively without giving water.
本発明の廃水の処理装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the wastewater processing apparatus of this invention. 本発明の廃水の処理装置の他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of the wastewater processing apparatus of this invention. 本発明の廃水の処理装置の他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of the wastewater processing apparatus of this invention. 本発明の廃水の処理装置の他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of the wastewater processing apparatus of this invention. 試験例の結果を示すグラフである。It is a graph which shows the result of a test example. 従来の廃水の処理に用いる装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the apparatus used for the process of the conventional wastewater. 本発明の廃水処理システムの一例を示す概略構成図である。It is a schematic block diagram which shows an example of the wastewater treatment system of this invention. 本発明の廃水処理システムの他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of the wastewater treatment system of this invention. 本発明の廃水処理システムの他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of the wastewater treatment system of this invention. 本発明の廃水処理システムの他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of the wastewater treatment system of this invention.
以下、本発明を詳細に説明する。
[廃水の処理装置]
図1は、本発明の廃水の処理装置の一例を示す概略構成図である。この例の廃水の処理装置1は、上流側から順に、廃水Wを一旦貯留する貯留手段10と、酸化処理手段20と、不溶化処理手段30と、膜分離手段40と、pH調整手段50とを具備して構成されている。
なお、図2~4において、図1と同じ構成要素には同一の符号を付して、その説明を省略する場合がある。
Hereinafter, the present invention will be described in detail.
[Wastewater treatment equipment]
FIG. 1 is a schematic configuration diagram showing an example of a wastewater treatment apparatus of the present invention. The wastewater treatment apparatus 1 in this example includes, in order from the upstream side, a storage unit 10 that temporarily stores wastewater W 0 , an oxidation treatment unit 20, an insolubilization treatment unit 30, a membrane separation unit 40, and a pH adjustment unit 50. It comprises.
2 to 4, the same components as those in FIG. 1 are denoted by the same reference numerals, and the description thereof may be omitted.
<廃水>
本発明の処理対象となる廃水Wは、例えばメッキ工場等の金属表面処理工場などから発生した廃液(被処理水)であり、重金属、および前記重金属と配位結合して金属錯体を形成する化合物(以下、「錯体形成化合物」という。)を含む。
重金属としては、クロム、銅、亜鉛、カドミウム、ニッケル、水銀、鉛、鉄、およびマンガンなどが挙げられる。これら重金属は単独で含まれていてもよいが、通常は複数の重金属が混合された状態で含まれている。
一方、錯体形成化合物は、前記重金属のいずれかと配位結合して、重金属原子を中心とする金属錯体を形成する化合物である。錯体形成化合物の例としては、クエン酸、グルコン酸、シュウ酸、酒石酸、コハク酸、シアンおよびこれらの塩等の酸性洗浄成分;EDTA、エチレンジアミン、トリエタノールアミン、およびアンモニア(アンモニウム塩を含む)等のアミン類などが挙げられる。なお、金属錯体にはキレート錯体も含まれることから、錯体形成化合物には、酒石酸やEDTAなどのキレート剤も当然に該当する。
<Waste water>
The waste water W 0 to be treated in the present invention is, for example, a waste liquid (treated water) generated from a metal surface treatment factory such as a plating factory, and forms a metal complex by coordination with heavy metals and the heavy metals. Compounds (hereinafter referred to as “complex-forming compounds”).
Examples of heavy metals include chromium, copper, zinc, cadmium, nickel, mercury, lead, iron, and manganese. These heavy metals may be contained alone, but are usually contained in a state where a plurality of heavy metals are mixed.
On the other hand, the complex-forming compound is a compound that forms a metal complex centered on a heavy metal atom by coordination with any of the heavy metals. Examples of complex forming compounds include acidic cleaning ingredients such as citric acid, gluconic acid, oxalic acid, tartaric acid, succinic acid, cyanide and salts thereof; EDTA, ethylenediamine, triethanolamine, and ammonia (including ammonium salts), etc. And amines. In addition, since a chelate complex is also contained in a metal complex, chelating agents, such as tartaric acid and EDTA, naturally correspond to a complex formation compound.
なお、廃水W中には、重金属および錯体形成化合物の他に、洗浄成分や、pH調整成分として界面活性剤、錯体形成化合物以外のルイス酸などが含まれていてもよい。 In addition to the heavy metal and the complex forming compound, the waste water W 0 may contain a surfactant, a Lewis acid other than the complex forming compound, and the like as a cleaning component and a pH adjusting component.
<貯留手段>
貯留手段10は、金属表面処理工場などから発生した廃水Wを一旦貯留する手段である。
貯留手段10は貯留槽11を備える。貯留槽11としては、廃水Wを貯留できるものであれば特に制限されない。
<Storage means>
The storage means 10 is a means for temporarily storing waste water W 0 generated from a metal surface treatment factory or the like.
The storage means 10 includes a storage tank 11. The storage tank 11 is not particularly limited as long as it can store the waste water W 0.
<酸化処理手段>
酸化処理手段20は、廃水W中の錯体形成化合物を酸化処理する手段である。
この例の酸化処理手段20は、貯留手段10から送られた廃水Wを溜める酸化槽21と、酸化槽21中の廃水Wに酸化剤を添加する酸化剤添加手段22と、酸化槽21中の廃水Wの水質を検査する水質計23と、酸化槽21中の廃水Wを攪拌する攪拌翼24とを備える。
酸化剤添加手段としては、酸化剤を添加できるものであれば特に制限されないが、具体的には電磁定量ポンプ、ダイヤフラムポンプ、およびマグネットポンプなどが挙げられる。これらのポンプのなかでも電磁定量ポンプがより好ましい。これらポンプの接液部構成部品は耐薬品性を有する素材で構成される。耐薬品性を有する素材の具体例としては、PVC(塩化ビニル)、PVDF(ポリフッ化ビニリデン)、PTFE(ポリテトラフルオロエチレン)、ABS、PS(ポリスチレン)、PE(ポリエチレン)、PP(ポリプロピレン)、セラミック などが挙げられる。
<Oxidation treatment means>
Oxidation means 20 is a means for oxidizing the complex forming compound in the waste water W 0.
The oxidation treatment means 20 in this example includes an oxidation tank 21 that stores the waste water W 0 sent from the storage means 10, an oxidant addition means 22 that adds an oxidant to the waste water W 0 in the oxidation tank 21, and an oxidation tank 21. It comprises a water gauge 23 for inspecting the quality of waste water W 0 in, and a stirring blade 24 for stirring the waste water W 0 in the oxidation vessel 21.
The oxidizing agent adding means is not particularly limited as long as it can add an oxidizing agent, and specific examples thereof include an electromagnetic metering pump, a diaphragm pump, and a magnet pump. Among these pumps, an electromagnetic metering pump is more preferable. These pump wetted parts are made of chemical-resistant materials. Specific examples of materials having chemical resistance include PVC (vinyl chloride), PVDF (polyvinylidene fluoride), PTFE (polytetrafluoroethylene), ABS, PS (polystyrene), PE (polyethylene), PP (polypropylene), For example, ceramic.
酸化槽21としては、廃水Wを貯留できるものであれば特に制限されないが、酸化剤によって劣化しにくい材質のものが好ましい。
酸化剤添加手段22としては、酸化剤を添加できるものであれば特に制限されない。
The oxidation tank 21 is not particularly limited as long as it can store the wastewater W 0 , but is preferably made of a material that is not easily deteriorated by the oxidizing agent.
The oxidizing agent adding means 22 is not particularly limited as long as an oxidizing agent can be added.
水質計23は、酸化槽21中の廃水Wの水質を検査するものである。水質を検査することで、酸化剤の添加量の過不足を把握でき、特に、酸化剤の過剰添加を抑制するのに有効である。
水質計23としては、酸化還元電位計、酸化剤濃度計などが挙げられる。また、これらの電位計や濃度計に代えて、あるいはこれらと併用して、錯体形成化合物の濃度を測定するための濃度計を用いることも可能である。ただし、錯体形成化合物の濃度を測定するための濃度計は、アンモニアなど濃度測定が可能な錯体形成化合物を含む廃水Wを処理する場合に用いる。
なお、この例の酸化処理手段20は1つの水質計23を備えているが、水質の検査方法に応じて複数種類の水質計を備えていてもよい。
水質計の具体的手段としては、一般的に酸化還元電位計を用いる。
The water quality meter 23 inspects the water quality of the waste water W 0 in the oxidation tank 21. By examining the water quality, it is possible to grasp the excess and deficiency of the added amount of the oxidant, and in particular, it is effective for suppressing the excessive addition of the oxidant.
Examples of the water quality meter 23 include an oxidation-reduction potentiometer and an oxidant concentration meter. Moreover, it is also possible to use a densitometer for measuring the concentration of the complex-forming compound instead of or in combination with these electrometers and densitometers. However, the densitometer for measuring the concentration of the complex-forming compound is used when treating the waste water W 0 containing the complex-forming compound capable of measuring the concentration such as ammonia.
In addition, although the oxidation treatment means 20 of this example is provided with one water quality meter 23, it may be provided with a plurality of types of water quality meters according to the water quality inspection method.
As a specific means of the water quality meter, an oxidation-reduction potentiometer is generally used.
酸化剤の具体例としては、次亜塩素酸、亜塩素酸、過塩素酸、およびこれらの塩からなる群より選ばれる少なくとも1種の酸化剤が挙げられる。
また、酸化処理手段20は、廃水のpHを調整するpH調整手段を備えていてもよい。pH調整手段は、後述するpH調整手段50と同様の手段を採用することができる。また、pHの調整は、酸化剤を添加する前に行うことが好ましい。
酸化処理手段20における廃水のpHは、4~8とすることが好ましく、4~6がより好ましい。これにより塩素ガスを発生させることなく、酸化剤による酸化力を向上させることができる。
Specific examples of the oxidizing agent include at least one oxidizing agent selected from the group consisting of hypochlorous acid, chlorous acid, perchloric acid, and salts thereof.
Moreover, the oxidation treatment means 20 may include a pH adjustment means for adjusting the pH of the waste water. As the pH adjusting means, the same means as the pH adjusting means 50 described later can be adopted. Moreover, it is preferable to adjust pH before adding an oxidizing agent.
The pH of the waste water in the oxidation treatment means 20 is preferably 4 to 8, and more preferably 4 to 6. Thereby, the oxidizing power by an oxidizing agent can be improved without generating chlorine gas.
<不溶化処理手段>
不溶化処理手段30は、酸化処理手段20にて酸化処理した廃水W中の重金属を不溶化処理する手段である。なお、不溶化とは、廃水W中に遊離している重金属イオンを難溶解性化合物(不溶化物)とすることによって析出させることである。ここで不溶化物とは、水酸化物、硫化物など、溶解度が非常に低い状態のものをいう。
この例の不溶化処理手段30は、酸化処理手段20から送られた廃水Wを溜める不溶化槽31と、不溶化槽31中の廃水Wに不溶化剤を添加する不溶化剤添加手段32と、不溶化槽31中の廃水Wの水質を検査する水質計33と、不溶化槽31中の廃水Wを攪拌する攪拌翼34とを備える。
<Insolubilization treatment means>
The insolubilization treatment means 30 is a means for insolubilizing heavy metals in the waste water W 0 oxidized by the oxidation treatment means 20. The insolubilization means that heavy metal ions that are liberated in the waste water W 0 are precipitated by using a hardly soluble compound (insolubilized product). Here, the insolubilized material means a material having a very low solubility, such as a hydroxide or a sulfide.
The insolubilization treatment means 30 of this example includes an insolubilization tank 31 for storing the waste water W 0 sent from the oxidation treatment means 20, an insolubilization agent addition means 32 for adding an insolubilization agent to the waste water W 0 in the insolubilization tank 31, and an insolubilization tank. It comprises a water meter 33 for checking the quality of waste water W 0 in the 31, and a stirring blade 34 for stirring the waste water W 0 in the insolubilized tank 31.
不溶化槽31としては、廃水Wを貯留できるものであれば特に制限されないが、不溶化剤によって劣化しにくい材質のものが好ましい。不溶化剤によって劣化しにくい材質としては、具体的には、ステンレス、FRP、PVC(塩化ビニル)、PVDF(ポリフッ化ビニリデン)、PTFE(ポリテトラフルオロエチレン)、ABS、PS(ポリスチレン)、PE(ポリエチレン)、PP(ポリプロピレン)、セラミックが挙げられる。
不溶化処理手段の具体的手段としては、貯留タンク、不溶化剤添加手段、攪拌機およびpH計を用いる。
不溶化剤添加手段32としては、不溶化剤を添加できるものであれば特に制限されない。
不溶化剤添加手段の具体的手段としては、水酸化物法を用いる場合には、耐薬品性を有する水酸化ナトリウム溶液貯留タンクと、耐薬品性を有する電磁定量ポンプ、ダイヤフラムポンプ、またはマグネットポンプなどが用いられる。硫化物法を用いる場合には、耐薬品性を有する硫化ナトリウム溶液貯留タンクと、耐薬品性を有する電磁定量ポンプ、ダイヤフラムポンプ、またはマグネットポンプなどが用いられる。
The insolubilizing tank 31 is not particularly limited as long as it can store the wastewater W 0 , but is preferably made of a material that is not easily deteriorated by the insolubilizing agent. Specific examples of materials that are not easily deteriorated by the insolubilizer include stainless steel, FRP, PVC (vinyl chloride), PVDF (polyvinylidene fluoride), PTFE (polytetrafluoroethylene), ABS, PS (polystyrene), and PE (polyethylene). ), PP (polypropylene), and ceramic.
As specific means of the insolubilization processing means, a storage tank, an insolubilizing agent addition means, a stirrer and a pH meter are used.
The insolubilizing agent adding means 32 is not particularly limited as long as an insolubilizing agent can be added.
As specific means for adding the insolubilizing agent, when using the hydroxide method, a sodium hydroxide solution storage tank having chemical resistance, an electromagnetic metering pump having a chemical resistance, a diaphragm pump, a magnet pump, etc. Is used. When using the sulfide method, a sodium sulfide solution storage tank having chemical resistance and an electromagnetic metering pump, diaphragm pump, or magnet pump having chemical resistance are used.
水質計33は、不溶化槽31中の廃水Wの水質を検査するものである。水質を検査することで、不溶化剤の添加量の過不足を把握でき、特に、不溶化剤の過剰添加を抑制するのに有効である。
水質計33としては、pH計などが挙げられる。
なお、この例の不溶化処理手段30は1つの水質計33を備えているが、水質の検査方法に応じて複数種類の水質計を備えていてもよい。
The water quality meter 33 inspects the water quality of the waste water W 0 in the insolubilization tank 31. By examining the water quality, it is possible to grasp the excess or deficiency of the amount of the insolubilizing agent added, and it is particularly effective for suppressing the excessive addition of the insolubilizing agent.
Examples of the water quality meter 33 include a pH meter.
Although the insolubilization processing means 30 of this example includes one water quality meter 33, a plurality of types of water quality meters may be provided depending on the water quality inspection method.
<膜分離手段>
膜分離手段40は、不溶化処理手段30にて不溶化処理した廃水Wを濾過水Wと膜分離濃縮水Wに膜分離する手段である。
この例の膜分離手段40は、加圧ポンプP1によって加圧する方式であり、濾過膜41を備える。
濾過膜41としては、中空糸膜、平膜、チューブラ膜、およびモノリス型膜などが挙げられるが、容積充填率が高いことから中空糸膜が好ましい。
濾過膜41として中空糸膜を用いる場合、その材質としては、セルロース、ポリオレフィン、ポリスルホン、ポリフッ化ビニリデンジフロライド(PVDF)、およびポリ四フッ化エチレン(PTFE)などが挙げられる。中空糸膜の材質としては、上記のなかでもポリフッ化ビニリデンジフロライド(PVDF)、およびポリ四フッ化エチレン(PTFE)が好ましい。
濾過膜41としてモノリス型膜を用いる場合は、セラミック性の膜を用いることができる。
膜分離手段の具体的手段としては、膜分離としてポリフッ化ビニリデンジフロライド製の中空糸膜エレメントを水槽内に浸漬し、膜エレメントの2次側(濾過水側)と濾過ポンプを接続したものを用いる。また膜エレメントの下方には、膜面洗浄用の曝気手段を設けたものを用いる。
<Membrane separation means>
The membrane separation unit 40 is a unit that separates the waste water W 0 insolubilized by the insolubilization unit 30 into filtered water W 1 and membrane separation concentrated water W 2 .
The membrane separation means 40 in this example is a system in which pressure is applied by a pressure pump P1, and includes a filtration membrane 41.
Examples of the filtration membrane 41 include a hollow fiber membrane, a flat membrane, a tubular membrane, and a monolith type membrane. A hollow fiber membrane is preferable because of its high volume filling rate.
When a hollow fiber membrane is used as the filtration membrane 41, examples of the material include cellulose, polyolefin, polysulfone, polyvinylidene fluoride difluoride (PVDF), and polytetrafluoroethylene (PTFE). Among the materials described above, polyvinylidene fluoride difluoride (PVDF) and polytetrafluoroethylene (PTFE) are preferable as the material for the hollow fiber membrane.
When a monolithic membrane is used as the filtration membrane 41, a ceramic membrane can be used.
As a specific means of membrane separation means, a hollow fiber membrane element made of polyvinylidene difluoride is immersed in a water tank for membrane separation, and the secondary side (filtered water side) of the membrane element is connected to a filtration pump. Is used. A device provided with aeration means for cleaning the membrane surface is used below the membrane element.
濾過膜41に形成される微細孔の平均孔径としては、一般に限外濾過膜と呼ばれる膜で平均孔径0.001~0.1μm、一般に精密濾過膜と呼ばれる膜で平均孔径0.1~1μmであり、本発明においてはこれらの膜を用いることが好ましい。
なお、重金属を不溶化処理することで生成された不溶化物の粒子径は、一般的に0.1~100μmであるため、濾過膜41の微細孔の平均孔径は0.03μm以上であることが好ましい。平均孔径が0.03μm未満であると、膜分離に要する圧力が大きくなるため、運転エネルギーが過大となる。濾過膜41の微細孔の平均孔径は、より好ましくは0.1μm以上である。一方、濾過膜41の微細孔の平均孔径は3μm以下が好ましい。平均孔径が3μmを超えると、濾過膜41の二次側(濾過水W中)に漏出する重金属の不溶化物の粒子の割合が増加し、濾過水W中の金属濃度が上昇しやすくなる。濾過膜41の微細孔の平均孔径は、より好ましくは10μm以下である。
The average pore diameter of the micropores formed in the filtration membrane 41 is generally 0.001 to 0.1 μm for a membrane called an ultrafiltration membrane, and 0.1 to 1 μm for an average pore size for a membrane commonly called a microfiltration membrane. In the present invention, these films are preferably used.
Since the particle diameter of the insolubilized material generated by insolubilizing heavy metal is generally 0.1 to 100 μm, the average pore diameter of the fine pores of the filtration membrane 41 is preferably 0.03 μm or more. . When the average pore diameter is less than 0.03 μm, the pressure required for membrane separation increases, and the operating energy becomes excessive. The average pore diameter of the fine pores of the filtration membrane 41 is more preferably 0.1 μm or more. On the other hand, the average pore diameter of the fine pores of the filtration membrane 41 is preferably 3 μm or less. When the average pore diameter exceeds 3 μm, the proportion of particles of insolubilized heavy metal leaking to the secondary side (in the filtrate water W 1 ) of the filtration membrane 41 increases, and the metal concentration in the filtrate water W 1 tends to increase. . The average pore diameter of the fine pores of the filtration membrane 41 is more preferably 10 μm or less.
膜分離手段40により、廃水Wは不溶化物が除去された濾過水Wと、不溶化物が濃縮物された膜分離濃縮水Wとに分離される。
濾過水Wは、後述のpH調整手段に移され、pH調整される。一方、膜分離濃縮水Wは、通常、脱水手段(図示略)により脱水され、脱水ケーキ等の産業廃棄物として処理される。
The membrane separation means 40 separates the waste water W 0 into filtered water W 1 from which insolubilized substances have been removed and membrane separation concentrated water W 2 from which insoluble substances have been concentrated.
Filtered water W 1 is transferred to a pH adjustment means which will be described later, is pH adjusted. On the other hand, membrane separation concentrated water W 2 is typically dehydrated by the dehydration means (not shown), it is treated as industrial wastes such as dehydrated cake.
<pH調整手段>
pH調整手段50は、膜分離手段40にて膜分離した濾過水WのpHを、河川等への放流に適したpHに調整する手段であり、pHを調整された濾過水Wは処理水Wとして排出される。
なお、膜分離手段40によって不溶化物を十分に除去しているので、濾過水WのpHを中和しても重金属が再溶解するおそれがない。
<PH adjusting means>
The pH adjusting unit 50 is a unit that adjusts the pH of the filtered water W 1 membrane-separated by the membrane separating unit 40 to a pH suitable for discharge into a river or the like. The pH-adjusted filtered water W 1 is treated. It is discharged as water W 3.
Incidentally, the film since the sufficiently remove the insolubles by separation means 40, heavy metals and neutralize the pH of the filtered water W 1 there is no fear of remelting.
pH調整手段50は、pH調整槽51と、pH計(図示略)と、酸添加装置およびアルカリ添加装置(いずれも図示略)とを備える。
pH調整槽51としては、濾過水Wを貯留できるものであれば特に制限されない。pH調整槽51の素材としては、具体的にはステンレス、FRP、PVC(塩化ビニル)、PVDF(ポリフッ化ビニリデン)、PTFE(ポリテトラフルオロエチレン)、ABS、PS(ポリスチレン)、PE(ポリエチレン)、PP(ポリプロピレン)、セラミックが挙げられる。また、pH計、酸添加装置およびアルカリ添加装置についても、pH調整に用いられるものであれば特に制限されない。
pH調整手段の具体的手段としては、貯留タンク、酸添加手段、アルカリ添加手段、攪拌機およびpH計を用いる。
酸添加装置(酸添加手段)の具体的手段としては、耐薬品性を有する薬品貯留タンクと、耐薬品性を有する電磁定量ポンプ、ダイヤフラムポンプ、またはマグネットポンプなどが用いられる。
アルカリ添加装置(アルカリ添加手段)の具体的手段としては、耐薬品性を有する薬品貯留タンクと、耐薬品性を有する電磁定量ポンプ、ダイヤフラムポンプ、またはマグネットポンプなどが用いられる。
The pH adjusting means 50 includes a pH adjusting tank 51, a pH meter (not shown), an acid addition device, and an alkali addition device (both not shown).
The pH adjusting tank 51 is not particularly limited as long as it can store the filtered water W 1. Specifically, the material of the pH adjusting tank 51 is stainless steel, FRP, PVC (vinyl chloride), PVDF (polyvinylidene fluoride), PTFE (polytetrafluoroethylene), ABS, PS (polystyrene), PE (polyethylene), Examples include PP (polypropylene) and ceramic. Further, the pH meter, the acid addition device, and the alkali addition device are not particularly limited as long as they are used for pH adjustment.
As specific means of the pH adjusting means, a storage tank, an acid addition means, an alkali addition means, a stirrer, and a pH meter are used.
As specific means of the acid addition device (acid addition means), a chemical storage tank having chemical resistance and an electromagnetic metering pump, diaphragm pump, or magnet pump having chemical resistance are used.
As specific means of the alkali addition device (alkali addition means), a chemical storage tank having chemical resistance and an electromagnetic metering pump, diaphragm pump, or magnet pump having chemical resistance are used.
<作用効果>
以上説明した本発明の廃水の処理装置1は、上流側から順に酸化処理手段20、不溶化処理手段30、膜分離手段40を備えるので、廃水Wは酸化処理された後に不溶化処理および膜分離される。すなわち、廃水W中の錯体形成化合物は、不溶化処理の前に酸化処理手段20にて酸化処理されるので、後段の不溶化処理手段30において不溶化処理が錯体形成化合物によって阻害されにくい。よって、本発明の廃水の処理装置1であれば、廃水Wを高度に処理でき、処理水W中の重金属濃度を十分に低減できる。
<Effect>
Processing apparatus 1 of the waste water of the present invention described above, the oxidation treatment unit 20 in this order from the upstream side, insolubilization means 30, since comprising a membrane separation means 40, the waste water W 0 is insolubilized and membrane separation after being oxidized The That is, since the complex-forming compound in the waste water W 0 is oxidized by the oxidation treatment means 20 before the insolubilization treatment, the insolubilization treatment in the subsequent insolubilization treatment means 30 is not easily inhibited by the complex-forming compound. Therefore, if the processing device 1 of the waste water of the present invention, the waste water W 0 can be processed highly, it can sufficiently reduce the concentration of heavy metals in the treated water W 3.
また、本発明の廃水の処理装置1は、酸化処理手段20により廃水W中の錯体形成化合物を酸化処理できるので、凝集剤を添加しなくても不溶化処理手段30により生成される重金属の不溶化物の粒子径を粗大化できる。従って、後段の膜分離手段40の濾過膜41が不溶化物により閉塞しにくく、膜分離手段40を長期間にわたって安定に運転することが可能である。 Moreover, since the wastewater treatment apparatus 1 of the present invention can oxidize the complex-forming compound in the wastewater W 0 by the oxidation treatment means 20, the heavy metal produced by the insolubilization treatment means 30 can be insolubilized without adding a flocculant. The particle diameter of the product can be increased. Therefore, the filtration membrane 41 of the downstream membrane separation means 40 is less likely to be blocked by the insolubilized material, and the membrane separation means 40 can be stably operated over a long period of time.
本発明の廃水の処理装置1は、重金属および錯体形成化合物を含む廃水Wを処理する装置であるが、特に無電解ニッケルメッキなどの無電解メッキ工程から排出される廃水を処理するのに好適である。 Processing apparatus 1 of the waste water of the present invention, suitable for is a device for processing waste water W 0 containing heavy metals and complexing compounds, in particular process waste water discharged from an electroless plating process such as electroless nickel plating It is.
<他の実施形態>
本発明の廃水の処理装置は図1に示す処理装置1に限定されない。例えば図1の処理装置1では、pH調整手段50を備えているが、濾過水WのpHが河川等への放流に適したpHであれば、pH調整手段50を備えていなくてもよい。
また、酸化処理手段20において、酸化剤添加手段22から塩素系の酸化剤を添加する場合には、塩素ガスまたはアンモニア酸化によるクロラミンなど、臭気成分が発生する場合がある。従って、発生濃度に応じてガス回収手段を適宜設置するのが望ましい。
ガス回収手段の具体的手段としては、スクラバー、または活性炭式ガス浄化装置が挙げられる。
<Other embodiments>
The wastewater treatment apparatus of the present invention is not limited to the treatment apparatus 1 shown in FIG. For example, in the processing apparatus 1 of FIG. 1, is provided with the pH adjustment unit 50, pH of the filtered water W 1 is as long as pH suitable for discharge into rivers or the like, may not include the pH adjustment unit 50 .
In addition, in the oxidation treatment means 20, when a chlorine-based oxidant is added from the oxidant addition means 22, an odor component such as chlorine gas or chloramine due to ammonia oxidation may be generated. Therefore, it is desirable to appropriately install gas recovery means according to the generated concentration.
Specific examples of the gas recovery means include a scrubber or an activated carbon gas purification device.
また、図1の処理装置1では、全量式の膜分離手段40を備えているが、図2に示すように、クロスフロー式の膜分離手段40でもよい。
なお、図2に示す廃水の処理装置2では、膜分離手段40により分離された膜分離濃縮水Wの一部を前段の不溶化処理手段30の不溶化槽31に返送しているが、膜分離濃縮水Wの一部は酸化処理槽20の酸化槽21や、貯留手段10の貯留槽11に返送してもよい。
Further, the processing apparatus 1 of FIG. 1 includes the full-volume type membrane separation means 40, but may be a cross-flow type membrane separation means 40 as shown in FIG. 2.
In the wastewater treatment apparatus 2 shown in FIG. 2, a part of the membrane separation concentrated water W 2 separated by the membrane separation means 40 is returned to the insolubilization tank 31 of the insolubilization treatment means 30 in the previous stage. A part of the concentrated water W 2 may be returned to the oxidation tank 21 of the oxidation treatment tank 20 or the storage tank 11 of the storage means 10.
図1、2に示す廃水の処理装置1、2に備わる膜分離手段40は、いずれも加圧式であるが、膜分離手段40としては、図3に示すように、浸漬式でもよい。
図3に示す廃水の処理装置3の膜分離手段40は、不溶化処理手段30から送られた廃水Wを溜める膜分離槽42と、膜分離槽42内に設けられた膜モジュール43と、膜洗浄用の散気手段44とを備える。膜モジュール43には吸引ポンプP2が接続され、散気手段44にはブロワーBが接続されている。
The membrane separation means 40 provided in the wastewater treatment apparatuses 1 and 2 shown in FIGS. 1 and 2 are both pressurized, but the membrane separation means 40 may be an immersion type as shown in FIG.
Membrane separation means 40 of the processor 3 of waste water shown in Figure 3, a membrane separation tank 42 for storing the waste water W 0 sent from the insolubilization treatment unit 30, the membrane module 43 provided in the membrane separation tank 42, membrane And an aeration means 44 for cleaning. A suction pump P <b> 2 is connected to the membrane module 43, and a blower B is connected to the air diffuser 44.
膜モジュール43としては、水処理等の分離操作に用いられる通常の膜モジュールが挙げられる。膜モジュール43では、吸引ポンプP2により膜分離槽42内の廃水Wを膜モジュール43の濾過膜の細孔を介して吸引ろ過することで廃水Wを濾過水Wと膜分離濃縮水Wとに分離する。
一方、散気手段44は膜モジュール43の下方に設けられ、ブロワーBより送気された空気を膜分離槽42内に放出する。これにより、散気手段44から連続的もしくは断続的に散気された気泡が、廃水Wの液中を通って膜モジュール43に達し、その後、水面から放出される。このとき、濾過膜が洗浄される。
なお、膜分離手段40により分離された膜分離濃縮水Wの一部を、不溶化槽31や、酸化槽21、貯留槽11に返送してもよい。
Examples of the membrane module 43 include a normal membrane module used for a separation operation such as water treatment. In the membrane module 43, filtered water W 1 and the membrane separation concentrated water W waste water W 0 by suction filtration through pores of the filtration membrane of the waste water W 0 of the membrane in the separation tank 42 by the suction pump P2 membrane module 43 2 and separated.
On the other hand, the air diffuser 44 is provided below the membrane module 43 and discharges the air supplied from the blower B into the membrane separation tank 42. Thus, continuously or intermittently diffuser air bubbles from the air diffuser means 44, through the liquid of the waste water W 0 reaches a membrane module 43, then, is discharged from the water surface. At this time, the filtration membrane is washed.
A part of the membrane separation concentrated water W 2 separated by the membrane separation means 40 may be returned to the insolubilization tank 31, the oxidation tank 21, and the storage tank 11.
また、本発明の廃水の処理装置は、例えば図4に示すように、不溶化処理手段30と膜分離手段40との間に、不溶化処理手段30にて不溶化処理された廃水W中の重金属を沈降分離する沈降分離手段60を備えるのが好ましい。
図4に示す廃水の処理装置4の沈降分離手段60は、不溶化処理手段30から送られた廃水Wを溜める沈殿槽61を備える。
沈殿槽61の構造については特に制限されず、沈殿槽61内部に傾斜板を設置して有効表面積を増やしてもよい。
また、沈殿槽61の容積については、処理対象液の固形分濃度や処理対象粒子(重金属の不溶化物)の大きさによって、適宜設定すればよい。
Further, the wastewater treatment apparatus of the present invention, for example, as shown in FIG. 4, removes heavy metals in wastewater W 0 insolubilized by the insolubilization treatment means 30 between the insolubilization treatment means 30 and the membrane separation means 40. It is preferable to provide sedimentation separation means 60 for sedimentation separation.
The sedimentation separation means 60 of the wastewater treatment apparatus 4 shown in FIG. 4 includes a sedimentation tank 61 that accumulates the wastewater W 0 sent from the insolubilization treatment means 30.
The structure of the precipitation tank 61 is not particularly limited, and an effective surface area may be increased by installing an inclined plate inside the precipitation tank 61.
Moreover, what is necessary is just to set suitably about the volume of the sedimentation tank 61 according to the solid content density | concentration of a process target liquid, and the magnitude | size of process target particle | grains (insoluble matter of heavy metal).
沈降分離手段60により、廃水Wは上澄み液Wと沈殿濃縮水Wとに分離される。
上澄み液Wは、後段の膜分離手段40に移され、濾過水Wと膜分離濃縮水Wとにさらに膜分離される。上澄み液Wには沈降分離手段60によって完全に沈降除去されなかった微細な重金属の不溶化物が存在するが、膜分離手段40によって微細な不溶化物は除去される。
一方、沈殿濃縮水Wは、通常、脱水手段(図示略)により脱水され、脱水ケーキ等の産業廃棄物として処理される。
The waste water W 0 is separated into the supernatant liquid W 4 and the precipitated concentrated water W 5 by the sedimentation separation means 60.
The supernatant liquid W 4 is transferred to the subsequent membrane separation means 40 and further membrane-separated into filtrate water W 1 and membrane separation concentrated water W 2 . The supernatant W 4 contains fine heavy metal insolubilized material that has not been completely settled and removed by the sedimentation separation means 60, but the fine insolubilized material is removed by the membrane separation means 40.
On the other hand, precipitated the concentrate W 5 is usually dehydrated by the dehydration means (not shown), it is treated as industrial wastes such as dehydrated cake.
図4に示す廃水の処理装置4のように、不溶化処理手段30と膜分離手段40との間に、沈降分離手段60を備えれば、膜分離手段40にて膜分離する前に、不溶化した廃水W中の重金属の大部分を廃水Wから除去できる。従って、膜分離手段40にて除去する粒子量が削減されるので、膜分離手段40の負担が軽減され、より安定した濾過運転を継続できる。
なお、図4に示す廃水の処理装置4は、膜分離手段40として図1に示す処理装置1と同じものを備えているが、図2、3に示す処理装置2、3の膜分離手段40と同じものでもよい。
If the sedimentation separation means 60 is provided between the insolubilization treatment means 30 and the membrane separation means 40 as in the wastewater treatment apparatus 4 shown in FIG. 4, it is insolubilized before the membrane separation by the membrane separation means 40. the majority of heavy metals in waste water W 0 can be removed from the waste water W 0. Accordingly, since the amount of particles removed by the membrane separation means 40 is reduced, the burden on the membrane separation means 40 is reduced, and a more stable filtration operation can be continued.
The wastewater treatment apparatus 4 shown in FIG. 4 includes the same membrane separation means 40 as the treatment apparatus 1 shown in FIG. 1, but the membrane separation means 40 of the treatment apparatuses 2 and 3 shown in FIGS. May be the same.
このように、本発明の廃水の処理装置であれば、廃水に凝集剤を添加して不溶化物を凝集させる凝集手段を備えなくても廃水を高度に処理でき、重金属濃度を十分に低減できるが、必要であれば凝集手段を備えてもよい。ただし、凝集手段にて廃水に添加する凝集剤の添加量が少ないほど、薬剤費用を削減できるとともに、発生するスラッジ量を軽減できるので、スラッジの処分費用をも削減できる。従って、凝集手段を備えなくても目標の処理水質を達成できる場合には、凝集手段は備えない方が好ましい。なお、目標の処理水質とは、例えばニッケルであれば0.1mg/L以下である。
なお、凝集手段を備える場合、その設置場所は不溶化処理手段と膜分離手段との間であり、沈降分離手段を備える場合には不溶化処理手段と沈降分離手段との間である。凝集手段の具体例としてはポリ塩化アルミニウムなどの無機凝集剤や高分子凝集剤などを添加する方法が挙げられる。
As described above, the wastewater treatment apparatus of the present invention can treat wastewater to a high degree even without a coagulation means for adding a flocculant to the wastewater to coagulate the insolubilized material, and can sufficiently reduce the heavy metal concentration. If necessary, aggregating means may be provided. However, the smaller the amount of the flocculant added to the waste water by the flocculating means, the more the chemical cost can be reduced and the sludge amount generated can be reduced, so that the sludge disposal cost can be reduced. Therefore, when the target treated water quality can be achieved without the aggregation means, it is preferable not to provide the aggregation means. The target treated water quality is 0.1 mg / L or less for nickel, for example.
In the case where the aggregation means is provided, the installation location is between the insolubilization processing means and the membrane separation means, and in the case where the sedimentation separation means is provided, between the insolubilization processing means and the sedimentation separation means. Specific examples of the aggregating means include a method of adding an inorganic aggregating agent such as polyaluminum chloride or a polymer aggregating agent.
[廃水の処理方法]
本発明の廃水の処理方法は、廃水中の錯体形成化合物を酸化処理する酸化処理工程と、酸化処理した廃水中の重金属を不溶化処理する不溶化処理工程と、不溶化処理した廃水を膜分離する膜分離工程とを有する。
以下、図1に示す廃水の処理装置1を用いて、本発明の廃水の処理方法の一例について具体的に説明する。
[Wastewater treatment method]
The wastewater treatment method of the present invention includes an oxidation treatment step for oxidizing a complex-forming compound in wastewater, an insolubilization treatment step for insolubilizing heavy metals in the oxidized wastewater, and membrane separation for membrane separation of the insoluble wastewater. Process.
Hereinafter, an example of the wastewater treatment method of the present invention will be specifically described using the wastewater treatment apparatus 1 shown in FIG.
<酸化処理工程>
まず、廃水Wを貯留手段10の貯留槽11に一旦貯留する。
ついで、貯留槽11に貯留された廃水Wを酸化処理手段20の酸化槽21に移し、酸化剤を添加して廃水W中の錯体形成化合物を酸化処理する。
<Oxidation process>
First, the waste water W 0 is temporarily stored in the storage tank 11 of the storage means 10.
Next, the waste water W 0 stored in the storage tank 11 is transferred to the oxidation tank 21 of the oxidation treatment means 20, and an oxidizing agent is added to oxidize the complex-forming compound in the waste water W 0 .
酸化処理工程で用いる酸化剤としては、次亜塩素酸、亜塩素酸、過塩素酸もしくはこれらの塩、および過酸化水素などが挙げられる。これらの中でも、次亜塩素酸、亜塩素酸、過塩素酸もしくはこれらの塩、またはこれらの混合溶液が好ましく、取り扱い性、入手容易性の観点から次亜塩素酸ナトリウム溶液が特に好ましい。
次亜塩素酸、亜塩素酸、過塩素酸もしくはこれらの塩、またはこれらの混合溶液を酸化剤として用いれば、酸化反応が速やかに進行しやすくなり、全体の処理速度を速めることができる。また、これらは、EDTA、酒石酸などのキレート作用を有する錯体形成化合物の分解効率が高いことから、後述する不溶化処理工程において錯体形成化合物による不溶化物の凝集阻害を防ぐことができ、不溶化処理をより効率的に行うことができる。
Examples of the oxidizing agent used in the oxidation treatment step include hypochlorous acid, chlorous acid, perchloric acid or a salt thereof, and hydrogen peroxide. Among these, hypochlorous acid, chlorous acid, perchloric acid or a salt thereof, or a mixed solution thereof is preferable, and a sodium hypochlorite solution is particularly preferable from the viewpoints of handleability and availability.
If hypochlorous acid, chlorous acid, perchloric acid or a salt thereof, or a mixed solution thereof is used as an oxidizing agent, the oxidation reaction easily proceeds quickly, and the overall processing speed can be increased. Moreover, since these have high decomposition efficiency of complex-forming compounds having a chelating action such as EDTA and tartaric acid, they can prevent the inhibition of aggregation of insolubilized products by the complex-forming compounds in the insolubilization treatment step described later, and more insolubilization treatment Can be done efficiently.
また、特に次亜塩素酸ナトリウムまたはその溶液を酸化剤として用いると、不溶化処理工程において生成する重金属の不溶化物の粒子径が大きくなる傾向にある。不溶化物の粒子径が大きい方が、後述する膜分離工程において濾過膜の細孔が閉塞されるのを抑制でき、膜の流束を高く維持できる。
さらに、廃水Wが無電解ニッケルメッキ廃水など、重金属としてニッケルを含む廃水の場合、次亜塩素酸ナトリウムなどの酸化剤の添加によって、溶解しているニッケルイオンがオキシ水酸化ニッケル(NiO(OH))に酸化される。オキシ水酸化ニッケルは、一般的に水酸化ニッケル(Ni(OH))と比較して溶解度が低くなるため、高度な排水処理を行う場合には、次亜塩素酸ナトリウムまたはその溶液が酸化剤として特に好ましい。
In particular, when sodium hypochlorite or a solution thereof is used as an oxidizing agent, the particle size of the heavy metal insolubilized product produced in the insolubilizing treatment step tends to increase. When the particle size of the insolubilized material is larger, it is possible to suppress clogging of the pores of the filtration membrane in the membrane separation step described later, and the membrane flux can be maintained high.
Furthermore, when the waste water W 0 is waste water containing nickel as a heavy metal such as electroless nickel plating waste water, dissolved nickel ions are converted into nickel oxyhydroxide (NiO (OH) by adding an oxidizing agent such as sodium hypochlorite. )) Oxidized. Since nickel oxyhydroxide generally has a lower solubility than nickel hydroxide (Ni (OH) 2 ), sodium hypochlorite or a solution thereof is an oxidizing agent when performing advanced wastewater treatment. Is particularly preferred.
なお、廃水Wへの酸化剤の添加は、廃水W中に含まれる錯体形成化合物を酸化処理することが目的であり、過剰に酸化剤を添加することは、薬品の過剰消費となる。また、酸化剤を過剰に添加すると、残存した酸化剤により、後述する膜分離工程で用いる濾過膜を酸化させるおそれがある。加えて、酸化剤を過剰に添加すると、最終的に発生するスラッジ量が増加する傾向にある。
以上のことより、酸化処理工程では廃水W中に含まれる錯体形成化合物を全て酸化した時点で、廃水W中への酸化剤の添加を停止することが望ましく、過剰添加を制御するのがよい。
酸化剤の添加終了点を検知する方法としては、水質計23を用いた酸化還元電位のモニタリング、酸化剤濃度のモニタリング、または錯体形成化合物の濃度のモニタリング、といった方法が挙げられる。
The addition of the oxidizing agent to the waste water W 0 is a purpose to be oxidizing the complex forming compound contained in the wastewater W 0, adding an excess oxidizing agent becomes excessive consumption of chemicals. Moreover, when an oxidizing agent is added excessively, there exists a possibility that the filtration membrane used at the membrane separation process mentioned later may be oxidized with the remaining oxidizing agent. In addition, when an oxidizing agent is excessively added, the amount of sludge that is finally generated tends to increase.
From the above, when the oxidation treatment process that all oxidized complex forming compound contained in the wastewater W 0, it is desirable to stop the addition of the oxidizing agent to the waste water W 0, to control the excessive addition Good.
Examples of the method for detecting the end point of the addition of the oxidizing agent include a method of monitoring the oxidation-reduction potential using the water quality meter 23, monitoring the oxidizing agent concentration, or monitoring the concentration of the complex-forming compound.
<酸化還元電位のモニタリング>
廃水W中に錯体形成化合物が残存している状態であれば、添加した酸化剤は錯体形成化合物との酸化還元反応により消費される。酸化剤が錯体形成化合物の酸化により消費されている間は廃水Wの酸化還元電位は低く、酸化分解可能な錯体形成化合物が全て酸化されて酸化剤が残存すると廃水Wの酸化還元電位は高くなる。
よって、水質計(酸化還元電位計)23により酸化槽21中の廃水Wの酸化還元電位をモニタリングすれば、酸化還元電位が上昇した時点で、廃水W中の酸化分解可能な錯体形成化合物は全て酸化されたものと容易に判断でき、この時点で酸化剤の添加を停止すればよい。
<Monitoring of redox potential>
If the complex-forming compound remains in the wastewater W 0 , the added oxidizing agent is consumed by the redox reaction with the complex-forming compound. While the oxidizing agent is consumed by the oxidation of the complex-forming compound, the redox potential of the wastewater W 0 is low, and when all the complex-forming compounds capable of oxidative decomposition are oxidized and the oxidizing agent remains, the redox potential of the waste water W 0 is Get higher.
Therefore, if the oxidation-reduction potential of the wastewater W 0 in the oxidation tank 21 is monitored by the water quality meter (oxidation-reduction potentiometer) 23, the complex-forming compound capable of being oxidized and decomposed in the wastewater W 0 when the oxidation-reduction potential increases. Can be easily determined to be all oxidized, and the addition of the oxidizing agent may be stopped at this point.
<酸化剤濃度のモニタリング>
廃水W中に錯体形成化合物が残存している状態であれば、添加した酸化剤は消費される。すなわち、酸化剤を連続的に添加している過程において、酸化処理すべき錯体形成化合物が残存している間は、酸化剤濃度は低濃度かつ、ほぼ一定で推移する。
よって、水質計(酸化剤濃度計)23により酸化槽21中の酸化剤の濃度をモニタリングすれば、酸化剤濃度が上昇した時点で、廃水W中の酸化分解可能な錯体形成化合物は全て酸化されたものと容易に判断でき、この時点で酸化剤の添加を停止すればよい。
なお、酸化剤として次亜塩素酸、亜塩素酸、過塩素酸もしくはこれらの塩等を用いる場合、酸化剤濃度は、残留塩素濃度を測定することでも求められる。
<Monitoring of oxidant concentration>
If the complex-forming compound remains in the wastewater W 0 , the added oxidizing agent is consumed. That is, in the process of continuously adding the oxidizing agent, the oxidizing agent concentration is low and remains substantially constant while the complex-forming compound to be oxidized remains.
Therefore, if the concentration of the oxidizing agent in the oxidation tank 21 is monitored by the water quality meter (oxidizing agent concentration meter) 23, all the complex-forming compounds capable of oxidative decomposition in the wastewater W 0 are oxidized when the oxidizing agent concentration increases. It can be easily determined that the oxidant has been added, and the addition of the oxidizing agent may be stopped at this point.
When hypochlorous acid, chlorous acid, perchloric acid, or a salt thereof is used as the oxidant, the oxidant concentration can also be obtained by measuring the residual chlorine concentration.
<錯体形成化合物の濃度のモニタリング>
廃水W中の錯体形成化合物がアンモニアなど、水質計でモニタリング可能な物質であれば、前記物質を連続的にモニタリングし、錯体形成化合物の濃度が十分に低下した時点で酸化剤の添加を停止すればよい。
<Monitoring the concentration of complex-forming compounds>
If the complex-forming compound in the waste water W 0 is a substance that can be monitored by a water quality meter such as ammonia, the substance is continuously monitored, and the addition of the oxidizing agent is stopped when the concentration of the complex-forming compound is sufficiently reduced do it.
上述した酸化剤の添加終了点の検知方法の中でも、水質計23として用いる酸化還元電位計は、その使用が簡便である点で、酸化還元電位のモニタリングが好ましい。また、酸化還元電位のモニタリングは連続式(連続測定)に対応できるのに対し、酸化剤濃度や錯体形成化合物の濃度のモニタリングはバッチ式(一定間隔でサンプルを採取して測定)に対応しているため、酸化還元電位のモニタリングの方が、他の方法よりも酸化剤の添加終了点をより瞬時に検知できる。 Among the above-described methods for detecting the end point of addition of the oxidizing agent, the oxidation-reduction potential meter used as the water quality meter 23 is preferably monitored by the oxidation-reduction potential because it is easy to use. The redox potential can be monitored continuously (continuous measurement), while the oxidant and complexing compound concentrations can be monitored batchwise (samples taken at regular intervals). Therefore, the oxidation-reduction potential monitoring can detect the oxidant addition end point more instantaneously than other methods.
酸化還元電位のモニタリングにより酸化剤の添加終了点を検知する場合は、以下のようにするのが好ましい。
すなわち、酸化剤濃度が上昇する(酸化剤の添加が過剰となる)タイミングにおける酸化還元電位を予め測定しておくのが好ましい。これにより、事前に測定した酸化還元電位の値を判断基準とできるので、より容易に酸化剤の添加停止のタイミングを見極めることができる。
When the end point of the addition of the oxidizing agent is detected by monitoring the oxidation-reduction potential, the following is preferable.
That is, it is preferable to measure in advance the oxidation-reduction potential at the timing when the oxidant concentration increases (the addition of oxidant becomes excessive). Thereby, since the value of the oxidation-reduction potential measured in advance can be used as a criterion, it is possible to more easily determine the timing of stopping the addition of the oxidizing agent.
なお、酸化還元電位のモニタリングや酸化剤濃度のモニタリングでは、酸化剤の添加量が不足しているかどうかを判断するのは困難である。このような場合は、廃水W中の錯体形成化合物の濃度などから、全ての錯体形成化合物を酸化処理するのに必要な酸化剤量を予測し、その予測量よりも多い量の酸化剤を添加する。そして、酸化還元電位のモニタリングや酸化剤濃度のモニタリングにより、酸化剤が過剰と判断されれば酸化剤の添加を停止したり、添加量を減らしたりすればよい。 Note that it is difficult to determine whether or not the addition amount of the oxidizing agent is insufficient in the monitoring of the oxidation-reduction potential or the monitoring of the oxidizing agent concentration. In such a case, the amount of oxidant necessary to oxidize all the complex-forming compounds is predicted from the concentration of the complex-forming compounds in the wastewater W 0 , and a larger amount of oxidant than the predicted amount is required. Added. Then, if it is determined that the oxidizing agent is excessive by monitoring the oxidation-reduction potential or monitoring the oxidizing agent concentration, the addition of the oxidizing agent may be stopped or the addition amount may be reduced.
また、酸化処理工程は、廃水のpHを調整するpH調整工程を備えていてもよい。pH調整手段は、後述するpH調整工程と同様の手段を採用することができる。また、pHの調整は、酸化剤を添加する前に行うことが好ましい。
酸化処理工程における廃水のpHは、4~8とすることが好ましく、4~6がより好ましい。これにより塩素ガスを発生させることなく、酸化剤による酸化力を向上させることができる。
Moreover, the oxidation treatment process may include a pH adjustment process for adjusting the pH of the wastewater. As the pH adjusting means, the same means as in the pH adjusting step described later can be adopted. Moreover, it is preferable to adjust pH before adding an oxidizing agent.
The pH of the waste water in the oxidation treatment step is preferably 4 to 8, and more preferably 4 to 6. Thereby, the oxidizing power by an oxidizing agent can be improved without generating chlorine gas.
<不溶化処理工程>
不溶化処理工程では、酸化処理された廃水Wを不溶化処理手段30の不溶化槽31に移し、不溶化剤を添加して廃水W中の重金属を不溶化処理する。
不溶化処理の方法としては、水酸化剤を用いた水酸化物法と、硫化剤を用いた硫化物法がある。なお、硫化物法の場合は硫化水素発生のおそれがあるため、不溶化処理としては水酸化物法が好ましい。
<Insolubilization process>
In the insolubilization treatment step, the oxidized waste water W 0 is transferred to the insolubilization tank 31 of the insolubilization treatment means 30, and an insolubilizing agent is added to insolubilize heavy metals in the waste water W 0 .
As the insolubilization method, there are a hydroxide method using a hydroxylating agent and a sulfide method using a sulfiding agent. In the case of the sulfide method, hydrogen sulfide may be generated, and therefore the hydroxide method is preferable as the insolubilization treatment.
水酸化物法は、水酸化剤(水酸化物イオン)と対象金属とを反応させ、溶解度の低い金属水酸化物として析出させる方法である。
水酸化剤としては、水酸化ナトリウム、炭酸ナトリウム、水酸化カルシウム、および水酸化マグネシウムなどが用いられる。水酸化ナトリウムを用いるとスラッジ発生量が少なくなるためより好ましい。
The hydroxide method is a method in which a hydroxylating agent (hydroxide ion) and a target metal are reacted and precipitated as a metal hydroxide having low solubility.
As the hydroxylating agent, sodium hydroxide, sodium carbonate, calcium hydroxide, magnesium hydroxide and the like are used. Sodium hydroxide is more preferable because sludge generation is reduced.
一方、硫化物法は、硫化剤(硫化物イオン)と対象金属を反応させ、溶解度の低い金属硫化物として析出させる方法である。
硫化剤としては、硫化ナトリウム、および硫化水素などが用いられる。
On the other hand, the sulfide method is a method in which a sulfiding agent (sulfide ion) and a target metal are reacted and precipitated as a metal sulfide having low solubility.
Examples of the sulfiding agent include sodium sulfide and hydrogen sulfide.
なお、水酸化物法によって不溶化処理を行う場合、重金属は各金属種によって溶解度が最も低くなるpH領域が異なる。そのため、重金属の除去率を高めるために、溶解度が最も低くなるpHになるまで、不溶化剤(水酸化剤)を添加する。
その際、不溶化剤の添加量の制御は、水質計33による不溶化槽31中の廃水WのpH測定によって行われる。
ただし、廃水の処理装置に供給される廃水W中の重金属の組成および濃度が、常時一定であることが判明している場合には、不溶化剤を一定量注入することによって制御することもできる。
When insolubilization is performed by a hydroxide method, heavy metals have different pH ranges where the solubility is lowest depending on each metal species. Therefore, in order to increase the removal rate of heavy metals, an insolubilizing agent (hydroxylating agent) is added until the pH reaches the lowest solubility.
At that time, the addition amount of the insolubilizing agent is controlled by measuring the pH of the waste water W 0 in the insolubilizing tank 31 by the water quality meter 33.
However, the composition and concentration of heavy metals in waste water W 0 to be supplied to the waste water treatment apparatus, if you are found to be constant at all times, can also be controlled by a certain amount injected insolubilizing agent .
また、同じ重金属であっても、共存する他の成分によって、溶解度が最も低くなるpH領域が異なることがある。よって、実際には処理対象の廃水Wを用いた事前試験を行い、最も適したpH領域となるように不溶化剤を添加して、pHを制御することが望ましい。事前試験とは不溶化剤使用量が最も少なく、かつ目標処理水質を達成することができるpH条件を決定する試験のことである。 Moreover, even if it is the same heavy metal, the pH area | region where solubility becomes the lowest may differ with the other components to coexist. Therefore, in practice, it is desirable to control the pH by conducting a preliminary test using the waste water W 0 to be treated and adding an insolubilizing agent so as to be in the most suitable pH range. The pre-test is a test for determining pH conditions that can achieve the target treated water quality with the least amount of insolubilizer used.
<膜分離工程>
膜分離工程では、不溶化処理された廃水Wを膜分離手段40に移し、濾過膜41により不溶化物が除去された濾過水Wと、不溶化物が濃縮された膜分離濃縮水Wとに膜分離する。
濾過水Wは、必要に応じて後述のpH調整工程によりpH調整される。一方、膜分離濃縮水Wは、通常、脱水され、脱水ケーキ等の産業廃棄物として処理される。
<Membrane separation process>
In the membrane separation step, the waste water W 0 that has been insolubilized is transferred to the membrane separation means 40, and the filtered water W 1 from which the insoluble matter has been removed by the filtration membrane 41 and the membrane separation concentrated water W 2 in which the insoluble matter has been concentrated. Membrane separation.
Filtered water W 1 may be pH adjusted by the pH adjustment step described below as required. On the other hand, membrane separation concentrated water W 2 is usually dehydrated, it is treated as industrial wastes such as dehydrated cake.
<pH調整工程>
pH調整工程では、濾過水WをpH調整手段50のpH調整槽51に移し、濾過水WのpHを河川等への放流に適したpHに調整する。特に、不溶化処理工程において水酸化物法を用いた場合、通常、濾過水Wはアルカリ性となっているため中和するのがよい。pHを調整された濾過水Wは処理水Wとして排出される。
pH調整工程では、中和用のpH調整剤として、塩酸、硫酸、および炭酸ガス等の酸などが用いられる。pH調整工程において酸を過剰に添加した場合には、pH調整剤として水酸化ナトリウム、炭酸ナトリウム、水酸化カルシウム、および水酸化マグネシウム等のアルカリを添加して、中性領域になるようにpHを再調整する。
なお、膜分離工程によって不溶化物を十分に除去しているので、濾過水WのpHを中和しても重金属が再溶解するおそれがない。
<PH adjustment step>
In pH adjustment step, transferring the filtered water W 1 to pH adjustment tank 51 of the pH adjusting means 50, the pH of the filtered water W 1 is adjusted to pH suitable for discharge into rivers. In particular, when the hydroxide method is used in the insolubilization treatment step, the filtered water W 1 is usually alkaline, so it is preferable to neutralize it. The filtered water W 1 whose pH has been adjusted is discharged as treated water W 3 .
In the pH adjustment step, acids such as hydrochloric acid, sulfuric acid, and carbon dioxide are used as a pH adjuster for neutralization. When an excessive amount of acid is added in the pH adjustment step, an alkali such as sodium hydroxide, sodium carbonate, calcium hydroxide, and magnesium hydroxide is added as a pH adjuster, and the pH is adjusted to be in a neutral region. Readjust.
Incidentally, since the sufficiently remove the insolubles by membrane separation process, heavy metals and neutralize the pH of the filtered water W 1 there is no possibility to re-dissolve.
<作用効果>
以上説明した本発明の廃水の処理方法によれば、不溶化処理工程の前に酸化処理工程を行い、廃水中の錯体形成化合物を酸化処理するので、不溶化処理工程での不溶化処理が錯体形成化合物によって阻害されにくい。よって、廃水を高度に処理でき、処理水中の重金属濃度を十分に低減できる。
<Effect>
According to the wastewater treatment method of the present invention described above, the oxidation treatment step is performed before the insolubilization treatment step, and the complex forming compound in the wastewater is oxidized, so that the insolubilization treatment in the insolubilization treatment step is performed by the complex forming compound. Hard to be disturbed. Therefore, wastewater can be treated at a high level and the heavy metal concentration in the treated water can be sufficiently reduced.
ところで、一般的に、不溶化処理工程において水酸化物法を用いた場合、これより生成する重金属の不溶化物の粒子は微細であり、沈降速度が非常に遅くなる傾向にある。また、膜分離工程において微細な粒子を濾過すると、膜の細孔が閉塞されやすくなるため、膜濾過を長期間安定して継続することが困難になる。
しかし、本発明の廃水の処理方法であれば、不溶化処理工程の前に酸化処理工程により廃水中の錯体形成化合物を酸化処理するので、凝集剤を添加しなくても不溶化処理工程により生成される重金属の不溶化物の粒子径を粗大化できる。従って、不溶化処理工程の後に行われる膜分離工程において濾過膜が不溶化物により閉塞しにくく、膜分離工程を長期間にわたって安定に行うことが可能である。
By the way, generally, when the hydroxide method is used in the insolubilization process, the particles of the insolubilized heavy metal produced therefrom are fine and the sedimentation rate tends to be very slow. Further, if fine particles are filtered in the membrane separation step, the pores of the membrane are easily blocked, and it is difficult to continue membrane filtration stably for a long period of time.
However, in the wastewater treatment method of the present invention, the complex-forming compound in the wastewater is oxidized by the oxidation treatment step before the insolubilization treatment step, so that it is generated by the insolubilization treatment step without adding a flocculant. The particle size of the heavy metal insolubilized material can be increased. Therefore, in the membrane separation step performed after the insolubilization treatment step, the filtration membrane is hardly clogged with the insolubilized material, and the membrane separation step can be performed stably over a long period of time.
本発明の廃水の処理方法は、重金属および錯体形成化合物を含む廃水を処理する方法であるが、特に無電解ニッケルメッキなどの無電解メッキ工程から排出される廃水を処理するのに好適である。 The wastewater treatment method of the present invention is a method for treating wastewater containing heavy metals and complex-forming compounds, and is particularly suitable for treating wastewater discharged from an electroless plating step such as electroless nickel plating.
<他の実施形態>
本発明の廃水の処理方法は、上述した方法に限定されない。例えば上述した方法では、膜分離工程の後にpH調整工程を行うが、濾過水WのpHが河川等への放流に適したpHであれば、pH調整工程は行わなくてもよい。
<Other embodiments>
The wastewater treatment method of the present invention is not limited to the method described above. For example, in the above-described method, it performs the pH adjustment step after the membrane separation step, if the pH at which the pH of the filtered water W 1 is suitable for discharge into rivers or the like, pH adjustment step may not be performed.
また、上述した方法では、酸化処理工程での酸化処理方法として酸化剤添加法を例示したが、例えばオゾン酸化法、光触媒法、または生物酸化法などでもよい。ただし、制御の簡便性や反応速度の観点から、酸化処理方法としては酸化剤添加法が好ましい。なお、オゾン酸化法とは、オゾン発生装置などから生じたオゾンの酸化力を用いて、有機物を酸化分解する方法のことである。光触媒法とは、二酸化チタンなどの光触媒に紫外線照射した際に発生する酸化力を用いて有機物を酸化分解する方法のことである。生物酸化法とは、活性汚泥法など、微生物による酸化作用を用いて有機物を酸化分解する方法のことである。
なお、酸化処理方法として、塩素系の酸化剤を用いた酸化剤添加法を採用する場合には、塩素ガスまたはアンモニア酸化によるクロラミンなど、臭気成分が発生するため、発生濃度に応じてガス回収を行うのが望ましい。
In the above-described method, the oxidant addition method is exemplified as the oxidation treatment method in the oxidation treatment step. However, for example, an ozone oxidation method, a photocatalyst method, or a biological oxidation method may be used. However, from the viewpoint of simplicity of control and reaction rate, an oxidizing agent addition method is preferable as the oxidation treatment method. The ozone oxidation method is a method of oxidizing and decomposing organic substances using the oxidizing power of ozone generated from an ozone generator or the like. The photocatalytic method is a method of oxidizing and decomposing organic substances using an oxidizing power generated when a photocatalyst such as titanium dioxide is irradiated with ultraviolet rays. The biological oxidation method is a method of oxidizing and decomposing organic substances using an oxidizing action by microorganisms, such as an activated sludge method.
In addition, when an oxidizing agent addition method using a chlorine-based oxidizing agent is adopted as an oxidation treatment method, odorous components such as chlorine gas or chloramine due to ammonia oxidation are generated, so gas recovery can be performed according to the generated concentration. It is desirable to do it.
また、上述した方法では、膜分離工程での膜分離方法として図1に示すような全量式の膜分離手段40を用いた方法を例示したが、例えば図2に示すようなクロスフロー式の膜分離手段40や、浸漬式の膜分離手段40を用いてもよい。
図1に示す全量式の膜分離手段40や、図2に示すクロスフロー式の膜分離手段40は加圧式を採用しており、濾過膜41を容器に封入した状態で膜の一次側を高い圧力で加圧できる。そのため、高い透過流束で膜分離でき、必要膜面積を低減できる。ただし、処理対象液の不溶化物濃度(濁質濃度)が高い場合には濾過膜41が閉塞しやすい傾向にあるため、処理対象液の不溶化物濃度が低い場合に実施するのが好ましい。
一方、図3に示す浸漬式の膜分離手段40は、膜モジュール43を処理対象液中に浸漬し、膜の二次側を負圧にすることによって濾過を行う。そのため、加圧式と比較して透過流束が低くなるが、不溶化物濃度が高くても、濾過膜が閉塞することなく膜分離できる。
Further, in the above-described method, the method using the whole-volume type membrane separation means 40 as shown in FIG. 1 is exemplified as the membrane separation method in the membrane separation step, but for example, a cross-flow type membrane as shown in FIG. Separation means 40 or immersion type membrane separation means 40 may be used.
The full-volume type membrane separation means 40 shown in FIG. 1 and the cross-flow type membrane separation means 40 shown in FIG. 2 employ a pressure type, and the primary side of the membrane is high with the filtration membrane 41 sealed in a container. Can be pressurized with pressure. Therefore, the membrane can be separated with a high permeation flux, and the required membrane area can be reduced. However, when the insolubilized substance concentration (turbidity concentration) of the liquid to be treated is high, the filtration membrane 41 tends to be clogged. Therefore, it is preferable to carry out when the insolubilized substance concentration of the liquid to be treated is low.
On the other hand, the submerged membrane separation means 40 shown in FIG. 3 performs filtration by immersing the membrane module 43 in the liquid to be treated and setting the secondary side of the membrane to a negative pressure. Therefore, although the permeation flux is lower than that of the pressurization type, membrane separation can be performed without clogging the filtration membrane even if the concentration of insolubilized material is high.
さらに、本発明の廃水の処理方法は、例えば図4に示す処理装置4を用い、不溶化処理工程と膜分離工程との間に、不溶化処理した廃水W中の重金属を沈降分離する沈降分離工程を有することが好ましい。
沈降分離工程では、不溶化処理された廃水Wを沈降分離手段60の沈殿層61に移し、重金属の不溶化物を沈殿させ、上澄み液Wと沈殿濃縮水Wとに分離する。
上澄み液Wは、膜分離工程に移され、濾過水Wと膜分離濃縮水Wとにさらに膜分離される。上澄み液Wには沈降分離工程によって完全に沈降除去されなかった微細な重金属の不溶化物が存在するが、膜分離工程によって微細な不溶化物は除去される。
一方、沈殿濃縮水Wは、通常、脱水され、脱水ケーキ等の産業廃棄物として処理される。
Furthermore, the wastewater treatment method of the present invention uses, for example, the treatment device 4 shown in FIG. 4 to settle and separate heavy metals in the insolubilized wastewater W 0 between the insolubilization treatment step and the membrane separation step. It is preferable to have.
The sedimentation process, transferred to waste water W 0 which is insolubilized on the precipitation layer 61 of the settling device 60, to precipitate the insoluble matter of heavy metals, is separated into a supernatant and W 4 and precipitation concentrated water W 5.
The supernatant W 4 is transferred to a membrane separation step, and further membrane-separated into filtered water W 1 and membrane separation concentrated water W 2 . Although the supernatant W 4 there is insolubilized of fine heavy metal that has not been completely settled removed by sedimentation separation step, fine insolubles by membrane separation step is removed.
On the other hand, precipitated the concentrate W 5 is usually dehydrated, it is treated as industrial wastes such as dehydrated cake.
不溶化処理工程と膜分離工程との間に、沈降分離工程を行えば、膜分離工程にて膜分離する前に、不溶化した廃水中の重金属の大部分を廃水から除去できる。従って、膜分離工程にて除去する粒子量が削減されるので、濾過膜の負担が軽減され、より安定した濾過運転を継続できる。 If a sedimentation separation step is performed between the insolubilization treatment step and the membrane separation step, most of the heavy metals in the insolubilized wastewater can be removed from the wastewater before membrane separation in the membrane separation step. Therefore, since the amount of particles to be removed in the membrane separation step is reduced, the burden on the filtration membrane is reduced, and more stable filtration operation can be continued.
なお、上述したように、不溶化処理工程において水酸化物法を用いた場合、これより生成する重金属の不溶化物の粒子は微細であり、沈降速度が非常に遅くなる傾向にある。そのため、沈殿に長時間を要してしまい、沈殿槽を大型化する必要があった。
しかし、本発明の廃水の処理方法であれば、不溶化処理工程の前に酸化処理工程により廃水中の錯体形成化合物を酸化処理するので、凝集剤を添加しなくても不溶化処理工程により生成される重金属の不溶化物の粒子径を粗大化でき、沈降速度を高くすることができる。従って、沈降分離工程において短時間で重金属を沈殿させることができるので、沈殿槽を大型化する必要がない。
As described above, when the hydroxide method is used in the insolubilization process step, the heavy metal insolubilized particles produced therefrom are fine and the sedimentation rate tends to be very slow. Therefore, it took a long time for precipitation, and it was necessary to enlarge the precipitation tank.
However, in the wastewater treatment method of the present invention, the complex-forming compound in the wastewater is oxidized by the oxidation treatment step before the insolubilization treatment step, so that it is generated by the insolubilization treatment step without adding a flocculant. The particle diameter of the heavy metal insolubilized material can be increased, and the sedimentation rate can be increased. Therefore, heavy metals can be precipitated in a short time in the sedimentation separation step, and therefore there is no need to increase the size of the precipitation tank.
このように、本発明の廃水の処理方法であれば、凝集剤を添加しなくても廃水を高度に処理でき、重金属濃度を十分に低減できるが、必要であれば凝集剤を添加してもよい。ただし、凝集剤の添加量が少ないほど、薬剤費用を削減できるとともに、発生するスラッジ量を軽減できるので、スラッジの処分費用をも削減できる。従って、凝集剤を添加しなくても目標の処理水質を達成できる場合には、凝集剤は添加しない方が好ましい。なお、目標の処理水質とは、例えばニッケルであれば0.1mg/L以下である。
なお、凝集剤を添加する場合、凝集剤の添加のタイミングは不溶化処理工程と膜分離工程との間であり、沈降分離工程を行う場合には不溶化処理工程と沈降分離工程との間である。
As described above, the wastewater treatment method of the present invention can treat wastewater to a high degree without adding a flocculant and can sufficiently reduce the concentration of heavy metals. Good. However, the smaller the amount of the flocculant added, the lower the cost of chemicals and the amount of sludge that can be generated, so that the disposal cost of sludge can also be reduced. Therefore, it is preferable not to add the flocculant when the target treated water quality can be achieved without adding the flocculant. The target treated water quality is 0.1 mg / L or less for nickel, for example.
In addition, when adding a flocculant, the timing of addition of a flocculant is between an insolubilization treatment process and a membrane separation process, and when performing a sedimentation separation process, it is between an insolubilization treatment process and a sedimentation separation process.
[廃水処理システム]
 図7は、本発明の廃水処理システムの一例を示す概略構成図である。図7の廃水処理システムは、図1で表される廃水処理装置から得られた処理水を、加工対象品の金属表面を洗浄する工程(金属表面洗浄工程)に再利用するシステムである。金属表面洗浄工程は、加工対象品をメッキ加工する前に洗浄するための油分洗浄槽と、加工対象品をメッキ加工後に洗浄するための一次洗浄槽および二次洗浄槽とを有する。各洗浄槽で発生した廃水は、貯留手段10において一旦貯留され、その後廃水処理装置によって処理される。得られた処理水は、金属表面洗浄工程において再利用される。処理水は、メッキ加工前および加工後のいずれに用いてもよい。
 図8~10に示すように、図2~4の廃水処理装置を用いて得られた処理水を再利用するシステムとしてもよい。
[Wastewater treatment system]
FIG. 7 is a schematic configuration diagram showing an example of the wastewater treatment system of the present invention. The wastewater treatment system in FIG. 7 is a system that reuses treated water obtained from the wastewater treatment apparatus shown in FIG. 1 in a process for cleaning the metal surface of a product to be processed (metal surface cleaning process). The metal surface cleaning step includes an oil cleaning tank for cleaning the object to be processed before plating, and a primary cleaning tank and a secondary cleaning tank for cleaning the object to be processed after plating. Waste water generated in each washing tank is temporarily stored in the storage means 10 and then processed by the waste water treatment apparatus. The obtained treated water is reused in the metal surface cleaning step. Treated water may be used either before or after plating.
As shown in FIGS. 8 to 10, a system for reusing treated water obtained using the wastewater treatment apparatus of FIGS. 2 to 4 may be used.
以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.
[実施例1]
廃水として、無電解ニッケルメッキ工程より排出されたニッケル含有廃水を用いた。廃水中のニッケル濃度は6.5mg/Lであった。また、この廃水中には、錯体形成化合物としてアンモニアを含んでいた。アンモニアの濃度は、アンモニア態窒素(NH-N)濃度として3.8mg/Lであった。
上記ニッケル含有排水500mLに、酸化剤として次亜塩素酸ナトリウム溶液(有効塩素濃度12質量%)を0.5mL添加し、15分間攪拌して、アンモニアを酸化処理した(酸化処理工程)。
その後、酸化処理した廃水中に、不溶化剤として0.1mol/Lに調整した水酸化ナトリウム溶液を添加してpHを10に調整し、30分間攪拌して、ニッケルの不溶化物を生成した(不溶化処理工程)。
ついで、不溶化処理した廃水を、ポリフッ化ビニリデン製の中空糸膜(三菱レイヨン株式会社製、「ステラポアーSADF」、公称孔径0.4μm)を用いて、濾過水と膜分離濃縮水に膜分離した(膜分離工程)。
得られた濾過水中のニッケル(Ni)およびアンモニア態窒素(NH-N)の濃度を測定した。結果を表1に示す。
また、不溶化処理工程により生成したニッケルの不溶化物について、粒子分布を測定した。測定は、レーザ回折/散乱式粒度分布測定装置(株式会社堀場製作所製、「LA-920」)を用い、粒子径は体積を基準として、頻度分布を計測した。不溶化物のモード径(出現比率がもっとも大きい粒子径)を表1に示す。
[Example 1]
As waste water, nickel-containing waste water discharged from the electroless nickel plating process was used. The nickel concentration in the wastewater was 6.5 mg / L. Further, this wastewater contained ammonia as a complex-forming compound. The concentration of ammonia was 3.8 mg / L as ammonia nitrogen (NH 3 —N) concentration.
0.5 mL of sodium hypochlorite solution (effective chlorine concentration: 12% by mass) was added as an oxidizing agent to 500 mL of the nickel-containing waste water, and the mixture was stirred for 15 minutes to oxidize ammonia (oxidation process).
Thereafter, a sodium hydroxide solution adjusted to 0.1 mol / L as an insolubilizing agent was added to the oxidized wastewater to adjust the pH to 10 and stirred for 30 minutes to produce an insolubilized nickel product (insolubilized). Processing step).
Next, the insolubilized waste water was membrane-separated into filtered water and membrane-separated concentrated water using a hollow fiber membrane made of polyvinylidene fluoride (Mitsubishi Rayon Co., Ltd., “STELLAPORE SADF”, nominal pore size 0.4 μm) ( Membrane separation step).
The concentration of nickel (Ni) and ammonia nitrogen (NH 3 —N) in the obtained filtered water was measured. The results are shown in Table 1.
Moreover, particle distribution was measured about the insolubilized material of nickel produced | generated by the insolubilization process process. The measurement was performed using a laser diffraction / scattering particle size distribution measuring apparatus (“LA-920” manufactured by Horiba, Ltd.), and the particle size was measured based on the volume and the frequency distribution was measured. Table 1 shows the mode diameter of the insolubilized material (particle diameter having the largest appearance ratio).
[実施例2]
実施例1と同様にして、酸化処理工程を行った。
酸化処理工程後のニッケル含有廃水に、不溶化剤として0.1mol/Lに調整した硫化ナトリウム9水和物水溶液を2.5mL添加し、30分間攪拌して、ニッケルの不溶化物を生成した(不溶化処理工程)。
ついで、実施例1と同様にして膜分離工程を行い、濾過水中のニッケルおよびアンモニア態窒素の濃度を測定し、ニッケルの不溶化物について、粒子分布を測定した。これらの結果を表1に示す。
[Example 2]
An oxidation treatment process was performed in the same manner as in Example 1.
To the nickel-containing wastewater after the oxidation treatment step, 2.5 mL of a sodium sulfide nonahydrate aqueous solution adjusted to 0.1 mol / L as an insolubilizing agent was added and stirred for 30 minutes to form an insolubilized nickel (insolubilized) Processing step).
Subsequently, the membrane separation step was performed in the same manner as in Example 1, the concentrations of nickel and ammonia nitrogen in the filtered water were measured, and the particle distribution of the nickel insolubilized material was measured. These results are shown in Table 1.
[実施例3]
膜分離工程において、濾過膜としてポリエチレン製の多孔質中空糸膜(三菱レイヨン株式会社製、分画孔径0.03μm)を用いた以外は、実施例1と同様にして酸化処理工程、不溶化処理工程、膜分離工程を行い、濾過水中のニッケルの濃度を測定した。結果を表1に示す。
[Example 3]
In the membrane separation step, an oxidation treatment step and an insolubilization treatment step were performed in the same manner as in Example 1 except that a polyethylene porous hollow fiber membrane (manufactured by Mitsubishi Rayon Co., Ltd., fractional pore size 0.03 μm) was used as the filtration membrane. The membrane separation process was performed, and the concentration of nickel in the filtered water was measured. The results are shown in Table 1.
[実施例4]
不溶化処理工程と膜分離工程の間に、無機系凝集剤としてポリ塩化アルミニウムを、廃水中の凝集剤濃度が300mg/Lになるように添加して、15分間穏やかに攪拌した以外は、実施例1と同様にして酸化処理工程、不溶化処理工程、膜分離工程を行い、濾過水中のニッケルの濃度を測定した。結果を表1に示す。
[Example 4]
Example, except that polyaluminum chloride was added as an inorganic flocculant between the insolubilization step and the membrane separation step so that the flocculant concentration in the wastewater was 300 mg / L and gently stirred for 15 minutes. The oxidation treatment process, the insolubilization treatment process, and the membrane separation process were performed in the same manner as in Example 1, and the nickel concentration in the filtrate was measured. The results are shown in Table 1.
[比較例1]
酸化処理工程を行わなかった以外は、実施例1と同様にして不溶化処理工程および膜分離工程を行い、濾過水中のニッケルおよびアンモニア態窒素の濃度を測定し、ニッケルの不溶化物について、粒子分布を測定した。これらの結果を表1に示す。
[Comparative Example 1]
Except for not performing the oxidation treatment step, the insolubilization treatment step and the membrane separation step were carried out in the same manner as in Example 1, the concentration of nickel and ammonia nitrogen in the filtrate was measured, and the particle distribution of the nickel insolubilized product was determined. It was measured. These results are shown in Table 1.
[比較例2]
酸化処理工程を行わなかった以外は、実施例2と同様にして不溶化処理工程および膜分離工程を行い、濾過水中のニッケルおよびアンモニア態窒素の濃度を測定し、ニッケルの不溶化物について、粒子分布を測定した。これらの結果を表1に示す。
[Comparative Example 2]
Except for not performing the oxidation treatment step, the insolubilization treatment step and the membrane separation step were carried out in the same manner as in Example 2, the concentration of nickel and ammonia nitrogen in the filtered water was measured, and the particle distribution of the nickel insolubilized product was determined. It was measured. These results are shown in Table 1.
[比較例3]
不溶化処理工程を行わなかった以外は、実施例1と同様にして酸化処理工程および膜分離工程を行い、濾過水中のニッケルおよびアンモニア態窒素の濃度を測定した。これらの結果を表1に示す。
[Comparative Example 3]
Except that the insolubilization treatment step was not performed, the oxidation treatment step and the membrane separation step were performed in the same manner as in Example 1, and the concentrations of nickel and ammonia nitrogen in the filtered water were measured. These results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
表1中の略号は以下の通りである。
・NaClO:次亜塩素酸ナトリウム
・NaOH:水酸化ナトリウム
・NaS:硫化ナトリウム
Abbreviations in Table 1 are as follows.
· NaClO: sodium hypochlorite · NaOH: Sodium hydroxide · Na 2 S: sodium sulfide
表1から明らかなように、実施例1~3の場合、濾過水中のニッケル濃度はいずれも低い値であり、ニッケルを十分に除去することができた。また、実施例1、2の結果より、濾過水中のアンモニア態窒素の濃度が低いことから、ニッケルに対し金属錯体を形成する錯体形成化合物であるアンモニアが分解されたことが示された。さらに、不溶化物の粒子径はそれぞれ8.8μm、10μmと大きな値を示した。
なお、凝集剤を添加した実施例4の場合も、濾過水中のニッケル濃度は低い値であり、ニッケルを十分に除去することができた。ただし、実施例1~3に比べてスラッジ量が多かった。
また、実施例3、4では、実施例1、2と同様に、アンモニアが分解されることが容易に推測できたので、濾過水中のアンモニア態窒素の濃度の測定は行わなかった。さらに、実施例3、4では、実施例1、2と同様に、不溶化物の粒子径が大きい値を示すことが容易に推測できたので、不溶化物の粒子径の測定は行わなかった。
As is clear from Table 1, in Examples 1 to 3, the nickel concentration in the filtered water was low, and nickel could be sufficiently removed. Moreover, from the results of Examples 1 and 2, it was shown that ammonia, which is a complex-forming compound that forms a metal complex with respect to nickel, was decomposed because the concentration of ammonia nitrogen in the filtered water was low. Furthermore, the particle diameter of the insolubilized material showed large values of 8.8 μm and 10 μm, respectively.
In addition, also in Example 4 to which a flocculant was added, the nickel concentration in the filtered water was a low value, and nickel could be sufficiently removed. However, the amount of sludge was larger than in Examples 1 to 3.
In Examples 3 and 4, as in Examples 1 and 2, it was easily estimated that ammonia was decomposed, so the concentration of ammonia nitrogen in the filtered water was not measured. Further, in Examples 3 and 4, as in Examples 1 and 2, it was easily estimated that the particle diameter of the insolubilized material showed a large value, and therefore the particle diameter of the insolubilized material was not measured.
一方、酸化処理工程を行わなかった比較例1、2の場合、濾過水中のニッケル濃度が実施例1、2に比べて高く、ニッケルを十分に除去できなかった。また、濾過水中のアンモニア態窒素の濃度が高く、錯体形成化合物であるアンモニアが十分に分解されていないことが示された。さらに、不溶化物の粒子径はそれぞれ3.9μm、5.1μmであり、実施例1、2に比べて粒子径が小さかった。
また、不溶化処理工程を行わなかった比較例3の場合、濾過水中のニッケル濃度が比較例1、2よりもさらに高く、ニッケルを殆ど除去することができなかった。また、濾過水中のアンモニア態窒素の濃度は廃水中のアンモニア態窒素の濃度と同じであり、錯体形成化合物であるアンモニアが分解されていないことが示された。なお、比較例3では、比較例1、2と同様に、不溶化物の粒子径が小さい値を示すことが容易に推測できたので、不溶化物の粒子径の測定は行わなかった。
On the other hand, in Comparative Examples 1 and 2 where the oxidation treatment step was not performed, the nickel concentration in the filtered water was higher than in Examples 1 and 2, and nickel could not be sufficiently removed. In addition, the concentration of ammonia nitrogen in the filtered water was high, indicating that the complex forming ammonia was not sufficiently decomposed. Furthermore, the particle diameter of the insolubilized material was 3.9 μm and 5.1 μm, respectively, and the particle diameter was smaller than those of Examples 1 and 2.
Moreover, in the case of the comparative example 3 which did not perform the insolubilization process process, the nickel density | concentration in filtered water was still higher than the comparative examples 1 and 2, and nickel could hardly be removed. Further, the concentration of ammonia nitrogen in the filtered water was the same as the concentration of ammonia nitrogen in the waste water, indicating that the complex forming compound ammonia was not decomposed. In Comparative Example 3, as in Comparative Examples 1 and 2, it was easily estimated that the particle size of the insolubilized material showed a small value, so the particle size of the insolubilized material was not measured.
[試験例1]
廃水として、無電解ニッケル工程より排出された、ニッケル濃度1900mg/L、アンモニア態窒素(NH-N)濃度820mg/Lのニッケル含有廃水を用いた。
上記ニッケル含有排水500mLに、酸化剤として次亜塩素酸ナトリウム溶液(有効塩素濃度12質量%)を5mLから50mLまで添加していった。
各量の次亜塩素酸ナトリウム溶液を添加後、5分間攪拌してから、廃水の遊離残留塩素濃度、アンモニア態窒素(NH-N)濃度、酸化還元電位およびpHを測定した。これらの結果を表2、図5に示す。
なお、廃水の酸化還元電位は、ポータブルORP計(東亜ディーケーケー株式会社製、「RM-30P」)を用いて測定した。
[Test Example 1]
As waste water, nickel-containing waste water discharged from the electroless nickel process and having a nickel concentration of 1900 mg / L and an ammonia nitrogen (NH 3 -N) concentration of 820 mg / L was used.
A sodium hypochlorite solution (effective chlorine concentration: 12% by mass) was added as an oxidizing agent from 500 mL to 50 mL of the nickel-containing wastewater.
After adding each amount of sodium hypochlorite solution and stirring for 5 minutes, the free residual chlorine concentration, ammonia nitrogen (NH 3 -N) concentration, redox potential and pH of the wastewater were measured. These results are shown in Table 2 and FIG.
The oxidation-reduction potential of the wastewater was measured using a portable ORP meter (manufactured by Toa DKK Corporation, “RM-30P”).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
表2、図5から明らかなように、次亜塩素酸ナトリウムを添加するにつれて廃水中のアンモニアが分解した。
また、次亜塩素酸ナトリウムの添加量が5mLから20mLまでは、酸化還元電位はおよそ630mVと一定で推移しており、その間は遊離残留塩素濃度も1.5mg/L以下と低濃度で推移した。
しかしながら、次亜塩素酸ナトリウムの添加量が30mLになると、酸化還元電位が1113mVと急上昇し、遊離残留塩素濃度も16mg/Lに増加した。
これらの結果より、試験例1で用いた廃水の場合には、酸化処理工程において廃水の酸化還元電位を測定し、酸化還元電位が650mVに達した時点で次亜塩素酸ナトリウムの添加を停止すれば、遊離残留塩素濃度を30mg/L以下にすることが可能となり、酸化剤(次亜塩素酸ナトリウム)の過剰添加を容易に抑制することができる。
As is clear from Table 2 and FIG. 5, ammonia in the wastewater was decomposed as sodium hypochlorite was added.
In addition, when the amount of sodium hypochlorite added was 5 mL to 20 mL, the oxidation-reduction potential remained constant at approximately 630 mV, and during that period, the free residual chlorine concentration also remained at a low concentration of 1.5 mg / L or less. .
However, when the amount of sodium hypochlorite added reached 30 mL, the oxidation-reduction potential rose rapidly to 1113 mV, and the free residual chlorine concentration also increased to 16 mg / L.
From these results, in the case of the wastewater used in Test Example 1, the oxidation-reduction potential of the wastewater is measured in the oxidation treatment step, and the addition of sodium hypochlorite is stopped when the oxidation-reduction potential reaches 650 mV. Thus, the free residual chlorine concentration can be reduced to 30 mg / L or less, and excessive addition of an oxidizing agent (sodium hypochlorite) can be easily suppressed.
 本発明の廃水の処理装置および処理方法によれば、重金属および金属錯体を形成する化合物を含む廃水に対して、凝集剤を添加しなくても高度に処理でき、重金属濃度を十分に低減できる。
本発明の廃水の処理装置および処理方法で得られた処理水は、金属含有量が極めて少ない。また廃水処理に凝集剤を使用しないため、未反応凝集物の流出が、処理水に混入することも無い。
従って、本発明の廃水処理システムによれば、本発明の処理装置および処理方法を用いて処理した処理水を、排水発生元である前記金属表面洗浄工程に循環することによって、加工対象品に影響を与えることなく、処理水を有効に利用することが可能となる。
According to the wastewater treatment apparatus and treatment method of the present invention, wastewater containing a compound that forms a heavy metal and a metal complex can be treated at a high level without adding a flocculant, and the heavy metal concentration can be sufficiently reduced.
The treated water obtained by the wastewater treatment apparatus and treatment method of the present invention has a very low metal content. Moreover, since a flocculant is not used for wastewater treatment, the outflow of unreacted aggregates is not mixed into the treated water.
Therefore, according to the wastewater treatment system of the present invention, the treated water treated by using the treatment apparatus and the treatment method of the present invention is circulated to the metal surface cleaning process that is a wastewater generation source, thereby affecting the product to be processed. The treated water can be used effectively without giving water.
1、2、3、4 廃水の処理装置
10 貯留手段
20 酸化処理手段
23、33 水質計
30 不溶化処理手段
40 膜分離手段
50 pH調整手段
60 沈降分離手段
 廃水
 濾過水
 膜分離濃縮水
 処理水
 上澄み液
 沈殿濃縮水
1, 2, 3, 4 Wastewater treatment apparatus 10 Storage means 20 Oxidation treatment means 23, 33 Water quality meter 30 Insolubilization treatment means 40 Membrane separation means 50 pH adjustment means 60 Sedimentation separation means W 0 Waste water W 1 Filtration water W 2 Membrane separation Concentrated water W 3 Treated water W 4 Supernatant W 5 Precipitated concentrated water

Claims (10)

  1.  重金属、および前記重金属と配位結合して金属錯体を形成する化合物を少なくとも含む廃水を処理する装置であって、
     廃水中の前記金属錯体を形成する化合物を酸化処理する酸化処理手段と、酸化処理した廃水中の重金属を不溶化処理する不溶化処理手段と、不溶化処理した廃水を膜分離する膜分離手段とを備える廃水の処理装置。
    An apparatus for treating wastewater comprising at least a heavy metal and a compound that forms a metal complex by coordination with the heavy metal,
    Wastewater comprising oxidation treatment means for oxidizing the compound forming the metal complex in wastewater, insolubilization treatment means for insolubilizing heavy metals in the oxidized wastewater, and membrane separation means for membrane separation of the insoluble wastewater Processing equipment.
  2.  前記不溶化処理手段と膜分離手段との間に、不溶化処理した廃水中の重金属を沈降分離する沈降分離手段を備える、請求項1に記載の廃水の処理装置。 The wastewater treatment apparatus according to claim 1, further comprising a sedimentation separation unit that settles and separates heavy metals in the insolubilized wastewater between the insolubilization treatment unit and the membrane separation unit.
  3.  前記酸化処理工程が、次亜塩素酸、亜塩素酸、過塩素酸、およびこれらの塩からなる群より選ばれる少なくとも1種の酸化剤の添加手段を備える、請求項1または2に記載の廃水の処理装置。 The wastewater according to claim 1 or 2, wherein the oxidation treatment step comprises means for adding at least one oxidizing agent selected from the group consisting of hypochlorous acid, chlorous acid, perchloric acid, and salts thereof. Processing equipment.
  4.  前記酸化処理手段が、廃水のpHを調整するpH調整手段を備える請求項1または2に記載の廃水の処理装置。 The wastewater treatment apparatus according to claim 1 or 2, wherein the oxidation treatment means includes pH adjustment means for adjusting the pH of the wastewater.
  5.  重金属、および前記重金属と配位結合して金属錯体を形成する化合物を少なくとも含む廃水を処理する方法であって、
     廃水中の前記金属錯体を形成する化合物を酸化処理する酸化処理工程と、酸化処理した廃水中の重金属を不溶化処理する不溶化処理工程と、不溶化処理した廃水を膜分離する膜分離工程とを有する廃水の処理方法。
    A method for treating wastewater comprising at least a heavy metal and a compound that forms a metal complex by coordination with the heavy metal,
    Wastewater having an oxidation treatment step for oxidizing the compound forming the metal complex in the wastewater, an insolubilization treatment step for insolubilizing the heavy metal in the wastewater subjected to oxidation treatment, and a membrane separation step for membrane separation of the insoluble wastewater Processing method.
  6.  前記不溶化処理工程と膜分離工程との間に、不溶化処理した廃水中の重金属を沈降分離する沈降分離工程を有する、請求項5に記載の廃水の処理方法。 The wastewater treatment method according to claim 5, further comprising a sedimentation separation step of separating and separating heavy metals in the insolubilized wastewater between the insolubilization treatment step and the membrane separation step.
  7.  前記酸化処理工程が、次亜塩素酸、亜塩素酸、過塩素酸、およびこれらの塩からなる群より選ばれる少なくとも1種の酸化剤の添加によりなされる、請求項5または6に記載の廃水の処理方法。 The wastewater according to claim 5 or 6, wherein the oxidation treatment step is performed by adding at least one oxidizing agent selected from the group consisting of hypochlorous acid, chlorous acid, perchloric acid, and salts thereof. Processing method.
  8. 前記酸化処理工程において、廃水のpHを4以上8以下に調整した後酸化剤を添加するであることを特徴とする、請求項7に記載の処理方法。 The treatment method according to claim 7, wherein in the oxidation treatment step, an oxidizing agent is added after adjusting the pH of the wastewater to 4 or more and 8 or less.
  9.  前記酸化剤の廃水への添加終了点を酸化還元電位にて検知する、請求項7または8に記載の廃水の処理方法。 The wastewater treatment method according to claim 7 or 8, wherein an end point of addition of the oxidizing agent to the wastewater is detected by a redox potential.
  10. 請求項1~4のいずれか一項に記載の処理装置により処理された処理水を、メッキ加工または金属表面処理の、金属表面洗浄工程にて再利用することを特徴とする、排水処理システム。 A wastewater treatment system, wherein the treated water treated by the treatment apparatus according to any one of claims 1 to 4 is reused in a metal surface cleaning step of plating or metal surface treatment.
PCT/JP2012/050014 2011-01-20 2012-01-04 Wastewater treatment apparatus, wastewater treatment method, and wastewater treatment system WO2012098924A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012505914A JP6331186B2 (en) 2011-01-20 2012-01-04 Waste water treatment apparatus, treatment method, and waste water treatment system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-009902 2011-01-20
JP2011009902 2011-01-20

Publications (1)

Publication Number Publication Date
WO2012098924A1 true WO2012098924A1 (en) 2012-07-26

Family

ID=46515556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050014 WO2012098924A1 (en) 2011-01-20 2012-01-04 Wastewater treatment apparatus, wastewater treatment method, and wastewater treatment system

Country Status (3)

Country Link
JP (2) JP6331186B2 (en)
CN (2) CN202865026U (en)
WO (1) WO2012098924A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103588325A (en) * 2013-11-22 2014-02-19 大连碧城环保科技有限公司 Acid pickling phosphorization industrial wastewater regenerating cycle method
CN103588326A (en) * 2013-11-22 2014-02-19 大连碧城环保科技有限公司 Metal phosphorization processing cleaning production technology
JP2016043285A (en) * 2014-08-20 2016-04-04 住友金属鉱山株式会社 Method of treating triethanolamine-containing waste liquid
JP2016535673A (en) * 2013-11-11 2016-11-17 ナルコ カンパニー Methods for removing heavy metals from wastewater streams
US20180029907A1 (en) * 2015-12-22 2018-02-01 Sumitomo Electric Industries, Ltd. Water treatment method and water treatment system
JP2018053175A (en) * 2016-09-30 2018-04-05 日立化成株式会社 Dissolution treatment device and dissolution treatment method
WO2018174148A1 (en) * 2017-03-22 2018-09-27 住友金属鉱山株式会社 Method for smelting metal oxide ore

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103693789B (en) * 2013-12-09 2016-01-13 华南师范大学 The resource recycle method of heavy metal in a kind of heavy metal wastewater thereby
JP5817864B2 (en) * 2014-02-20 2015-11-18 栗田工業株式会社 Method and apparatus for treating ammonia-containing water
CN104150634B (en) * 2014-05-15 2015-08-19 浙江海洋学院 A kind for the treatment of process of mercury pollution water
CN104843901A (en) * 2015-05-14 2015-08-19 苏州膜海分离技术有限公司 Bleaching and dyeing wastewater treatment method with combination of advanced oxidation and ultrafiltration
CN104829014B (en) * 2015-06-03 2018-01-12 南宁市桂润环境工程有限公司 A kind of lead Zn Cr coating ore dressing, the short distance membrane separation treating process of smelting wastewater
CN105060436B (en) * 2015-08-07 2017-05-17 赣州腾远钴业新材料股份有限公司 Treatment method for Co-EDTA-containing sodium chloride wastewater
CN105502739B (en) * 2015-12-14 2020-01-10 南京大学 Method for breaking complexing and synchronously removing heavy metal by self-reinforced ozone
JP6601977B2 (en) 2016-10-12 2019-11-06 株式会社Soken Particulate matter detection sensor and particulate matter detection device
CN107253775A (en) * 2017-06-22 2017-10-17 广东益诺欧环保股份有限公司 A kind of electroplating wastewater mud decrement device
WO2019088304A1 (en) * 2017-11-06 2019-05-09 Wota株式会社 Water purification system
JP7183560B2 (en) * 2018-03-30 2022-12-06 東ソー株式会社 Purifying Agent for Nickel-Containing Aqueous Solution and Method for Purifying Nickel-Containing Aqueous Solution
JP7199685B2 (en) * 2018-05-22 2023-01-06 壽環境機材株式会社 Wastewater treatment equipment and wastewater treatment method
CN109019999A (en) * 2018-08-09 2018-12-18 江苏中电创新环境科技有限公司 A kind of processing method of the low concentration containing strong complexing nickel waste water
CN109081475A (en) * 2018-09-30 2018-12-25 荆门市格林美新材料有限公司 A kind of comprehensive resource processing unit for the raffinate that cobalt nickel leaching process generates
JP7353619B2 (en) * 2019-07-23 2023-10-02 株式会社片山化学工業研究所 Treatment method for cyanide-containing wastewater

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118290A (en) * 1983-11-30 1985-06-25 Nec Corp Water treating method
JPH06130188A (en) * 1992-10-14 1994-05-13 Power Reactor & Nuclear Fuel Dev Corp Processing method for radioactive waste liquid

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5131052A (en) * 1974-09-09 1976-03-16 Tore Eng Co Ltd JUKINZOKUSAKUTAIOGANJUSURUHAISUINOSHORIHOHO
JPS5275855A (en) * 1975-12-20 1977-06-25 Dowa Mining Co Method of removing heavy metal from waste liquid
NL8303129A (en) * 1983-09-09 1985-04-01 Gist Brocades Nv METHOD AND APPARATUS FOR ANAEROOB FERMENTATION OF SOLID WASTES IN TWO PHASES.
JPH0714512B2 (en) * 1988-12-09 1995-02-22 栗田工業株式会社 Treatment method of wastewater containing heavy metals
JP3111508B2 (en) * 1991-07-04 2000-11-27 栗田工業株式会社 Treatment method for wastewater containing heavy metals
JP3783972B2 (en) * 1996-02-22 2006-06-07 ペルメレック電極株式会社 Cyanide water treatment method
JPH1057972A (en) * 1996-08-14 1998-03-03 Mitsui Petrochem Ind Ltd Treatment of iron-cyanide complex containing cyanic waste water
JP2002030352A (en) * 2000-07-11 2002-01-31 Nippon Steel Corp Method for recovering valuable metal from metal- containing waste water
TW200300131A (en) * 2001-11-08 2003-05-16 Nihon Parkerizing Process for treating hydrogen ion-containing waste liquid
JP2003181476A (en) * 2001-12-18 2003-07-02 Azusaa:Kk Method for decomposing chelating agent
JP4920932B2 (en) * 2005-09-05 2012-04-18 ナガオ株式会社 Treatment method for wastewater containing heavy metals
CN100443423C (en) * 2007-04-27 2008-12-17 济南晶恒有限责任公司 Electroplating wastewater treatment reclaiming technique
JP5257591B2 (en) * 2008-08-07 2013-08-07 株式会社ウェルシィ Water treatment method
JP5215111B2 (en) * 2008-08-25 2013-06-19 水ing株式会社 Method and apparatus for recovering copper from acidic waste liquid containing copper
JP5471054B2 (en) * 2009-06-11 2014-04-16 栗田工業株式会社 Methods for recovering water and metals from plating cleaning wastewater

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118290A (en) * 1983-11-30 1985-06-25 Nec Corp Water treating method
JPH06130188A (en) * 1992-10-14 1994-05-13 Power Reactor & Nuclear Fuel Dev Corp Processing method for radioactive waste liquid

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016535673A (en) * 2013-11-11 2016-11-17 ナルコ カンパニー Methods for removing heavy metals from wastewater streams
CN103588325A (en) * 2013-11-22 2014-02-19 大连碧城环保科技有限公司 Acid pickling phosphorization industrial wastewater regenerating cycle method
CN103588326A (en) * 2013-11-22 2014-02-19 大连碧城环保科技有限公司 Metal phosphorization processing cleaning production technology
JP2016043285A (en) * 2014-08-20 2016-04-04 住友金属鉱山株式会社 Method of treating triethanolamine-containing waste liquid
US20180029907A1 (en) * 2015-12-22 2018-02-01 Sumitomo Electric Industries, Ltd. Water treatment method and water treatment system
JP2018053175A (en) * 2016-09-30 2018-04-05 日立化成株式会社 Dissolution treatment device and dissolution treatment method
WO2018174148A1 (en) * 2017-03-22 2018-09-27 住友金属鉱山株式会社 Method for smelting metal oxide ore
JP2018159109A (en) * 2017-03-22 2018-10-11 住友金属鉱山株式会社 Smelting method of metal oxide mineral
EP3604569A4 (en) * 2017-03-22 2021-01-06 Sumitomo Metal Mining Co., Ltd. Method for smelting metal oxide ore

Also Published As

Publication number Publication date
CN102603095A (en) 2012-07-25
JP2017080740A (en) 2017-05-18
CN202865026U (en) 2013-04-10
JPWO2012098924A1 (en) 2014-06-09
JP6331186B2 (en) 2018-05-30

Similar Documents

Publication Publication Date Title
JP6331186B2 (en) Waste water treatment apparatus, treatment method, and waste water treatment system
JP5866823B2 (en) Waste water treatment method and treatment apparatus
JP4663012B2 (en) Reverse electrodialysis of nitrogen compounds-electrochemical wastewater treatment process
JP4862361B2 (en) Waste water treatment apparatus and waste water treatment method
AU2017201329B2 (en) Method of treating industrial water
WO2002004361A1 (en) System and method for simultaneous removal of arsenic and fluoride from aqueous solutions
JP7398021B2 (en) Treatment method and treatment equipment for cyanide-containing water
JP2007125521A (en) Apparatus and method for treating waste water
CN110015777A (en) A method of removal electroplating wastewater COD
JP6202239B2 (en) Waste water treatment apparatus and waste water treatment method
JP2010036180A (en) Water treatment method
JP2018158331A (en) Water treatment method and water treatment equipment
WO2013176111A1 (en) Processing method and apparatus for copper chloride-containing acidic waste liquids
JP5954687B2 (en) Waste water treatment apparatus and waste water treatment method
JP6061024B2 (en) Method and apparatus for treating wastewater containing heavy metals
JP6239442B2 (en) Organic wastewater treatment method and treatment apparatus
JP2007069068A (en) Heavy metal-containing waste water treatment method
JP7237640B2 (en) Method for treating waste liquid containing acidic flocculate and water treatment apparatus
JP2018083172A (en) Wastewater treatment method, wastewater treatment apparatus and coal gasification power generation equipment with the same
JP6662558B2 (en) Water treatment method and water treatment device
Shakir et al. Lead removal from industrial wastewater by electrocoagulation process
JP2019055399A (en) Water treatment method and water treatment device
JP7157192B2 (en) water treatment method
JP2020037059A (en) Membrane filtration system, and membrane filtration method
JP2007260556A (en) Phosphoric acid-containing wastewater treatment method and apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012505914

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12736684

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12736684

Country of ref document: EP

Kind code of ref document: A1