JP4920932B2 - Treatment method for wastewater containing heavy metals - Google Patents

Treatment method for wastewater containing heavy metals Download PDF

Info

Publication number
JP4920932B2
JP4920932B2 JP2005256125A JP2005256125A JP4920932B2 JP 4920932 B2 JP4920932 B2 JP 4920932B2 JP 2005256125 A JP2005256125 A JP 2005256125A JP 2005256125 A JP2005256125 A JP 2005256125A JP 4920932 B2 JP4920932 B2 JP 4920932B2
Authority
JP
Japan
Prior art keywords
wastewater
heavy metal
added
sludge
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005256125A
Other languages
Japanese (ja)
Other versions
JP2007069068A (en
Inventor
真弓 小原
健一 浅田
博明 江田
Original Assignee
ナガオ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナガオ株式会社 filed Critical ナガオ株式会社
Priority to JP2005256125A priority Critical patent/JP4920932B2/en
Publication of JP2007069068A publication Critical patent/JP2007069068A/en
Application granted granted Critical
Publication of JP4920932B2 publication Critical patent/JP4920932B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

本発明は、銅等の重金属類を含む廃水の処理方法に関し、特に低濃度の重金属類を含む廃水の処理に適した重金属含有廃水の処理方法に関する。   The present invention relates to a method for treating wastewater containing heavy metals such as copper, and more particularly to a method for treating wastewater containing heavy metals suitable for treating wastewater containing low-concentration heavy metals.

銅等の重金属類を含む廃水の処理方法として、水酸化剤(アルカリ剤)や硫化剤を添加して重金属類を水酸化物や硫化物の形で沈殿させ、凝集させて固液分離する方法が知られている(特許文献1参照)。
しかし、比較的低濃度の重金属含有廃水を処理する場合、生成する金属水酸化物や金属硫化物は極めて凝集性に乏しく、単に高分子凝集剤などを併用するだけでは容易に処理できない場合が多い。そのため、通常は凝集助剤として塩化鉄水溶液などの鉄塩あるいはポリ塩化アルミニウム水溶液等のアルミニウム塩を添加し、凝集性を高めて処理を行っている。
また、水酸化剤やpH調整剤として、例えば水酸化ナトリウム等のアルカリ金属水酸化物を使用した場合は何ら凝集性の改善には至らないが、水酸化カルシウム等のアルカリ土類金属水酸化物を用いた場合は凝集性の向上が見られるため、アルカリ剤としてアルカリ土類金属水酸化物が多用されている。
As a method of treating wastewater containing heavy metals such as copper, a method of adding a hydrating agent (alkali agent) or a sulfiding agent to precipitate heavy metals in the form of hydroxides or sulfides, aggregating them, and solid-liquid separation Is known (see Patent Document 1).
However, when treating wastewater containing relatively low concentrations of heavy metals, the resulting metal hydroxides and metal sulfides are extremely poor in cohesiveness and often cannot be easily treated simply by using a polymer flocculant in combination. . For this reason, an iron salt such as an iron chloride aqueous solution or an aluminum salt such as a polyaluminum chloride aqueous solution is usually added as an agglomeration aid to enhance the coagulation property.
In addition, when an alkali metal hydroxide such as sodium hydroxide is used as a hydroxylating agent or pH adjuster, it does not lead to any improvement in cohesion, but an alkaline earth metal hydroxide such as calcium hydroxide. Since the improvement of cohesiveness is seen when using, alkaline earth metal hydroxides are frequently used as the alkali agent.

しかしながら、これらの方法により処理された廃水を固液分離して回収されるスラッジの量は、鉄塩やアルミニウム塩等の凝集助剤、あるいは水酸化カルシウムの添加量に応じて増加することになり、その結果、スラッジ中の銅等の有価金属の含有率が低下する。
スラッジ中の有価金属の含有率が高い場合には、製練所などに引き取り有価金属のリサイクルが可能であるが、前記のような有価金属の含有率が低いスラッジはリサイクルが困難で、高額な処理費用を支払った上で埋め立て処分される場合がほとんどである。また、コストに加えて処理場の渇枯という問題もあり、その処分は今後益々大きな社会問題となることが予測される。
However, the amount of sludge recovered by solid-liquid separation of wastewater treated by these methods will increase depending on the amount of agglomeration aid such as iron salt or aluminum salt or calcium hydroxide added. As a result, the content of valuable metals such as copper in the sludge decreases.
When the content of valuable metals in the sludge is high, it is possible to recycle valuable metals by taking it to a smelter, but sludge with a low content of valuable metals as mentioned above is difficult to recycle and is expensive. In most cases, the landfill is disposed after paying the processing cost. In addition to the cost, there is also a problem of exhaustion of the treatment plant, and its disposal is expected to become a bigger social problem in the future.

スラッジの凝集性を高め、且つスラッジ中の有価金属含有率を下げないで処理をする方法として、重金属種が銅である場合、プリント基板製造業等においては、処理に先駆けて予め同時に生じる銅を高濃度に含む廃液(塩化第二銅や硫酸銅の水溶液)を添加し、廃水中の銅濃度を高めて処理する方法が提案されている(特許文献2参照)。
この方法は、他の金属種の影響を受けず、銅をスラッジ中に比較的高含有率で回収できる点は有効であるが、新たに銅を添加することで水酸化剤や硫化剤などの処理薬剤を無用に消費し、生成するスラッジの増加を招くなど、処理コストの上昇を引き起こしている。 また、この高濃度銅含有廃液中にはキレート剤や有機酸等が高濃度に含まれているため、高濃度銅含有廃液の添加によりかえって処理不全を起こしたり、処理液のCODの上昇や悪臭の発生を引き起こすなど、不具合を伴う場合が多い。更に、適当な銅を含む廃液が無い場合は、別途塩化第二銅や硫酸銅等の薬品を調達しなければならず、処理コストの面からも適切な方法とは言い難い。
As a method of processing without increasing the valuable metal content in the sludge without increasing the cohesiveness of the sludge, if the heavy metal species is copper, in the printed circuit board manufacturing industry, etc. A method has been proposed in which waste liquid (aqueous solution of cupric chloride or copper sulfate) contained in a high concentration is added to increase the concentration of copper in the waste water (see Patent Document 2).
This method is effective in that copper can be recovered in sludge at a relatively high content without being affected by other metal species. However, by adding new copper, such as a hydroxylating agent or a sulfiding agent. The processing cost is increased, for example, the processing chemical is consumed unnecessarily and the sludge to be generated is increased. In addition, since this high concentration copper-containing waste liquid contains a high concentration of chelating agents, organic acids, etc., the addition of the high concentration copper-containing waste liquid may cause processing failure, increase the COD of the processing liquid, and bad odor. In many cases, it is accompanied by malfunctions. Furthermore, when there is no waste liquid containing appropriate copper, chemicals such as cupric chloride and copper sulfate have to be procured separately, which is difficult to say from the viewpoint of processing cost.

また、処理後の汚泥を返送し処理反応時に混在させることにより、凝集性を確保した上でスラッジ中の重金属濃度を高める方法が提案されている(特許文献3参照)。
この方法は汚泥をリサイクルすることで凝集性を向上させることができ、重金属濃度の高いスラッジを回収できる点で有効である。しかしながら、この方法では一旦生成した汚泥を沈降槽から反応槽へ送る工程が加わるため、該工程の維持や保守に伴うコストの上昇を招いている。更に処理水については、反応槽において廃水中に共存するキレート成分によって、返送された汚泥から銅などの重金属が再溶出する場合があり、その結果、処理水中の重金属濃度は、排水基準は満たすものの生物処理可能な濃度目安とされる1mg/リットル以下にまで十分に処理できていない場合がある。これらのことから、一旦生成した汚泥はできるだけ速やかに固液分離することが好ましく、返送して利用することは避けるべきである。
Further, a method has been proposed in which the sludge after treatment is returned and mixed during the treatment reaction to increase the concentration of heavy metals in the sludge while ensuring cohesiveness (see Patent Document 3).
This method is effective in that coagulation can be improved by recycling sludge and sludge having a high heavy metal concentration can be recovered. However, in this method, since a step of sending once generated sludge from the sedimentation tank to the reaction tank is added, the cost is increased due to maintenance and maintenance of the process. Furthermore, with regard to treated water, heavy metals such as copper may be re-eluted from the returned sludge due to the chelate component coexisting in the wastewater in the reaction tank. As a result, the heavy metal concentration in the treated water meets the wastewater standards. In some cases, the concentration cannot be sufficiently reduced to 1 mg / liter or less, which is a concentration guideline for biological treatment. For these reasons, it is preferable to solid-liquid-separate the sludge once produced as soon as possible, and avoid using it after returning it.

他の廃水処理方法として電気分解を利用する方法もあり、この方法は、回収対象の重金属を高濃度に含む廃液の処理に関しては、比較的効率良く重金属が回収できる点で有効である。しかし、新たな電解装置の設置が必要になることに加え、エネルギー消費量が多いなどコスト的に不利である。従って、重金属濃度が500mg/リットルを下回るような希薄廃水の処理方法としては不向きである。
また、イオン交換膜や逆浸透膜を用いて廃水中の有価金属を濃縮して回収する方法があり、これらは比較的金属が希薄な廃水処理について特に有効な処理方法である。しかし、これらの方法の場合は、それぞれの膜分離装置を設置する必要があり、さらに装置、特に膜の維持管理の面に問題があり、安定的な処理を行うためには一定期間毎に大掛かりな保守点検が必要である。
There is also a method using electrolysis as another wastewater treatment method, and this method is effective in that heavy metals can be recovered relatively efficiently with respect to the treatment of waste liquid containing a high concentration of heavy metals to be recovered. However, it is disadvantageous in terms of cost because it requires installation of a new electrolyzer and a large amount of energy is consumed. Therefore, it is not suitable as a treatment method for dilute wastewater having a heavy metal concentration of less than 500 mg / liter.
In addition, there is a method of concentrating and recovering valuable metals in wastewater using ion exchange membranes or reverse osmosis membranes, and these are particularly effective treatment methods for wastewater treatment in which metals are relatively lean. However, in the case of these methods, it is necessary to install each membrane separation device, and there is a problem in the maintenance of the device, particularly the membrane, and in order to perform stable processing, it takes a large amount every fixed period. Maintenance is required.

特開2002−282867号公報JP 2002-282867 A 特開2003−260475号公報JP 2003-260475 A 特開2003−251369号公報JP 2003-251369 A

本発明は、重金属含有廃水、特に重金属を比較的低濃度で含有する廃水を処理する場合において、処理後のスラッジの発生量を抑えつつ凝集性を高めることで固液分離を容易にし、処理水の水質を排水基準値以下(更には生物処理に障害を与えない程度)に処理すると同時に、スラッジ中の有価金属濃度を、回収が容易な程度に高めることができる廃水処理方法を提供することを目的とする。   In the case of treating heavy metal-containing wastewater, particularly wastewater containing a heavy metal at a relatively low concentration, the present invention facilitates solid-liquid separation by increasing cohesion while suppressing the amount of sludge generated after treatment, To provide a wastewater treatment method capable of treating the quality of water to below the wastewater standard value (and not causing any obstacle to biological treatment) and at the same time increasing the concentration of valuable metals in the sludge to an extent that it can be easily recovered. Objective.

本発明者らは上記課題を解決すべく重金属含有廃水の処理方法について鋭意研究した結果、硫化剤を用いて廃水中の重金属を硫化物とした後、更に該廃水に酸化剤を添加することによって、生成した重金属硫化物の凝集性を速やかに向上させて固液分離を容易にすることができ、結果として処理後回収されるスラッジを減量させると同時に、スラッジ中の有価金属の含有率を高め、リサイクル性を向上できることを見出し、この知見に基づき本発明をなすに到った。すなわち、本発明は以下の(1)〜(6)の構成を有するものである。   As a result of diligent research on a method for treating heavy metal-containing wastewater to solve the above-mentioned problems, the present inventors have converted a heavy metal in wastewater to sulfide using a sulfurizing agent, and then added an oxidizing agent to the wastewater. The solid metal-liquid separation can be facilitated by quickly improving the cohesiveness of the generated heavy metal sulfide. As a result, the sludge recovered after the treatment is reduced, and at the same time the content of valuable metals in the sludge is increased. The present inventors have found that the recyclability can be improved, and have arrived at the present invention based on this knowledge. That is, the present invention has the following configurations (1) to (6).

(1)重金属含有廃水に硫化剤を添加し、重金属を硫化物として析出させる第一工程と、前記第一工程処理廃水に次亜塩素酸、亜塩素酸、過塩素酸、過マンガン酸、及びそれらの水溶性塩からなる群から選択される少なくとも1種の酸化剤を、ORP制御により添加量を調整しながら添加するか、又は定量添加して重金属硫化物を含むスラッジの凝集性を高める第二工程と、前記第二工程処理廃水を重金属硫化物を含むスラッジと処理水とに固液分離する第三工程を含むことを特徴とする重金属含有廃水の処理方法。
(2)前記重金属含有廃水が、500mg/リットル以下の濃度の銅を含む廃水であることを特徴とする前記(1)の重金属含有廃水の処理方法。
(3)前記第一工程において、前記硫化剤としてアルカリ金属水硫化物、アルカリ金属硫化物、及びアルカリ金属多硫化物からなる群から選択される少なくとも1種を使用し、該硫化剤をORP制御により添加量を調整しながら添加するか、又は定量添加することを特徴とする前記(1)又は(2)の重金属含有廃水の処理方法。
(1) adding a sulfurizing agent to heavy metal containing waste water, a first step for precipitating heavy metals as sulphides, the first step processing wastewater hypochlorite, chlorite, perchlorate, permanganate and, At least one oxidizing agent selected from the group consisting of these water-soluble salts is added while adjusting the addition amount by ORP control, or quantitatively added to increase the cohesiveness of sludge containing heavy metal sulfide. A method for treating heavy metal-containing wastewater, comprising two steps and a third step of solid-liquid separation of the wastewater treated in the second step into sludge containing heavy metal sulfide and treated water.
(2) The method for treating heavy metal-containing wastewater according to (1), wherein the heavy metal-containing wastewater is wastewater containing copper having a concentration of 500 mg / liter or less.
(3) In the first step, at least one selected from the group consisting of alkali metal hydrosulfides, alkali metal sulfides, and alkali metal polysulfides is used as the sulfiding agent, and the sulfiding agent is subjected to ORP control. The method for treating wastewater containing heavy metal according to (1) or (2) above, wherein the addition is carried out while adjusting the amount of addition or by quantitative addition.

(4)前記第一工程を、pHを1〜5に制御しながら行うことを特徴とする前記(1)〜(3)のいずれかの重金属含有廃水の処理方法。
)前記第二工程を、pHを7以下に制御しながら行うことを特徴とする前記(1)〜()のいずれかの重金属含有廃水の処理方法。

(4) The method for treating heavy metal-containing wastewater according to any one of (1) to (3), wherein the first step is performed while controlling the pH to 1 to 5.
( 5 ) The method for treating heavy metal-containing wastewater according to any one of (1) to ( 4 ), wherein the second step is performed while controlling the pH to 7 or less.

本発明の廃水処理方法によれば、重金属含有廃水中の重金属類を硫化物として分離する廃水処理において、重金属硫化物を含むスラッジの凝集性が良好となり、処理後のスラッジの発生量を抑えつつ容易に固液分離を行うことができ、処理水の水質を排水基準値以下(更には生物処理に障害を与えない程度)に処理すると同時に、スラッジ中の有価金属濃度を、回収が容易な程度に高めることができる。特に本発明の方法は、重金属を比較的低濃度(例えば500mg/リットル以下)で含有する廃水の処理に効果的であり、その工業的価値は極めて大きいものである。   According to the wastewater treatment method of the present invention, in wastewater treatment for separating heavy metals in wastewater containing heavy metal as sulfides, the cohesiveness of sludge containing heavy metal sulfides is improved, and the amount of sludge generated after treatment is suppressed. Solid-liquid separation can be performed easily, and the quality of treated water is treated below the wastewater standard value (and does not interfere with biological treatment), and at the same time, the concentration of valuable metals in sludge is easily recovered. Can be increased. In particular, the method of the present invention is effective for treating wastewater containing heavy metals at a relatively low concentration (for example, 500 mg / liter or less), and its industrial value is extremely large.

本発明の方法は、硫化剤による処理が適用できる特性を有する鉄、コバルト、ニッケル、銅、亜鉛、モリブデン、銀、カドミウム、錫、水銀、鉛等の重金属類を含有する廃水の処理に有効であり、特に、銅含有廃水の処理方法として好適なものである。   The method of the present invention is effective for the treatment of wastewater containing heavy metals such as iron, cobalt, nickel, copper, zinc, molybdenum, silver, cadmium, tin, mercury, lead and the like, which can be applied with a treatment with a sulfurizing agent. In particular, it is suitable as a method for treating copper-containing wastewater.

本発明の方法においては、まず第一工程として重金属含有廃水に硫化剤を添加して廃水中の重金属を硫化物として析出させる。
本発明で用いる硫化剤としては、水硫化ソーダ等のアルカリ金属水硫化物、硫化ソーダ等のアルカリ金属硫化物、多硫化ソーダ等のアルカリ金属多硫化物、アルカリ土類金属水硫化物、アルカリ土類金属硫化物、アルカリ土類金属多硫化物からなる群から選ばれる少なくとも1種の水溶液、又は硫化水素があげられる。
硫化剤添加時の廃水pHは、5以下に保持しておくことが好ましく、pHを1〜5に保持することが反応性からみて更に好ましい。pHが1未満の場合はアルカリ剤(例えば水酸化ナトリウム、水酸化カリウムなど)で、pHが5を超えている場合は鉱酸(例えば硫酸、硝酸、塩酸など)で、pHを前記範囲に調整することが好ましい。なお、この際、アルカリ剤として水酸化カルシウムや水酸化マグネシウムなどを使用すると、処理後回収されるスラッジ中の有価金属濃度が低下する。
In the method of the present invention, as a first step, a sulfiding agent is first added to the heavy metal-containing wastewater to precipitate the heavy metal in the wastewater as a sulfide.
Examples of the sulfiding agent used in the present invention include alkali metal hydrosulfides such as sodium hydrosulfide, alkali metal sulfides such as sodium sulfide, alkali metal polysulfides such as sodium polysulfide, alkaline earth metal hydrosulfides, alkaline earths. And at least one aqueous solution selected from the group consisting of metal sulfides, alkaline earth metal polysulfides, and hydrogen sulfide.
The wastewater pH at the time of adding the sulfiding agent is preferably maintained at 5 or less, and more preferably from 1 to 5 in view of reactivity. When the pH is less than 1, the pH is adjusted to the above range with an alkaline agent (for example, sodium hydroxide, potassium hydroxide, etc.), and when the pH exceeds 5, with a mineral acid (for example, sulfuric acid, nitric acid, hydrochloric acid, etc.) It is preferable to do. At this time, if calcium hydroxide, magnesium hydroxide, or the like is used as the alkaline agent, the concentration of valuable metals in the sludge recovered after the treatment is lowered.

硫化剤の添加方法としては、ORP制御により硫化剤の量を制御しながら添加する方法、又は予め設定した量を定量添加する方法のいずれで行ってもよい。この際、硫化剤は廃水中に添加することが好ましい。廃水の液面に滴下すると、条件により硫化剤の一部が硫化水素ガスとなって飛散し、安全面において問題があり、硫化剤の消費量が増加してコスト的にも不利となる場合があるためである。
ORP制御による方法は、原廃水中の重金属濃度が変動した場合でも、硫化剤が過不足なく添加できるので特に好ましい。前記のとおり硫化剤の添加は酸性側で行なわれるので、重金属イオンを含む原廃水のORPの初期値はプラス側であるが、そこへ硫化剤(還元物質)を添加するとORP値はマイナス側へ移行する。廃水中に重金属イオンが存在する場合には硫化剤が消費されるため、ORP値は再度プラス側へ戻る。含有する重金属イオンが全て硫化物になり、添加した硫化剤が重金属イオンに消費されなくなった状態で、ORP値は完全にマイナス側へ移行し、戻らなくなる。ORP値がマイナス側に保持されるように硫化剤を添加すれば、廃水中の重金属濃度が変動しても、重金属を完全に硫化物とするに充分な量の硫化剤を添加することができる。
As a method for adding the sulfiding agent, either a method of adding while controlling the amount of the sulfiding agent by ORP control or a method of quantitatively adding a preset amount may be used. At this time, the sulfurizing agent is preferably added to the waste water. When dripping onto the liquid level of waste water, part of the sulfiding agent may be scattered as hydrogen sulfide gas depending on the conditions, which may cause safety problems and increase the consumption of the sulfiding agent, which may be disadvantageous in terms of cost. Because there is.
The ORP control method is particularly preferable because the sulfurizing agent can be added without excess or deficiency even when the concentration of heavy metals in the raw wastewater varies. As described above, since the addition of the sulfiding agent is performed on the acidic side, the ORP initial value of the raw wastewater containing heavy metal ions is on the plus side, but when the sulfiding agent (reducing substance) is added thereto, the ORP value goes to the minus side. Transition. When heavy metal ions are present in the wastewater, the sulfurizing agent is consumed, so the ORP value returns to the positive side again. In a state where all the heavy metal ions contained are sulfides and the added sulfurizing agent is no longer consumed by heavy metal ions, the ORP value completely shifts to the negative side and does not return. If a sulfiding agent is added so that the ORP value is maintained on the negative side, even if the heavy metal concentration in the wastewater fluctuates, a sufficient amount of the sulfiding agent can be added to completely convert the heavy metal to sulfide. .

定量添加する方法の場合は、硫化剤が不足すると処理水の性状が悪化するため、予め原廃水中の重金属濃度の変動幅に合わせて添加量を設定しておき、不足することがないように添加する。なお、硫化剤が過剰に添加されても、第二工程で添加する酸化剤の使用量が増加しコスト的に不利にはなるものの、処理水の性状に全く問題はない。
重金属と硫化剤との反応は速やかに進行するので、硫化剤添加後の反応時間は、ORP制御ならばORP値が安定するまででよく、定量添加の場合は、十分に攪拌が行われて液が均一になるまでの時間でよい。作業条件により反応時間が長くなっても、処理の作業性や重金属残存濃度等に影響はない。
In the case of a method of adding a fixed amount, if the sulfurizing agent is insufficient, the properties of the treated water will deteriorate, so the amount of addition should be set in advance according to the fluctuation range of the heavy metal concentration in the raw wastewater so that it will not be insufficient. Added. Even if the sulfurizing agent is added excessively, the amount of the oxidizing agent added in the second step is increased, which is disadvantageous in terms of cost, but there is no problem with the properties of the treated water.
Since the reaction between the heavy metal and the sulfiding agent proceeds promptly, the reaction time after the addition of the sulfiding agent may be until the ORP value is stabilized if ORP control. In the case of quantitative addition, the liquid is sufficiently stirred. It may be the time until it becomes uniform. Even if the reaction time becomes longer depending on the working conditions, there is no effect on the workability of processing, the heavy metal residual concentration, and the like.

第二工程では、第一工程で硫化処理された廃水に酸化剤を添加する。これによって、生成している重金属硫化物を含むスラッジの凝集性を高め、後の第三工程における固液分離を容易にするとともに、スラッジ中の有価金属含有率を高めて後の回収作業を容易にする効果がある。酸化剤の添加によりスラッジの凝集性が改善される理由は明らかではないが、酸化剤がスラッジ粒子表面の荷電に作用して粒子間の反発力が解消されるためであると推測される。
本発明で用いる酸化剤としては、次亜塩素酸、亜塩素酸、過塩素酸等、及びそれらの水溶性塩等の塩素系酸化剤、過マンガン酸及びそれの水溶性塩、ペルオキソ二硫酸及びその水溶性塩、過酸化水素から選ばれる少なくとも1種があげられる。これらの中では、効果の面から塩素系酸化剤や過マンガン酸及びそれらの水溶性塩が好ましく、塩素系酸化剤である次亜塩素酸ソーダを使用することが調達面や経済性からみて特に好ましい。
In the second step, an oxidant is added to the wastewater treated in the first step. This enhances the cohesiveness of the sludge containing heavy metal sulfide that is generated, facilitates solid-liquid separation in the subsequent third step, and increases the content of valuable metals in the sludge, facilitating subsequent recovery operations. Has the effect of The reason why the cohesiveness of the sludge is improved by the addition of the oxidizing agent is not clear, but it is presumed that the oxidizing agent acts on the charge on the surface of the sludge particles to eliminate the repulsive force between the particles.
Examples of the oxidizing agent used in the present invention include chlorine-based oxidizing agents such as hypochlorous acid, chlorous acid, perchloric acid, and water-soluble salts thereof, permanganic acid and water-soluble salts thereof, peroxodisulfuric acid and Examples thereof include at least one selected from the water-soluble salt and hydrogen peroxide. Among these, chlorine-based oxidants, permanganic acid and their water-soluble salts are preferable from the viewpoint of effects, and the use of sodium hypochlorite, which is a chlorine-based oxidant, is particularly important from the viewpoint of procurement and economy. preferable.

酸化剤の添加量は廃水によっても異なるが、ORP制御にて、ORP値が+210mV程度以上になるよう添加することが好ましい。このORP値は、前記のように酸化剤がスラッジ粒子表面の荷電に作用して粒子間の反発力が解消される状態を維持するのに必要な酸化還元電位と考えられる。廃水の変動に応じて予め求められた添加量設定値に基づいて酸化剤を定量添加してもよい。また、例えば単一式の処理方法においては、凝集性を目視にて確認しながらの添加も可能である。
酸化剤が不足すると凝集性が不十分になり、その結果、固液分離後の処理水に重金属が残存する場合がある。なお、酸化剤を過剰に添加した場合は、処理結果が悪化する傾向は見られないが、無用に薬剤を消費するためコスト的に不利である。
Although the addition amount of the oxidizing agent varies depending on the wastewater, it is preferable to add the ORP value so that the ORP value becomes about +210 mV or more by ORP control. This ORP value is considered to be a redox potential necessary for maintaining the state in which the repelling force between particles is eliminated by the action of the oxidizing agent on the sludge particle surface as described above. An oxidizer may be quantitatively added based on an addition amount set value obtained in advance according to the fluctuation of waste water. For example, in a single processing method, addition can be performed while visually confirming the cohesiveness.
If the oxidizing agent is insufficient, the cohesiveness becomes insufficient, and as a result, heavy metals may remain in the treated water after solid-liquid separation. In addition, when an oxidizing agent is added excessively, although the tendency for a processing result to deteriorate is not seen, since a chemical | medical agent is consumed unnecessarily, it is disadvantageous in cost.

酸化剤の添加時あるいは添加中のpHは7以下であることが好ましく、pH5以下が更に好ましい。pHが7以下であれば、十分な凝集性が得られ、固液分離後の処理水中の重金属濃度を1mg/リットル以下にすることができる。添加中のpHを一定に保持することでpHが7を超えても処理水中の重金属濃度を1mg/リットル以下とすることはできるが、pHが低いほど凝集性は向上し、保持pHが高くなるに連れて凝集性及び固液分離性が悪化する傾向がある。
酸化剤の添加による凝集性の改善効果は比較的速やかに発現するので、酸化剤添加後の反応時間は、ORP制御ならばORP値が安定するまででよく、定量添加の場合は、十分に攪拌が行われて液が均一になるまでの時間でよい。反応時間を長くしても処理の作業性や処理水中の重金属残存濃度にほとんど影響はない。
The pH during or during the addition of the oxidizing agent is preferably 7 or less, and more preferably 5 or less. If the pH is 7 or less, sufficient cohesiveness can be obtained, and the heavy metal concentration in the treated water after solid-liquid separation can be 1 mg / liter or less. Even if the pH exceeds 7 by keeping the pH during addition constant, the concentration of heavy metals in the treated water can be reduced to 1 mg / liter or less, but the lower the pH, the better the cohesiveness and the higher the retained pH. As a result, the cohesiveness and solid-liquid separation tend to deteriorate.
Since the effect of improving the cohesiveness due to the addition of the oxidant is manifested relatively quickly, the reaction time after the addition of the oxidant may be until the ORP value stabilizes if ORP control. The time until the liquid becomes uniform after is performed. Increasing the reaction time has little effect on the workability of the treatment and the heavy metal residual concentration in the treated water.

第一から第三の全工程を通じて、反応温度は低いほど良好な結果が得られた。すなわち、処理水中の重金属残存濃度は0℃でも60℃でも1mg/リットル以下に処理できていたが、酸化剤の添加による重金属硫化物を含むスラッジの凝集性改善効果は0℃の時が最もよく、40℃を超えると凝集性向上の効果が低下する傾向がある。ただし、通常の重金属含有廃水の処理は常温で行われ、40℃を超えることはないので特に問題はない。   Throughout the first to third steps, the lower the reaction temperature, the better the results. That is, the heavy metal residual concentration in the treated water could be treated to 1 mg / liter or less at 0 ° C. or 60 ° C., but the effect of improving the cohesiveness of the sludge containing heavy metal sulfide by the addition of the oxidizing agent is best at 0 ° C. If the temperature exceeds 40 ° C., the effect of improving cohesion tends to be reduced. However, normal heavy metal-containing wastewater is treated at room temperature and does not exceed 40 ° C., so there is no particular problem.

第三工程では、第二工程において酸化剤を添加して不溶物を凝集させた廃水を、生物処理や放流可能なpHに調整し(廃水処理を行う事業所により異なるが、公共用水域に放流する場合には、海域ではpH5.0〜9.0、河川及び湖沼では5.8〜8.6の範囲内で適宜調整)、必要により高分子凝集剤などを添加して固液分離する。高分子凝集剤としては、カチオン性、ノニオン性、アニオン性、両性ポリマ等のいずれか1種以上を使用することができる。
これらの第一〜第三工程の処理により、固液分離後の処理水中の重金属濃度を1mg/リットル以下とすることができ、また、単に硫化剤で処理しただけの場合に比較して、分離したスラッジの量は少なくなり、該スラッジ中の有価金属濃度も高いので、後の回収工程での作業性が向上する効果がある。
In the third step, the waste water that has been flocculated by adding an oxidizer in the second step is adjusted to a pH that can be biologically treated or discharged (depending on the establishment where the wastewater treatment is carried out, it is discharged into public waters) In this case, the pH is adjusted within the range of 5.0 to 9.0 in the sea area and 5.8 to 8.6 in the case of rivers and lakes), and if necessary, a polymer flocculant is added to perform solid-liquid separation. As the polymer flocculant, any one or more of cationic, nonionic, anionic and amphoteric polymers can be used.
By the treatment in the first to third steps, the concentration of heavy metals in the treated water after the solid-liquid separation can be reduced to 1 mg / liter or less. The amount of sludge thus produced is reduced, and the concentration of valuable metals in the sludge is high, so that there is an effect that workability in the subsequent recovery process is improved.

本発明の廃水処理方法は、特に塩化鉄水溶液やポリ塩化アルミニウム水溶液等の鉄塩やアルミニウム塩を併用しないとスラッジの凝集性が確保され難い、比較的低濃度の重金属を含む廃水(銅の場合、廃水中の銅濃度が500mg/リットル以下の希薄廃水)の処理に適用した場合に効果が大きい。
また、従来の、凝集助剤としての鉄塩やアルミニウム塩及び/又は水酸化剤やpH調整剤としてアルカリ土類金属水酸化物を用いた結果、固液分離後に回収されるスラッジ中の有価金属含有率が低下し、スラッジが有価物としてリサイクルできなかった廃水の処理にも有効である。
なお、これら一連の工程(第一工程〜第三工程)においては、連続式又は単一式の処理方法のいずれの方式も適用することができる。
The wastewater treatment method of the present invention is particularly difficult to ensure sludge cohesion unless an iron salt or aluminum salt such as an iron chloride aqueous solution or a polyaluminum chloride aqueous solution is used in combination, and wastewater containing a relatively low concentration of heavy metal (in the case of copper) The effect is large when applied to the treatment of dilute wastewater having a copper concentration of 500 mg / liter or less).
Moreover, as a result of using an alkaline earth metal hydroxide as a conventional iron salt or aluminum salt and / or a hydroxylating agent or a pH adjusting agent as a coagulation aid, valuable metals in sludge recovered after solid-liquid separation. It is also effective for the treatment of wastewater whose content has been reduced and sludge could not be recycled as a valuable resource.
In addition, in these series of steps (first step to third step), any of a continuous processing method and a single processing method can be applied.

以下に実施例、比較例、及び参考例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
なお、以下の例において、結果の比較は主として濃度、含有率などの数値を用いているが、いずれの例においても被処理廃水の量に比較して添加薬剤の量は少ないので、これらの相対値どうしの比較で本発明の効果は十分推測可能である。
以下の例においては表1に示す薬剤、ろ紙、測定機器を使用した。
The present invention will be described more specifically with reference to the following examples, comparative examples, and reference examples, but the present invention is not limited to these examples.
In the following examples, the comparison of the results mainly uses numerical values such as concentration and content rate, but since the amount of the additive agent is small compared to the amount of the wastewater to be treated in any of the examples, the relative values of these are compared. The effect of the present invention can be sufficiently estimated by comparing the values.
In the following examples, the chemicals, filter paper, and measuring equipment shown in Table 1 were used.

Figure 0004920932
Figure 0004920932

〔実施例1〜5/比較例1〜4〕(酸化剤の添加による効果)
硫酸銅(II)をイオン交換水に溶解し、表2に示す濃度で銅を含有するモデル廃水を調製した。
第一工程として、前記モデル廃水に常温(約20℃)下で、0.4質量%の水酸化ナトリウム水溶液を用いてpHを4に維持しながら、2.5質量%の水硫化ソーダ水溶液を、銅に対して当量となるように添加した。添加量はORP制御により調整し、ORPが−50mVで一定となるまで添加した。添加時間は約3分であった。
[Examples 1 to 5 / Comparative Examples 1 to 4] (Effects of adding an oxidizing agent)
Copper (II) sulfate was dissolved in ion-exchanged water to prepare a model wastewater containing copper at the concentrations shown in Table 2.
As a first step, a 2.5% by mass sodium hydrosulfide aqueous solution was added to the model wastewater at room temperature (about 20 ° C.) using a 0.4% by mass sodium hydroxide aqueous solution while maintaining the pH at 4. , Added so as to be equivalent to copper. The addition amount was adjusted by ORP control, and was added until ORP became constant at -50 mV. The addition time was about 3 minutes.

実施例1〜5では、第二工程として前記第一工程で水硫化ソーダを添加したモデル廃水に、酸化剤として有効塩素1.2質量%の次亜塩素酸ソーダ水溶液又は0.005mol/リットルの過マンガン酸カリウム水溶液を、ORP値が+210mV以上になるよう添加した。添加中のpHは4.0(第一工程終了時)〜6.5(第二工程終了時)、温度は常温(約20℃)、添加時間は約3分であった。使用した酸化剤の種類と、最終的なORP値を表2に示した。   In Examples 1 to 5, the model wastewater to which sodium hydrosulfide was added in the first step as the second step was added to an aqueous solution of sodium hypochlorite having an effective chlorine content of 1.2% by mass or 0.005 mol / liter as an oxidizing agent. An aqueous potassium permanganate solution was added so that the ORP value was +210 mV or more. The pH during addition was 4.0 (at the end of the first step) to 6.5 (at the end of the second step), the temperature was at room temperature (about 20 ° C.), and the addition time was about 3 minutes. Table 2 shows the type of oxidizing agent used and the final ORP value.

次いで、前記第二工程を終了した廃水(比較例1〜4では第二工程を省略し、前記第一工程を終了しただけの廃水)について、第三工程の処理を行った。すなわち、前記廃水に0.4質量%水酸化ナトリウム水溶液を添加してpHを9に調整した後、アニオン系高分子凝集剤を5mg/リットルの濃度となるように添加し、その後ろ紙を用いて固液分離した。固液分離前のスラッジの凝集状態、ろ過時間、固液分離後の処理水の外観の観察結果、及び処理水中の銅濃度の測定結果を表2に示す。なお、表2に示したろ過時間は、100mlの固液分離前の処理液を一度にろ紙に注ぎ、最初の50mlをろ過するのに要した時間である。   Next, the third process was performed on the wastewater that ended the second process (in Comparative Examples 1 to 4, the second process was omitted and the first process was completed). That is, after adding 0.4 mass% sodium hydroxide aqueous solution to the waste water to adjust the pH to 9, an anionic polymer flocculant was added to a concentration of 5 mg / liter, and the back paper was used. Solid-liquid separation. Table 2 shows the aggregation state of sludge before solid-liquid separation, the filtration time, the observation results of the appearance of the treated water after solid-liquid separation, and the measurement results of the copper concentration in the treated water. The filtration time shown in Table 2 is the time required to pour 100 ml of the pre-solid-liquid treatment liquid onto the filter paper at once and filter the first 50 ml.

表2に示すように、酸化剤として次亜塩素酸ソーダ又は過マンガン酸カリウムを添加する第二工程を行った実施例1〜5では、いずれもスラッジの凝集性、沈降性が良好で、銅濃度が1mg/リットルを下回る澄明な処理水が得られた。
これに対し、第二工程を行わなかった比較例1〜4では、いずれもスラッジの凝集性に乏しく、処理水中の銅濃度は1mg/リットルを超えていた。
また、実施例と比較例における銅の処理率を比較すると、実施例のそれは原廃水中の銅濃度によらず一貫して96%以上(実施例1で96%、実施例2〜5では99%以上)であったのに対し、比較例では比較例1が9%程度であったものが、比較例2では86%、比較例3では99%、比較例4では99%以上と濃度があがるほど高くなっており、原廃水中の銅濃度が低いほどその効果が大きいことが明らかである。
なお、ここでいう「銅の処理率」は「100×(原廃水中の銅濃度−処理水中の銅濃度)/(原廃水中の銅濃度)」で表される数値である。
As shown in Table 2, in Examples 1 to 5 in which the second step of adding sodium hypochlorite or potassium permanganate as an oxidant was performed, both sludge cohesiveness and sedimentation were good, copper A clear treated water having a concentration of less than 1 mg / liter was obtained.
On the other hand, in Comparative Examples 1 to 4 in which the second step was not performed, the sludge cohesiveness was poor, and the copper concentration in the treated water exceeded 1 mg / liter.
Moreover, when the treatment rate of copper in the Example and the Comparative Example is compared, it is consistently 96% or more regardless of the copper concentration in the raw wastewater (96% in Example 1, 99 in Examples 2-5). In contrast, Comparative Example 1 had a concentration of about 9%, but Comparative Example 2 was 86%, Comparative Example 3 was 99%, and Comparative Example 4 was 99% or more. It is clear that the effect increases as the copper concentration in the raw wastewater decreases.
The “copper treatment rate” here is a numerical value represented by “100 × (copper concentration in raw wastewater−copper concentration in treated water) / (copper concentration in raw wastewater)”.

〔実施例6、比較例5、6〕(本発明の処理方法と、凝集助剤を併用する一般的な処理方法との比較)
実施例6:硫酸銅(II)をイオン交換水に溶解し、100mg/リットルの濃度で銅を含有するモデル廃水を調製した。
第一工程として、前記モデル廃水に常温(約20℃)で、0.4質量%の水酸化ナトリウム水溶液を用いてpHを4に維持しながら、2.5質量%の水硫化ソーダ水溶液を、銅に対して当量となるように添加した。添加量はORP制御により調整し、ORPが−50mVで一定となるまで添加した。添加時間は約3分であった。
第二工程として前記第一工程で水硫化ソーダを添加したモデル廃水に、酸化剤として有効塩素12質量%の次亜塩素酸ソーダ水溶液を廃水に対して100ppmになるよう添加した。このときの温度は常温(約20℃)、pHは4.0(第一工程終了時)〜6.5(第二工程終了時)、処理時間は約10分であった。
次いで、第三工程として前記廃水に0.4質量%水酸化ナトリウム水溶液を添加してpHを9に調整した後、アニオン系高分子凝集剤を5mg/リットルの濃度となるように添加し、その後ろ紙を用いて固液分離した。
[Example 6, Comparative Examples 5 and 6] (Comparison between the treatment method of the present invention and a general treatment method using a coagulant aid)
Example 6: Copper (II) sulfate was dissolved in ion exchange water to prepare a model wastewater containing copper at a concentration of 100 mg / liter.
As a first step, a 2.5 mass% sodium hydrosulfide aqueous solution was added to the model wastewater at room temperature (about 20 ° C) while maintaining a pH of 4 using a 0.4 mass% sodium hydroxide aqueous solution. It added so that it might become an equivalent with respect to copper. The addition amount was adjusted by ORP control, and was added until ORP became constant at -50 mV. The addition time was about 3 minutes.
As a second step, an aqueous sodium hypochlorite solution containing 12% by mass effective chlorine as an oxidizing agent was added to the model wastewater to which sodium hydrosulfide was added in the first step so as to be 100 ppm based on the wastewater. The temperature at this time was room temperature (about 20 ° C.), the pH was 4.0 (at the end of the first step) to 6.5 (at the end of the second step), and the treatment time was about 10 minutes.
Then, as a third step, 0.4% by weight aqueous sodium hydroxide solution is added to the wastewater to adjust the pH to 9, and then an anionic polymer flocculant is added to a concentration of 5 mg / liter, Solid-liquid separation was performed using filter paper.

比較例5:実施例6と同じモデル廃水に、凝集助剤として40質量%の塩化鉄(III)水溶液をモデル廃水に対し300ppmになるよう添加した。この廃水をpH4に維持しながら、2.5質量%の水硫化ソーダ水溶液をORP制御(ORP:−50mV)にて銅及び鉄に対して当量となるように添加した。この際、pH調整として0.4質量%の水酸化ナトリウム水溶液を用いた。
次いで、この廃水に0.4質量%水酸化ナトリウム水溶液を添加してpHを9に調整した後、アニオン系高分子凝集剤を5mg/リットルの濃度となるように添加し、その後ろ紙を用いて固液分離した。
比較例6:2.5質量%の水硫化ソーダ水溶液の添加は行わず、直接、廃水pHが9になるよう0.4質量%水酸化ナトリウム水溶液を加えて処理した他は、比較例5と同様に操作した。
Comparative Example 5: To the same model wastewater as in Example 6, a 40% by mass iron (III) chloride aqueous solution as a coagulant aid was added to 300 ppm with respect to the model wastewater. While maintaining this wastewater at pH 4, a 2.5 mass% sodium hydrosulfide aqueous solution was added by an ORP control (ORP: -50 mV) so as to be equivalent to copper and iron. At this time, a 0.4 mass% sodium hydroxide aqueous solution was used for pH adjustment.
Next, 0.4% by weight aqueous sodium hydroxide solution was added to the waste water to adjust the pH to 9, and then an anionic polymer flocculant was added to a concentration of 5 mg / liter, and the back paper was used. Solid-liquid separation.
Comparative Example 6: Comparative Example 5 is the same as that of Comparative Example 5 except that a 2.5% by mass sodium hydrosulfide aqueous solution was not added, and the 0.4% by mass sodium hydroxide aqueous solution was directly added so that the pH of the wastewater was 9. The same operation was performed.

実施例6、比較例5、6の結果は表3に示すとおりであり、いずれの条件においても処理水の凝集性には問題はなく、固液分離後の処理水は澄明な液で銅も十分に処理されていた。しかしながら、酸化剤を使用する第二工程を行わない比較例5、及び水酸化物処理しただけの比較例6においては、実施例6に比べてスラッジの発生量が増加し、スラッジ中の銅含有率が著しく低下していることがわかる。   The results of Example 6 and Comparative Examples 5 and 6 are as shown in Table 3, and there is no problem with the cohesiveness of the treated water under any condition, and the treated water after the solid-liquid separation is a clear liquid and copper. It was processed enough. However, in Comparative Example 5 in which the second step using the oxidizing agent is not performed and in Comparative Example 6 in which only the hydroxide treatment is performed, the amount of sludge generated is increased as compared with Example 6, and the copper content in the sludge is increased. It can be seen that the rate is significantly reduced.

Figure 0004920932
Figure 0004920932

Figure 0004920932
Figure 0004920932

〔実施例7〕(実廃水による実施例その1)
プリント基板製造A社で排出されたエッチング洗浄水(pH=5.6、銅濃度20.9mg/リットル)に常温(約20℃)で、0.5質量%の硫酸及び0.4質量%の水酸化ナトリウム水溶液を用いてpHを4に維持しながら、2.5質量%の水硫化ソーダ水溶液をORP制御(ORP:±0mV)にて銅に対して当量となるように添加した。
次いで、酸化剤として0.005mol/リットルの過マンガン酸カリウム水溶液を廃水に対し0.44容量%(過マンガン酸カリウムとして3.5ppm)添加した。その時の温度は常温(約20℃)、pHは3.9、ORPは220mVであった。その後、0.4質量%の水酸化ナトリウム水溶液にてpHを8に調整し、アニオン系高分子凝集剤を2.5mg/リットルの濃度となるように添加し、ろ紙にて固液分離した。
その結果、生成したスラッジはフロックを形成して沈降し、凝集性が確認できた。また、固液分離後の処理水中の銅濃度を測定した結果0.2mg/リットルであり、回収された乾スラッジ中の銅含有率は48%で、リサイクルが可能な形態で回収できていた。
[Example 7] (Example 1 using actual waste water)
Etching cleaning water (pH = 5.6, copper concentration 20.9 mg / liter) discharged from Printed Circuit Board Manufacturing Company A at room temperature (about 20 ° C.) with 0.5 mass% sulfuric acid and 0.4 mass% While maintaining the pH at 4 using an aqueous sodium hydroxide solution, a 2.5 mass% sodium hydrosulfide aqueous solution was added so as to be equivalent to copper by ORP control (ORP: ± 0 mV).
Subsequently, 0.004 mol% (3.5 ppm as potassium permanganate) of 0.005 mol / liter potassium permanganate aqueous solution as an oxidant was added to the wastewater. The temperature at that time was room temperature (about 20 ° C.), pH was 3.9, and ORP was 220 mV. Thereafter, the pH was adjusted to 8 with a 0.4 mass% aqueous sodium hydroxide solution, an anionic polymer flocculant was added to a concentration of 2.5 mg / liter, and solid-liquid separation was performed with filter paper.
As a result, the generated sludge formed flocs and settled, confirming the cohesiveness. Moreover, the result of measuring the copper concentration in the treated water after the solid-liquid separation was 0.2 mg / liter, and the copper content in the recovered dry sludge was 48%, which could be recovered in a recyclable form.

〔比較例7〕(実廃水による比較例その1)
酸化剤である過マンガン酸カリウム水溶液を添加しなかった他は、実施例7と同様に操作した。
その結果、生成したスラッジは全く凝集性が無く、ろ過後の処理水中の銅濃度は4.9mg/リットルであり、外観も茶色不透明の液であった。
[Comparative Example 7] (Comparative Example 1 with Actual Waste Water)
The same operation as in Example 7 was conducted except that the potassium permanganate aqueous solution as an oxidizing agent was not added.
As a result, the produced sludge was not cohesive at all, the copper concentration in the treated water after filtration was 4.9 mg / liter, and the appearance was a brown opaque liquid.

〔実施例8〕(実廃水による実施例その2)
プリント基板製造B社で排出されたエッチング洗浄水(pH=5.6、銅濃度28.7mg/リットル)に、常温(約20℃)で、0.5質量%の硫酸及び0.4質量%の水酸化ナトリウム水溶液を用いてpH4に保持しながら、2.5質量%の水硫化ソーダ水溶液をORP制御(ORP:−100mV)にて銅に対して当量となるように添加した。
次いで、酸化剤として有効塩素12質量%の次亜塩素酸ソーダ水溶液を廃水に対し100ppm添加した。その時の温度は常温(約20℃)、pHは5.3、ORPは240mVであった。その後、0.4質量%の水酸化ナトリウム水溶液にてpHを9に調整し、アニオン系高分子凝集剤を5mg/リットル添加し、ろ紙にて固液分離した。
その結果、生成したスラッジはフロックを形成して沈降し、凝集性が確認できた。処理水中のスラッジ濃度は74mg/リットル、固液分離後の処理水中の銅濃度は0.3mg/リットルであり、また回収された乾スラッジ中の銅含有率は34%であった。
[Example 8] (Example 2 with actual wastewater)
Etching cleaning water (pH = 5.6, copper concentration 28.7 mg / liter) discharged from Printed Circuit Board Manufacturing Company B, 0.5% by mass sulfuric acid and 0.4% by mass at room temperature (about 20 ° C.) While maintaining the pH at 4 using a sodium hydroxide aqueous solution, a 2.5 mass% sodium hydrosulfide aqueous solution was added so as to be equivalent to copper by ORP control (ORP: -100 mV).
Subsequently, 100 ppm of sodium hypochlorite aqueous solution containing 12% by mass of effective chlorine as an oxidizing agent was added to the waste water. The temperature at that time was room temperature (about 20 ° C.), the pH was 5.3, and the ORP was 240 mV. Thereafter, the pH was adjusted to 9 with a 0.4% by mass aqueous sodium hydroxide solution, 5 mg / liter of an anionic polymer flocculant was added, and solid-liquid separation was performed with filter paper.
As a result, the generated sludge formed flocs and settled, confirming the cohesiveness. The sludge concentration in the treated water was 74 mg / liter, the copper concentration in the treated water after solid-liquid separation was 0.3 mg / liter, and the copper content in the recovered dry sludge was 34%.

〔実施例9〕(実廃水による実施例その3)
酸化剤として、有効塩素12質量%の次亜塩素酸ソーダ水溶液の代わりに、0.005mol/リットルの過マンガン酸カリウム水溶液を廃水に対し1容量%添加した(その時の温度は常温(約20℃)、pHは5.2、ORPは220mVであった)他は、実施例8と同様に操作した。
その結果、生成したスラッジはフロックを形成して沈降し、凝集性が確認できた。処理水中のスラッジ濃度は74mg/リットル、固液分離後の処理水中の銅濃度は0.4mg/リットルであり、また回収された乾スラッジ中の銅含有率は34%であった。
実施例8、9の結果から、実廃水に対する酸化剤の効果は、次亜塩素酸ソーダ、過マンガン酸カリウム共に変わりなく、固液分離後の処理水中の銅濃度が1mg/リットル以下となるように処理でき、且つスラッジ中の銅含有率からみて十分リサイクル可能な形態で回収できていた。
[Example 9] (Example 3 with actual wastewater)
As an oxidizing agent, 0.005 mol / liter potassium permanganate aqueous solution was added in an amount of 1% by volume based on waste water instead of sodium hypochlorite aqueous solution containing 12% by mass of effective chlorine (the temperature at that time was room temperature (about 20 ° C. ), PH was 5.2, and ORP was 220 mV. The others were operated in the same manner as in Example 8.
As a result, the generated sludge formed flocs and settled, confirming the cohesiveness. The sludge concentration in the treated water was 74 mg / liter, the copper concentration in the treated water after solid-liquid separation was 0.4 mg / liter, and the copper content in the recovered dry sludge was 34%.
From the results of Examples 8 and 9, the effect of the oxidizing agent on the actual waste water is the same for both sodium hypochlorite and potassium permanganate, and the copper concentration in the treated water after solid-liquid separation is 1 mg / liter or less. In view of the copper content in the sludge, it was recovered in a sufficiently recyclable form.

〔比較例8〕(実廃水による比較例その2)
酸化剤である次亜塩素酸ソーダ水溶液を添加しなかった他は、実施例8と同様に操作した。
その結果、生成したスラッジは全く凝集性が無く、ろ過後の処理液中の銅濃度は13.2mg/リットルであり、外観も茶色不透明の液であった。
[Comparative Example 8] (Comparative Example 2 with Actual Waste Water)
The same operation as in Example 8 was carried out except that no sodium hypochlorite aqueous solution as an oxidizing agent was added.
As a result, the produced sludge was not cohesive at all, the copper concentration in the treated liquid after filtration was 13.2 mg / liter, and the appearance was a brown opaque liquid.

〔比較例9〕(実廃水による比較例その3)
プリント基板製造B社で排出されたエッチング洗浄水(pH=5.6、銅濃度28.7mg/リットル)を一般的な水酸化物法にて処理した。
予め40質量%の塩化鉄(III)を廃水に対して300ppm添加し、10質量%の水酸化カルシウムスラリー液をpHが9になるまで添加し、アニオン系高分子凝集剤を5mg/リットル添加して、ろ紙にて固液分離した。
その結果、生成したスラッジはフロックを形成して良好に凝集し、固液分離後の処理水中の銅濃度も0.1mg/リットル以下であったが、処理水中のスラッジ濃度は197mg/リットルと発生量が多く、また回収された乾スラッジ中の銅含有率は16%と低くリサイクルに適さないものであった。
[Comparative Example 9] (Comparative Example 3 with Actual Waste Water)
Etching cleaning water (pH = 5.6, copper concentration 28.7 mg / liter) discharged from Printed Circuit Board Manufacturing Company B was treated by a general hydroxide method.
40% by mass of iron (III) chloride is added in advance to the waste water at 300 ppm, 10% by mass of calcium hydroxide slurry is added until the pH reaches 9, and anionic polymer flocculant is added at 5 mg / liter. Then, solid-liquid separation was performed with filter paper.
As a result, the generated sludge formed flocs and aggregated well, and the copper concentration in the treated water after solid-liquid separation was 0.1 mg / liter or less, but the sludge concentration in the treated water was 197 mg / liter. The amount of copper contained in the recovered dry sludge was as high as 16% and was not suitable for recycling.

〔参考例1:次亜塩素酸ソーダ添加後の反応時間の影響調査〕
銅濃度100mg/リットルのモデル廃水に、水硫化ソーダを添加して銅を硫化物とした廃水に、次亜塩素酸ソーダを添加した後、0〜30分間反応させて反応時間の影響を調べた。その結果、反応時間の処理結果への影響は小さく、反応時間が短くても十分に処理できていた。凝集性、処理水性状もほとんど同じ結果となった。
[Reference Example 1: Investigation of influence of reaction time after addition of sodium hypochlorite]
After adding sodium hydrosulfide to waste water in which copper hydrosulfide was added to model wastewater with a copper concentration of 100 mg / liter, sodium hypochlorite was added and reacted for 0 to 30 minutes to investigate the effect of reaction time. . As a result, the influence of the reaction time on the treatment result was small, and the treatment could be sufficiently performed even if the reaction time was short. Almost the same result was obtained for the cohesiveness and the treated aqueous state.

〔参考例2:次亜塩素酸ソーダ最適添加量の調査〕
銅濃度を変化させたモデル廃水に水硫化ソーダを添加して銅を硫化物とした廃水に、次亜塩素酸ソーダを添加し、それぞれの含有濃度における次亜塩素酸ソーダの最適添加量を調べた。
その結果、原廃水中の銅濃度に関わらず、ORP値が210mV以上になるまで次亜塩素酸ソーダを添加することで、処理性状の十分な向上が確認できた。次亜塩素酸ソーダの添加が不十分な場合、銅の残存や凝集不全などが起こった。次亜塩素酸ソーダが過剰に添加されても処理性状の悪化は見られなかった。
[Reference Example 2: Investigation of optimum amount of sodium hypochlorite]
Add sodium hydrosulfide to model wastewater with varying copper concentration, add sodium hypochlorite to wastewater containing copper sulfide, and investigate the optimum amount of sodium hypochlorite for each concentration. It was.
As a result, regardless of the copper concentration in the raw waste water, it was confirmed that the treatment property was sufficiently improved by adding sodium hypochlorite until the ORP value reached 210 mV or more. When sodium hypochlorite was insufficiently added, copper remained or coagulated. Even when sodium hypochlorite was added in excess, the processing properties were not deteriorated.

〔参考例3:次亜塩素酸ソーダ添加時の最適pH調査〕
銅濃度100mg/リットルのモデル廃水を、水硫化ソーダを用いた第一工程、次亜塩素酸ソーダを用いた第二工程、及び第三工程からなる本発明の方法で処理し、その際、第二工程のpHを1〜9に変化させてpHの影響を調べた。
その結果、次亜塩素酸ソーダを添加中にpHを一定値に保持していた場合、pH1〜9の全てのpH域において、処理液中の銅濃度は1mg/リットル以下にまで処理できていた。しかし、pHが高くなればなるほど、凝集性とろ過性の悪化が見られた。
また、次亜塩素酸ソーダ添加前のpHのみを調整し、添加中にpH調整を行わなかった場合、pHが7を超えると処理液中の銅濃度は1mg/リットル以上で、凝集性、ろ過性の悪化、及び処理水の着色が確認された。
以上のことから、第二工程のpHは7以下とするのが好ましく、また、pHを保持する場合もしない場合も、pH1〜5で良好な結果が得られており、第一工程における硫化物生成過程もpH1〜5程度が好ましいことから、第一工程、第二工程を通じてこのpH域で行うことが特に好ましい。
[Reference Example 3: Investigation of optimum pH when sodium hypochlorite is added]
A model wastewater having a copper concentration of 100 mg / liter is treated by the method of the present invention comprising a first step using sodium hydrosulfide, a second step using sodium hypochlorite, and a third step. The effect of pH was investigated by changing the pH of the two steps from 1 to 9.
As a result, when the pH was maintained at a constant value during the addition of sodium hypochlorite, the copper concentration in the treatment liquid could be treated to 1 mg / liter or less in all pH ranges of pH 1-9. . However, the higher the pH, the worse the cohesiveness and filterability.
In addition, when only the pH before addition of sodium hypochlorite was adjusted and the pH was not adjusted during the addition, when the pH exceeded 7, the copper concentration in the treatment liquid was 1 mg / liter or more, and the coagulation and filtration The deterioration of the property and coloring of the treated water were confirmed.
From the above, it is preferable that the pH of the second step is 7 or less. In addition, in the case where the pH is maintained or not, good results are obtained at pH 1 to 5, and the sulfide in the first step. Since the generation process is preferably about pH 1 to 5, it is particularly preferable to carry out in this pH range through the first step and the second step.

本発明の重金属含有廃水の処理方法は、プリント基板製造業におけるエッチング処理工程から排出される洗浄水(エッチング洗浄水)、メッキ工場からの排出水、鉱山採掘所の廃水、製錬所廃水などの処理方法として、広範囲な利用可能性を有するものである。   The method for treating heavy metal-containing wastewater of the present invention includes cleaning water (etching cleaning water) discharged from an etching process in the printed circuit board manufacturing industry, drainage from a plating plant, mine mine wastewater, smelter wastewater, etc. The processing method has a wide range of applicability.

Claims (5)

重金属含有廃水に硫化剤を添加し、重金属を硫化物として析出させる第一工程と、
前記第一工程処理廃水に次亜塩素酸、亜塩素酸、過塩素酸、過マンガン酸、及びそれらの水溶性塩からなる群から選択される少なくとも1種の酸化剤を、ORP制御により添加量を調整しながら添加するか、又は定量添加して重金属硫化物を含むスラッジの凝集性を高める第二工程と、
前記第二工程処理廃水を重金属硫化物を含むスラッジと処理水とに固液分離する第三工程
を含むことを特徴とする重金属含有廃水の処理方法。
A first step of adding a sulfiding agent to the heavy metal-containing wastewater and precipitating the heavy metal as a sulfide;
At least one oxidizing agent selected from the group consisting of hypochlorous acid, chlorous acid, perchloric acid, permanganic acid, and water-soluble salts thereof is added to the first process treatment wastewater by ORP control A second step of adding a fixed amount or adding a fixed amount to increase the cohesiveness of sludge containing heavy metal sulfide,
A third step for solid-liquid separation of the second step treated wastewater into sludge containing heavy metal sulfide and treated water ;
A method for treating heavy metal-containing wastewater.
前記重金属含有廃水が、500mg/リットル以下の濃度の銅を含む廃水であることを特徴とする請求項1に記載の重金属含有廃水の処理方法。   The method for treating heavy metal-containing wastewater according to claim 1, wherein the heavy metal-containing wastewater is wastewater containing copper having a concentration of 500 mg / liter or less. 前記第一工程において、前記硫化剤としてアルカリ金属水硫化物、アルカリ金属硫化物、及びアルカリ金属多硫化物からなる群から選択される少なくとも1種を使用し、該硫化剤をORP制御により添加量を調整しながら添加するか、又は定量添加することを特徴とする請求項1又は2に記載の重金属含有廃水の処理方法。   In the first step, at least one selected from the group consisting of alkali metal hydrosulfides, alkali metal sulfides, and alkali metal polysulfides is used as the sulfiding agent, and the amount of the sulfiding agent added by ORP control The method for treating heavy metal-containing wastewater according to claim 1, wherein the amount is added while adjusting or is added quantitatively. 前記第一工程を、pHを1〜5に制御しながら行うことを特徴とする請求項1〜3のいずれか1項に記載の重金属含有廃水の処理方法。   The method for treating heavy metal-containing wastewater according to any one of claims 1 to 3, wherein the first step is performed while controlling the pH to 1 to 5. 前記第二工程を、pHを7以下に制御しながら行うことを特徴とする請求項1〜のいずれか1項に記載の重金属含有廃水の処理方法。 The method for treating heavy metal-containing wastewater according to any one of claims 1 to 4 , wherein the second step is performed while controlling the pH to 7 or less.
JP2005256125A 2005-09-05 2005-09-05 Treatment method for wastewater containing heavy metals Expired - Fee Related JP4920932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005256125A JP4920932B2 (en) 2005-09-05 2005-09-05 Treatment method for wastewater containing heavy metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005256125A JP4920932B2 (en) 2005-09-05 2005-09-05 Treatment method for wastewater containing heavy metals

Publications (2)

Publication Number Publication Date
JP2007069068A JP2007069068A (en) 2007-03-22
JP4920932B2 true JP4920932B2 (en) 2012-04-18

Family

ID=37930990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005256125A Expired - Fee Related JP4920932B2 (en) 2005-09-05 2005-09-05 Treatment method for wastewater containing heavy metals

Country Status (1)

Country Link
JP (1) JP4920932B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012098924A1 (en) * 2011-01-20 2012-07-26 三菱レイヨン株式会社 Wastewater treatment apparatus, wastewater treatment method, and wastewater treatment system
JP2013202606A (en) * 2012-03-29 2013-10-07 Kurita Water Ind Ltd Treatment method and device of thiourea-containing water
JP6364716B2 (en) * 2013-07-18 2018-08-01 住友金属鉱山株式会社 Heavy metal removal method
JP6555182B2 (en) * 2016-04-22 2019-08-07 住友金属鉱山株式会社 Wastewater treatment method
CN112960829B (en) * 2021-02-20 2022-08-23 成都明天高新产业有限责任公司 Process for treating copper-containing wastewater generated in production of printed circuit boards
CN114163021A (en) * 2021-12-06 2022-03-11 内蒙古伊泰煤制油有限责任公司 Method for treating heavy metal wastewater containing complex

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5137628B2 (en) * 1972-03-25 1976-10-16
JPH08281277A (en) * 1995-04-11 1996-10-29 Sumitomo Metal Mining Co Ltd Treatment of waste water containing cadmium ion and lead ion
JP3225836B2 (en) * 1996-03-14 2001-11-05 大平洋金属株式会社 Preferential removal of manganese from magnesium-containing manganese acidic solutions.
JP4025841B2 (en) * 1998-03-06 2007-12-26 Dowaエコシステム株式会社 Treatment of wastewater containing arsenic and other heavy metals
JP3630126B2 (en) * 2001-09-20 2005-03-16 栗田工業株式会社 Method of treating water containing fluorine and manganese ions
JP3945418B2 (en) * 2002-02-25 2007-07-18 住友金属鉱山株式会社 Control method of sulfurization reaction
JP4121064B2 (en) * 2002-02-28 2008-07-16 独立行政法人産業技術総合研究所 Method for removing and recovering copper by treating waste water and chemicals used therefor
JP4014032B2 (en) * 2002-06-28 2007-11-28 独立行政法人産業技術総合研究所 Disposal method of wastewater containing dissolved copper complex compound and chemical used therefor
JP2004105833A (en) * 2002-09-17 2004-04-08 Nagao Kk Wastewater treatment method and its apparatus
JP4394390B2 (en) * 2003-07-18 2010-01-06 日本表面化学株式会社 Chromate treatment wastewater and wastewater treatment method
JP4518893B2 (en) * 2003-09-29 2010-08-04 アタカ大機株式会社 Wastewater treatment method and apparatus containing heavy metal

Also Published As

Publication number Publication date
JP2007069068A (en) 2007-03-22

Similar Documents

Publication Publication Date Title
US7001583B2 (en) Essentially insoluble heavy metal sulfide slurry for wastewater treatment
JP4920932B2 (en) Treatment method for wastewater containing heavy metals
JP4894403B2 (en) Cyanide-containing wastewater treatment method and apparatus
KR102119234B1 (en) How to treat cyanide-containing wastewater
CN110683676A (en) Copper-containing printed circuit board wastewater treatment method
JP4662059B2 (en) Purification process for steel manufacturing wastewater
JP7015002B2 (en) How to treat heavy metal-containing wastewater
JP5179242B2 (en) Waste water treatment method and waste water treatment equipment
JP4165637B2 (en) Method for treating wastewater containing harmful substances without producing sludge and chemicals used therefor
JPH0124556B2 (en)
US11479490B2 (en) Method of treating wastewater
JP5205089B2 (en) Waste electrolyte treatment method
JP6555182B2 (en) Wastewater treatment method
WO2015129541A1 (en) Treatment method and treatment device for waste water containing heavy metal
JP6623288B2 (en) Method and apparatus for treating wastewater containing hydrogen sulfide
JP2003112198A (en) Method and apparatus for removing cod component in water
JP3788782B2 (en) Method for removing and recovering copper by treating waste water and chemicals used therefor
JPH08103774A (en) Treatment of waste water
JP4505264B2 (en) Treatment method for waste liquid containing molybdenum
JP2002233882A (en) Method for recovering heavy metal from heavy metal- containing aqueous solution
JP4604203B2 (en) Treatment method for waste liquid containing heavy metals
JP4537118B2 (en) Treatment method for dilute arsenic-containing waste liquid
JP4407236B2 (en) Treatment method of wastewater containing antimony
JP7454096B1 (en) Wastewater treatment method
JP5719320B2 (en) Zinc recovery method from galvanizing waste liquid

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080318

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120202

R150 Certificate of patent or registration of utility model

Ref document number: 4920932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees