JP4537118B2 - Treatment method for dilute arsenic-containing waste liquid - Google Patents

Treatment method for dilute arsenic-containing waste liquid Download PDF

Info

Publication number
JP4537118B2
JP4537118B2 JP2004151703A JP2004151703A JP4537118B2 JP 4537118 B2 JP4537118 B2 JP 4537118B2 JP 2004151703 A JP2004151703 A JP 2004151703A JP 2004151703 A JP2004151703 A JP 2004151703A JP 4537118 B2 JP4537118 B2 JP 4537118B2
Authority
JP
Japan
Prior art keywords
arsenic
waste liquid
containing waste
copper
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004151703A
Other languages
Japanese (ja)
Other versions
JP2005329355A (en
Inventor
千秋 小坂
沙織 徳増
Original Assignee
ナガオ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナガオ株式会社 filed Critical ナガオ株式会社
Priority to JP2004151703A priority Critical patent/JP4537118B2/en
Publication of JP2005329355A publication Critical patent/JP2005329355A/en
Application granted granted Critical
Publication of JP4537118B2 publication Critical patent/JP4537118B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)

Description

本発明は、希薄な砒素含有廃液から砒素(As(3)及びAs(5))を不溶化し除去する方法に関する。   The present invention relates to a method for insolubilizing and removing arsenic (As (3) and As (5)) from a dilute arsenic-containing waste liquid.

砒素を含有する廃液としては鉱山、銅精錬所などから排出される鉱石起因のものがよく知られているが、昨今は無機薬品や電子部品の製造工場からの廃液、酸性温泉水などの地下水などにも砒素が含まれることがある。
砒素含有廃液の処理方法としては、まず一般的なものとして共沈法があげられ、塩素と鉄(III)塩で処理する方法などがある(非特許文献1、特許文献1参照)。また、硫化処理する方法も行われている(特許文献2、3参照)が、硫化処理は廃液が強酸性で、かつ、含有砒素濃度が高い場合(数千〜数万mg/L)に砒素を低濃度化するのには有効であるが、低濃度の砒素含有廃液からの砒素の除去は困難であり、1,000mg/L以下の濃度の砒素に対しては、硫化物を生成する反応が極めて遅く、処理に長時間を有する(例えば数日間以上)という問題もあった。
希薄な砒素含有廃液の処理については、上記の共沈法のほか、多量の鉄塩と消石灰を併用する水酸化物法を用いることができるが、わずかな砒素を処理するために多量のスラッジが発生すること、このスラッジがリサイクル不能であることなどの問題がある。
As effluents containing arsenic, those derived from ores discharged from mines, copper smelters, etc. are well known, but recently, waste liquids from factories of inorganic chemicals and electronic parts, groundwater such as acidic hot spring water, etc. May also contain arsenic.
As a method for treating an arsenic-containing waste liquid, first, a common method is a coprecipitation method, which includes a method of treating with chlorine and iron (III) salt (see Non-Patent Document 1 and Patent Document 1). In addition, a sulfidation method is also performed (see Patent Documents 2 and 3). However, the sulfidation treatment is arsenic when the waste liquid is strongly acidic and the concentration of arsenic is high (several thousands to several tens of thousands mg / L). Is effective in reducing the concentration of arsenic, but it is difficult to remove arsenic from low-concentration arsenic-containing waste liquid. For arsenic having a concentration of 1,000 mg / L or less, a reaction that generates sulfides However, there is also a problem that the processing is extremely slow and takes a long time (for example, several days or more).
For the treatment of dilute arsenic-containing waste liquid, in addition to the coprecipitation method described above, a hydroxide method using a large amount of iron salt and slaked lime can be used, but a large amount of sludge is required to treat a small amount of arsenic. There are problems such as the generation of this sludge and the inability to recycle the sludge.

特開平7−289805号公報JP-A-7-289805 特開昭59−8621号公報JP 59-8621 A 特開平11−47764号公報JP 11-47764 A 通商産業省環境立地局監修「公害防止の技術と法規 水質編」(五訂)、(社)産業環境管理協会、4版 平成10年4月30日、p.258〜260Supervised by the Ministry of International Trade and Industry, Environmental Location Bureau, “Pollution Prevention Technology and Regulations, Water Quality” (5th edition), Japan Industrial Environment Management Association, 4th edition, April 30, 1998, p. 258-260

本発明は、希薄な砒素含有廃液から砒素を短時間で硫化物として除去でき、かつ、発生するスラッジがリサイクル容易な処理方法を提供することを目的とする。   An object of the present invention is to provide a treatment method capable of removing arsenic as a sulfide from a dilute arsenic-containing waste liquid in a short time and in which generated sludge can be easily recycled.

本発明者らは、上記課題に鑑み鋭意研究した結果、特に酸性の廃液に銅イオンが存在すると、上記硫化処理法において問題であった希薄廃液における砒素との反応速度が速くなり、発生するスラッジも砒素を含む硫化銅という比較的リサイクルしやすいものとなることを見出し、この知見に基づき本発明をなすに到った。
すなわち本発明は以下の構成を有する。
(1)pH2以下の希薄砒素含有廃液に銅イオンの存在下硫化剤を添加し、生成した硫化砒素を硫化銅とともに固液分離して除去することを特徴とする希薄砒素含有廃液の処理方法。
(2)前記硫化剤の添加量に対する前記希薄砒素含有廃液のORP値のグラフに変曲点が現れた後、ORP値をマイナス側で保持するように前記硫化剤を添加することを特徴とする(1)に記載の希薄砒素含有廃液の処理方法。
(3)前記希薄砒素含有廃液に銅イオンが1,000mg/L以上存在することを特徴とする(1)又は(2)に記載の希薄砒素含有廃液の処理方法。
(4)反応温度を30℃以上とすることを特徴とする(1)〜(3)のいずれか1項に記載の希薄砒素含有廃液の処理方法。
なお、本発明における「希薄砒素含有廃液」は、希薄な砒酸及び/又は亜砒酸(As(3)、As(5))を含有する酸性廃液であり、具体的には例えば砒素濃度(As(3)とAs(5)の合計)が1,000mg/L以下の廃液をいう。本発明の処理方法においては前記砒素濃度が10mg/L以下の廃液の処理も可能である。
As a result of intensive studies in view of the above problems, the present inventors have found that, particularly when copper ions are present in an acidic waste liquid, the reaction rate with arsenic in the dilute waste liquid, which has been a problem in the sulfiding treatment method, is increased, and sludge is generated. Also, copper sulfide containing arsenic was found to be relatively easy to recycle, and the present invention was made based on this finding.
That is, the present invention has the following configuration.
(1) A method for treating a dilute arsenic-containing waste liquid, comprising adding a sulfurizing agent to dilute arsenic-containing waste liquid having a pH of 2 or less in the presence of copper ions and separating the produced arsenic sulfide together with copper sulfide by solid-liquid separation.
(2) After the inflection point appears in the graph of the ORP value of the dilute arsenic-containing waste liquid with respect to the addition amount of the sulfurizing agent, the sulfurizing agent is added so as to maintain the ORP value on the minus side. The processing method of the diluted arsenic containing waste liquid as described in (1).
(3) The method for treating a diluted arsenic-containing waste liquid according to (1) or (2), wherein copper ions are present in the diluted arsenic-containing waste liquid in an amount of 1,000 mg / L or more.
(4) The method for treating a diluted arsenic-containing waste liquid according to any one of (1) to (3), wherein the reaction temperature is 30 ° C. or higher.
The “dilute arsenic-containing waste liquid” in the present invention is an acidic waste liquid containing dilute arsenic acid and / or arsenous acid (As (3), As (5)). Specifically, for example, arsenic concentration (As (3 ) And As (5) is a waste liquid having 1,000 mg / L or less. In the treatment method of the present invention, waste liquid having an arsenic concentration of 10 mg / L or less can be treated.

本発明は、銅イオンを共存させて硫化剤を添加することにより、希薄な砒素含有廃液から砒素を短時間で硫化物として除去でき、かつ、発生するスラッジが砒素を含んだ硫化銅であるため、従来法で発生するスラッジよりもはるかにリサイクルしやすいという優れた効果を奏する。   In the present invention, by adding a sulfiding agent in the presence of copper ions, arsenic can be removed as sulfide from a dilute arsenic-containing waste liquid in a short time, and the generated sludge is copper sulfide containing arsenic. It has an excellent effect that it is much easier to recycle than the sludge generated by the conventional method.

本発明の処理対象となる希薄砒素含有廃液は、pH2以下であることが好ましく、pHが2を越えているときには無機酸(例えば硫酸、硝酸、塩酸など)でpHを調整することが好ましい。強酸性(pH1以下)であることがさらに好ましい。   The dilute arsenic-containing waste liquid to be treated according to the present invention preferably has a pH of 2 or less. When the pH exceeds 2, the pH is preferably adjusted with an inorganic acid (for example, sulfuric acid, nitric acid, hydrochloric acid, etc.). More preferably, it is strongly acidic (pH 1 or less).

本発明では、銅イオンの存在下で、上記酸性の希薄砒素含有廃液を十分撹拌しながら液中に硫化剤を添加する。このときの反応は、以下の反応式で表すことができる。   In the present invention, a sulfurizing agent is added to the acid dilute arsenic-containing waste liquid in the presence of copper ions while sufficiently stirring the acid dilute arsenic-containing waste liquid. The reaction at this time can be expressed by the following reaction formula.

<3価の砒素について>
2H3AsO3+6H++3S2- → 6H2O+As23 (1)
<5価の砒素について>
3AsO4+5H++S2- → As3++4H2O+S (2)
2As3++3S2- → As23 (3)
<銅について>
Cu2++S2- → CuS (4)
(S2-:硫化剤)
<About trivalent arsenic>
2H 3 AsO 3 + 6H + + 3S 2− → 6H 2 O + As 2 S 3 (1)
<About pentavalent arsenic>
H 3 AsO 4 + 5H + + S 2− → As 3+ + 4H 2 O + S (2)
2As 3+ + 3S 2- → As 2 S 3 (3)
<About copper>
Cu 2+ + S 2- → CuS (4)
(S 2- : Sulfiding agent)

硫化剤の添加時に銅イオンが存在することで、砒素と銅の硫化物が同時に生成し、これにより硫化砒素の生成速度が速くなり、さらに後の固液分離が容易になる。
添加する銅イオンは、溶解性塩の結晶状態、溶液のいずれで添加してもよく、溶液の場合には、硫化物の生成を妨害する物質を含有していないものであれば、強酸性の濃厚な銅含有廃液なども利用できる。使用できる銅含有廃液としては、例えばプリント基板製造で生じる塩化第二銅廃液、エッチング更新液(硫酸銅含有)などがあげられ、EDTAやアンモニアなどの錯体を作る妨害物質の含有されていない廃液が好ましい。
銅イオンの添加量は、廃液の砒素濃度に関わらず500mg/L以上が好ましく、1,000mg/Lがさらに好ましく、1,000〜2,000mg/Lが特に好ましい。500mg/L以上とすることでスラッジの凝集性が良好となり、1,000mg/L以上とすることで十分な砒素除去率が得られるが、2,000mg/Lを越えると砒素除去率はほぼ飽和し、かつ、硫化剤の添加量が増え経済的でなく生成する硫化銅スラッジの量が多くなるからである。
The presence of copper ions at the time of the addition of the sulfiding agent produces arsenic and copper sulfide at the same time, thereby increasing the generation rate of arsenic sulfide and facilitating subsequent solid-liquid separation.
The copper ion to be added may be added either in the crystalline state of a soluble salt or in a solution. In the case of a solution, if it does not contain a substance that interferes with the formation of sulfide, it is strongly acidic. Rich copper-containing waste liquid can also be used. Examples of the copper-containing waste liquid that can be used include cupric chloride waste liquid generated in printed circuit board manufacturing, etching renewal liquid (containing copper sulfate), etc., and waste liquid that does not contain interfering substances that form complexes such as EDTA and ammonia. preferable.
The amount of copper ion added is preferably 500 mg / L or more, more preferably 1,000 mg / L, and particularly preferably 1,000 to 2,000 mg / L regardless of the arsenic concentration in the waste liquid. When it is 500 mg / L or more, the cohesiveness of sludge becomes good, and when it is 1,000 mg / L or more, a sufficient arsenic removal rate is obtained, but when it exceeds 2,000 mg / L, the arsenic removal rate is almost saturated. In addition, the amount of the sulfurizing agent added is increased and the amount of copper sulfide sludge produced is not economical and increases.

本発明における硫化剤とは、処理対象廃液中でS2-を供給するものをいう。
本発明で用いることのできる硫化剤としては、アルカリ金属水硫化物、アルカリ金属硫化物、アルカリ金属多硫化物、例えば水硫化ソーダ、硫化ソーダ、多硫化ソーダからなる群から選ばれる少なくとも1種、及び/又はアルカリ土類金属水硫化物並びにアルカリ土類金属硫化物から選ばれる少なくとも1種、の水溶液があげられる。
このような硫化剤の添加量は、廃液のORP値を測定して制御することが好ましい。上記のように処理対象廃液は酸性で重金属イオンを含んでいるため、ORP値の初期値はプラスであるが、そこへ硫化剤(還元物質)を添加することでORP値はマイナス側へ移行する。廃液中に重金属イオンが存在する場合には硫化剤が消費されるため、ORP値は再度プラス側へ戻る。含有する重金属イオンが硫化物になり、添加した硫化剤が重金属イオンに消費されなくなった状態で、ORP値は完全にマイナス側に移行し、戻らなくなる。銅イオンを含有する希薄砒素含有廃液のpHを一定に保ちながら硫化剤を添加する場合、このORP値の変動を硫化剤の添加量に対してグラフにすると、図1に示すように、ORP値がマイナス側に移行するときに明瞭な変曲点が現れる。「変曲点」とは、グラフの傾きが大きく変化し、プラスからマイナスへ急激に変動した点とする。この変曲点が現れた後、ORP値がマイナス側の制御点(図1に矢印で示した点)で保持されるように硫化剤を添加すれば、銅及び砒素を廃液中に残すことなく必要な硫化剤を添加することができる。ORP値によって硫化剤の添加量を管理することで、銅イオンの添加量を変えた場合でも簡便に、添加した銅イオンが完全に処理される量の硫化剤を添加できる。
なお、硫化剤の添加量は、廃液中に含まれる砒素及び銅イオンを硫化物にするために必要な硫黄当量以上であるが、当量より過剰に添加する(制御ORP値をより低く設定する)と反応速度が速くなり好ましい。
The sulfiding agent in the present invention refers to one that supplies S 2− in the waste liquid to be treated.
As the sulfiding agent that can be used in the present invention, at least one selected from the group consisting of alkali metal hydrosulfides, alkali metal sulfides, alkali metal polysulfides such as sodium hydrosulfide, sodium sulfide, and sodium polysulfide, And / or at least one aqueous solution selected from alkaline earth metal hydrosulfides and alkaline earth metal sulfides.
The amount of the sulfurizing agent added is preferably controlled by measuring the ORP value of the waste liquid. Since the waste liquid to be treated is acidic and contains heavy metal ions as described above, the initial value of the ORP value is positive, but the ORP value shifts to the negative side by adding a sulfiding agent (reducing substance) thereto. . When heavy metal ions are present in the waste liquid, since the sulfurizing agent is consumed, the ORP value returns to the plus side again. In the state where the contained heavy metal ions become sulfides and the added sulfiding agent is no longer consumed by heavy metal ions, the ORP value completely shifts to the negative side and does not return. When adding the sulfiding agent while keeping the pH of the dilute arsenic-containing waste liquid containing copper ions constant, when the fluctuation of the ORP value is plotted against the addition amount of the sulfiding agent, as shown in FIG. A clear inflection point appears when moves to the minus side. The “inflection point” is a point at which the slope of the graph changes greatly and changes rapidly from plus to minus. After this inflection point appears, if a sulfurizing agent is added so that the ORP value is maintained at the negative control point (the point indicated by the arrow in FIG. 1), copper and arsenic are not left in the waste liquid. Necessary sulfurizing agents can be added. By managing the addition amount of the sulfiding agent according to the ORP value, even when the addition amount of the copper ions is changed, an amount of the sulfiding agent that can completely treat the added copper ions can be easily added.
In addition, although the addition amount of a sulfurizing agent is more than the sulfur equivalent required in order to make arsenic and copper ion contained in a waste liquid into a sulfide, it adds more than an equivalent (a control ORP value is set lower). And the reaction rate is increased.

本発明における反応温度は30℃以上が好ましい。温度が高いほど反応速度は速くなり、結果的に単一時間内での砒素の除去効率が向上するが、沸騰させないためには30〜90℃とするのがさらに好ましい。管理しやすさ、コスト及び安全性を考慮すると、50〜60℃が特に好ましい。
本発明における反応時間は、ORP値をマイナス側の制御点(図1で矢印で示した点)に保持する時間であり、例えば反応温度を約50℃とした場合は10分間以上で十分効果がある。常温(約10〜15℃)とした場合は30分以上とするのが好ましい。また、好ましくは60〜120分以上として、反応時間が長いほうが砒素の除去効率が高くなる。
このような反応の後、スラッジが凝集するので、ろ過などの通常行われる固液分離処理を行えば廃液から砒素及び添加した銅イオンが回収、除去される。本発明の処理方法で回収されるスラッジは、組成に違いがあるものの、銅精錬に用いられる硫化銅鉱と同じように砒素を含むものであるため、従来法で発生していたスラッジに比べはるかにリサイクルしやすい。
The reaction temperature in the present invention is preferably 30 ° C. or higher. The higher the temperature, the faster the reaction rate. As a result, the removal efficiency of arsenic within a single time is improved. However, in order not to boil, the temperature is more preferably 30 to 90 ° C. Considering ease of management, cost, and safety, 50 to 60 ° C. is particularly preferable.
The reaction time in the present invention is the time for maintaining the ORP value at the negative control point (the point indicated by the arrow in FIG. 1). For example, when the reaction temperature is about 50 ° C., 10 minutes or more is sufficiently effective. is there. When it is normal temperature (about 10-15 degreeC), it is preferable to set it as 30 minutes or more. Further, preferably, the arsenic removal efficiency is higher when the reaction time is longer than 60 to 120 minutes.
Since sludge aggregates after such a reaction, arsenic and added copper ions are recovered and removed from the waste liquid by performing a solid-liquid separation process such as filtration. Although the sludge recovered by the treatment method of the present invention has a difference in composition, it contains arsenic in the same way as copper sulfide ore used for copper refining. Cheap.

なお、硫化剤を添加する工程の前に、還元剤を添加して5価の砒素を3価にしておくと、砒素の除去率がさらに向上し、好ましい。ここで用いる還元剤とは、処理対象廃液中で5価の砒素を3価にしうるものをいい、例えば硫化剤としてあげた水硫化ソーダなども用いることができる。
砒素の排水基準値は水質汚濁防止法に定める基準値では、砒素及びその化合物として0.1mg/L以下であるが、本発明における、より除去率の高い条件では、排水基準値以下まで砒素を除去することが可能である。
Note that it is preferable to add a reducing agent to make trivalent pentavalent arsenic trivalent before the step of adding a sulfurizing agent because the arsenic removal rate is further improved. The reducing agent used here refers to a material capable of making pentavalent arsenic trivalent in the waste liquid to be treated. For example, sodium hydrosulfide mentioned as a sulfiding agent can also be used.
The arsenic drainage standard value is 0.1 mg / L or less as the arsenic and its compounds in the standard value stipulated in the Water Pollution Control Law. It is possible to remove.

以下に実施例及び比較例に基づき本発明についてさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。
なお、特に断らない限り、「砒素濃度」は3価及び5価の砒素の合計の濃度であり、「砒素除去率」は3価及び5価の砒素を合わせて除去された割合をいう。また、「銅イオン」は2価の銅イオンである。
(実施例1〜5及び比較例1)
砒素濃度10mg/L(As(5)のみ含有)の廃液100ml をpH2に調整し、このpHを保持しつつそれぞれの廃液を十分撹拌しながら、表1に示す量の銅イオンを添加したもの(実施例1〜3)と銅イオンを添加しないもの(比較例1)に10重量%の水硫化ソーダ水溶液を液中で添加した。銅イオンは溶解性塩(硫酸銅五水和物)にて添加した。ただし、実施例3については銅イオンを硫酸銅五水和物を脱イオン水に溶解した水溶液として添加した。このときの水硫化ソーダの添加量は処理液の示すORP 値により制御し、具体的には添加量はORP値のグラフの変曲点以下である−110mV での量とした。反応温度は室温(10〜15℃)で、反応時間は10 分間とした。反応後、ろ紙(5 種C 二枚)で固液分離し、ろ液中の残存砒素濃度をICP発光分光分析法にて測定した。実施条件と結果を表1及び図2に示す。
表1から明らかなように、銅イオンを加えない場合には約15%であった砒素除去率が、銅イオンを1,000mg/L添加すると約58%にまで向上し、約3倍の砒素が除去されている。銅イオン添加量の少ない実施例2、3は、実施例1ほど除去率は高くないが、銅イオンを使用しない比較例1よりは高い除去率を示した。なお、銅イオン添加量100mg/Lの実施例3ではスラッジの凝集性が若干劣るので500mg/L以上の添加が好ましい。また2,000mg/L以上の添加では、凝集性は向上したが、図2よりわかるとおり砒素除去率がほとんど飽和しており、1,000〜2,000mg/Lがさらに好ましいことがわかった。
Hereinafter, the present invention will be described in more detail based on examples and comparative examples, but the present invention is not limited to the following examples.
Unless otherwise specified, “arsenic concentration” is the total concentration of trivalent and pentavalent arsenic, and “arsenic removal rate” refers to the proportion of trivalent and pentavalent arsenic removed together. Further, “copper ions” are divalent copper ions.
(Examples 1-5 and Comparative Example 1)
100ml of waste liquid with arsenic concentration of 10mg / L (containing only As (5)) was adjusted to pH 2, and while maintaining this pH, each waste liquid was sufficiently stirred and added with the amount of copper ions shown in Table 1 ( A 10% by weight sodium hydrosulfide aqueous solution was added in the solution to Examples 1 to 3) and to the case where no copper ions were added (Comparative Example 1). Copper ions were added as a soluble salt (copper sulfate pentahydrate). However, in Example 3, copper ions were added as an aqueous solution in which copper sulfate pentahydrate was dissolved in deionized water. The amount of sodium hydrosulfide added at this time was controlled by the ORP value indicated by the treatment liquid, and specifically, the amount added was −110 mV, which is below the inflection point of the ORP value graph. The reaction temperature was room temperature (10-15 ° C.), and the reaction time was 10 minutes. After the reaction, solid-liquid separation was performed with a filter paper (two pieces of 5 types C), and the residual arsenic concentration in the filtrate was measured by ICP emission spectrometry. Implementation conditions and results are shown in Table 1 and FIG.
As apparent from Table 1, the arsenic removal rate, which was about 15% when copper ions were not added, improved to about 58% when 1,000 mg / L of copper ions were added, and about three times as much arsenic. Has been removed. Examples 2 and 3 with a small amount of copper ion addition were not as high in removal rate as Example 1, but showed a higher removal rate than Comparative Example 1 in which no copper ions were used. In Example 3 where the amount of copper ion added is 100 mg / L, the cohesiveness of sludge is slightly inferior, so the addition of 500 mg / L or more is preferable. Addition of 2,000 mg / L or more improved the cohesiveness, but as shown in FIG. 2, the arsenic removal rate was almost saturated, and it was found that 1,000 to 2,000 mg / L is more preferable.

Figure 0004537118
Figure 0004537118

(実施例6〜9)
反応時間を表2に示すように変化させた以外は実施例1と同様にして砒素の除去処理を行った。結果を表2及び図3に示した。比較のため実施例1の条件及び結果を併せて示した。
90分以内での反応において、反応時間が長いほうが除去率が向上しており、60分間の反応によれば除去率が80%を越えた。
(Examples 6 to 9)
Arsenic removal treatment was performed in the same manner as in Example 1 except that the reaction time was changed as shown in Table 2. The results are shown in Table 2 and FIG. For comparison, the conditions and results of Example 1 are also shown.
In the reaction within 90 minutes, the longer the reaction time, the better the removal rate. According to the reaction for 60 minutes, the removal rate exceeded 80%.

Figure 0004537118
Figure 0004537118

(実施例10)
反応温度を50〜60℃に加温して行った以外は実施例1と全く同様にして砒素除去処理を行ったところ、砒素除去率は100%となった。この結果と実施例1の結果(砒素除去率58.3%)を対比すると、反応温度を50〜60℃に上げることで、単一時間内での砒素除去率が向上することがわかる。
(Example 10)
Arsenic removal treatment was performed in exactly the same manner as in Example 1 except that the reaction temperature was raised to 50 to 60 ° C., and the arsenic removal rate was 100%. Comparing this result with the result of Example 1 (arsenic removal rate: 58.3%), it can be seen that increasing the reaction temperature to 50 to 60 ° C. improves the arsenic removal rate within a single time.

(実施例11)
図4のグラフに示すように原廃液の砒素濃度(1mg/L、5mg/L、10mg/Lもしくは100mg/L)(As(5)のみ含有)及び銅イオン添加量を変えた以外は実施例1と全く同様にして砒素除去処理を行った。除去率は図4の縦軸に示すとおりであった。
図4からわかるとおり、原廃液の砒素濃度が1〜100mg/Lの場合、砒素濃度に関わらず、銅イオンの添加量が1,000mg/Lまでは銅イオン添加量に従い砒素除去率が向上し、1,000mg/Lを越えると砒素除去率はあまり変化していない。よって、銅イオンの添加量は原廃液の砒素濃度に関わらず1,000mg/L以上とするのが好ましいことがわかる。
(Example 11)
Example except that the arsenic concentration (1 mg / L, 5 mg / L, 10 mg / L or 100 mg / L) (containing only As (5)) and copper ion addition amount of the raw waste liquid as shown in the graph of FIG. Arsenic removal treatment was performed in exactly the same manner as in 1. The removal rate was as shown on the vertical axis of FIG.
As can be seen from FIG. 4, when the arsenic concentration in the raw waste liquid is 1 to 100 mg / L, the arsenic removal rate is improved according to the copper ion addition amount up to 1,000 mg / L regardless of the arsenic concentration. If it exceeds 1,000 mg / L, the arsenic removal rate does not change much. Therefore, it can be seen that the amount of copper ion added is preferably 1,000 mg / L or more regardless of the arsenic concentration of the raw waste liquid.

なお、いずれの実施例においても銅イオンは硫化物として除去され、残存銅濃度は0.01mg/L未満であった。ただし、実施例3は銅イオン濃度が低いことから凝集性が低く、固液分離が困難だったため、若干量がろ紙を抜け銅が検出された。   In all examples, copper ions were removed as sulfides, and the residual copper concentration was less than 0.01 mg / L. However, in Example 3, since the copper ion concentration was low, the cohesiveness was low, and solid-liquid separation was difficult.

(実施例12〜14)
砒素(As(5))濃度を10mg/Lとし、銅イオン濃度が約1,000mg/Lとなるように、エッチング処理時に発生する実廃液である硫酸銅廃液を添加し、処理液を十分撹拌しながら室温で水硫化ソーダを添加した。
調製した廃液の組成を下記表3に示した。このときの処理条件及び処理結果を表4に示す。また、実施例12〜14の結果に基づく反応時間−除去率のグラフを図5に示した。さらに、図5に示した結果とともに銅イオン無添加の場合、及び銅イオンを1,000mg/L添加した場合の結果を示したグラフが図6である。
表4の結果から明らかなように、濃厚銅含有の実廃液を用いた場合でも高い除去率で砒素が除去されている。なお、本実施例では実廃液に亜鉛を約10mg/L含有していたため、処理後8.5mg/L程度の亜鉛が残存した。
(Examples 12 to 14)
Add copper sulfate waste liquid, which is the actual waste liquid generated during the etching process, so that the arsenic (As (5)) concentration is 10 mg / L and the copper ion concentration is about 1,000 mg / L, and the treatment liquid is thoroughly stirred. While at room temperature, sodium hydrosulfide was added.
The composition of the prepared waste liquid is shown in Table 3 below. Table 4 shows the processing conditions and processing results at this time. Moreover, the graph of reaction time-removal rate based on the result of Examples 12-14 was shown in FIG. Furthermore, FIG. 6 is a graph showing the results when the copper ions are not added together with the results shown in FIG. 5 and when the copper ions are added at 1,000 mg / L.
As is clear from the results in Table 4, arsenic is removed at a high removal rate even when the actual waste liquid containing concentrated copper is used. In this example, since the actual waste liquid contained about 10 mg / L of zinc, about 8.5 mg / L of zinc remained after the treatment.

Figure 0004537118
Figure 0004537118

Figure 0004537118
Figure 0004537118

硫化剤の添加量と廃液のORP値の関係を示すグラフであり、矢印は制御点を示す。It is a graph which shows the relationship between the addition amount of a sulfurizing agent, and the ORP value of waste liquid, and an arrow shows a control point. 銅イオンの添加量と砒素除去率の関係を示すグラフである(実施例1〜5、比較例1)It is a graph which shows the relationship between the addition amount of copper ion, and an arsenic removal rate (Examples 1-5, comparative example 1). 反応時間と砒素除去率の関係を示すグラフである(実施例1、6〜9)。It is a graph which shows the relationship between reaction time and an arsenic removal rate (Example 1, 6-9). 原廃液の砒素濃度を変化させたときの銅イオン添加量と砒素除去率の関係を示すグラフである(実施例11)。It is a graph which shows the relationship between the copper ion addition amount when changing the arsenic density | concentration of a raw | natural waste liquid, and an arsenic removal rate (Example 11). 銅イオン源として実廃液を用いた場合の反応時間と砒素除去率の関係を示すグラフである(実施例12〜14)。It is a graph which shows the relationship between the reaction time at the time of using an actual waste liquid as a copper ion source, and an arsenic removal rate (Examples 12-14). 銅イオン無添加の場合、1,000mg/Lで添加した場合、及び実廃液使用の場合について、反応時間と砒素除去率の関係を示すグラフである(実施例12〜14)。It is a graph which shows the relationship between reaction time and the arsenic removal rate about the case where it adds at 1,000 mg / L when copper ion is not added, and the case where an actual waste liquid is used (Examples 12-14).

Claims (4)

pH2以下の希薄砒素含有廃液に銅イオンの存在下硫化剤を添加し、生成した硫化砒素を硫化銅とともに固液分離して除去することを特徴とする希薄砒素含有廃液の処理方法。 A method for treating a dilute arsenic-containing waste liquid, comprising adding a sulfurizing agent to dilute arsenic-containing waste liquid having a pH of 2 or less in the presence of copper ions, and separating the produced arsenic sulfide together with copper sulfide by solid-liquid separation. 前記硫化剤の添加量に対する前記希薄砒素含有廃液のORP値のグラフに変曲点が現れた後、ORP値をマイナス側で保持するように前記硫化剤を添加することを特徴とする請求項1に記載の希薄砒素含有廃液の処理方法。   2. The sulfurizing agent is added so that the ORP value is maintained on the minus side after an inflection point appears in a graph of the ORP value of the diluted arsenic-containing waste liquid with respect to the addition amount of the sulfurizing agent. A method for treating a dilute arsenic-containing waste liquid described in 1. 前記希薄砒素含有廃液に銅イオンが1,000mg/L以上存在することを特徴とする請求項1又は2に記載の希薄砒素含有廃液の処理方法。   3. The method for treating a diluted arsenic-containing waste liquid according to claim 1, wherein copper ions are present in the diluted arsenic-containing waste liquid in an amount of 1,000 mg / L or more. 反応温度を30℃以上とすることを特徴とする請求項1〜3のいずれか1項に記載の希薄砒素含有廃液の処理方法。   The method for treating a diluted arsenic-containing waste liquid according to any one of claims 1 to 3, wherein the reaction temperature is 30 ° C or higher.
JP2004151703A 2004-05-21 2004-05-21 Treatment method for dilute arsenic-containing waste liquid Expired - Fee Related JP4537118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004151703A JP4537118B2 (en) 2004-05-21 2004-05-21 Treatment method for dilute arsenic-containing waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004151703A JP4537118B2 (en) 2004-05-21 2004-05-21 Treatment method for dilute arsenic-containing waste liquid

Publications (2)

Publication Number Publication Date
JP2005329355A JP2005329355A (en) 2005-12-02
JP4537118B2 true JP4537118B2 (en) 2010-09-01

Family

ID=35484348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004151703A Expired - Fee Related JP4537118B2 (en) 2004-05-21 2004-05-21 Treatment method for dilute arsenic-containing waste liquid

Country Status (1)

Country Link
JP (1) JP4537118B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008043872A (en) * 2006-08-15 2008-02-28 Sumitomo Metal Mining Co Ltd Method for judging end point of formation reaction of precipitated sulfide

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52138358A (en) * 1975-09-11 1977-11-18 Sakai Chemical Industry Co Removing method of heavy metals from waste water
JPS598621A (en) * 1982-07-03 1984-01-17 Nippon Mining Co Ltd Method for precipitating arsenic sulfide precipitate from waste liquor containing arsenic
JP2000129482A (en) * 1998-10-28 2000-05-09 Nippon Mining & Metals Co Ltd Device and method for cleaning copper electrolytic solution

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52138358A (en) * 1975-09-11 1977-11-18 Sakai Chemical Industry Co Removing method of heavy metals from waste water
JPS598621A (en) * 1982-07-03 1984-01-17 Nippon Mining Co Ltd Method for precipitating arsenic sulfide precipitate from waste liquor containing arsenic
JP2000129482A (en) * 1998-10-28 2000-05-09 Nippon Mining & Metals Co Ltd Device and method for cleaning copper electrolytic solution

Also Published As

Publication number Publication date
JP2005329355A (en) 2005-12-02

Similar Documents

Publication Publication Date Title
CA2792400C (en) Method for wastewater treatment for wastewater containing aluminium, magnesium, and manganese
JP5382269B1 (en) Method for separating rhenium and arsenic, and method for purifying rhenium
JP6986226B2 (en) Wastewater treatment method
EA023142B1 (en) Method for producing a poorly soluble calcium-arsenic compound
JP7372691B2 (en) How to obtain scorodite with a high arsenic content from an acidic solution with a high sulfuric acid content
JP4920932B2 (en) Treatment method for wastewater containing heavy metals
CN102730880A (en) Method for treating arsenic-containing wastewater with high acidity from zinc smelting
JP7015002B2 (en) How to treat heavy metal-containing wastewater
JP4529969B2 (en) Method for removing selenium from selenate-containing liquid
JP4537118B2 (en) Treatment method for dilute arsenic-containing waste liquid
US11479490B2 (en) Method of treating wastewater
JPH0124556B2 (en)
JP4670004B2 (en) Method for treating selenium-containing water
JP7275905B2 (en) Method for treating dust containing heavy metals
JP5848119B2 (en) Treatment method for fluorine-containing wastewater
JP4505264B2 (en) Treatment method for waste liquid containing molybdenum
JP4407236B2 (en) Treatment method of wastewater containing antimony
JP6623288B2 (en) Method and apparatus for treating wastewater containing hydrogen sulfide
JP6555182B2 (en) Wastewater treatment method
JP6790561B2 (en) Heavy metal recovery method
JP4604203B2 (en) Treatment method for waste liquid containing heavy metals
JPH11267667A (en) Treatment of antimony-containing waste water
JP2005279321A (en) Treatment method of permanganic acid-containing waste fluid
JPH1147765A (en) Removal of arsenic (v) ion
CN107001083A (en) The processing method of the water containing chromium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070517

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100617

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4537118

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140625

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees