JP5179242B2 - Waste water treatment method and waste water treatment equipment - Google Patents

Waste water treatment method and waste water treatment equipment Download PDF

Info

Publication number
JP5179242B2
JP5179242B2 JP2008105951A JP2008105951A JP5179242B2 JP 5179242 B2 JP5179242 B2 JP 5179242B2 JP 2008105951 A JP2008105951 A JP 2008105951A JP 2008105951 A JP2008105951 A JP 2008105951A JP 5179242 B2 JP5179242 B2 JP 5179242B2
Authority
JP
Japan
Prior art keywords
water
treated
tank
insoluble
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008105951A
Other languages
Japanese (ja)
Other versions
JP2009254959A (en
Inventor
直樹 長
俊彦 安部
大輔 島倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Environment Co Ltd
Original Assignee
Sumitomo Heavy Industries Environment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Environment Co Ltd filed Critical Sumitomo Heavy Industries Environment Co Ltd
Priority to JP2008105951A priority Critical patent/JP5179242B2/en
Publication of JP2009254959A publication Critical patent/JP2009254959A/en
Application granted granted Critical
Publication of JP5179242B2 publication Critical patent/JP5179242B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

本発明は、シアン化合物を含有する排水を処理するための排水処理方法及び排水処理装置に関する。   The present invention relates to a wastewater treatment method and a wastewater treatment apparatus for treating wastewater containing a cyanide compound.

シアン化合物を含有する被処理水の処理方法として、次のような2段階の処理を行う方法が知られている。まず、第1段階の処理として、被処理水のpHを10以上に維持し、これに酸化剤として、例えば次亜塩素酸ナトリウムを添加することによって、下記式(1)に示す反応を生じさせ、シアン化物をシアン酸塩に変換する。次に、第2段階の処理として、第1段階の処理を経た被処理水のpHを7〜8程度に調整し、これに再度、次亜塩素酸ナトリウムを添加することによって、下記式(2)に示す反応を生じさせ、シアン酸塩を無害な窒素に分解する。
NaCN+NaOCl→NaCNO+NaCl…(1)
2NaCNO+3NaOCl+HO→N+3NaCl+2NaHCO…(2)
As a treatment method of water to be treated containing a cyanide compound, a method of performing the following two-stage treatment is known. First, as the first stage treatment, the pH of the water to be treated is maintained at 10 or more, and by adding, for example, sodium hypochlorite as an oxidizing agent, the reaction represented by the following formula (1) is caused. , Convert cyanide to cyanate. Next, as the second stage treatment, the pH of the water to be treated that has undergone the first stage treatment is adjusted to about 7 to 8, and sodium hypochlorite is again added thereto, whereby the following formula (2 ) To decompose cyanate into harmless nitrogen.
NaCN + NaOCl → NaCNO + NaCl (1)
2NaCNO + 3NaOCl + H 2 O → N 2 + 3NaCl + 2NaHCO 3 (2)

しかし、上記のような2段階の処理方法にあっては、排水が鉄イオンなどを含有するものであると、鉄イオンとシアン化物イオンとが安定な鉄シアノ錯体を形成するため、シアン化合物を十分に分解処理できないという問題があった。そこで、上述の2段階の処理を行った後、更に以下の処理を施すことによってシアン化合物を除去することが知られている。すなわち、まず、上述の2段階の処理を経た被処理水中に残存する次亜塩素酸ナトリウムを分解するため、被処理水に還元剤(例えば、亜硫酸ナトリウム)を添加する。次いで、被処理水に第一鉄塩(例えば、硫酸第一鉄)を添加することによって、下記式(3)、(4)に示す反応を生じさせ、可溶性のシアノ錯体を不溶性の鉄シアノ錯体に変換し、この鉄シアノ錯体(固体)を含有する処理水を固液分離するといった方法がとられる。
2[Fe(CN)3−+3Fe2+→Fe[Fe(CN)…(3)
[Fe(CN)4−+2Fe2+→Fe[Fe(CN)]…(4)
However, in the two-stage treatment method as described above, if the wastewater contains iron ions or the like, iron ions and cyanide ions form a stable iron cyano complex. There was a problem that it could not be sufficiently decomposed. Therefore, it is known that the cyan compound is removed by performing the following process after the above two-stage process. That is, first, a reducing agent (for example, sodium sulfite) is added to the water to be treated in order to decompose the sodium hypochlorite remaining in the water to be treated that has undergone the above-described two-stage treatment. Next, by adding a ferrous salt (for example, ferrous sulfate) to the water to be treated, the reactions shown in the following formulas (3) and (4) are caused, and the soluble cyano complex is converted into an insoluble iron cyano complex. And the treated water containing this iron cyano complex (solid) is subjected to solid-liquid separation.
2 [Fe (CN) 6 ] 3- + 3Fe 2+ → Fe 3 [Fe (CN) 6 ] 2 (3)
[Fe (CN) 6 ] 4- + 2Fe 2+ → Fe 2 [Fe (CN) 6 ] (4)

上述の2段階の処理と、その後の第一鉄塩による処理とを組み合わせた処理方法の一例として、例えば、下記特許文献1に記載された方法が知られている。特許文献1には、シアン化物イオンを含有する排水をアルカリ性にして酸化剤を作用させた後、過剰の酸化剤を無効化し、次いで、この排水に第一鉄塩を粉末状態で添加することが記載されている(特許文献1の「特許請求の範囲」を参照)。
特開昭57−127487号公報
As an example of a treatment method that combines the above-described two-stage treatment and the subsequent treatment with ferrous salt, for example, a method described in Patent Document 1 below is known. In Patent Document 1, after the wastewater containing cyanide ions is made alkaline and an oxidizing agent is allowed to act, excess oxidizing agent is invalidated, and then ferrous salt is added to the wastewater in a powder state. (See “Claims” of Patent Document 1).
JP 57-127487 A

しかしながら、上記特許文献1に記載の処理方法では、排水中のシアン化合物を十分高度に除去することができず、未だ改善の余地があった。   However, the treatment method described in Patent Document 1 cannot sufficiently remove the cyanide in the wastewater, and there is still room for improvement.

本発明は、このような実情に鑑みてなされたものであり、排水に含まれるシアン化合物を効率的且つ十分高度に低減できる排水処理方法及び排水処理装置を提供することを目的とする。   This invention is made | formed in view of such a situation, and it aims at providing the wastewater treatment method and wastewater treatment apparatus which can reduce the cyanide compound contained in wastewater efficiently and sufficiently highly.

本発明に係る排水処理方法は、シアン化合物を含有する被処理水と酸化剤とを混合し、シアン化物イオンを無害化するシアン化物イオン無害化工程と、酸化剤が残存する被処理水と還元剤とを混合し、当該酸化剤を分解する酸化剤分解工程と、この酸化剤分解工程を経た被処理水にpH調整用の酸を添加する酸添加工程と、この酸添加工程を経て得られた酸性の被処理水と第一鉄塩とを混合し、被処理水に含まれるシアノ錯体から不溶性の鉄シアノ錯体を得る不溶錯体形成工程と、この不溶錯体形成工程によって得られた被処理水にpH調整用のアルカリを添加し、鉄シアノ錯体を凝集させる凝集処理工程とを備える。 The waste water treatment method according to the present invention includes a cyanide ion detoxification step for mixing cyanide-containing water to be treated and an oxidant to detoxify cyanide ions, and the water to be treated and a reduction in which the oxidant remains. An oxidant decomposition step of mixing an agent and decomposing the oxidant, an acid addition step of adding an acid for adjusting pH to the water to be treated after the oxidant decomposition step, and an acid addition step. Insoluble complex forming step of obtaining an insoluble iron cyano complex from the cyano complex contained in the water to be treated, and the water to be treated obtained by this insoluble complex forming step A coagulation treatment step of adding an alkali for pH adjustment to agglomerate the iron cyano complex.

本発明者らは、上記式(3)、(4)に示す反応によって不溶性の鉄シアノ錯体を生成した後、この鉄シアノ錯体を含む被処理水をアルカリ性にすると、被処理水に含まれる金属イオン(例えば、Feイオン)とともに鉄シアノ錯体が凝集体(フロック)を形成することを見出した。このため、凝集体を含む固形分を分離除去することで効率的にシアン化合物を十分に取り除くことができる。このように本発明に係る排水処理方法によれば、被処理水に含まれるシアン化合物を効率的且つ十分高度に低減できる。   When the present inventors made an insoluble iron cyano complex by the reactions shown in the above formulas (3) and (4) and then made the water to be treated containing this iron cyano complex alkaline, the metal contained in the water to be treated It has been found that iron cyano complexes together with ions (eg Fe ions) form aggregates (floc). For this reason, the cyanide compound can be sufficiently removed efficiently by separating and removing the solid content including the aggregates. Thus, according to the waste water treatment method according to the present invention, cyanide compounds contained in the water to be treated can be efficiently and sufficiently reduced.

本発明の排水処理方法は、凝集処理工程を経た被処理水に高分子凝集剤を添加する凝集剤添加工程を更に備えることが好ましい。かかる構成を採用することにより、鉄シアノ錯体をより十分に凝集させることができ、シアン化合物をより一層高度に除去することができる。   It is preferable that the waste water treatment method of the present invention further includes a flocculant addition step of adding a polymer flocculant to the water to be treated that has undergone the aggregation treatment step. By adopting such a configuration, the iron cyano complex can be more sufficiently aggregated, and the cyanide compound can be removed to a higher degree.

また、不溶錯体形成工程において、酸性の被処理水と第一鉄塩の水溶液とを混合することが好ましい。第一鉄塩の水溶液は、粉末状の第一鉄塩と比較し、取り扱い性に優れるため、特殊な添加装置を使用しなくても、被処理水に対して第一鉄塩を安定的に供給できる。その結果、被処理水中のシアン化合物を十分安定的に除去することができる。   In the insoluble complex forming step, it is preferable to mix acidic water to be treated and an aqueous solution of ferrous salt. The aqueous ferrous salt solution is superior in handleability compared to the powdered ferrous salt, so the ferrous salt can be stably added to the water to be treated without using a special addition device. Can supply. As a result, the cyanide compound in the for-treatment water can be removed sufficiently stably.

また、本発明に係る排水処理装置は、シアン化合物を含有する被処理水と酸化剤とを混合し、シアン化物イオンを無害化するシアン化物イオン無害化槽と、酸化剤が残存する被処理水と還元剤とを混合し、当該酸化剤を分解する酸化剤分解槽と、酸化剤分解槽からの被処理水にpH調整用の酸を添加する酸添加手段と、pH調整用の酸が添加された酸性の被処理水と第一鉄塩とを混合し、当該被処理水に含まれるシアノ錯体から不溶性の鉄シアノ錯体を得る不溶錯体形成槽と、この不溶錯体形成槽からの被処理水にpH調整用のアルカリを添加するアルカリ添加手段と、アルカリが添加された被処理水を収容し、鉄シアノ錯体を凝集させる凝集処理槽とを備える。   Further, the waste water treatment apparatus according to the present invention comprises a cyanide ion detoxification tank for mixing cyanide-containing water to be treated and an oxidant to detoxify cyanide ions, and water to be treated in which the oxidant remains. And an oxidizing agent decomposition tank for decomposing the oxidizing agent, an acid addition means for adding an acid for pH adjustment to the water to be treated from the oxidizing agent decomposition tank, and an acid for pH adjustment The insoluble complex formation tank which mixes the acidic treated water and ferrous salt and obtains an insoluble iron cyano complex from the cyano complex contained in the treated water, and the treated water from the insoluble complex formation tank And an alkali addition means for adding an alkali for pH adjustment, and a coagulation treatment tank for containing the water to be treated to which the alkali is added and aggregating the iron cyano complex.

本発明に係る排水処理装置は、上記の通り、不溶性の鉄シアノ錯体を含む被処理水にアルカリを添加する手段及び鉄シアノ錯体を凝集させる凝集処理槽を備えるものであるため、上述の本発明に係る排水処理方法を好適に実施することができ、被処理水に含まれるシアン化合物を効率的且つ十分高度に低減できる。   As described above, the waste water treatment apparatus according to the present invention comprises means for adding alkali to the water to be treated containing an insoluble iron cyano complex and an aggregating treatment tank for aggregating the iron cyano complex. The wastewater treatment method according to the present invention can be suitably carried out, and cyanide compounds contained in the water to be treated can be efficiently and sufficiently reduced.

本発明によれば、排水に含まれるシアン化合物を効率的且つ十分高度に低減できる。   According to the present invention, cyanide contained in waste water can be efficiently and sufficiently reduced.

以下、図面を参照しつつ本発明の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本実施形態に係る排水処理装置を示す概略構成図である。同図に示す排水処理装置10は、シアン化合物を含有する被処理水が配管L1を通じて供給される第1酸化反応槽1から、配管L8を通じて処理水を排出する沈殿槽7に至るまで、直列に接続された計7個の処理槽を備える。具体的には、排水処理装置10は、第1酸化反応槽1、第2酸化反応槽2、酸化剤分解槽3、pH調整槽4、不溶錯体形成槽5、凝集処理槽6、沈殿槽7及びこれらの処理槽に接続された配管L1〜L8を備える。本実施形態においては、シアン化物イオン無害化槽は、第1酸化反応槽1及び第2酸化反応槽2の2槽によって構成される。   FIG. 1 is a schematic configuration diagram illustrating a wastewater treatment apparatus according to the present embodiment. The waste water treatment apparatus 10 shown in the figure is connected in series from the first oxidation reaction tank 1 to which treated water containing cyanide is supplied through the pipe L1 to the precipitation tank 7 for discharging the treated water through the pipe L8. A total of seven treatment tanks connected are provided. Specifically, the wastewater treatment apparatus 10 includes a first oxidation reaction tank 1, a second oxidation reaction tank 2, an oxidant decomposition tank 3, a pH adjustment tank 4, an insoluble complex formation tank 5, an aggregation treatment tank 6, and a precipitation tank 7. And piping L1-L8 connected to these processing tanks is provided. In this embodiment, the cyanide ion detoxification tank is composed of two tanks, a first oxidation reaction tank 1 and a second oxidation reaction tank 2.

排水処理装置10が備える処理槽は、図1に示すように、収容する被処理水に対して各種の薬剤を添加するための薬剤添加手段をそれぞれ備える。具体的には、第1酸化反応槽1は、被処理水に酸化剤及びpH調整用のアルカリを添加する手段を有する。第2酸化反応槽2は、被処理水に酸化剤及びpH調整用の酸を添加する手段を有する。酸化剤分解槽3は、被処理水に還元剤を添加する手段を有する。pH調整槽4は、被処理水にpH調整用の酸を添加する手段を有する。不溶錯体形成槽5は、被処理水に第一鉄塩を添加する手段を有する。凝集処理槽6は、被処理水にpH調整用のアルカリを添加する手段を有する。凝集処理槽6と沈殿槽7と連結する配管L7は、この中を流れる被処理水に高分子凝集剤を添加する手段を有し、沈殿槽7に高分子凝集剤が添加された被処理水が導入されるようになっている。これらの処理槽は、添加された薬剤と被処理水とを十分に混合するための攪拌機(図示せず)を有する。   As shown in FIG. 1, the treatment tank provided in the waste water treatment apparatus 10 is provided with chemical addition means for adding various chemicals to the water to be treated. Specifically, the 1st oxidation reaction tank 1 has a means to add an oxidizing agent and the alkali for pH adjustment to to-be-processed water. The second oxidation reaction tank 2 has means for adding an oxidizing agent and an acid for pH adjustment to the water to be treated. The oxidant decomposition tank 3 has means for adding a reducing agent to the water to be treated. The pH adjustment tank 4 has means for adding an acid for pH adjustment to the water to be treated. The insoluble complex formation tank 5 has means for adding a ferrous salt to the water to be treated. The aggregation treatment tank 6 has means for adding an alkali for pH adjustment to the water to be treated. The pipe L7 connected to the coagulation treatment tank 6 and the precipitation tank 7 has means for adding a polymer flocculant to the water to be treated flowing therein, and the water to be treated with the polymer flocculant added to the precipitation tank 7 Has been introduced. These treatment tanks have a stirrer (not shown) for sufficiently mixing the added chemical and the water to be treated.

次に、排水処理装置10によるシアン含有排水の処理方法について説明する。   Next, a method for treating cyan-containing wastewater by the wastewater treatment apparatus 10 will be described.

まず、シアン化物イオン及びシアノ錯体を含有する排水(被処理水)を、配管L1を通じて第1酸化反応槽1に導入する。第1酸化反応槽1に収容した被処理水に含まれるシアン化物をシアン酸に変換するため、酸化剤として次亜塩素酸ナトリウムを添加する(上記反応式(1)を参照)。このとき、第1酸化反応槽1内の被処理水のpHを10程度とするため、pH調整用のアルカリとして、水酸化ナトリウム(苛性ソーダ)、水酸化カルシウム(消石灰)などを添加する。酸化還元電位(ORP)は350mV程度以上とすることが好ましい。なお、酸化剤として添加する次亜塩素酸ナトリウムによって被処理液のpHを十分に調整できる場合は、必ずしもpH調整用のアルカリは添加しなくてもよい。   First, waste water (treated water) containing cyanide ions and a cyano complex is introduced into the first oxidation reaction tank 1 through the pipe L1. In order to convert cyanide contained in the water to be treated contained in the first oxidation reaction tank 1 into cyanic acid, sodium hypochlorite is added as an oxidizing agent (see the above reaction formula (1)). At this time, sodium hydroxide (caustic soda), calcium hydroxide (slaked lime), or the like is added as an alkali for pH adjustment so that the pH of the water to be treated in the first oxidation reaction tank 1 is about 10. The oxidation-reduction potential (ORP) is preferably about 350 mV or more. In addition, when the pH of a to-be-processed liquid can fully be adjusted with sodium hypochlorite added as an oxidizing agent, the alkali for pH adjustment does not necessarily need to be added.

次に、シアン酸を含有する被処理水を、配管L2を通じて第2酸化反応槽2に導入する。第2酸化反応槽2では、pH調整用の酸とともに、次亜塩素酸ナトリウムを再度添加し、シアン酸を無害な窒素に分解する(上記反応式(2)を参照)。このとき、第2酸化反応槽2内の被処理水のpHは7〜8程度とすることが好ましく、酸化還元電位(ORP)は650mV程度以上とすることが好ましい。pH調整用の酸として、硫酸、塩酸などを使用することができる。   Next, water to be treated containing cyanic acid is introduced into the second oxidation reaction tank 2 through the pipe L2. In the second oxidation reaction tank 2, sodium hypochlorite is added again together with the pH adjusting acid to decompose cyanic acid into harmless nitrogen (see reaction formula (2) above). At this time, the pH of the water to be treated in the second oxidation reaction tank 2 is preferably about 7 to 8, and the oxidation-reduction potential (ORP) is preferably about 650 mV or more. As the acid for adjusting the pH, sulfuric acid, hydrochloric acid and the like can be used.

上記の第1及び第2酸化反応槽1,2における酸化剤による酸化処理によって被処理水に含まれるシアン化物イオンを十分に無害化することができる(シアン化物イオン無害化工程)。ここでは、酸化剤として次亜塩素酸ナトリウムを使用する場合を例示したが、過酸化水素、さらし粉などを使用してもよい。   The cyanide ions contained in the water to be treated can be sufficiently detoxified by the oxidation treatment with the oxidizing agent in the first and second oxidation reaction tanks 1 and 2 (cyanide ion detoxification step). Here, the case where sodium hypochlorite is used as the oxidizing agent is exemplified, but hydrogen peroxide, bleached powder, or the like may be used.

シアン化物イオンが十分に除去された被処理水を、配管L3を通じて酸化剤分解槽3に導入する。酸化剤分解槽3では、被処理水に還元剤(例えば、亜硫酸ナトリウム)を添加することで、被処理水中に残留する次亜塩素酸ナトリウム(酸化剤)を分解する(酸化剤分解工程)。このとき、酸化剤分解槽3内の被処理水のpHは7〜8程度であればよい。   The treated water from which cyanide ions have been sufficiently removed is introduced into the oxidant decomposition tank 3 through the pipe L3. In the oxidant decomposition tank 3, by adding a reducing agent (for example, sodium sulfite) to the water to be treated, sodium hypochlorite (oxidant) remaining in the water to be treated is decomposed (oxidant decomposition step). At this time, pH of the to-be-processed water in the oxidizing agent decomposition tank 3 should just be about 7-8.

シアン化物イオンは十分に除去されたものの、シアノ錯体が残存する被処理水を配管L4を通じてpH調整槽4に導入する。pH調整槽4では、pH調整用の酸(例えば、硫酸、塩酸など)を添加し、槽内の被処理水のpHを弱酸性に調整する(酸添加工程)。具体的には、槽内の被処理水のpHを3〜7の範囲内とすることが好ましく、5〜6の範囲内とすることがより好ましい。pH調整槽4で被処理水を弱酸性にすることで、後述する不溶錯体形成槽5において、被処理水に対して第一鉄塩を添加した際、鉄の水酸化物の生成が抑制され、鉄シアノ錯体を効率よく生成させることができる。   Although the cyanide ions have been sufficiently removed, the water to be treated in which the cyano complex remains is introduced into the pH adjustment tank 4 through the pipe L4. In the pH adjustment tank 4, an acid for adjusting pH (for example, sulfuric acid, hydrochloric acid, etc.) is added to adjust the pH of the water to be treated in the tank to be weakly acidic (acid addition step). Specifically, the pH of the water to be treated in the tank is preferably in the range of 3 to 7, and more preferably in the range of 5 to 6. By making the water to be treated weakly acidic in the pH adjustment tank 4, the formation of iron hydroxide is suppressed when ferrous salt is added to the water to be treated in the insoluble complex forming tank 5 described later. An iron cyano complex can be efficiently generated.

pHを弱酸性に調整後の被処理水を不溶錯体形成槽5に導入する。不溶錯体形成槽5では、被処理水に第一鉄塩(例えば、硫酸第一鉄)を添加し、上記反応式(3),(4)に表される反応を生じさせ、可溶性のシアノ錯体を不溶性の鉄シアノ錯体に変換する(不溶錯体形成工程)。このとき、不溶錯体形成槽5内の被処理水のpHは5〜6程度とすることが好ましい。また、被処理水と混合する第一鉄塩は水溶液であることが好ましい。第一鉄塩の水溶液は、粉末状の第一鉄塩と比較し、取り扱い性に優れるため、特殊な添加装置を使用しなくても、被処理水に対して安定的に供給できるという利点がある。   The water to be treated after adjusting the pH to be weakly acidic is introduced into the insoluble complex forming tank 5. In the insoluble complex forming tank 5, a ferrous salt (for example, ferrous sulfate) is added to the water to be treated to cause the reactions represented by the above reaction formulas (3) and (4) to occur, and a soluble cyano complex Is converted into an insoluble iron cyano complex (insoluble complex forming step). At this time, it is preferable that pH of the to-be-processed water in the insoluble complex formation tank 5 shall be about 5-6. Moreover, it is preferable that the ferrous salt mixed with to-be-treated water is an aqueous solution. Compared with powdered ferrous salt, the ferrous salt aqueous solution is superior in handleability, and therefore has the advantage that it can be stably supplied to the water to be treated without using a special addition device. is there.

不溶錯体形成槽5において、被処理水に含まれるシアノ錯体を不溶性の鉄シアノ錯体に変換する反応を十分に行った後、不溶錯体形成槽5から配管L6を通じて被処理水を凝集処理槽6に導入する。凝集処理槽6では、槽内の被処理水にpH調整用のアルカリ(例えば、水酸化ナトリウム)を添加し、被処理水に含まれる金属イオンの存在下、被処理水のpHを弱アルカリ性に調整することによって、上記金属イオンともに鉄シアノ錯体を凝集させる(凝集処理工程)。このとき、凝集処理槽6内の被処理水のpHは8〜10とすることが好ましく、9〜10とすることがより好ましい。   In the insoluble complex forming tank 5, after sufficiently performing a reaction for converting the cyano complex contained in the treated water into an insoluble iron cyano complex, the treated water is transferred from the insoluble complex forming tank 5 to the aggregating treatment tank 6 through the pipe L6. Introduce. In the agglomeration treatment tank 6, an alkali for pH adjustment (for example, sodium hydroxide) is added to the water to be treated in the tank, and the pH of the water to be treated is made weakly alkaline in the presence of metal ions contained in the water to be treated. By adjusting, the iron cyano complex is aggregated together with the metal ions (aggregation treatment step). At this time, the pH of the water to be treated in the flocculation treatment tank 6 is preferably 8 to 10, and more preferably 9 to 10.

ここで、鉄シアノ錯体の凝集体の形成に寄与する金属イオンとしては、鉄イオン、銅イオン、亜鉛イオンなどが挙げられる。この金属イオンは、被処理水が元来含むものであってもよく、上記の処理過程において添加された薬剤に由来するものであってもよい。例えば、不溶錯体形成工程において、第一鉄塩を過剰に添加しておけば、別途金属イオンを添加しなくても、被処理水中に残存する鉄イオンとともに鉄シアノ錯体を凝集させることができる。   Here, examples of metal ions that contribute to the formation of iron cyano complex aggregates include iron ions, copper ions, and zinc ions. This metal ion may be originally contained in the water to be treated or may be derived from a chemical added in the above treatment process. For example, if an excessive amount of ferrous salt is added in the insoluble complex formation step, the iron cyano complex can be aggregated together with the iron ions remaining in the water to be treated without adding a separate metal ion.

その後、被処理水を凝集処理槽6から配管L7を通じて沈殿槽7に移送する過程で被処理水に高分子凝集剤を添加する(凝集剤添加工程)。高分子凝集剤が添加された被処理水を沈殿槽7に導入し、槽内で凝集沈殿又は高速凝集沈殿を行う。沈殿槽7において固液分離がなされ、固形分が十分に低減された上澄み水を配管L8から排出し、他方、固形分は沈殿槽7の底部に接続された配管L9から排出する。   Thereafter, a polymer flocculant is added to the water to be treated in the process of transferring the water to be treated from the flocculation treatment tank 6 to the precipitation tank 7 through the pipe L7 (flocculating agent addition step). The water to be treated to which the polymer flocculant has been added is introduced into the sedimentation tank 7, and the aggregation precipitation or the high-speed aggregation precipitation is performed in the tank. In the precipitation tank 7, the solid water is separated and the supernatant water whose solid content is sufficiently reduced is discharged from the pipe L 8, while the solid content is discharged from the pipe L 9 connected to the bottom of the precipitation tank 7.

上記実施形態によれば、凝集処理槽6において、pH調整用のアルカリを添加して被処理水のpHを8〜10程度にすることで、被処理水に含まれる鉄シアノ錯体の凝集体(フロック)を形成することができる。このため、凝集体を含む固形分を分離除去することで効率的に鉄シアノ錯体を十分に取り除くことができる。このように本実施形態よれば、被処理水に含まれるシアン化合物を効率的且つ十分高度に低減できる。   According to the above-described embodiment, in the flocculation treatment tank 6, the pH of the water to be treated is adjusted to about 8 to 10 by adding an alkali for pH adjustment. Floc) can be formed. For this reason, the iron cyano complex can be sufficiently removed efficiently by separating and removing the solid content including the aggregates. Thus, according to this embodiment, the cyanide compound contained in the water to be treated can be efficiently and sufficiently reduced.

以上、本発明の実施形態について説明したが、本発明の上記実施形態に限定されるものではない。例えば、上記実施形態においては、処理槽にpH調整用のアルカリや酸、あるいは酸化剤や還元剤を添加する場合を例示したが、配管内を流れる被処理水にこれらの薬剤を添加し、その後、所定の処理槽において被処理水と薬剤との混合を行なってもよい。   As mentioned above, although embodiment of this invention was described, it is not limited to the said embodiment of this invention. For example, in the above-described embodiment, the case where an alkali or acid for pH adjustment, or an oxidizing agent or a reducing agent is added to the treatment tank is exemplified, but these chemicals are added to the water to be treated flowing in the pipe, and then The water to be treated and the chemical may be mixed in a predetermined treatment tank.

また、上記実施形態では、配管L7を流れる被処理水に高分子凝集剤を添加する場合を例示したが、高分子凝集剤と被処理水とを混合するための槽を別途設けてもよい。なお、凝集処理槽6におけるpH調整によって十分に凝集体を形成できる場合は、必ずしも高分子凝集剤を被処理水に添加しなくてもよい。ただし、凝集体を強固なものとするとともに凝集体の沈降性を向上させるなどの点から、高分子凝集剤の添加を行うことが好ましい。   Moreover, although the case where a polymer flocculant was added to the to-be-processed water which flows through the piping L7 was illustrated in the said embodiment, you may provide the tank for mixing a polymer flocculant and to-be-processed water separately. In addition, when the aggregate can be sufficiently formed by adjusting the pH in the aggregation treatment tank 6, the polymer flocculant need not necessarily be added to the water to be treated. However, it is preferable to add a polymer flocculant from the viewpoints of strengthening the aggregate and improving the sedimentation property of the aggregate.

更に、凝集処理槽6からの被処理水を固液分離する手段として沈殿槽7を例示したが、被処理水に含まれる凝集体を分離できる装置であれば、これに限定されることはなく、沈殿槽7の代わりにフィルタプレス機などを用いてもよい。   Further, the precipitation tank 7 is exemplified as a means for solid-liquid separation of the water to be treated from the agglomeration treatment tank 6, but the apparatus is not limited to this as long as the apparatus can separate the agglomerates contained in the water to be treated. Instead of the sedimentation tank 7, a filter press machine or the like may be used.

以下、実施例を挙げて本発明について更に詳しく説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in more detail, this invention is not limited to these Examples.

シアン化物イオン及びシアノ錯体を含有する被処理水(全シアンの含有量:395mg/リットル)を以下のようにして処理した。すなわち、まず、被処理水1リットルに対して次亜塩素酸ナトリウムを水溶液の状態で2000mg添加した。その後、被処理水に水酸化ナトリウムを添加し、被処理水のpHを約10.5に調整した。この被処理水を10分間攪拌することによって、被処理水に含まれるシアン化物をシアン酸に変換した。   Water to be treated containing cyanide ions and a cyano complex (total cyan content: 395 mg / liter) was treated as follows. That is, first, 2000 mg of sodium hypochlorite was added as an aqueous solution to 1 liter of water to be treated. Thereafter, sodium hydroxide was added to the water to be treated to adjust the pH of the water to be treated to about 10.5. By stirring this water to be treated for 10 minutes, cyanide contained in the water to be treated was converted to cyanic acid.

次いで、シアン酸及びシアノ錯体を含有する被処理水1リットルに対し、再度次亜塩素酸ナトリウムを水溶液の状態で2000mg添加した。その後、被処理水に硫酸を添加し、被処理水のpHを約7.5に調整した。この被処理水を30分間攪拌することによって、被処理水に含まれるシアン酸を無害化する処理を行った(シアン化物イオン無害化工程)。   Next, 2000 mg of sodium hypochlorite was added again in an aqueous solution to 1 liter of water to be treated containing cyanic acid and a cyano complex. Thereafter, sulfuric acid was added to the water to be treated to adjust the pH of the water to be treated to about 7.5. The water to be treated was stirred for 30 minutes to detoxify cyanic acid contained in the water to be treated (cyanide ion detoxification step).

シアン化物イオンを無害化した後、被処理水に亜硫酸ナトリウム(還元剤)を添加し、過剰の次亜塩素酸ナトリウムを分解除去した(酸化剤分解工程)。次亜塩素酸ナトリウムを除去した後、被処理水に硫酸を添加し、被処理水のpHを約5.5に調整した(酸添加工程)。この被処理水1リットルに対して硫酸第一鉄を水溶液の状態で500mg添加し、30分間攪拌して不溶性の鉄シアノ錯体を形成させた(不溶錯体形成工程)。なお、硫酸第一鉄の水溶液として、水100質量部に対して硫酸第一鉄10質量部を溶解させたものを使用した。   After detoxifying cyanide ions, sodium sulfite (reducing agent) was added to the water to be treated to decompose and remove excess sodium hypochlorite (oxidant decomposition step). After removing sodium hypochlorite, sulfuric acid was added to the treated water to adjust the pH of the treated water to about 5.5 (acid addition step). 500 mg of ferrous sulfate was added as an aqueous solution to 1 liter of the water to be treated, and stirred for 30 minutes to form an insoluble iron cyano complex (insoluble complex forming step). In addition, what dissolved 10 mass parts of ferrous sulfate with respect to 100 mass parts of water was used as aqueous solution of ferrous sulfate.

その後、被処理水に水酸化ナトリウムを添加し、被処理水のpHを約9.0に調整することで、鉄シアノ錯体を凝集させた(凝集処理工程)。この被処理水に高分子凝集剤を更に添加した後(凝集剤添加工程)、被処理水を固液分離して最終的に処理水を得た。   Thereafter, iron hydroxide was aggregated by adding sodium hydroxide to the water to be treated and adjusting the pH of the water to be treated to about 9.0 (aggregation treatment step). After further adding a polymer flocculant to the water to be treated (flocculating agent addition step), the water to be treated was subjected to solid-liquid separation to finally obtain treated water.

本実施例の排水処理の各過程の条件及び最終的に得られた処理水の残留シアン濃度を表1に示す。表1に示すように、全シアン濃度395mg/リットルの排水を本実施例の条件で処理することにより、残留シアン濃度を0.05mg/リットル以下にまで低減できることが確認された。本実施例におけるシアン濃度の測定は、JIS K0102に準じ、吸光光度計を用いて行った。

Figure 0005179242
Table 1 shows the conditions of each process of the waste water treatment of this example and the residual cyan concentration of the finally obtained treated water. As shown in Table 1, it was confirmed that the residual cyan concentration could be reduced to 0.05 mg / liter or less by treating waste water having a total cyan concentration of 395 mg / liter under the conditions of this example. The cyan density in this example was measured using an absorptiometer according to JIS K0102.
Figure 0005179242

本発明に係る排水処理装置の好適な実施形態を示す概略構成図である。It is a schematic structure figure showing a suitable embodiment of a waste water treatment equipment concerning the present invention.

符号の説明Explanation of symbols

1…第1酸化反応槽(シアン化物イオン無害化槽)、2…第2酸化反応槽(シアン化物イオン無害化槽)、3…酸化剤分解槽、4…pH調整槽、5…不溶錯体形成槽、6…凝集処理槽、7…沈殿槽、10…排水処理装置。 DESCRIPTION OF SYMBOLS 1 ... 1st oxidation reaction tank (cyanide ion detoxification tank), 2 ... 2nd oxidation reaction tank (cyanide ion detoxification tank), 3 ... Oxidant decomposition tank, 4 ... pH adjustment tank, 5 ... Insoluble complex formation Tank, 6 ... Coagulation treatment tank, 7 ... Precipitation tank, 10 ... Waste water treatment equipment.

Claims (3)

シアン化合物を含有する被処理水と酸化剤とを混合し、シアン化物イオンを無害化するシアン化物イオン無害化工程と、前記酸化剤が残存する被処理水と還元剤とを混合し、当該酸化剤を分解する酸化剤分解工程と、前記酸化剤分解工程を経た被処理水にpH調整用の酸を添加する酸添加工程と、前記酸添加工程を経て得られた酸性の被処理水と第一鉄塩とを混合し、被処理水に含まれるシアノ錯体から不溶性の鉄シアノ錯体を得る不溶錯体形成工程と、前記不溶錯体形成工程によって得られた被処理水にpH調整用のアルカリを添加し、前記鉄シアノ錯体を凝集させる凝集処理工程と、前記凝集処理工程を経た被処理水に高分子凝集剤を添加する凝集剤添加工程と、前記凝集剤添加工程を経た被処理水から前記鉄シアノ錯体の凝集体を含む固形分を分離除去することを特徴とする排水処理方法。 Cyanide ion detoxification step of detoxifying cyanide ions by mixing water to be treated containing cyanide and oxidant, and water to be treated and reducing agent in which the oxidant remains mixed. An oxidizing agent decomposing step for decomposing the agent, an acid adding step for adding an acid for adjusting pH to the water to be treated after the oxidizing agent decomposing step, an acidic to-be-treated water obtained through the acid adding step, An insoluble complex forming step of mixing an iron salt and obtaining an insoluble iron cyano complex from a cyano complex contained in the water to be treated, and adding pH adjusting alkali to the water to be treated obtained by the insoluble complex forming step And aggregating treatment step for aggregating the iron cyano complex, a flocculant addition step for adding a polymer flocculant to the water to be treated after the aggregation treatment step, and the iron to be treated from the water to be treated after the flocculant addition step. Includes aggregates of cyano complexes Waste water treatment method characterized by separating and removing solid content. 前記不溶錯体形成工程において、前記酸性の被処理水と第一鉄塩の水溶液とを混合することを特徴とする、請求項1に記載の排水処理方法。The wastewater treatment method according to claim 1, wherein, in the insoluble complex formation step, the acidic water to be treated and an aqueous solution of a ferrous salt are mixed. シアン化合物を含有する被処理水と酸化剤とを混合し、シアン化物イオンを無害化するシアン化物イオン無害化槽と、前記酸化剤が残存する被処理水と還元剤とを混合し、当該酸化剤を分解する酸化剤分解槽と、前記酸化剤分解槽からの被処理水にpH調整用の酸を添加する酸添加手段と、前記pH調整用の酸が添加された酸性の被処理水と第一鉄塩とを混合し、当該被処理水に含まれるシアノ錯体から不溶性の鉄シアノ錯体を得る不溶錯体形成槽と、前記不溶錯体形成工程において、前記酸性の被処理水と第一鉄塩の水溶液とを混合する手段と前記不溶錯体形成槽によって得られた被処理水にpH調整用のアルカリを添加するアルカリ添加手段と、Mixing the water to be treated containing cyanide and the oxidizing agent, detoxifying the cyanide ion detoxifying tank, and mixing the water to be treated and the reducing agent in which the oxidizing agent remains, An oxidizing agent decomposition tank for decomposing the agent, an acid addition means for adding an acid for adjusting pH to the water to be treated from the oxidizing agent decomposition tank, and an acidic to-be-treated water to which the acid for adjusting pH is added An insoluble complex formation tank that mixes ferrous salt and obtains an insoluble iron cyano complex from a cyano complex contained in the treated water; and in the insoluble complex forming step, the acidic treated water and ferrous salt A means for mixing an aqueous solution of the above and an alkali addition means for adding an alkali for pH adjustment to the water to be treated obtained by the insoluble complex forming tank;
前記アルカリが添加された被処理水を収容し、前記鉄シアノ錯体を凝集させる凝集処理槽と、 A coagulation treatment tank for containing the water to be treated to which the alkali is added and aggregating the iron cyano complex;
前記凝集処理工程を経た被処理水に高分子凝集剤を添加する手段と、Means for adding a polymer flocculant to the water to be treated after the aggregation treatment step;
前記凝集剤添加工程を経た被処理水から前記鉄シアノ錯体の凝集体を含む固形分を分離除去する手段とを備えることを特徴とする排水処理装置。And a means for separating and removing solids containing the aggregates of the iron cyano complex from the water to be treated that has undergone the flocculant addition step.


JP2008105951A 2008-04-15 2008-04-15 Waste water treatment method and waste water treatment equipment Active JP5179242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008105951A JP5179242B2 (en) 2008-04-15 2008-04-15 Waste water treatment method and waste water treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008105951A JP5179242B2 (en) 2008-04-15 2008-04-15 Waste water treatment method and waste water treatment equipment

Publications (2)

Publication Number Publication Date
JP2009254959A JP2009254959A (en) 2009-11-05
JP5179242B2 true JP5179242B2 (en) 2013-04-10

Family

ID=41383100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008105951A Active JP5179242B2 (en) 2008-04-15 2008-04-15 Waste water treatment method and waste water treatment equipment

Country Status (1)

Country Link
JP (1) JP5179242B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105540917A (en) * 2015-12-15 2016-05-04 武汉钢铁(集团)公司 Decyanation method of blast furnace gas washing water

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118808A1 (en) * 2010-03-26 2011-09-29 千代田化工建設株式会社 Treatment method of wastewater containing persistent substances
JP2012157798A (en) * 2011-01-31 2012-08-23 Jfe Steel Corp Method for treating cyanide-containing wastewater
JP5822859B2 (en) * 2012-06-28 2015-11-25 三重中央開発株式会社 Method for treating waste liquid containing water-soluble iron cyano complex
KR102119234B1 (en) * 2015-05-22 2020-06-04 카타야마 케미칼, 인코포레이티드 How to treat cyanide-containing wastewater
JP6145682B2 (en) * 2015-10-29 2017-06-14 株式会社片山化学工業研究所 Method of treating complex cyanide-containing wastewater and treating agent used therefor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5549191A (en) * 1978-10-03 1980-04-09 Hitachi Plant Eng & Constr Co Ltd Purifying treatment method of waste water
JPS6018475B2 (en) * 1981-01-28 1985-05-10 富士通株式会社 Treatment method for cyanide-containing plating solution wastewater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105540917A (en) * 2015-12-15 2016-05-04 武汉钢铁(集团)公司 Decyanation method of blast furnace gas washing water

Also Published As

Publication number Publication date
JP2009254959A (en) 2009-11-05

Similar Documents

Publication Publication Date Title
JP5179242B2 (en) Waste water treatment method and waste water treatment equipment
JP7204140B2 (en) Method for treating wastewater containing cyanide
KR100778754B1 (en) Method for chemical treatment of wastewater comprising cyanide compounds
JP7398021B2 (en) Treatment method and treatment equipment for cyanide-containing water
US10577265B2 (en) Method for treating electroless copper plating wastewater
JP4382556B2 (en) Treatment method of wastewater containing cyanide
WO2017073177A1 (en) Method for treating cyanide complex-containing wastewater and treating agent for use therein
JP4863694B2 (en) Method and apparatus for fluorinating chelating agent-containing water
JP2013056328A (en) Treatment method and treatment apparatus of cyanide-containing water
JP2007069068A (en) Heavy metal-containing waste water treatment method
WO2017154243A1 (en) Agent for treating cyanide-containing wastewater and method for treating cyanide-containing wastewater using same
JP2021053620A (en) Treatment method for cyanide-containing wastewater
TWI605021B (en) Method and treatment device for water containing biologically difficult to decompose organic matter
JP2020025955A (en) Treatment method of cyan-containing water
JP6578561B2 (en) Cyanogen-containing wastewater treatment agent and cyanide-containing wastewater treatment method using the same
JP7358202B2 (en) Wastewater treatment method and wastewater treatment system
JP5990717B1 (en) Cyanogen-containing wastewater treatment agent and cyanide-containing wastewater treatment method using the same
KR101280550B1 (en) Iron-based flocculant and method for iron-based flocculant
JP4656379B2 (en) Method of treating wastewater containing iron cyanide
JP3802264B2 (en) Detoxification method for soil contaminated with arsenic
JP3788782B2 (en) Method for removing and recovering copper by treating waste water and chemicals used therefor
JP4035347B2 (en) Method for treating selenate-containing wastewater and treating agent used therefor
JP2005313112A (en) Method for treating waste water containing cyanogen
JP7454096B1 (en) Wastewater treatment method
JP7448129B2 (en) How to treat wastewater

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20100712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110922

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121001

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130109

R150 Certificate of patent or registration of utility model

Ref document number: 5179242

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350