WO2017154243A1 - Agent for treating cyanide-containing wastewater and method for treating cyanide-containing wastewater using same - Google Patents

Agent for treating cyanide-containing wastewater and method for treating cyanide-containing wastewater using same Download PDF

Info

Publication number
WO2017154243A1
WO2017154243A1 PCT/JP2016/076992 JP2016076992W WO2017154243A1 WO 2017154243 A1 WO2017154243 A1 WO 2017154243A1 JP 2016076992 W JP2016076992 W JP 2016076992W WO 2017154243 A1 WO2017154243 A1 WO 2017154243A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyanide
wastewater
containing wastewater
cyan
aqueous solution
Prior art date
Application number
PCT/JP2016/076992
Other languages
French (fr)
Japanese (ja)
Inventor
村上 誠
達彦 佐藤
Original Assignee
株式会社片山化学工業研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016048486A external-priority patent/JP5990717B1/en
Priority claimed from JP2016164880A external-priority patent/JP6578561B2/en
Application filed by 株式会社片山化学工業研究所 filed Critical 株式会社片山化学工業研究所
Priority to AU2016397146A priority Critical patent/AU2016397146B2/en
Priority to KR1020187028529A priority patent/KR102117850B1/en
Priority to CN201680083212.8A priority patent/CN108779008B/en
Publication of WO2017154243A1 publication Critical patent/WO2017154243A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/30Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents
    • A62D3/38Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents by oxidation; by combustion
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/18Cyanides

Definitions

  • the present invention relates to a cyanide-containing wastewater treatment agent capable of removing cyanide in wastewater safely by a simple operation while suppressing the amount of chemical addition as much as possible, and a method for treating cyanide-containing wastewater using the same.
  • all cyan contained in the wastewater in various forms, particularly cyanide ions can be treated with a simple operation.
  • Cyan has a strong negative impact on ecosystems, and cyanide-containing wastewater (also referred to as “cyan wastewater”) cannot be released directly into nature.
  • cyanide cyanide-containing wastewater
  • drainage standards are established based on the Water Pollution Control Law, and cyan removal processing is performed to satisfy this standard (1 mg / L or less), and wastewater cannot be discharged unless it is detoxified wastewater. ing. Further, depending on the region, an additional drainage standard that is lower than the above-mentioned drainage standard value is set by regulations. Cyan is present in the wastewater in three forms of a hardly-decomposable cyanide complex, an easily-decomposable cyanide complex, and a cyanide ion, although there are some contents due to the origin of the wastewater.
  • Oxidation decomposition method such as electrolytic oxidation method (electrolysis method) in which cyanide is electrolyzed by using an insoluble electrode and an oxidation reaction (electrolysis method) is performed;
  • a feed compound for example, ferrous sulfate is added to form a poorly soluble ferri / ferrocyanide, and the bitumen method in which this is precipitated and removed, (5) zinc chloride and a reducing agent are added, and the insoluble produced (7)
  • Insoluble complex methods such as zinc white method for precipitating and removing complex and (6) reducing copper salt method for adding and removing divalent copper salt and reducing agent and precipitating and removing generated insoluble complex;
  • Acclimatized microorganisms cyanolytic bacteria A biological treatment method for decomposing cyanide;
  • (8) a thermal hydrolysis method in which cyanide-containing wastewater is kept at a high temperature to hydrolyze cyanide compounds into ammonia and formic acid, and coexisting heavy metals are precipit
  • a manganese compound that is soluble in hypochlorite and water and capable of forming manganese ions in water is added to the cyanide-containing wastewater, and the generated water-insoluble manganese salt is removed from the wastewater.
  • Cyanide-containing wastewater treatment method for removing cyan in the interior see Japanese Patent No. 4106415: Patent Document 1
  • Method of treating cyanide-containing wastewater by adding 3.0 mol or more of cyanide content and performing second-stage reaction at pH 7.0 or more see JP-A-02-35991: Patent Document 2
  • the above-described prior art requires complicated steps and operations, and accordingly, a plurality of reaction vessels may be required.
  • the effect of removing cyan is not sufficient, and the cyan concentration of the waste water after treatment cannot be set to the drainage standard (1 mg / L or less).
  • the treated wastewater cannot be discharged directly into sewage.
  • the drainage standard for hydrogen ion concentration (pH) is set to 5.0 to 9.0 for sea areas and 5.8 to 8.6 for areas outside sea areas.
  • the “sea area” is a water area that contains salt water (seawater) other than the land on the earth, especially near the boundary with the land where drainage occurs, specifically, near the river mouth and coast.
  • “Outside the sea area” means a water area where water (fresh water) other than the sea area such as a river or a lake exists.
  • the boundary between the water area where brackish water exists and the water area where structures such as harbors and dikes exist is defined according to various laws and regulations such as the Water Pollution Control Law.
  • the present invention is a wastewater containing cyanide, particularly cyanide-containing wastewater containing coexisting compounds such as thiocyanate ion and ammonium ion, and the amount of chemical addition is suppressed as much as possible, and wastewater can be safely and easily operated. It is an object of the present invention to provide a cyanide-containing wastewater treatment agent capable of removing cyanide therein and a method for treating cyanide-containing wastewater using the same.
  • N-chlorosulfamate and / or N-bromosulfamate is further added to cyanogen-containing wastewater in which coexisting substances exist.
  • the amount of drug added is surprisingly reduced and the operation is simple.
  • the present inventors have found the fact that cyanide in wastewater can be removed safely and completed the present invention.
  • a treating agent for waste water containing cyanide which is an aqueous solution containing N-chlorosulfamate and / or N-bromosulfamate.
  • two solutions of an aqueous solution containing the above N-chlorosulfamate and / or N-bromosulfamate and an aqueous solution containing hydrogen peroxide or a metal compound, or the above-mentioned Treatment agent for waste water containing cyanide comprising a combination of three solutions of an aqueous solution containing N-chlorosulfamate and / or N-bromosulfamate, an aqueous solution containing hydrogen peroxide, and an aqueous solution containing a metal compound Is provided.
  • the cyanide-containing wastewater treatment method comprises removing the cyanide from the wastewater by causing the cyanide-containing wastewater treatment agent to exist in the cyanide-containing wastewater, and decomposing or insolubilizing the cyanide in the wastewater.
  • cyanide-containing wastewater particularly cyanide-containing wastewater in which coexisting compounds such as thiocyanate ions and ammonium ions are present, the amount of chemicals to be added is suppressed as much as possible, and wastewater can be safely and easily operated.
  • a cyanide-containing wastewater treatment agent capable of removing cyanide therein and a method for treating cyanide-containing wastewater using the same. That is, according to the present invention, all cyan, particularly cyanide ions, contained in the wastewater in various forms can be treated with a simple operation while suppressing the amount of drug addition as much as possible. Therefore, even if the wastewater treated by the method of the present invention is released into nature as it is, the influence on the environment can be very reduced, and therefore the method of the present invention is extremely useful industrially.
  • the inventors of the present invention have synergistic effects on the cyan removal effect of each of N-chlorosulfamate, N-bromosulfamate, hydrogen peroxide, and metal compound contained in the cyanide-containing wastewater treatment agent of the present invention. It is considered that the above-described comprehensively excellent effects can be obtained. Specifically, (1) hydrogen peroxide suppresses the generation of cyanogen chloride derived from N-chlorosulfamate or N-bromosulfamate, and (2) N-chlorosulfamate or N-bromosulfamate. Famate and hydrogen peroxide have a synergistic effect on the removal of cyanide.
  • N-chlorosulfamate and N-bromosulfamate are reaction products of sulfamic acid with hypochlorous acid and / or hypobromite.
  • the metal compound is a compound containing manganese, copper, zinc or iron.
  • the processing method of the cyanate containing wastewater of this invention exhibits said effect more, when satisfy
  • the cyan-containing wastewater treatment agent has a total effective halogen concentration of N-chlorosulfamate and N-bromosulfamate of 0.2 molar equivalent or more with respect to the cyan content in the cyan-containing waste water. Make it exist.
  • the cyanide-containing wastewater treatment agent is present so that the hydrogen peroxide concentration is 0.1 molar equivalent or more with respect to the cyan content in the cyan-containing wastewater.
  • Cyan-containing wastewater is wastewater containing one or more coexisting substances selected from thiocyanic acid and its salts and ammonium ions.
  • Cyan-containing wastewater is wastewater adjusted to pH 6-11.
  • the cyanate-containing wastewater treatment agent is present so that the concentration of the specific component is equal to or higher than a specific molar equivalent with respect to the cyan content in the cyan-containing wastewater
  • Cyan as one molar equivalent, the concentration of a specific component or equivalent concentration, specifically, the total effective halogen concentration of N-chlorosulfamate and N-bromosulfamate, hydrogen peroxide concentration or metal ion of a metal compound It means that the concentration is added to a specific molar equivalent or more.
  • the cyanide-containing wastewater treatment agent of the present invention contains N-chlorosulfamate and / or N-bromosulfamate (also referred to as “sulfamate”). It is an aqueous solution.
  • the cyanide-containing wastewater treatment agent of the present invention is a two-part solution comprising an aqueous solution containing the above-mentioned N-chlorosulfamate and / or N-bromosulfamate and an aqueous solution containing hydrogen peroxide or a metal compound.
  • the sulfamate which is an active ingredient for cyanide treatment of the cyanide-containing wastewater treatment agent of the present invention, can be obtained by a known method, for example, JP-T-2003-503323, JP-A-2006-022097, JP-A-11-506139. It can be prepared by the methods described in JP-T-2001-501869, JP-A-2003-507326 and JP-A-2014-101251. Further, N-chlorosulfamate is more preferable as an active ingredient of the cyanide-containing wastewater treatment agent of the present invention from the viewpoint of cyan removal effect.
  • a reaction product of sulfamic acid and hypochlorous acid and / or hypobromite can be preferably used.
  • the addition of sulfamate by this reaction will be described in detail in (B) Cyanide-containing wastewater treatment method.
  • the form of the cyanide-containing wastewater treatment agent of the present invention is an aqueous solution, and the active ingredient concentration as the cyanide-containing wastewater treatment agent, that is, the total effective halogen concentration of sulfamate is 0.5 mg / L or more.
  • the active ingredient concentration as the cyanide-containing wastewater treatment agent that is, the total effective halogen concentration of sulfamate is 0.5 mg / L or more.
  • the active ingredient is reacted and produced on the spot, the aqueous solution concentration of each compound before the reaction may be appropriately set so that the concentration after the reaction matches the processing conditions.
  • the pH of the treatment agent for cyanide-containing wastewater of the present invention is preferably 12 or more, but this is not limited to the case where an active ingredient is reacted and produced on the spot, and the acidity of sulfamic acid and its salt is neutralized. Any alkali amount that can be used is acceptable.
  • hydrogen peroxide examples include a hydrogen peroxide aqueous solution having a concentration of 3 to 60%, which is commercially available mainly for industrial use.
  • hydrogen peroxide generated from a hydrogen peroxide supply compound also referred to as a “hydrogen peroxide generator”
  • hydrogen peroxide generated by electrolysis of water or an alkaline solution can be used.
  • the hydrogen peroxide supplying compound include inorganic peracids such as percarbonate, perboric acid and peroxysulfuric acid capable of releasing hydrogen peroxide in water, organic peracids such as peracetic acid, and salts thereof. Examples of these salts include sodium percarbonate and sodium perborate.
  • the hydrogen peroxide and the hydrogen peroxide supply compound may be diluted or dissolved with water such as industrial water so that a desired hydrogen peroxide concentration is obtained upon addition.
  • Metal compound examples of the metal compound used in the present invention include metal compounds used for cyan removal in the technical field, and specific examples include manganese compounds, copper compounds, zinc compounds, and iron compounds.
  • the manganese compound is not particularly limited as long as it is a neutral salt soluble in water, and examples thereof include manganese chloride, manganese sulfate, manganese nitrate, manganese borate, and manganese acetate. Among these, manganese chloride is particularly preferable from the viewpoints of the effect of removing cyanide and the cost of treating cyanide wastewater.
  • the copper compound is not particularly limited as long as it is a compound that is soluble in water and can form monovalent or divalent copper ions in water.
  • Cuprous chloride, cuprous fluoride, cuprous bromide , Cuprous iodide, cupric chloride, cupric fluoride, copper nitrate, and copper sulfate are preferable, and cuprous chloride and cupric chloride are particularly preferable in terms of the effect of removing cyanide and the cost of treating cyanate wastewater.
  • the copper compound is a cuprous salt
  • the cuprous copper, aqueous alkali metal halide solution or ethanol is used as a solvent. It is preferable to use a salt solution from the viewpoint of the stability of the cuprous salt.
  • the zinc compound is not particularly limited as long as it is soluble in water and can form a divalent zinc ion in water.
  • zinc chloride is particularly preferred from the viewpoint of the effect of removing cyanide and the cost of treating cyanide wastewater.
  • the iron compound is not particularly limited as long as it is soluble in water and can form a divalent iron ion in water.
  • ferrous chloride is particularly preferable in terms of the effect of removing cyanide and the cost of treating cyanide wastewater.
  • a compound capable of forming a divalent iron ion in water a compound capable of forming a trivalent iron ion is added to a cyanide-containing wastewater together with a reducing agent, or the reducing cyanide-containing wastewater is added.
  • the reducing agent include sulfite and hydrazine.
  • a compound containing manganese, copper, zinc or iron is preferable, and a compound containing manganese, copper or zinc is particularly preferable from the viewpoint of the effect of removing a cyanide compound and the cost of treating cyanate wastewater.
  • Specific examples include manganese chloride, cuprous chloride, cupric chloride, zinc chloride and ferrous chloride, with manganese chloride, cuprous chloride, cupric chloride and zinc chloride being particularly preferred.
  • the metal compound may be used by dissolving in water such as industrial water so as to have a desired concentration.
  • the cyanate-containing wastewater treatment agent of the combination of the present invention comprises a combination of the following two aqueous solutions or three solutions.
  • (1) Combination of three solutions of an aqueous solution containing sulfamate, an aqueous solution containing hydrogen peroxide, and an aqueous solution containing a metal compound
  • An aqueous solution containing sulfamate and an aqueous solution containing hydrogen peroxide Combination of two liquids
  • the preparation (1 ) Or (2) is particularly preferred.
  • the concentration of sulfamate, hydrogen peroxide and metal compound in the aqueous solution may be appropriately set in consideration of the solubility, pH, handleability, etc. of the compound.
  • Cyan-containing wastewater to be treated in the present invention includes metal cyanide, cyanide ion, cyanide complex, and cyano complex ion discharged from steel factories, chemical factories, plating factories, coke factories, metal surface treatment factories, etc. And the like, cyan-containing wastewater discharged in a treatment process of radioactively contaminated water, and cyan-containing wastewater discharged from a soil treatment apparatus.
  • the method for treating cyanide-containing wastewater according to the present invention is suitable for treating cyanide-containing wastewater having a strong buffering action, such as coke oven wastewater, that is, cyanide-containing wastewater containing thiocyanic acid and salts thereof and ammonium ions.
  • Cyanide-containing wastewater contains a variety of coexisting substances, such as sulfide ions, sulfite ions, nitrite ions, thiosulfate ions, hydrazine, which are considered to react easily with oxidants and aerobic treatment.
  • Difficulties such as cyanide ions, thiocyanate ions, ammonium ions, organic substances (formaldehyde, amino acids, proteins, microorganisms) that can be reacted only with reducing substances such as ferrous iron and oxidants with a certain level of oxidizing power Contains degradable substances.
  • sulfamate which is an active ingredient for cyanating the cyanide-containing wastewater treatment agent of the present invention
  • cyanide ions It is considered that it reacts preferentially only to easily oxidized substances such as “free cyan” or “free cyan” and is also referred to as a stabilized halogen oxidant.
  • the active ingredient of the cyanide-containing wastewater treatment agent of the present invention reacts preferentially with cyanide ions as a stabilizing halogen-based oxidant to exert the effect of the present invention and increase the ORP (redox potential).
  • ORP redox potential
  • the cyanide-containing wastewater treatment agent of the present invention can be suitably used for treatment of cyanide-containing wastewater containing one or more coexisting substances selected from thiocyanic acid and salts thereof and ammonium ions.
  • the cyan-containing wastewater may have a pH of 6 or more in terms of the effect of removing cyan, specifically 6, 6.5, 7, 7.5, 8, 8.5, 9, 10 and 11.
  • the pH is preferably 6 to 11, more preferably pH 6 to 9. If the cyan-containing wastewater is less than pH 6, harmful hydrogen cyanide gas may be diffused.
  • the pH exceeds pH 11, there is a problem that the cost of the alkali chemicals increases.
  • the pH exceeds 9, the pH needs to be adjusted because it exceeds the wastewater standard.
  • Cyanide-containing wastewater to be treated is usually in such a neutral to alkaline range, but if it is outside this range, an acid or alkali that does not hinder the effects of the present invention, such as sulfuric acid or sodium hydroxide, is added. What is necessary is just to add pH to process wastewater and to adjust pH.
  • Cyanogen-containing wastewater treatment method comprises treating the cyanide-containing wastewater treatment agent of the present invention in cyanide-containing wastewater, and decomposing or insolubilizing cyanide in the wastewater. Cyanide is removed from the wastewater.
  • the inventors of the present invention consider that “degradation of cyanide in wastewater” is due to the fact that cyanide is oxidized by the added sulfamate, and the produced cyanic acid generates ammonium hydrogen carbonate by hydrolysis. Yes.
  • the inventors of the present invention consider that “insolubilization of cyanide in wastewater” is due to the formation of a water-insoluble metal complex with cyanide in the wastewater by the added metal compound.
  • the method for allowing sulfamate to be present in the cyanide-containing wastewater is not particularly limited.
  • a stabilizing agent selected from alkaline agents and amino acids such as glycine, ⁇ -alanine, sodium glutamate, sodium aspartate, methionine and lysine hydrochloride, amides such as sulfamic acid, succinimide, caprolactam, maleimide, and taurine
  • aqueous solution containing an agent and an aqueous solution containing hypochlorous acid and / or hypobromite simultaneously or separately, an aqueous solution containing an alkaline agent, sulfamic acid and sodium bromide examples thereof include a method of adding the aqueous solution containing chlorous acid simultaneously or separately.
  • the sulfamic acid used in the present invention can be obtained by dissolving a compound capable of producing sulfamic acid in water and reacting with hypochlorous acid and hypobromous acid in water.
  • alkali metal salts of sulfamic acid such as sodium sulfamate and potassium sulfamate; methyl sulfamic acid, sodium methyl sulfamate, potassium methyl sulfamate, ammonium methyl sulfamate, phenyl sulfamic acid, sodium phenyl sulfamate, potassium phenyl sulfamate
  • organic sulfamic acid such as ammonium phenylsulfamate or a salt thereof.
  • sodium sulfamate and potassium sulfamate are industrially easily available and are preferably used in the present invention.
  • Hypochlorous acid and hypochlorous acid used in the present invention can be obtained by dissolving in water a compound capable of reacting with sulfamic acid by producing hypochlorous acid and hypobromite in water, respectively.
  • a compound capable of reacting with sulfamic acid by producing hypochlorous acid and hypobromite in water, respectively.
  • alkali metal salts and alkaline earth metal salts of hypochlorous acid and hypobromite alkali metal salts and alkaline earth metal salts of hypochlorous acid and hypobromite.
  • sodium hypochlorite, potassium hypochlorite, sodium hypobromite, and potassium hypobromite are industrially easily available and are preferably used in the present invention.
  • the hypochlorous acid obtained by electrolyzing salt solution and seawater with an electrolytic tank may be sufficient.
  • the alkaline agent used in the present invention neutralizes the acidity of sulfamic acid and its salt, makes the pH of the aqueous solution alkaline, and is a reaction product of hypohalous acid and sulfamic acid. It has a function that contributes to the stability of the aqueous solution of mart or N-bromosulfamate.
  • the alkaline agent is not particularly limited as long as it is a compound that can exhibit such a function, and examples thereof include sodium hydroxide, potassium hydroxide, lithium hydroxide, magnesium hydroxide, calcium hydroxide, sodium carbonate, and potassium carbonate. Can be mentioned.
  • sodium hydroxide and potassium hydroxide are industrially easily available and are preferably used in the present invention.
  • the amount of sulfamate added to the cyanide-containing wastewater treatment agent of the present invention is not limited to the type and concentration of cyan contained in the cyan-containing wastewater, The amount of these metal ions may be appropriately determined according to the conditions. Specifically, the cyan concentration of the cyan-containing wastewater before the treatment is measured in advance, and the addition amount of each additive may be determined based on the measured value.
  • a known method can be applied to the measurement of the cyan concentration of the wastewater containing cyanide.
  • the method include pyridine-pyrazolone absorptiometry, 4-pyridinecarboxylic acid-pyrazolone absorptiometry, ion electrode method, flow analysis method and the like as defined in item 38 of JIS K0102: 2013 “Factory drainage test method, Picric acid method, micro diffusion-ion electrode method, micro diffusion method using acetate buffer, flow injection-ion electrode method, flow injection-chemiluminescence method, fluorescence derivatization HPLC method, conductivity detection ion chromatograph method, electrochemistry Application methods such as detection ion chromatography, etc. In practice, it may be selected as appropriate according to the state of cyanogen-containing wastewater, etc., and an all-cyan detector using the picric acid method as used in the examples is used. It may be used.
  • the amount of the cyan-containing wastewater treatment agent of the present invention is different depending on the cyan content contained in the target cyan-containing waste water, but the total amount of sulfamate in the cyan-containing waste water with respect to the cyan content therein. It is preferable to exist so that the effective halogen concentration is 0.2 molar equivalent or more. Specific effective halogen concentrations (molar equivalents) are 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10 is there.
  • the effective halogen concentration is 1 molar equivalent or more with respect to the cyan content in the cyan-containing wastewater. If the effective halogen concentration is less than 0.2 molar equivalent, the reaction with cyanide ions does not occur sufficiently, and the effect of removing cyan may be insufficient. In addition, there is no particular upper limit on the amount of cyanide-containing wastewater treatment agent added, but if it is about 10 molar equivalents, a sufficient cyan removal effect can be obtained.
  • the cyan content in the cyan-containing wastewater to be treated in the present invention is not particularly limited, but the above-mentioned cyan-containing wastewater is generally about 2 to 500 mg / L in terms of the total cyan concentration.
  • the alkali agent is 0.6 to 2000 mg / L, preferably 1 to 600 mg / L
  • the sulfamic acid compound is 0.05 to 1000 mg / L based on the cyanide-containing wastewater.
  • 0.08 to 300 mg / L, hypochlorite and hypobromite are added to the cyanide-containing wastewater so that the total amount is 3 to 10000 mg / L, preferably 5 to 3000 mg / L. Good.
  • the addition amount of the treatment agent for cyanide-containing wastewater of the present invention (the amount present in the cyanide-containing wastewater) is not limited to the type and concentration of cyan contained in the cyan-containing wastewater, but other metal ions contained in the cyan-containing wastewater. Therefore, the amount of addition may be determined appropriately according to the conditions. Specifically, the cyan concentration of the cyan-containing wastewater before the treatment is measured in advance, and the addition amount of each additive may be determined based on the measured value. The measurement of the cyan concentration of the waste water containing cyan is the same as the addition amount and addition in the case of sulfamate alone.
  • the addition amount of the cyanide-containing wastewater treatment agent of the present invention varies depending on the cyan content contained in the target cyanide-containing wastewater, and may be set as appropriate.
  • the amount of sulfamate may be less than that of sulfamate alone because the combined effect with other components can be obtained.
  • the total amount of effective halogen of sulfamate relative to the cyan content therein It is preferable to make it exist so that a density
  • concentration may be 0.1 molar equivalent or more.
  • halogen concentrations are 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9. 5 and 10. More preferably, the effective halogen concentration is 0.5 molar equivalent or more with respect to the cyan content in the cyan-containing wastewater. If the effective halogen concentration is less than 0.1 molar equivalent, the reaction with cyanide ions does not occur sufficiently, and the effect of removing cyan may be insufficient. In addition, there is no particular upper limit on the amount of cyanide-containing wastewater treatment agent added, but if it is about 10 molar equivalents, a sufficient cyan removal effect is obtained.
  • hydrogen peroxide is present in the cyan-containing wastewater so as to be 0.1 molar equivalent or more with respect to the cyan content therein.
  • Specific hydrogen peroxide concentration is 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9 .5,10. More preferably, the hydrogen peroxide concentration is 0.5 molar equivalent or more with respect to the cyan content in the cyan-containing wastewater.
  • the reaction with cyanide ions does not occur sufficiently, and the effect of removing cyan may be insufficient.
  • there is no particular upper limit on the amount of cyanide-containing wastewater treatment agent added but if it is about 10 molar equivalents, a sufficient cyan removal effect is obtained.
  • the metal compound varies depending on the compound, it is preferable that the metal ion is present in the cyan-containing wastewater so that the metal ion concentration is 0.1 molar equivalent or more with respect to the cyan content therein.
  • Specific metal ion concentrations are 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9. 5 and 10. More preferably, the metal ion concentration is 0.5 molar equivalent or more with respect to the cyan content in the cyan-containing wastewater.
  • the metal ion concentration is less than 0.1 molar equivalent, the reaction with cyanide ions does not occur sufficiently, and the effect of removing cyan may be insufficient.
  • the amount of cyanide-containing wastewater treatment agent added is no particular upper limit on the amount of cyanide-containing wastewater treatment agent added, but if it is about 10 molar equivalents, a sufficient cyan removal effect can be obtained.
  • the cyan content in the cyan-containing wastewater to be treated in the present invention is not particularly limited, but the above-mentioned cyan-containing wastewater is generally about 2 to 500 mg / L in terms of the total cyan concentration.
  • the alkali agent is 0.3 to 2000 mg / L, preferably 0.5 to 600 mg / L
  • the sulfamic acid compound is 0.02 to 1000 mg based on the cyanide-containing wastewater.
  • / L preferably 0.04 to 300 mg / L
  • cyanide-containing wastewater so that the total amount of hypochlorite and hypobromite is 1 to 10000 mg / L, preferably 2.5 to 3000 mg / L It may be added to.
  • hydrogen peroxide is added to cyanide-containing wastewater so that the concentration is 0.2 to 6500 mg / L, preferably 1 to 2000 mg / L, and the metal compound is 0.4 to 12000 mg / L, preferably 2 to 3600 mg / L. do it.
  • sulfamate, hydrogen peroxide and / or metal compound are added by simultaneously or separately adding a preparation comprising a combination of two or three liquids to the cyanide-containing wastewater to be treated.
  • a preparation comprising a combination of two or three liquids to the cyanide-containing wastewater to be treated.
  • existing equipment may be used.
  • the cyanide-containing wastewater to be treated is as described in (A) Treatment agent for cyanide-containing wastewater, and is a wastewater containing one or more coexisting substances selected from thiocyanic acid and its salts and ammonium ions. preferable. Further, the cyan-containing wastewater to be treated preferably has a pH of 6 to 11, and if it is outside this range, it is preferably a waste liquid adjusted with acid or alkali.
  • the mixed solution is preferable to stir the mixed solution from the viewpoint of the effect of removing cyan at the time of adding each of the above compounds and at the time of reaction between these added compounds and cyan. This stirring is preferably performed every time each compound is added.
  • the mixed solution is preferably in a state of being heated to some extent so that the added compound is not decomposed, and the liquid temperature is about 20 to 60 ° C.
  • the time required for the reaction during stirring varies depending on the amount of cyanide-containing wastewater, the type and concentration of cyanide, the form of the treatment apparatus and the scale thereof, and so on, so that cyan and the added compound are in sufficient contact. Just decide.
  • the stirring time may be 10 minutes or more, more preferably 20 to 60 minutes.
  • a surfactant or a flocculant may be added as long as the effects of the present invention are not impaired.
  • a known chemical cyan treatment method as described in the prior art or a known physical cyan treatment method such as infrared rays or ultraviolet rays may be used in combination.
  • water-insoluble means that the compound (salt) has a solubility of 1 g or less with respect to 100 g of water at 20 ° C., and the water-insoluble matter of the compound is separated into the liquid phase by sedimentation separation or filtration. And can be separated.
  • wastewater containing cyanide especially cyanide-containing wastewater containing coexisting compounds such as thiocyanate ions and ammonium ions
  • the cyan concentration before treatment can be remarkably reduced below the wastewater standard value, and the treated wastewater can be treated directly as sewage without neutralization. Can be discharged or reused.
  • the treated wastewater when the treated wastewater is discharged as it is, it is sufficient to add an amount of a compound necessary for lowering the total cyan concentration below the wastewater standard value, but the treated wastewater is diluted with other wastewater.
  • the compound may be added so that the waste water after dilution is less than the above waste water reference value.
  • the treated wastewater is often diluted with other wastewater and discharged, and it is preferable to control the amount of each active ingredient added in consideration of the cost effect. Therefore, when the total cyan density after processing does not become 1 mg / L or less, it is understood that the processing is also included in the present invention when it becomes approximately 5 mg / L or less.
  • Test Example 1-2 cyan-containing wastewater 1-B (pH 8.6) having the water quality shown in Table 2 collected from the coke oven wastewater line at Sakai Steel Works was used.
  • Test Example 1-1 Dispense 100 mL of cyanide-containing wastewater 1-A into a beaker with a capacity of 100 mL, and adjust the concentrations shown in Table 3 to sodium N-chlorosulfamate, sodium N-bromosulfamate, sodium hypochlorite and hypochlorous acid.
  • concentrations shown in Table 3 sodium N-chlorosulfamate, sodium N-bromosulfamate, sodium hypochlorite and hypochlorous acid.
  • One water selected from sodium bromate was added to obtain test water.
  • an aqueous sulfuric acid solution or an aqueous sodium hydroxide solution was added to adjust the pH of the test water to the values shown in Table 3.
  • test water was stirred for 15 minutes at a rotational speed of 250 rpm using a stirrer (manufactured by AS ONE Corporation, magnetic stirrer, model: RS-4AR, stirrer: plain, longest side 30 mm).
  • a stirrer manufactured by AS ONE Corporation, magnetic stirrer, model: RS-4AR, stirrer: plain, longest side 30 mm.
  • T-CN total cyan concentration
  • the effect of removing cyanide in the test water was evaluated.
  • a blank test (Comparative Example 1-4) in which no drug was added was simultaneously performed.
  • Table 3 The obtained results are shown in Table 3 together with the additive compound, its addition amount, and the pH of the test water.
  • Test Example 1-2 Dispense 100 mL of cyanide-containing wastewater 1-B into a beaker with a capacity of 100 mL, and add each one selected from sodium N-chlorosulfamate and sodium hypochlorite to the concentrations shown in Table 4.
  • Test water was obtained.
  • an aqueous sulfuric acid solution or an aqueous sodium hydroxide solution was added to adjust the pH of the test water to the values shown in Table 4.
  • the obtained test water was stirred for 15 minutes at a rotational speed of 250 rpm using a stirrer (manufactured by AS ONE Corporation, magnetic stirrer, model: RS-4AR, stirrer: plain, longest side 30 mm).
  • T-CN total cyan density
  • a blank test Comparative Example 1-6 in which no drug was added was simultaneously performed. The obtained results are shown in Table 4 together with the additive compound, its addition amount, and the pH of the test water.
  • the treatment agent for cyanide-containing wastewater of the present invention can be a two-part preparation or a three-part preparation of an aqueous solution of a compound having a predetermined concentration as described below in Preparation Examples 2-1 to 2-11.
  • (Formulation example 2-1) ⁇ 35% N-chlorosulfamate aqueous solution ⁇ 3% hydrogen peroxide aqueous solution ⁇ 30% manganese chloride aqueous solution
  • Formulation Example 2-2 ⁇ 25% N-chlorosulfamate aqueous solution ⁇ 10% hydrogen peroxide aqueous solution ⁇ 15% cuprous chloride aqueous solution
  • Formulation Example 2-3 ⁇ 20% N-chlorosulfamate aqueous solution ⁇ 15% hydrogen peroxide aqueous solution ⁇ 25% cupric chloride aqueous solution
  • (Formulation Example 2-4) ⁇ 15% N-chlorosulfamate aqueous solution ⁇ 35% hydrogen peroxide aqueous solution
  • cyanide ions free cyanide: F-CN
  • cyano complex synthetic water (pH 8.2) prepared to have the water quality shown in Table 5 were used.
  • Synthetic cyanine-containing wastewater 2-A prepared so that the thiocyanate ion (SCN ⁇ ) and ammonium ion (NH 4 + ) contents shown in Table 5 were used.
  • the above synthetic cyanide-containing wastewater was prepared using potassium ferrocyanide aqueous solution, potassium cyanide aqueous solution, potassium thiocyanate aqueous solution, calcium chloride dihydrate aqueous solution, sodium chloride aqueous solution, sodium sulfate aqueous solution, ammonium chloride aqueous solution and sodium hydrogen carbonate aqueous solution. .
  • Test Example 2-2 cyan-containing wastewater 2-B (pH 7.1) having water quality shown in Table 6 collected from a coke oven wastewater line at Sakai Steel Works was used.
  • Test Example 2-1 Dispense 100 mL of cyanide-containing wastewater 2-A into a beaker with a capacity of 100 mL, and adjust the concentrations shown in Table 7 to N-chlorosulfamate, N-bromosulfamate, sodium hypochlorite and sulfamic acid.
  • Test water was obtained by adding each of hydrogen peroxide and manganese chloride selected from the combination of In some test waters, an aqueous sulfuric acid solution or an aqueous sodium hydroxide solution was added to adjust the pH of the test water to the values shown in Table 7.
  • the obtained test water was stirred at a rotational speed of 250 rpm using a stirrer (manufactured by As One Co., Ltd., magnetic stirrer, model: RS-4AR, stirrer: plain, longest side 30 mm). Specifically, 1 minute after adding N-chlorosulfamate, N-bromosulfamate, or a combination of sodium hypochlorite and sulfamic acid, and then 1 minute after adding hydrogen peroxide. Further, the mixture was stirred for 15 minutes after adding manganese chloride. After the test, the test water was filtered using a filter paper (product name: No. 5C, manufactured by Toyo Roshi Kaisha, Ltd. (ADVANTEC)), and the obtained filtrate was used as a treatment liquid.
  • a filter paper product name: No. 5C, manufactured by Toyo Roshi Kaisha, Ltd. (ADVANTEC)
  • T-CN total cyan concentration in the test water (treatment liquid) was measured by the picric acid method using a total cyan tester (manufactured by Kyoritsu Riken Co., Ltd., model: WA-CNT). The effect of removing cyanide in the test water was evaluated. In this test, a blank test (Comparative Example 2-4) in which no drug was added was simultaneously performed. The obtained results are shown in Table 7 together with the additive compound, its addition amount, and the pH of the test water.
  • Test Example 2-2 300 mL of cyan-containing waste water B was dispensed into 300 mL beakers, and N-chlorosulfamate and hydrogen peroxide were added to the concentrations shown in Table 8 to obtain test water. In some test waters, an aqueous sulfuric acid solution or an aqueous sodium hydroxide solution was added to adjust the pH of the test water to the values shown in Table 8.
  • the obtained test water was stirred at a rotational speed of 250 rpm using a stirrer (manufactured by As One Co., Ltd., magnetic stirrer, model: RS-4AR, stirrer: plain, longest side 30 mm). Specifically, the mixture was stirred for 10 minutes (first stage) after the addition of hydrogen peroxide, and then 40 minutes (second stage) after the addition of N-chlorosulfamate. After the test, the test water was filtered using a filter paper (product name: No. 5C, manufactured by Toyo Roshi Kaisha, Ltd. (ADVANTEC)), and the obtained filtrate was used as a treatment liquid.
  • a filter paper product name: No. 5C, manufactured by Toyo Roshi Kaisha, Ltd. (ADVANTEC)
  • Test Example 2-3 In a 100 mL beaker, 100 mL of cyanide-containing wastewater A was dispensed, and N-chlorosulfamate, hydrogen peroxide, cuprous chloride, cupric chloride and metal compounds as the concentrations shown in Table 5 were used. One water selected from zinc chloride was added to obtain test water. Using the obtained test water, the cyanide removal effect in each test water was evaluated in the same manner as in Test Example 2-1. In this test, a blank test (Comparative Example 2-8) in which no drug was added was simultaneously performed. The obtained results are shown in Table 9 together with the added compound, its added amount, and the pH of the test water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

An agent for treating cyanide-containing wastewater that is an N-chlorosulfamate- and/or N-bromosulfamate-containing aqueous solution or is prepared from a combination of two liquids, an N-chlorosulfamate- and/or N-bromosulfamate-containing aqueous solution and a hydrogen peroxide- or metal compound-containing aqueous solution, or a combination of three liquids, an N-chlorosulfamate- and/or N-bromosulfamate-containing aqueous solution, a hydrogen peroxide-containing aqueous solution, and a metal compound-containing aqueous solution.

Description

シアン含有廃水用処理剤およびそれを用いるシアン含有廃水の処理方法Cyanogen-containing wastewater treatment agent and cyanide-containing wastewater treatment method using the same
 本発明は、従来よりも薬剤添加量を極力抑え、簡便な操作で安全に廃水中のシアンを除去し得るシアン含有廃水用処理剤およびそれを用いるシアン含有廃水の処理方法に関する。
 本発明では、各種形態で廃水中に含有するすべてのシアン、特にシアン化物イオンを簡便な操作で処理することができる。
The present invention relates to a cyanide-containing wastewater treatment agent capable of removing cyanide in wastewater safely by a simple operation while suppressing the amount of chemical addition as much as possible, and a method for treating cyanide-containing wastewater using the same.
In the present invention, all cyan contained in the wastewater in various forms, particularly cyanide ions, can be treated with a simple operation.
 シアンは生態系に強い悪影響を及ぼすため、シアン含有廃水(「シアン廃水」ともいう)を自然界にそのまま放出することはできない。シアンについては水質汚濁防止法に基づき排水基準が定められており、この基準(1mg/L以下)を満たすようにシアン除去処理を行い、無害化した廃水でなければ下水などに排出できないことになっている。また、地域によっては、条例により、上記の排水基準値よりもさらに低い上乗せ排水基準が定められている。
 シアンは、廃水の由来にも因り、含有量の多少はあるが、難分解性シアン錯体、易分解性シアン錯体およびシアン化物イオンの3種の形態で廃水中に存在している。
Cyan has a strong negative impact on ecosystems, and cyanide-containing wastewater (also referred to as “cyan wastewater”) cannot be released directly into nature. For cyanide, drainage standards are established based on the Water Pollution Control Law, and cyan removal processing is performed to satisfy this standard (1 mg / L or less), and wastewater cannot be discharged unless it is detoxified wastewater. ing. Further, depending on the region, an additional drainage standard that is lower than the above-mentioned drainage standard value is set by regulations.
Cyan is present in the wastewater in three forms of a hardly-decomposable cyanide complex, an easily-decomposable cyanide complex, and a cyanide ion, although there are some contents due to the origin of the wastewater.
 従来からシアン含有廃水中のシアンの除去処理として様々な方法が提案され、実用化されているが、いずれも一長一短があり、廃水の状況に応じて使い分けられている。
 例えば、(1)シアン含有廃水をアルカリ性に調整した後、塩素を注入してシアンを酸化分解するアルカリ塩素法、(2)強力なオゾンの酸化力でシアンを窒素ガスと炭酸水素塩に酸化分解するオゾン酸化法および(3)非溶解性の電極を用いてシアンを電気分解し、酸化反応を行なう電解酸化法(電解法)などの酸化分解法;(4)シアン含有廃水中に、鉄イオンの供給化合物として、例えば硫酸第一鉄を添加し、難溶性のフェリ/フェロシアン化物を生成させ、これを沈殿除去する紺青法、(5)塩化亜鉛と還元剤とを添加し、生成した不溶錯体を沈殿除去する亜鉛白法および(6)2価の銅塩と還元剤とを添加し、生成した不溶錯体を沈殿除去する還元銅塩法などの不溶錯体法;(7)シアンに対して馴養させた微生物(シアン分解菌)にシアンを分解させる生物処理法;(8)シアン含有廃水を高温に保持してシアン化合物をアンモニアと蟻酸に加水分解させ、共存する重金属類を単体または酸化物として析出させる熱加水分解法および(9)シアンの分解以外に有機汚濁物をも酸化分解させる湿式酸化法などの熱水反応などがある。
Various methods have been proposed and put to practical use for removing cyan from waste water containing cyan, and all have their advantages and disadvantages, and are used properly according to the state of waste water.
For example, (1) alkaline chlorine method in which cyanide-containing wastewater is adjusted to alkalinity and then injected with chlorine to oxidatively decompose cyanide. (2) cyanide is oxidized and decomposed into nitrogen gas and bicarbonate with strong ozone oxidizing power. (3) Oxidation decomposition method such as electrolytic oxidation method (electrolysis method) in which cyanide is electrolyzed by using an insoluble electrode and an oxidation reaction (electrolysis method) is performed; As a feed compound, for example, ferrous sulfate is added to form a poorly soluble ferri / ferrocyanide, and the bitumen method in which this is precipitated and removed, (5) zinc chloride and a reducing agent are added, and the insoluble produced (7) Insoluble complex methods such as zinc white method for precipitating and removing complex and (6) reducing copper salt method for adding and removing divalent copper salt and reducing agent and precipitating and removing generated insoluble complex; Acclimatized microorganisms (cyanolytic bacteria A biological treatment method for decomposing cyanide; (8) a thermal hydrolysis method in which cyanide-containing wastewater is kept at a high temperature to hydrolyze cyanide compounds into ammonia and formic acid, and coexisting heavy metals are precipitated as simple substances or oxides; 9) In addition to the decomposition of cyanide, there are hydrothermal reactions such as a wet oxidation method that also oxidizes and decomposes organic pollutants.
 また、本発明の出願人は、次のようなシアン含有廃水の処理方法を提案してきた。
(A)シアン含有廃水に、次亜塩素酸塩および水に可溶であり、水中でマンガンイオンを形成し得るマンガン化合物を添加し、生成した水不溶性のマンガン塩を廃水から除去して、廃水中のシアンを除去するシアン含有廃水の処理方法(特許第4106415号公報:特許文献1参照)
(B)シアン化合物含有廃水に含有シアン化合物量の1.4モル以上に相当する量のホルムアルデヒドを添加して第1段の反応を行った後、次いで実質的に有効反応量の過酸化水素を含有シアン化合物量の3.0モル以上添加し、pH7.0以上で第2段の反応を行うシアン化合物含有廃水の処理方法(特開平02-35991号公報:特許文献2参照)
Further, the applicant of the present invention has proposed the following method for treating cyanide-containing wastewater.
(A) A manganese compound that is soluble in hypochlorite and water and capable of forming manganese ions in water is added to the cyanide-containing wastewater, and the generated water-insoluble manganese salt is removed from the wastewater. Cyanide-containing wastewater treatment method for removing cyan in the interior (see Japanese Patent No. 4106415: Patent Document 1)
(B) After adding the amount of formaldehyde corresponding to 1.4 mol or more of the amount of cyanide compound to the cyanide compound-containing wastewater, the first stage reaction is carried out, and then a substantially effective reaction amount of hydrogen peroxide is added. Method of treating cyanide-containing wastewater by adding 3.0 mol or more of cyanide content and performing second-stage reaction at pH 7.0 or more (see JP-A-02-35991: Patent Document 2)
 しかしながら、上記の先行技術では、煩雑な工程や操作が必要であり、それに伴い複数の反応槽が必要となる場合もある。また、チオシアン酸イオンやアンモニウムイオンが存在する廃水など、廃水の種類によってはシアン除去の効果が十分でなく、処理後の廃水のシアン濃度を排水基準(1mg/L以下)にすることができず、処理廃水をそのまま下水などに排出することができない場合もある。
 また、水質汚濁防止法に基づき水素イオン濃度(pH)の排水基準は、海域では5.0~9.0、海域外では5.8~8.6と定められている。上記の先行技術において、廃水のpHを酸性やアルカリ性に調整した場合には、下水などに排出する前に、廃水のシアン濃度だけではなく、pHも排水基準範囲内に調整する中和処理が必要になる場合もある。
 ここで、「海域」とは、地球上の陸地以外の塩水(海水)を湛えた水域で、特に排水がなされる陸地との境界付近、具体的には、河川の河口や海岸付近を意味し、「海域外」とは、例えば、河川や湖沼などの海域以外の水(淡水)が存在する水域を意味する。また、汽水が存在する水域、港湾や堤防など構造物が存在する水域での両者の境界は、上記の水質汚濁防止法などの各種法令に従って定義される。
However, the above-described prior art requires complicated steps and operations, and accordingly, a plurality of reaction vessels may be required. In addition, depending on the type of waste water, such as waste water containing thiocyanate ions or ammonium ions, the effect of removing cyan is not sufficient, and the cyan concentration of the waste water after treatment cannot be set to the drainage standard (1 mg / L or less). In some cases, the treated wastewater cannot be discharged directly into sewage.
Based on the Water Pollution Control Law, the drainage standard for hydrogen ion concentration (pH) is set to 5.0 to 9.0 for sea areas and 5.8 to 8.6 for areas outside sea areas. In the above prior art, when the pH of wastewater is adjusted to acidic or alkaline, neutralization treatment is required to adjust not only the cyanide concentration of wastewater but also the pH within the drainage standard range before discharging into sewage etc. Sometimes it becomes.
Here, the “sea area” is a water area that contains salt water (seawater) other than the land on the earth, especially near the boundary with the land where drainage occurs, specifically, near the river mouth and coast. “Outside the sea area” means a water area where water (fresh water) other than the sea area such as a river or a lake exists. In addition, the boundary between the water area where brackish water exists and the water area where structures such as harbors and dikes exist is defined according to various laws and regulations such as the Water Pollution Control Law.
特許第4106415号公報Japanese Patent No. 4106415 特開平02-35991号公報JP 02-35991 A
 例えば、上記の特許文献1の方法(A)では、シアン含有廃水に対して過剰量の薬剤を添加すれば、シアン濃度を規定値以下にすることができるが、薬剤添加量を極力抑えて、より安全なシアン処理を行うことが求められている。
 そこで、本発明は、シアンを含有する廃水、特にチオシアン酸イオンやアンモニウムイオンなどの共存化合物が存在するシアン含有廃水に対して、従来よりも薬剤添加量を極力抑え、簡便な操作で安全に廃水中のシアンを除去し得るシアン含有廃水用処理剤およびそれを用いるシアン含有廃水の処理方法を提供することを課題とする。
For example, in the method (A) of Patent Document 1 described above, if an excessive amount of drug is added to cyanide-containing wastewater, the cyan concentration can be reduced to a specified value or less, but the drug addition amount is suppressed as much as possible. There is a demand for safer cyan processing.
Therefore, the present invention is a wastewater containing cyanide, particularly cyanide-containing wastewater containing coexisting compounds such as thiocyanate ion and ammonium ion, and the amount of chemical addition is suppressed as much as possible, and wastewater can be safely and easily operated. It is an object of the present invention to provide a cyanide-containing wastewater treatment agent capable of removing cyanide therein and a method for treating cyanide-containing wastewater using the same.
 本発明の発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、共存物質が存在するシアン含有廃水に、N-クロロスルファマートおよび/またはN-ブロモスルファマートを、さらにはN-クロロスルファマートおよび/またはN-ブロモスルファマートと、過酸化水素および/または金属化合物とを存在させることにより、意外にも、従来よりも薬剤添加量を極力抑え、簡便な操作で安全に廃水中のシアンを除去し得る事実を見出し、本発明を完成するに到った。 The inventors of the present invention have made extensive studies to solve the above problems, and as a result, N-chlorosulfamate and / or N-bromosulfamate is further added to cyanogen-containing wastewater in which coexisting substances exist. Surprisingly, by adding N-chlorosulfamate and / or N-bromosulfamate and hydrogen peroxide and / or metal compound, the amount of drug added is surprisingly reduced and the operation is simple. Thus, the present inventors have found the fact that cyanide in wastewater can be removed safely and completed the present invention.
 かくして、本発明によれば、N-クロロスルファマートおよび/またはN-ブロモスルファマートを含有する水溶液であるシアン含有廃水用処理剤が提供される。
 さらには、本発明によれば、上記のN-クロロスルファマートおよび/またはN-ブロモスルファマートを含有する水溶液と、過酸化水素または金属化合物を含有する水溶液との2液、または上記のN-クロロスルファマートおよび/またはN-ブロモスルファマートを含有する水溶液と、過酸化水素を含有する水溶液と、金属化合物を含有する水溶液との3液の組み合わせからなるシアン含有廃水用処理剤が提供される。
Thus, according to the present invention, there is provided a treating agent for waste water containing cyanide, which is an aqueous solution containing N-chlorosulfamate and / or N-bromosulfamate.
Further, according to the present invention, two solutions of an aqueous solution containing the above N-chlorosulfamate and / or N-bromosulfamate and an aqueous solution containing hydrogen peroxide or a metal compound, or the above-mentioned Treatment agent for waste water containing cyanide comprising a combination of three solutions of an aqueous solution containing N-chlorosulfamate and / or N-bromosulfamate, an aqueous solution containing hydrogen peroxide, and an aqueous solution containing a metal compound Is provided.
 また、本発明によれば、上記のシアン含有廃水用処理剤を、シアン含有廃水中に存在させ、該廃水中のシアンを分解もしくは不溶化させて該廃水からシアンを除去するシアン含有廃水の処理方法が提供される。 Further, according to the present invention, the cyanide-containing wastewater treatment method comprises removing the cyanide from the wastewater by causing the cyanide-containing wastewater treatment agent to exist in the cyanide-containing wastewater, and decomposing or insolubilizing the cyanide in the wastewater. Is provided.
 本発明によれば、シアンを含有する廃水、特にチオシアン酸イオンやアンモニウムイオンなどの共存化合物が存在するシアン含有廃水に対して、従来よりも薬剤添加量を極力抑え、簡便な操作で安全に廃水中のシアンを除去し得るシアン含有廃水用処理剤およびそれを用いるシアン含有廃水の処理方法を提供することができる。
 すなわち、本発明によれば、各種形態で廃水中に含有するすべてのシアン、特にシアン化物イオンを、従来よりも薬剤添加量を極力抑え、簡便な操作で処理することができる。
 よって、本発明の方法で処理した廃水をそのまま自然界に放出しても、環境に対する影響を非常に少なくできることから、本発明の方法は産業上極めて有用である。
According to the present invention, cyanide-containing wastewater, particularly cyanide-containing wastewater in which coexisting compounds such as thiocyanate ions and ammonium ions are present, the amount of chemicals to be added is suppressed as much as possible, and wastewater can be safely and easily operated. It is possible to provide a cyanide-containing wastewater treatment agent capable of removing cyanide therein and a method for treating cyanide-containing wastewater using the same.
That is, according to the present invention, all cyan, particularly cyanide ions, contained in the wastewater in various forms can be treated with a simple operation while suppressing the amount of drug addition as much as possible.
Therefore, even if the wastewater treated by the method of the present invention is released into nature as it is, the influence on the environment can be very reduced, and therefore the method of the present invention is extremely useful industrially.
 本発明者らは、本発明の組み合わせのシアン含有廃水用処理剤に含有するN-クロロスルファマートやN-ブロモスルファマート、過酸化水素および金属化合物のそれぞれが有する、シアン除去効果が相乗的に発揮され、上記のような総合的に優れた効果が得られるものと考えている。
 具体的には、(1)N-クロロスルファマートやN-ブロモスルファマートに由来する塩化シアンの発生を過酸化水素が抑制し、(2)N-クロロスルファマートやN-ブロモスルファマートと過酸化水素がシアン除去に対して相乗的な効果を発揮し、(3)他の2成分により除去し得なかったあるいは除去効果が不完全であったシアンを、金属化合物が金属錯体形成により不溶化し、これらが総合的に機能して、本発明の優れた効果が発揮されるものと考えられる。
The inventors of the present invention have synergistic effects on the cyan removal effect of each of N-chlorosulfamate, N-bromosulfamate, hydrogen peroxide, and metal compound contained in the cyanide-containing wastewater treatment agent of the present invention. It is considered that the above-described comprehensively excellent effects can be obtained.
Specifically, (1) hydrogen peroxide suppresses the generation of cyanogen chloride derived from N-chlorosulfamate or N-bromosulfamate, and (2) N-chlorosulfamate or N-bromosulfamate. Famate and hydrogen peroxide have a synergistic effect on the removal of cyanide. (3) Cyanide, which could not be removed by the other two components, or the removal effect was incomplete, and the metal compound was a metal complex. It is considered that the insolubility is caused by the formation, and these function comprehensively, and the excellent effect of the present invention is exhibited.
 本発明のシアン含有廃水用処理剤は、次の要件のいずれか1つを満たす場合に、上記の効果をより発揮する。
(1)N-クロロスルファマートおよびN-ブロモスルファマートが、スルファミン酸と、次亜塩素酸および/または次亜臭素酸との反応生成物である。
(2)金属化合物が、マンガン、銅、亜鉛または鉄を含有する化合物である。
The cyanide-containing wastewater treatment agent of the present invention exerts the above effect more when any one of the following requirements is satisfied.
(1) N-chlorosulfamate and N-bromosulfamate are reaction products of sulfamic acid with hypochlorous acid and / or hypobromite.
(2) The metal compound is a compound containing manganese, copper, zinc or iron.
 また、本発明のシアン含有廃水の処理方法は、次の要件のいずれか1つを満たす場合に、上記の効果をより発揮する。
(3)シアン含有廃水中のシアン含有量に対して、シアン含有廃水用処理剤を、N-クロロスルファマートおよびN-ブロモスルファマートの合計の有効ハロゲン濃度が0.2モル当量以上になるように存在させる。
(4)シアン含有廃水中のシアン含有量に対して、シアン含有廃水用処理剤を、過酸化水素濃度が0.1モル当量以上になるように存在させる。
(5)シアン含有廃水中のシアン含有量に対して、シアン含有廃水用処理剤を、金属化合物の金属イオン濃度が0.1モル当量以上になるように存在させる。
(6)シアン含有廃水が、チオシアン酸およびその塩ならびにアンモニウムイオンから選択される1種以上の共存物質を含有する廃水である。
(7)シアン含有廃水が、pH6~11に調整された廃水である。
Moreover, the processing method of the cyanate containing wastewater of this invention exhibits said effect more, when satisfy | filling any one of the following requirements.
(3) The cyan-containing wastewater treatment agent has a total effective halogen concentration of N-chlorosulfamate and N-bromosulfamate of 0.2 molar equivalent or more with respect to the cyan content in the cyan-containing waste water. Make it exist.
(4) The cyanide-containing wastewater treatment agent is present so that the hydrogen peroxide concentration is 0.1 molar equivalent or more with respect to the cyan content in the cyan-containing wastewater.
(5) The cyanide-containing wastewater treatment agent is present so that the metal ion concentration of the metal compound is 0.1 molar equivalent or more with respect to the cyan content in the cyan-containing wastewater.
(6) Cyan-containing wastewater is wastewater containing one or more coexisting substances selected from thiocyanic acid and its salts and ammonium ions.
(7) Cyan-containing wastewater is wastewater adjusted to pH 6-11.
 ここで、「シアン含有廃水中のシアン含有量に対して、シアン含有廃水用処理剤をその特定成分の濃度が特定のモル当量以上になるように存在させる」とは、シアン含有廃水中の全シアンを1モル当量として、特定成分の濃度または換算濃度、具体的には、N-クロロスルファマートおよびN-ブロモスルファマートの合計の有効ハロゲン濃度、過酸化水素濃度または金属化合物の金属イオン濃度が特定のモル当量以上になるように添加することを意味する。 Here, "the cyanate-containing wastewater treatment agent is present so that the concentration of the specific component is equal to or higher than a specific molar equivalent with respect to the cyan content in the cyan-containing wastewater" Cyan as one molar equivalent, the concentration of a specific component or equivalent concentration, specifically, the total effective halogen concentration of N-chlorosulfamate and N-bromosulfamate, hydrogen peroxide concentration or metal ion of a metal compound It means that the concentration is added to a specific molar equivalent or more.
(A)シアン含有廃水用処理剤
 本発明のシアン含有廃水用処理剤は、N-クロロスルファマートおよび/またはN-ブロモスルファマート(2種を合わせて「スルファマート」ともいう)を含有する水溶液であることを特徴とする。
 また、本発明のシアン含有廃水用処理剤は、上記のN-クロロスルファマートおよび/またはN-ブロモスルファマートを含有する水溶液と、過酸化水素または金属化合物を含有する水溶液との2液、または上記のN-クロロスルファマートおよび/またはN-ブロモスルファマートを含有する水溶液と、過酸化水素を含有する水溶液と、金属化合物を含有する水溶液との3液の組み合わせからなることを特徴とする。
(A) Cyan-containing wastewater treatment agent The cyanide-containing wastewater treatment agent of the present invention contains N-chlorosulfamate and / or N-bromosulfamate (also referred to as “sulfamate”). It is an aqueous solution.
The cyanide-containing wastewater treatment agent of the present invention is a two-part solution comprising an aqueous solution containing the above-mentioned N-chlorosulfamate and / or N-bromosulfamate and an aqueous solution containing hydrogen peroxide or a metal compound. Or a combination of the above three solutions of an aqueous solution containing N-chlorosulfamate and / or N-bromosulfamate, an aqueous solution containing hydrogen peroxide, and an aqueous solution containing a metal compound. Features.
(スルファマート)
 本発明のシアン含有廃水用処理剤のシアン処理の有効成分であるスルファマートは、公知の方法、例えば、特表2003-503323号公報、特開2006-022097号公報、特表平11-506139号公報、特表2001-501869号公報、特表2003-507326号公報および特開2014-101251号公報などに記載の方法により調製することができる。
 また、本発明のシアン含有廃水用処理剤の有効成分としては、シアン除去効果の点でN-クロロスルファマートがより好ましい。
 本発明では、スルファミン酸と、次亜塩素酸および/または次亜臭素酸との反応生成物を好適に用いることができる。この反応によるスルファマートの添加については、(B)シアン含有廃水の処理方法において詳説する。
(Sulfamate)
The sulfamate, which is an active ingredient for cyanide treatment of the cyanide-containing wastewater treatment agent of the present invention, can be obtained by a known method, for example, JP-T-2003-503323, JP-A-2006-022097, JP-A-11-506139. It can be prepared by the methods described in JP-T-2001-501869, JP-A-2003-507326 and JP-A-2014-101251.
Further, N-chlorosulfamate is more preferable as an active ingredient of the cyanide-containing wastewater treatment agent of the present invention from the viewpoint of cyan removal effect.
In the present invention, a reaction product of sulfamic acid and hypochlorous acid and / or hypobromite can be preferably used. The addition of sulfamate by this reaction will be described in detail in (B) Cyanide-containing wastewater treatment method.
 本発明のシアン含有廃水用処理剤の形態は水溶液であり、シアン含有廃水用処理剤としての有効成分濃度、すなわちスルファマートの合計の有効ハロゲン濃度は、0.5mg/L以上である。
 高濃度のシアン含有廃水用処理剤を用いる場合には、使用時に適宜、工業用水などの水で希釈すればよい。また、その場で有効成分を反応生成させる場合には、反応後の濃度がその処理条件に合うように、反応前の各化合物の水溶液濃度を適宜設定すればよい。
 また、本発明のシアン含有廃水用処理剤のpHは12以上であるのが好ましいが、その場で有効成分を反応生成させる場合にはこの限りではなく、スルファミン酸およびその塩の酸性を中和し得るアルカリ量であればよい。
The form of the cyanide-containing wastewater treatment agent of the present invention is an aqueous solution, and the active ingredient concentration as the cyanide-containing wastewater treatment agent, that is, the total effective halogen concentration of sulfamate is 0.5 mg / L or more.
When a high concentration cyanide-containing wastewater treatment agent is used, it may be appropriately diluted with water such as industrial water at the time of use. Further, when the active ingredient is reacted and produced on the spot, the aqueous solution concentration of each compound before the reaction may be appropriately set so that the concentration after the reaction matches the processing conditions.
In addition, the pH of the treatment agent for cyanide-containing wastewater of the present invention is preferably 12 or more, but this is not limited to the case where an active ingredient is reacted and produced on the spot, and the acidity of sulfamic acid and its salt is neutralized. Any alkali amount that can be used is acceptable.
(過酸化水素)
 本発明において用いられる過酸化水素としては、主に工業用として市販されている濃度3~60%の過酸化水素水溶液が挙げられる。
 また、過酸化水素供給化合物(「過酸化水素発生剤」ともいう)から発生させた過酸化水素や、用水またはアルカリ溶液の電気分解などで発生させた過酸化水素を用いることもできる。
 過酸化水素供給化合物としては、過酸化水素を水中で放出し得る過炭酸、過ホウ酸、ペルオキシ硫酸などの無機過酸、過酢酸のような有機過酸およびこれらの塩類が挙げられる。これら塩類としては、過炭酸ナトリウム、過ホウ酸ナトリウムなどが挙げられる。
 上記の過酸化水素および過酸化水素供給化合物は、添加に際して所望の過酸化水素濃度になるように工業用水などの水で希釈または溶解して用いてもよい。
(hydrogen peroxide)
Examples of the hydrogen peroxide used in the present invention include a hydrogen peroxide aqueous solution having a concentration of 3 to 60%, which is commercially available mainly for industrial use.
In addition, hydrogen peroxide generated from a hydrogen peroxide supply compound (also referred to as a “hydrogen peroxide generator”), or hydrogen peroxide generated by electrolysis of water or an alkaline solution can be used.
Examples of the hydrogen peroxide supplying compound include inorganic peracids such as percarbonate, perboric acid and peroxysulfuric acid capable of releasing hydrogen peroxide in water, organic peracids such as peracetic acid, and salts thereof. Examples of these salts include sodium percarbonate and sodium perborate.
The hydrogen peroxide and the hydrogen peroxide supply compound may be diluted or dissolved with water such as industrial water so that a desired hydrogen peroxide concentration is obtained upon addition.
(金属化合物)
 本発明において用いられる金属化合物としては、例えば、当該技術分野でシアン除去に用いられる金属化合物が挙げられ、具体的には、マンガン化合物、銅化合物、亜鉛化合物、鉄化合物などが挙げられる。
(Metal compound)
Examples of the metal compound used in the present invention include metal compounds used for cyan removal in the technical field, and specific examples include manganese compounds, copper compounds, zinc compounds, and iron compounds.
 (マンガン化合物)
 マンガン化合物は、水に可溶な中性塩であれば特に限定されず、塩化マンガン、硫酸マンガン、硝酸マンガン、硼酸マンガンおよび酢酸マンガンなどが挙げられる。これらの中でも、シアン化合物の除去効果およびシアン廃水の処理コストの点で、塩化マンガンが特に好ましい。
(Manganese compounds)
The manganese compound is not particularly limited as long as it is a neutral salt soluble in water, and examples thereof include manganese chloride, manganese sulfate, manganese nitrate, manganese borate, and manganese acetate. Among these, manganese chloride is particularly preferable from the viewpoints of the effect of removing cyanide and the cost of treating cyanide wastewater.
 (銅化合物)
 銅化合物は、水に可溶であり、水中で1価または2価の銅イオンを形成し得る化合物であれば特に限定されず、塩化第一銅、フッ化第一銅、臭化第一銅、ヨウ化第一銅、塩化第二銅、フッ化第二銅、硝酸銅および硫酸銅などが挙げられる。これらの中でも、シアン化合物の除去効果およびシアン廃水の処理コストの点で、塩化第一銅、塩化第二銅および硫酸銅が好ましく、塩化第一銅および塩化第二銅が特に好ましい。また、銅化合物は溶液の形態でシアン廃水に添加するのが好ましいが、銅化合物が第一銅塩である場合には、塩化水素水、ハロゲン化アルカリ金属水溶液またはエタノールを溶媒とする第一銅塩溶液とするのが、第一銅塩の安定性の点から好ましい。
(Copper compound)
The copper compound is not particularly limited as long as it is a compound that is soluble in water and can form monovalent or divalent copper ions in water. Cuprous chloride, cuprous fluoride, cuprous bromide , Cuprous iodide, cupric chloride, cupric fluoride, copper nitrate, and copper sulfate. Among these, cuprous chloride, cupric chloride, and copper sulfate are preferable, and cuprous chloride and cupric chloride are particularly preferable in terms of the effect of removing cyanide and the cost of treating cyanate wastewater. In addition, it is preferable to add the copper compound to the cyanate wastewater in the form of a solution. However, when the copper compound is a cuprous salt, the cuprous copper, aqueous alkali metal halide solution or ethanol is used as a solvent. It is preferable to use a salt solution from the viewpoint of the stability of the cuprous salt.
 (亜鉛化合物)
 亜鉛化合物は、水に可溶であり、水中で2価の亜鉛イオンを形成し得る化合物であれば特に限定されず、塩化亜鉛、硫酸亜鉛、塩化亜鉛アンモニウム(テトラクロロ亜鉛酸アンモニウム)、硝酸亜鉛、チオシアン酸亜鉛、酢酸亜鉛、乳酸亜鉛、クエン酸亜鉛などが挙げられる。これらの中でも、シアン化合物の除去効果およびシアン廃水の処理コストの点で、塩化亜鉛が特に好ましい。
(Zinc compound)
The zinc compound is not particularly limited as long as it is soluble in water and can form a divalent zinc ion in water. Zinc chloride, zinc sulfate, ammonium zinc chloride (ammonium tetrachlorozincate), zinc nitrate Zinc thiocyanate, zinc acetate, zinc lactate, zinc citrate and the like. Among these, zinc chloride is particularly preferred from the viewpoint of the effect of removing cyanide and the cost of treating cyanide wastewater.
 (鉄化合物)
 鉄化合物は、水に可溶であり、水中で2価の鉄イオンを形成し得る化合物であれば特に限定されず、塩化第一鉄、硫酸第一鉄、硫酸アンモニウム鉄(II)・6水和物などの第一鉄塩が挙げられる。これらの中でもシアン化合物の除去効果およびシアン廃水の処理コストの点で、塩化第一鉄が特に好ましい。
 本発明の方法では、水中で2価の鉄イオンを形成し得る化合物として、3価の鉄イオンを形成し得る化合物を還元剤と共にシアン含有廃水に添加するか、または還元性のシアン含有廃水に3価の鉄イオンを形成し得る化合物を添加して、廃水中で3価の鉄イオンを形成し得る化合物を還元させて生成した2価の鉄イオンを形成し得る化合物を含む。
 ここで、還元剤としては、例えば、亜硫酸塩、ヒドラジンなどが挙げられる。
(Iron compounds)
The iron compound is not particularly limited as long as it is soluble in water and can form a divalent iron ion in water. Ferrous chloride, ferrous sulfate, ammonium iron (II) sulfate hexahydrate Ferrous salts such as products. Among these, ferrous chloride is particularly preferable in terms of the effect of removing cyanide and the cost of treating cyanide wastewater.
In the method of the present invention, as a compound capable of forming a divalent iron ion in water, a compound capable of forming a trivalent iron ion is added to a cyanide-containing wastewater together with a reducing agent, or the reducing cyanide-containing wastewater is added. A compound capable of forming a divalent iron ion produced by reducing a compound capable of forming a trivalent iron ion in waste water by adding a compound capable of forming a trivalent iron ion.
Here, examples of the reducing agent include sulfite and hydrazine.
 上記の金属化合物の中でも、シアン化合物の除去効果およびシアン廃水の処理コストの点で、マンガン、銅、亜鉛または鉄を含有する化合物が好ましく、マンガン、銅または亜鉛を含有する化合物が特に好ましい。具体的には、塩化マンガン、塩化第一銅、塩化第二銅、塩化亜鉛および塩化第一鉄が挙げられ、塩化マンガン、塩化第一銅、塩化第二銅および塩化亜鉛が特に好ましい。
 金属化合物は、スルファマートや過酸化水素と同様に、所望の濃度になるように工業用水などの水に溶解して用いればよい。
Among the above metal compounds, a compound containing manganese, copper, zinc or iron is preferable, and a compound containing manganese, copper or zinc is particularly preferable from the viewpoint of the effect of removing a cyanide compound and the cost of treating cyanate wastewater. Specific examples include manganese chloride, cuprous chloride, cupric chloride, zinc chloride and ferrous chloride, with manganese chloride, cuprous chloride, cupric chloride and zinc chloride being particularly preferred.
Similar to sulfamate and hydrogen peroxide, the metal compound may be used by dissolving in water such as industrial water so as to have a desired concentration.
(製剤)
 本発明の組み合わせのシアン含有廃水用処理剤は、次のような水溶液の2液または3液の組み合わせからなる。
 (1)スルファマートを含有する水溶液と、過酸化水素を含有する水溶液と、金属化合物を含有する水溶液との3液の組み合わせ
 (2)スルファマートを含有する水溶液と、過酸化水素を含有する水溶液との2液の組み合わせ
 (3)スルファマートを含有する水溶液と、金属化合物を含有する水溶液との2液の組み合わせ
 上記の組み合わせの中でも、本発明の効果および製剤添加の操作性などの点で、製剤(1)または(2)が特に好ましい。
(Formulation)
The cyanate-containing wastewater treatment agent of the combination of the present invention comprises a combination of the following two aqueous solutions or three solutions.
(1) Combination of three solutions of an aqueous solution containing sulfamate, an aqueous solution containing hydrogen peroxide, and an aqueous solution containing a metal compound (2) An aqueous solution containing sulfamate and an aqueous solution containing hydrogen peroxide Combination of two liquids (3) Combination of two liquids of an aqueous solution containing a sulfamate and an aqueous solution containing a metal compound Among the above combinations, the preparation (1 ) Or (2) is particularly preferred.
 水溶液中のスルファマート、過酸化水素および金属化合物の濃度は、化合物の溶解度やpH、取扱い性などを考慮して適宜設定すればよい。 The concentration of sulfamate, hydrogen peroxide and metal compound in the aqueous solution may be appropriately set in consideration of the solubility, pH, handleability, etc. of the compound.
(シアン含有廃水)
 本発明において処理対象となるシアン含有廃水としては、製鉄工場、化学工場、メッキ工場、コークス製造工場、金属表面処理工場などから排出される金属のシアン化合物、シアン化物イオン、シアン錯体、シアノ錯イオンなどを含むシアン含有廃水、放射能汚染水の処理工程において排出されるシアン含有廃水、土壌の処理装置から排出されるシアン含有廃水が挙げられる。特に、本発明のシアン含有廃水の処理方法は、コークス炉廃水のような、緩衝作用の強いシアン含有廃水、すなわちチオシアン酸およびその塩ならびにアンモニウムイオンを含有するシアン含有廃水の処理に好適である。
(Cyanide wastewater)
Cyan-containing wastewater to be treated in the present invention includes metal cyanide, cyanide ion, cyanide complex, and cyano complex ion discharged from steel factories, chemical factories, plating factories, coke factories, metal surface treatment factories, etc. And the like, cyan-containing wastewater discharged in a treatment process of radioactively contaminated water, and cyan-containing wastewater discharged from a soil treatment apparatus. In particular, the method for treating cyanide-containing wastewater according to the present invention is suitable for treating cyanide-containing wastewater having a strong buffering action, such as coke oven wastewater, that is, cyanide-containing wastewater containing thiocyanic acid and salts thereof and ammonium ions.
 シアン含有廃水には、様々な共存物質、例えば、酸化剤と容易に反応し、ばっ気処理などにおいても反応すると考えられる、硫化物イオン、亜硫酸イオン、亜硝酸イオン、チオ硫酸イオン、ヒドラジン、第一鉄などの還元物質、ある一定以上の酸化力を有する酸化剤でなければ反応しないと考えられる、シアン化物イオン、チオシアン酸イオン、アンモニウムイオン、有機物(ホルムアルデヒド、アミノ酸、たんぱく質、微生物)などの難分解性物質が含まれている。 Cyanide-containing wastewater contains a variety of coexisting substances, such as sulfide ions, sulfite ions, nitrite ions, thiosulfate ions, hydrazine, which are considered to react easily with oxidants and aerobic treatment. Difficulties such as cyanide ions, thiocyanate ions, ammonium ions, organic substances (formaldehyde, amino acids, proteins, microorganisms) that can be reacted only with reducing substances such as ferrous iron and oxidants with a certain level of oxidizing power Contains degradable substances.
 これらの物質やイオンは、酸化力の強い酸化剤と反応すると考えられるが、本発明のシアン含有廃水用処理剤のシアン処理の有効成分であるスルファマートは、酸化力が弱く、シアン化物イオン(「フリーシアン」または「遊離シアン」ともいう)のような容易に酸化される物質のみに優先的に反応するものと考えられ、安定化ハロゲン系酸化剤ともいう。
 また、本発明のシアン含有廃水用処理剤の有効成分が、安定化ハロゲン系酸化剤として優先的にシアン化物イオンと反応して本発明の効果を発揮すると共に、ORP(酸化還元電位)の上昇や、シアン含有廃水中に多量のハロゲンが残存することによる装置内の配管母材の腐食の発生や塩の析出リスクの低減をも期待できる。
Although these substances and ions are considered to react with an oxidizing agent having a strong oxidizing power, sulfamate, which is an active ingredient for cyanating the cyanide-containing wastewater treatment agent of the present invention, has a weak oxidizing power, and cyanide ions (“ It is considered that it reacts preferentially only to easily oxidized substances such as “free cyan” or “free cyan” and is also referred to as a stabilized halogen oxidant.
In addition, the active ingredient of the cyanide-containing wastewater treatment agent of the present invention reacts preferentially with cyanide ions as a stabilizing halogen-based oxidant to exert the effect of the present invention and increase the ORP (redox potential). In addition, it can be expected that a large amount of halogen remains in the cyanate-containing wastewater, which causes corrosion of the pipe base material in the apparatus and reduction of the risk of salt precipitation.
 したがって、本発明のシアン含有廃水用処理剤は、チオシアン酸およびその塩ならびにアンモニウムイオンから選択される1種以上の共存物質を含有するシアン含有廃水の処理についても、好適に用いることができる。 Therefore, the cyanide-containing wastewater treatment agent of the present invention can be suitably used for treatment of cyanide-containing wastewater containing one or more coexisting substances selected from thiocyanic acid and salts thereof and ammonium ions.
 シアン含有廃水は、シアンの除去効果の点でpH6以上であればよく、具体的には、6、6.5、7、7.5、8、8.5、9、10および11であり、好ましくはpH6~11、より好ましくはpH6~9である。
 シアン含有廃水がpH6未満では、有害なシアン化水素ガスが気散する危険性がある。一方、シアン含有廃水がpH11を超えると、アルカリ薬剤のコストが嵩む課題があり、またpH9を超えると、廃水基準を超えるため、pH調整が必要となる。
 処理対象のシアン含有廃水は、通常、このような中性域からアルカリ性域にあるが、この範囲外にある場合には、本発明の効果を阻害しない酸またはアルカリ、例えば硫酸または水酸化ナトリウムを処理廃水に添加してpHを調整すればよい。
The cyan-containing wastewater may have a pH of 6 or more in terms of the effect of removing cyan, specifically 6, 6.5, 7, 7.5, 8, 8.5, 9, 10 and 11. The pH is preferably 6 to 11, more preferably pH 6 to 9.
If the cyan-containing wastewater is less than pH 6, harmful hydrogen cyanide gas may be diffused. On the other hand, when the cyan-containing wastewater exceeds pH 11, there is a problem that the cost of the alkali chemicals increases. When the pH exceeds 9, the pH needs to be adjusted because it exceeds the wastewater standard.
Cyanide-containing wastewater to be treated is usually in such a neutral to alkaline range, but if it is outside this range, an acid or alkali that does not hinder the effects of the present invention, such as sulfuric acid or sodium hydroxide, is added. What is necessary is just to add pH to process wastewater and to adjust pH.
(B)シアン含有廃水の処理方法
 本発明のシアン含有廃水の処理方法は、本発明のシアン含有廃水用処理剤を、シアン含有廃水中に存在させ、該廃水中のシアンを分解もしくは不溶化させて該廃水からシアンを除去することを特徴とする。
(B) Cyanogen-containing wastewater treatment method The cyanide-containing wastewater treatment method of the present invention comprises treating the cyanide-containing wastewater treatment agent of the present invention in cyanide-containing wastewater, and decomposing or insolubilizing cyanide in the wastewater. Cyanide is removed from the wastewater.
 本発明の発明者らは、「廃水中のシアンの分解」は、添加されたスルファマートによりシアンが酸化され、さらに生成されたシアン酸が加水分解により炭酸水素アンモニウムを生成することによるものと考えている。
 また、本発明の発明者は、「廃水中のシアンの不溶化」は、添加された金属化合物により、該廃水中のシアンと水不溶性の金属錯塩を形成することによるものと考えている。
The inventors of the present invention consider that “degradation of cyanide in wastewater” is due to the fact that cyanide is oxidized by the added sulfamate, and the produced cyanic acid generates ammonium hydrogen carbonate by hydrolysis. Yes.
The inventors of the present invention consider that “insolubilization of cyanide in wastewater” is due to the formation of a water-insoluble metal complex with cyanide in the wastewater by the added metal compound.
 本発明のシアン含有廃水の処理方法において、シアン含有廃水にスルファマートを存在させる方法は、特に限定されない。例えば、アルカリ剤およびグリシン、α-アラニン、グルタミン酸ナトリウム、アスパラギン酸ナトリウム、メチオニンおよびリジン塩酸塩などのアミノ酸類、スルファミン酸、コハク酸イミド、カプロラクタム、マレインイミドなどのアミド類、タウリンから選択される安定化剤を含有する水溶液と、次亜塩素酸および/または次亜臭素酸を含有する水溶液とを同時または別々に添加する方法や、アルカリ剤、スルファミン酸および臭化ナトリウムを含有する水溶液と、次亜塩素酸を含有する水溶液とを同時または別々に添加する方法等が挙げられる。 In the method for treating cyanide-containing wastewater of the present invention, the method for allowing sulfamate to be present in the cyanide-containing wastewater is not particularly limited. For example, a stabilizing agent selected from alkaline agents and amino acids such as glycine, α-alanine, sodium glutamate, sodium aspartate, methionine and lysine hydrochloride, amides such as sulfamic acid, succinimide, caprolactam, maleimide, and taurine An aqueous solution containing an agent and an aqueous solution containing hypochlorous acid and / or hypobromite simultaneously or separately, an aqueous solution containing an alkaline agent, sulfamic acid and sodium bromide, Examples thereof include a method of adding the aqueous solution containing chlorous acid simultaneously or separately.
(スルファミン酸)
 本発明において用いられるスルファミン酸は、水中でスルファミン酸を生成して次亜塩素酸および次亜臭素酸と反応し得る化合物を水に溶解することにより得ることができる。例えば、スルファミン酸ナトリウム、スルファミン酸カリウムなどのスルファミン酸のアルカリ金属塩;メチルスルファミン酸、メチルスルファミン酸ナトリウム、メチルスルファミン酸カリウム、メチルスルファミン酸アンモニウム、フェニルスルファミン酸、フェニルスルファミン酸ナトリウム、フェニルスルファミン酸カリウム、フェニルスルファミン酸アンモニウムなどの有機スルファミン酸またはその塩が挙げられる。特に、スルファミン酸ナトリウム、スルファミン酸カリウムは工業的に入手し易く、本発明において好適に用いられる。
(Sulfamic acid)
The sulfamic acid used in the present invention can be obtained by dissolving a compound capable of producing sulfamic acid in water and reacting with hypochlorous acid and hypobromous acid in water. For example, alkali metal salts of sulfamic acid such as sodium sulfamate and potassium sulfamate; methyl sulfamic acid, sodium methyl sulfamate, potassium methyl sulfamate, ammonium methyl sulfamate, phenyl sulfamic acid, sodium phenyl sulfamate, potassium phenyl sulfamate And organic sulfamic acid such as ammonium phenylsulfamate or a salt thereof. In particular, sodium sulfamate and potassium sulfamate are industrially easily available and are preferably used in the present invention.
(次亜塩素酸および次亜臭素酸)
 本発明において用いられる次亜塩素酸および次亜臭素酸は、水中でそれぞれ次亜塩素酸および次亜臭素酸を生成してスルファミン酸と反応し得る化合物を水に溶解することにより得ることができる。例えば、次亜塩素酸ナトリウム、次亜塩素酸カリウム、次亜塩素酸カルシウム、次亜塩素酸マグネシウム、次亜臭素酸ナトリウム、次亜臭素酸カリウム、次亜臭素酸カルシウム、次亜臭素酸マグネシウムなどの次亜塩素酸および次亜臭素酸のアルカリ金属塩およびアルカリ土類金属塩が挙げられる。特に、次亜塩素酸ナトリウム、次亜塩素酸カリウム、次亜臭素酸ナトリウム、次亜臭素酸カリウムは工業的に入手し易く、本発明において好適に用いられる。また、食塩水や海水を電解槽で電解することによって得られる次亜塩素酸であってもよい。
(Hypochlorous acid and hypobromous acid)
Hypochlorous acid and hypochlorous acid used in the present invention can be obtained by dissolving in water a compound capable of reacting with sulfamic acid by producing hypochlorous acid and hypobromite in water, respectively. . For example, sodium hypochlorite, potassium hypochlorite, calcium hypochlorite, magnesium hypochlorite, sodium hypobromite, potassium hypobromite, calcium hypobromite, magnesium hypobromite, etc. And alkali metal salts and alkaline earth metal salts of hypochlorous acid and hypobromite. In particular, sodium hypochlorite, potassium hypochlorite, sodium hypobromite, and potassium hypobromite are industrially easily available and are preferably used in the present invention. Moreover, the hypochlorous acid obtained by electrolyzing salt solution and seawater with an electrolytic tank may be sufficient.
(アルカリ剤)
 本発明において用いられるアルカリ剤は、スルファミン酸およびその塩の酸性を中和し、かつその水溶液のpHをアルカリ性にし、かつ次亜ハロゲン酸とスルファミン酸との反応生成物であるN-クロロスルファマート水溶液またはN-ブロモスルファマート水溶液の安定性に寄与する機能を有する。アルカリ剤は、このような機能を発揮し得る化合物であれば特に限定されず、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化マグネシウム、水酸化カルシウム、炭酸ナトリウム、炭酸カリウムなどが挙げられる。特に、水酸化ナトリウムや水酸化カリウムは工業的に入手し易く、本発明において好適に用いられる。
(Alkaline agent)
The alkaline agent used in the present invention neutralizes the acidity of sulfamic acid and its salt, makes the pH of the aqueous solution alkaline, and is a reaction product of hypohalous acid and sulfamic acid. It has a function that contributes to the stability of the aqueous solution of mart or N-bromosulfamate. The alkaline agent is not particularly limited as long as it is a compound that can exhibit such a function, and examples thereof include sodium hydroxide, potassium hydroxide, lithium hydroxide, magnesium hydroxide, calcium hydroxide, sodium carbonate, and potassium carbonate. Can be mentioned. In particular, sodium hydroxide and potassium hydroxide are industrially easily available and are preferably used in the present invention.
(スルファマート単独の場合の添加量と添加)
 本発明のシアン含有廃水用処理剤へのスルファマートの添加量(シアン含有廃水中に存在させる量)は、シアン含有廃水に含まれるシアンの種類およびその濃度のほかに、シアン含有廃水に含まれる他の金属イオンの種類およびその濃度などの影響を受けるので、これらの添加量は条件に応じて適宜決定すればよい。具体的には、処理前のシアン含有廃水のシアン濃度などを予め測定しておき、この測定値に基づいて、各添加剤の添加量を決定すればよい。
(Addition amount and addition in the case of sulfamate alone)
The amount of sulfamate added to the cyanide-containing wastewater treatment agent of the present invention (the amount present in the cyanide-containing wastewater) is not limited to the type and concentration of cyan contained in the cyan-containing wastewater, The amount of these metal ions may be appropriately determined according to the conditions. Specifically, the cyan concentration of the cyan-containing wastewater before the treatment is measured in advance, and the addition amount of each additive may be determined based on the measured value.
 シアン含有廃水のシアン濃度の測定には、公知の方法を適用することができる。その方法としては、ピリジン-ピラゾロン吸光光度法、4-ピリジンカルボン酸-ピラゾロン吸光光度法、イオン電極法、流れ分析法などのJIS K0102:2013「工場排水試験方法の項目38に規定された方法、ピクリン酸法、微量拡散-イオン電極法、酢酸緩衝液使用微量拡散法、フローインジェクション-イオン電極法、フローインジェクション-化学発光法、蛍光誘導体化HPLC法、電気伝導度検出イオンクロマトグラフ法、電気化学検出イオンクロマトグラフ法などの応用方法などが挙げられる。実際には、シアン含有廃水の状態などに応じて適宜選択すればよく、実施例で用いているようなピクリン酸法による全シアン検出器を用いてもよい。 A known method can be applied to the measurement of the cyan concentration of the wastewater containing cyanide. Examples of the method include pyridine-pyrazolone absorptiometry, 4-pyridinecarboxylic acid-pyrazolone absorptiometry, ion electrode method, flow analysis method and the like as defined in item 38 of JIS K0102: 2013 “Factory drainage test method, Picric acid method, micro diffusion-ion electrode method, micro diffusion method using acetate buffer, flow injection-ion electrode method, flow injection-chemiluminescence method, fluorescence derivatization HPLC method, conductivity detection ion chromatograph method, electrochemistry Application methods such as detection ion chromatography, etc. In practice, it may be selected as appropriate according to the state of cyanogen-containing wastewater, etc., and an all-cyan detector using the picric acid method as used in the examples is used. It may be used.
 本発明のシアン含有廃水用処理剤の添加量は対象となるシアン含有廃水中に含まれるシアンの含有量により異なるが、シアン含有廃水に、その中のシアン含有量に対して、スルファマートの合計量の有効ハロゲン濃度が0.2モル当量以上になるように存在させるのが好ましい。具体的な有効ハロゲン濃度(モル当量)は、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1、1.5、2、2.5、3、3.5、4、4.5、5、5.5、6、6.5、7、7.5、8、8.5、9、9.5、10である。
 より好ましくは、シアン含有廃水中のシアン含有量に対して、その有効ハロゲン濃度として1モル当量以上である。
 その有効ハロゲン濃度が0.2モル当量未満では、シアン化物イオンとの反応が十分に起こらないため、シアン除去の効果が不十分になることがある。また、シアン含有廃水用処理剤の添加量の上限は特にないが、10モル当量程度であれば、十分なシアン除去効果が得られる。
The amount of the cyan-containing wastewater treatment agent of the present invention is different depending on the cyan content contained in the target cyan-containing waste water, but the total amount of sulfamate in the cyan-containing waste water with respect to the cyan content therein. It is preferable to exist so that the effective halogen concentration is 0.2 molar equivalent or more. Specific effective halogen concentrations (molar equivalents) are 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10 is there.
More preferably, the effective halogen concentration is 1 molar equivalent or more with respect to the cyan content in the cyan-containing wastewater.
If the effective halogen concentration is less than 0.2 molar equivalent, the reaction with cyanide ions does not occur sufficiently, and the effect of removing cyan may be insufficient. In addition, there is no particular upper limit on the amount of cyanide-containing wastewater treatment agent added, but if it is about 10 molar equivalents, a sufficient cyan removal effect can be obtained.
 本発明において処理対象となるシアン含有廃水におけるシアンの含有量は、特に限定されないが、上記のシアン含有廃水は、一般に全シアン濃度で2~500mg/L程度である。このようなシアン含有廃水を処理する場合には、シアン含有廃水に対して、アルカリ剤を0.6~2000mg/L、好ましくは1~600mg/L、スルファミン酸化合物を0.05~1000mg/L、好ましくは0.08~300mg/L、次亜塩素酸塩および次亜臭素酸塩を合計で3~10000mg/L、好ましくは5~3000mg/Lとなるように、シアン含有廃水に添加すればよい。 The cyan content in the cyan-containing wastewater to be treated in the present invention is not particularly limited, but the above-mentioned cyan-containing wastewater is generally about 2 to 500 mg / L in terms of the total cyan concentration. In the case of treating such cyanide-containing wastewater, the alkali agent is 0.6 to 2000 mg / L, preferably 1 to 600 mg / L, and the sulfamic acid compound is 0.05 to 1000 mg / L based on the cyanide-containing wastewater. Preferably, 0.08 to 300 mg / L, hypochlorite and hypobromite are added to the cyanide-containing wastewater so that the total amount is 3 to 10000 mg / L, preferably 5 to 3000 mg / L. Good.
(スルファマートとの組み合わせの場合の添加量と添加)
 本発明のシアン含有廃水用処理剤の添加量(シアン含有廃水中に存在させる量)は、シアン含有廃水に含まれるシアンの種類およびその濃度のほかに、シアン含有廃水に含まれる他の金属イオンの種類およびその濃度などの影響を受けるので、これらの添加量は条件に応じて適宜決定すればよい。具体的には、処理前のシアン含有廃水のシアン濃度などを予め測定しておき、この測定値に基づいて、各添加剤の添加量を決定すればよい。
 シアン含有廃水のシアン濃度の測定については、スルファマート単独の場合の添加量と添加と同様である。
(Addition amount and addition in the case of combination with sulfamate)
The addition amount of the treatment agent for cyanide-containing wastewater of the present invention (the amount present in the cyanide-containing wastewater) is not limited to the type and concentration of cyan contained in the cyan-containing wastewater, but other metal ions contained in the cyan-containing wastewater. Therefore, the amount of addition may be determined appropriately according to the conditions. Specifically, the cyan concentration of the cyan-containing wastewater before the treatment is measured in advance, and the addition amount of each additive may be determined based on the measured value.
The measurement of the cyan concentration of the waste water containing cyan is the same as the addition amount and addition in the case of sulfamate alone.
 本発明のシアン含有廃水用処理剤の添加量は対象となるシアン含有廃水中に含まれるシアンの含有量により異なり、適宜設定すればよい。
 スルファマートは、他の成分との併用効果が得られる分、スルファマート単独の場合よりも少なくてもよく、例えば、シアン含有廃水に、その中のシアン含有量に対して、スルファマートの合計量の有効ハロゲン濃度が0.1モル当量以上になるように存在させるのが好ましい。具体的な有効ハロゲン濃度(モル当量)は、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1、1.5、2、2.5、3、3.5、4、4.5、5、5.5、6、6.5、7、7.5、8、8.5、9、9.5、10である。より好ましくは、シアン含有廃水中のシアン含有量に対して、その有効ハロゲン濃度として0.5モル当量以上である。
 その有効ハロゲン濃度が0.1モル当量未満では、シアン化物イオンとの反応が十分に起こらないため、シアン除去の効果が不十分になることがある。また、シアン含有廃水用処理剤の添加量の上限は特にないが、10モル当量程度であれば、十分なシアン除去効果が得られる。
The addition amount of the cyanide-containing wastewater treatment agent of the present invention varies depending on the cyan content contained in the target cyanide-containing wastewater, and may be set as appropriate.
The amount of sulfamate may be less than that of sulfamate alone because the combined effect with other components can be obtained. For example, in the waste water containing cyanide, the total amount of effective halogen of sulfamate relative to the cyan content therein It is preferable to make it exist so that a density | concentration may be 0.1 molar equivalent or more. Specific effective halogen concentrations (molar equivalents) are 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9. 5 and 10. More preferably, the effective halogen concentration is 0.5 molar equivalent or more with respect to the cyan content in the cyan-containing wastewater.
If the effective halogen concentration is less than 0.1 molar equivalent, the reaction with cyanide ions does not occur sufficiently, and the effect of removing cyan may be insufficient. In addition, there is no particular upper limit on the amount of cyanide-containing wastewater treatment agent added, but if it is about 10 molar equivalents, a sufficient cyan removal effect is obtained.
 また、過酸化水素は、シアン含有廃水に、その中のシアン含有量に対して、0.1モル当量以上になるように存在させるのが好ましい。具体的な過酸化水素濃度(モル当量)は、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1、1.5、2、2.5、3、3.5、4、4.5、5、5.5、6、6.5、7、7.5、8、8.5、9、9.5、10である。
 より好ましくは、シアン含有廃水中のシアン含有量に対して、その過酸化水素濃度として0.5モル当量以上である。
 その過酸化水素濃度が0.1モル当量未満では、シアン化物イオンとの反応が十分に起こらないため、シアン除去の効果が不十分になることがある。また、シアン含有廃水用処理剤の添加量の上限は特にないが、10モル当量程度であれば、十分なシアン除去効果が得られる。
In addition, it is preferable that hydrogen peroxide is present in the cyan-containing wastewater so as to be 0.1 molar equivalent or more with respect to the cyan content therein. Specific hydrogen peroxide concentration (molar equivalent) is 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9 .5,10.
More preferably, the hydrogen peroxide concentration is 0.5 molar equivalent or more with respect to the cyan content in the cyan-containing wastewater.
If the hydrogen peroxide concentration is less than 0.1 molar equivalent, the reaction with cyanide ions does not occur sufficiently, and the effect of removing cyan may be insufficient. In addition, there is no particular upper limit on the amount of cyanide-containing wastewater treatment agent added, but if it is about 10 molar equivalents, a sufficient cyan removal effect is obtained.
 さらに、金属化合物は、その化合物により異なるが、シアン含有廃水に、その中のシアン含有量に対して、その金属イオン濃度が0.1モル当量以上になるように存在させるのが好ましい。具体的な金属イオン濃度(モル当量)は、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1、1.5、2、2.5、3、3.5、4、4.5、5、5.5、6、6.5、7、7.5、8、8.5、9、9.5、10である。
 より好ましくは、シアン含有廃水中のシアン含有量に対して、その金属イオン濃度として0.5モル当量以上である。
 その金属イオン濃度が0.1モル当量未満では、シアン化物イオンとの反応が十分に起こらないため、シアン除去の効果が不十分になることがある。また、シアン含有廃水用処理剤の添加量の上限は特にないが、10モル当量程度であれば、十分なシアン除去効果が得られる。
Further, although the metal compound varies depending on the compound, it is preferable that the metal ion is present in the cyan-containing wastewater so that the metal ion concentration is 0.1 molar equivalent or more with respect to the cyan content therein. Specific metal ion concentrations (molar equivalents) are 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9. 5 and 10.
More preferably, the metal ion concentration is 0.5 molar equivalent or more with respect to the cyan content in the cyan-containing wastewater.
If the metal ion concentration is less than 0.1 molar equivalent, the reaction with cyanide ions does not occur sufficiently, and the effect of removing cyan may be insufficient. In addition, there is no particular upper limit on the amount of cyanide-containing wastewater treatment agent added, but if it is about 10 molar equivalents, a sufficient cyan removal effect can be obtained.
 本発明において処理対象となるシアン含有廃水におけるシアンの含有量は、特に限定されないが、上記のシアン含有廃水は、一般に全シアン濃度で2~500mg/L程度である。このようなシアン含有廃水を処理する場合には、シアン含有廃水に対して、アルカリ剤を0.3~2000mg/L、好ましくは0.5~600mg/L、スルファミン酸化合物を0.02~1000mg/L、好ましくは0.04~300mg/L、次亜塩素酸塩および次亜臭素酸塩を合計で1~10000mg/L、好ましくは2.5~3000mg/Lとなるように、シアン含有廃水に添加すればよい。
 また、過酸化水素を0.2~6500mg/L、好ましくは1~2000mg/L、金属化合物を0.4~12000mg/L、好ましくは2~3600mg/Lとなるように、シアン含有廃水に添加すればよい。
The cyan content in the cyan-containing wastewater to be treated in the present invention is not particularly limited, but the above-mentioned cyan-containing wastewater is generally about 2 to 500 mg / L in terms of the total cyan concentration. In the case of treating such cyanide-containing wastewater, the alkali agent is 0.3 to 2000 mg / L, preferably 0.5 to 600 mg / L, and the sulfamic acid compound is 0.02 to 1000 mg based on the cyanide-containing wastewater. / L, preferably 0.04 to 300 mg / L, cyanide-containing wastewater so that the total amount of hypochlorite and hypobromite is 1 to 10000 mg / L, preferably 2.5 to 3000 mg / L It may be added to.
In addition, hydrogen peroxide is added to cyanide-containing wastewater so that the concentration is 0.2 to 6500 mg / L, preferably 1 to 2000 mg / L, and the metal compound is 0.4 to 12000 mg / L, preferably 2 to 3600 mg / L. do it.
 本発明のシアン含有廃水の処理方法では、処理対象のシアン含有廃水中に2液または3液の組み合わせからなる製剤を同時または別々に添加することにより、スルファマートと、過酸化水素および/または金属化合物とを処理対象のシアン含有廃水中に存在させればよい。その添加には、既存の設備を用いてもよい。 In the method for treating cyanide-containing wastewater of the present invention, sulfamate, hydrogen peroxide and / or metal compound are added by simultaneously or separately adding a preparation comprising a combination of two or three liquids to the cyanide-containing wastewater to be treated. In the waste water containing cyanide to be treated. For the addition, existing equipment may be used.
(シアン含有廃水)
 処理対象のシアン含有廃水は、(A)シアン含有廃水用処理剤で説明したとおりであり、チオシアン酸およびその塩ならびにアンモニウムイオンから選択される1種以上の共存物質を含有する廃水であるのが好ましい。
 また、処理対象のシアン含有廃水は、pH6~11であるのが好ましく、この範囲外にある場合には、酸またはアルカリで調整された廃液であるのが好ましい。
(Cyanide wastewater)
The cyanide-containing wastewater to be treated is as described in (A) Treatment agent for cyanide-containing wastewater, and is a wastewater containing one or more coexisting substances selected from thiocyanic acid and its salts and ammonium ions. preferable.
Further, the cyan-containing wastewater to be treated preferably has a pH of 6 to 11, and if it is outside this range, it is preferably a waste liquid adjusted with acid or alkali.
(撹拌)
 上記の各化合物の添加時、およびこれらの添加された化合物とシアンとの反応時には、シアンの除去効果の点で、混合溶液を撹拌するのが好ましい。この撹拌は、各化合物の添加毎に実施するのが好ましい。
 また、撹拌時の反応を促進する意味で、混合溶液は、添加した化合物が分解されない、ある程度加温された状態であるのが好ましく、その液温は20~60℃程度である。
 さらに、撹拌時の反応に要する時間は、シアン含有廃水の量、シアンの種類およびその濃度、処理装置の形態およびその規模などにより異なるが、シアンと添加した化合物とが十分に接触するように適宜決定すればよい。通常、撹拌時間は10分以上であればよく、20~60分とするのがより好ましい。
(Stirring)
It is preferable to stir the mixed solution from the viewpoint of the effect of removing cyan at the time of adding each of the above compounds and at the time of reaction between these added compounds and cyan. This stirring is preferably performed every time each compound is added.
In order to promote the reaction during stirring, the mixed solution is preferably in a state of being heated to some extent so that the added compound is not decomposed, and the liquid temperature is about 20 to 60 ° C.
Furthermore, the time required for the reaction during stirring varies depending on the amount of cyanide-containing wastewater, the type and concentration of cyanide, the form of the treatment apparatus and the scale thereof, and so on, so that cyan and the added compound are in sufficient contact. Just decide. Usually, the stirring time may be 10 minutes or more, more preferably 20 to 60 minutes.
(処理および沈殿分離)
 化合物の添加、撹拌混合、沈降分離、水不溶性塩の除去などの一連の操作には、添加剤槽、反応処理槽、シックナーおよび除濁沈殿池などの公知の装置を用いることができ、既設の装置を転用してもよい。
 本発明のシアン含有廃水の処理方法では、本発明の効果を阻害しない範囲で、防錆剤、腐食防止剤、スケール分散剤、スライムコントロール剤、金属捕集剤、消泡剤などの公知の薬剤を併用してもよい。
 また、沈降分離においては、本発明の効果を阻害しない範囲で、界面活性剤や凝集剤を添加してもよい。
 さらに、本発明の効果を阻害しない範囲で、先行技術に記載のような公知の化学的なシアン処理方法や、赤外線や紫外線など公知の物理的なシアン処理方法と併用してもよい。
 ここで、本発明において「水不溶性」とは、化合物(塩)が20℃における水100gに対して1g以下の溶解度を有し、その化合物の水不溶分は、沈降分離や濾別により液相と分離可能であることを意味する。
(Processing and precipitation separation)
For a series of operations such as addition of compound, stirring and mixing, sedimentation separation, removal of water-insoluble salt, known apparatuses such as an additive tank, a reaction treatment tank, a thickener and a turbidity sedimentation basin can be used. The device may be diverted.
In the method for treating cyanide-containing wastewater according to the present invention, known agents such as a rust inhibitor, a corrosion inhibitor, a scale dispersant, a slime control agent, a metal scavenger, and an antifoaming agent, as long as the effects of the present invention are not impaired. May be used in combination.
Further, in the sedimentation separation, a surfactant or a flocculant may be added as long as the effects of the present invention are not impaired.
Furthermore, as long as the effects of the present invention are not impaired, a known chemical cyan treatment method as described in the prior art or a known physical cyan treatment method such as infrared rays or ultraviolet rays may be used in combination.
Here, in the present invention, “water-insoluble” means that the compound (salt) has a solubility of 1 g or less with respect to 100 g of water at 20 ° C., and the water-insoluble matter of the compound is separated into the liquid phase by sedimentation separation or filtration. And can be separated.
 以上の処理により、シアンを含有する廃水、特にチオシアン酸イオンやアンモニウムイオンなどの共存化合物が存在するシアン含有廃水に対して、従来よりも薬剤添加量を極力抑え、簡便な操作で安全に廃水中のシアンを除去し、処理前のシアン濃度(全シアン含有量(mg/L))を排水基準値以下に顕著に低減させることができ、処理後の廃水を中和処理なしに、そのまま下水などに排出または再利用することができる。
 本発明の方法において、処理排水をそのまま放流する場合には、全シアン濃度を排水基準値以下に低下させるのに必要な量の化合物を添加すればよいが、処理排水を他の排水で希釈して放流する場合には、希釈後の排水が上記の排水基準値以下になるように化合物を添加すればよい。
 通常、工場などにおいては、処理排水を他の排水で希釈して放流する場合が多く、費用に対する効果を考慮して、各有効成分の添加量をコントロールするのが好ましい。
 よって、処理後の全シアン濃度が1mg/L以下にならない場合、概ね5mg/L以下になる場合も本発明に含まれる処理であることが理解される。
Through the above treatment, wastewater containing cyanide, especially cyanide-containing wastewater containing coexisting compounds such as thiocyanate ions and ammonium ions, can be used safely and easily by simple operation. The cyan concentration before treatment (total cyan content (mg / L)) can be remarkably reduced below the wastewater standard value, and the treated wastewater can be treated directly as sewage without neutralization. Can be discharged or reused.
In the method of the present invention, when the treated wastewater is discharged as it is, it is sufficient to add an amount of a compound necessary for lowering the total cyan concentration below the wastewater standard value, but the treated wastewater is diluted with other wastewater. In the case of discharge, the compound may be added so that the waste water after dilution is less than the above waste water reference value.
Usually, in a factory or the like, the treated wastewater is often diluted with other wastewater and discharged, and it is preferable to control the amount of each active ingredient added in consideration of the cost effect.
Therefore, when the total cyan density after processing does not become 1 mg / L or less, it is understood that the processing is also included in the present invention when it becomes approximately 5 mg / L or less.
 本発明を製剤例および試験例により具体的に説明するが、本発明はこれらの製剤例および試験例により限定されるものではない。 The present invention will be specifically described with formulation examples and test examples, but the present invention is not limited to these formulation examples and test examples.
 下記の試験例1-1では、表1に示す水質を有するように調製した合成水(pH8.2)に、遊離シアン(F-CN)、チオシアン酸イオン(SCN-)およびアンモニウムイオン(NH4 +)が表3に示す含有量になるように調製した合成シアン含有廃水1-Aを用いた。
 上記の合成シアン含有廃水の調製には、フェロシアン化カリウム水溶液、シアン化カリウム水溶液、チオシアン酸カリウム水溶液、塩化カルシウム2水和物水溶液、塩化ナトリウム水溶液、硫酸ナトリウム水溶液、塩化アンモニウム水溶液および炭酸水素ナトリウム水溶液を用いた。
In Test Example 1-1 below, synthetic water (pH 8.2) prepared to have the water quality shown in Table 1 was mixed with free cyanide (F-CN), thiocyanate ion (SCN ), and ammonium ion (NH 4). Synthetic cyanine-containing wastewater 1-A prepared so that + ) has a content shown in Table 3 was used.
The above synthetic cyanide-containing wastewater was prepared using potassium ferrocyanide aqueous solution, potassium cyanide aqueous solution, potassium thiocyanate aqueous solution, calcium chloride dihydrate aqueous solution, sodium chloride aqueous solution, sodium sulfate aqueous solution, ammonium chloride aqueous solution and sodium hydrogen carbonate aqueous solution. .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 下記の試験例1-2では、某製鉄所のコークス炉廃水ラインより採取した、表2に示す水質を有するシアン含有廃水1-B(pH8.6)を用いた。 In Test Example 1-2 below, cyan-containing wastewater 1-B (pH 8.6) having the water quality shown in Table 2 collected from the coke oven wastewater line at Sakai Steel Works was used.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(製剤例1-1:N-クロロスルファマートの調製)
 容量500mLのビーカーに、それぞれ純水を48.8g、スルファミン酸を23.8g、48%水酸化ナトリウム水溶液を47.0g、10.6%次亜塩素酸ナトリウム水溶液を130.5g添加し、撹拌してN-クロロスルファマート水溶液(有効塩素濃度5.5%)を得た。
(Formulation Example 1-1: Preparation of N-chlorosulfamate)
48.8 g of pure water, 23.8 g of sulfamic acid, 47.0 g of 48% sodium hydroxide aqueous solution and 130.5 g of 10.6% sodium hypochlorite aqueous solution were added to a 500 mL beaker and stirred. Thus, an N-chlorosulfamate aqueous solution (effective chlorine concentration 5.5%) was obtained.
(製剤例1-2:N-ブロモスルファマートの調製)
 容量500mLのビーカーに、それぞれ10.6%次亜塩素酸ナトリウム水溶液を172g、48%水酸化ナトリウム水溶液を35g、臭化ナトリウムを40g添加し、50℃のウォーターバスで2時間撹拌して黄色透明水溶液を得た。また、これとは別に容量200mLのビーカーに、それぞれ純水を64.0g、スルファミン酸を31.2g、48%水酸化ナトリウム水溶液を27g添加し、撹拌して透明水溶液を得た。上述の黄色透明水溶液と透明水溶液を室温下で混合してN-ブロモスルファマート水溶液(有効臭素濃度10.2%)を得た。
(Formulation Example 1-2: Preparation of N-bromosulfamate)
172 g of 10.6% sodium hypochlorite aqueous solution, 35 g of 48% sodium hydroxide aqueous solution and 40 g of sodium bromide were added to a beaker with a capacity of 500 mL, respectively, and stirred in a water bath at 50 ° C. for 2 hours for yellow transparent An aqueous solution was obtained. Separately, 64.0 g of pure water, 31.2 g of sulfamic acid, and 27 g of 48% sodium hydroxide aqueous solution were added to a 200 mL beaker and stirred to obtain a transparent aqueous solution. The yellow transparent aqueous solution and the transparent aqueous solution described above were mixed at room temperature to obtain an N-bromosulfamate aqueous solution (effective bromine concentration 10.2%).
(試験例1-1)
 容量100mLのビーカーに、それぞれシアン含有廃水1-Aを100mL分注し、表3に示す濃度になるようにN-クロロスルファミン酸ナトリウム、N-ブロモスルファミン酸ナトリウム、次亜塩素酸ナトリウムおよび次亜臭素酸ナトリウムから選択される1種をそれぞれ添加して試験水を得た。
 一部の試験水には、硫酸水溶液または水酸化ナトリウム水溶液を添加して、試験水のpHが表3に示す値になるように調整した。
 次いで、得られた試験水を、撹拌装置(アズワン株式会社製、マグネチックスターラー、型式:RS-4AR、撹拌子:プレーン形、最長辺30mm)を用いて回転数250rpmで15分間撹拌した。
 次いで、試験水(処理液)中の全シアン濃度(T-CN)を、全シアン検定器(株式会社共立理化学研究所製、型式:WA-CNT)を用いてピクリン酸法により測定し、各試験水におけるシアン化合物の除去効果を評価した。
 この試験においては、薬剤を添加しないブランク試験(比較例1-4)を同時に行った。
 得られた結果を、添加化合物とその添加量および試験水のpHと共に表3に示す。
(Test Example 1-1)
Dispense 100 mL of cyanide-containing wastewater 1-A into a beaker with a capacity of 100 mL, and adjust the concentrations shown in Table 3 to sodium N-chlorosulfamate, sodium N-bromosulfamate, sodium hypochlorite and hypochlorous acid. One water selected from sodium bromate was added to obtain test water.
In some test waters, an aqueous sulfuric acid solution or an aqueous sodium hydroxide solution was added to adjust the pH of the test water to the values shown in Table 3.
Next, the obtained test water was stirred for 15 minutes at a rotational speed of 250 rpm using a stirrer (manufactured by AS ONE Corporation, magnetic stirrer, model: RS-4AR, stirrer: plain, longest side 30 mm).
Next, the total cyan concentration (T-CN) in the test water (treatment liquid) was measured by the picric acid method using a total cyan tester (manufactured by Kyoritsu Riken Co., Ltd., model: WA-CNT). The effect of removing cyanide in the test water was evaluated.
In this test, a blank test (Comparative Example 1-4) in which no drug was added was simultaneously performed.
The obtained results are shown in Table 3 together with the additive compound, its addition amount, and the pH of the test water.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3の試験結果から次のことがわかる。
・本発明のシアン含有廃水用処理剤で処理した場合には、十分なシアン除去効果を有すること(実施例1-1~1-11)
・共存物質(SCN-、NH4 +)を含むシアン含有廃水を、本発明のシアン含有廃水用処理剤で処理した場合にも、十分なシアン除去効果を有すること(実施例1-8~1-10)
・共存物質(SCN-、NH4 +)を含むシアン含有廃水を、次亜塩素酸ナトリウムまたは次亜臭素酸ナトリウムを含有するシアン含有廃水用処理剤で処理した場合には、十分なシアン除去の効果が得られないこと(比較例1-1~1-3)
・共存物質(SCN-)を含むシアン含有廃水を、次亜臭素酸ナトリウムを含有するシアン含有廃水用処理剤で処理した場合には、過剰量の次亜臭素酸ナトリウムを用いても十分なシアン除去効果が得られないこと(比較例1-2)
The following can be seen from the test results in Table 3.
-When treated with the cyanide-containing wastewater treatment agent of the present invention, it has a sufficient cyan removal effect (Examples 1-1 to 1-11)
Even when cyanide-containing wastewater containing coexisting substances (SCN , NH 4 + ) is treated with the treatment agent for cyanide-containing wastewater of the present invention, it has a sufficient cyan removal effect (Examples 1-8 to 1) -10)
・ When cyanide-containing wastewater containing coexisting substances (SCN , NH 4 + ) is treated with a cyanide-containing wastewater treatment agent containing sodium hypochlorite or sodium hypobromite, sufficient cyan removal is achieved. No effect is obtained (Comparative Examples 1-1 to 1-3)
· Coexisting materials (SCN -) a cyan-containing waste water comprising, when treated with cyanogen-containing wastewater treating agent containing sodium hypobromite, sufficient cyan even with excess sodium hypobromite Removal effect cannot be obtained (Comparative Example 1-2)
(試験例1-2)
 容量100mLのビーカーに、それぞれシアン含有廃水1-Bを100mL分注し、表4に示す濃度になるようにN-クロロスルファミン酸ナトリウムおよび次亜塩素酸ナトリウムから選択される1種をそれぞれ添加して試験水を得た。
 一部の試験水には、硫酸水溶液または水酸化ナトリウム水溶液を添加して、試験水のpHが表4に示す値になるように調整した。
 次いで、得られた試験水を、撹拌装置(アズワン株式会社製、マグネチックスターラー、型式:RS-4AR、撹拌子:プレーン形、最長辺30mm)を用いて回転数250rpmで15分間撹拌した。
 次いで、試験水(処理液)中の全シアン濃度(T-CN)をJIS K0102に準拠して測定し、各試験水におけるシアン化合物の除去効果を評価した。
 この試験においては、薬剤を添加しないブランク試験(比較例1-6)を同時に行った。
 得られた結果を、添加化合物とその添加量および試験水のpHと共に表4に示す。
(Test Example 1-2)
Dispense 100 mL of cyanide-containing wastewater 1-B into a beaker with a capacity of 100 mL, and add each one selected from sodium N-chlorosulfamate and sodium hypochlorite to the concentrations shown in Table 4. Test water was obtained.
In some test waters, an aqueous sulfuric acid solution or an aqueous sodium hydroxide solution was added to adjust the pH of the test water to the values shown in Table 4.
Next, the obtained test water was stirred for 15 minutes at a rotational speed of 250 rpm using a stirrer (manufactured by AS ONE Corporation, magnetic stirrer, model: RS-4AR, stirrer: plain, longest side 30 mm).
Subsequently, the total cyan density | concentration (T-CN) in test water (treatment liquid) was measured based on JISK0102, and the removal effect of the cyanide compound in each test water was evaluated.
In this test, a blank test (Comparative Example 1-6) in which no drug was added was simultaneously performed.
The obtained results are shown in Table 4 together with the additive compound, its addition amount, and the pH of the test water.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4の試験結果から次のことがわかる。
・本発明のシアン含有廃水用処理剤で処理した場合には、十分なシアン除去効果を有すること(実施例1-12~1-13)
・共存物質(SCN-、NH4 +)を含むシアン含有廃水を、次亜塩素酸ナトリウムを含有するシアン含有廃水用処理剤で処理した場合には、十分なシアン除去の効果が得られないこと(比較例1-5)
The following can be understood from the test results in Table 4.
-When treated with the cyanide-containing wastewater treatment agent of the present invention, it has a sufficient cyan removal effect (Examples 1-12 to 1-13)
· Coexisting materials (SCN -, NH 4 +) cyan-containing waste water comprising, when treated with cyanogen-containing wastewater treating agent containing sodium hypochlorite is not sufficient effect of cyanide removal are obtained (Comparative Example 1-5)
 本発明のシアン含有廃水用処理剤は、製剤例2-1~2-11のように、下記の所定濃度の化合物の水溶液の2液製剤または3液製剤とすることができる。
(製剤例2-1)
 ・35%N-クロロスルファマート水溶液
 ・3%過酸化水素水溶液
 ・30%塩化マンガン水溶液
(製剤例2-2)
 ・25%N-クロロスルファマート水溶液
 ・10%過酸化水素水溶液
 ・15%塩化第一銅水溶液
(製剤例2-3)
 ・20%N-クロロスルファマート水溶液
 ・15%過酸化水素水溶液
 ・25%塩化第二銅水溶液
(製剤例2-4)
 ・15%N-クロロスルファマート水溶液
 ・35%過酸化水素水溶液
 ・40%塩化亜鉛水溶液
(製剤例2-5)
 ・5%N-クロロスルファマート水溶液
 ・45%過酸化水素水溶液
 ・25%塩化第一鉄水溶液
The treatment agent for cyanide-containing wastewater of the present invention can be a two-part preparation or a three-part preparation of an aqueous solution of a compound having a predetermined concentration as described below in Preparation Examples 2-1 to 2-11.
(Formulation example 2-1)
・ 35% N-chlorosulfamate aqueous solution ・ 3% hydrogen peroxide aqueous solution ・ 30% manganese chloride aqueous solution (Formulation Example 2-2)
・ 25% N-chlorosulfamate aqueous solution ・ 10% hydrogen peroxide aqueous solution ・ 15% cuprous chloride aqueous solution (Formulation Example 2-3)
・ 20% N-chlorosulfamate aqueous solution ・ 15% hydrogen peroxide aqueous solution ・ 25% cupric chloride aqueous solution (Formulation Example 2-4)
・ 15% N-chlorosulfamate aqueous solution ・ 35% hydrogen peroxide aqueous solution ・ 40% zinc chloride aqueous solution (Formulation Example 2-5)
・ 5% N-chlorosulfamate aqueous solution ・ 45% hydrogen peroxide aqueous solution ・ 25% ferrous chloride aqueous solution
(製剤例2-6)
 ・20%N-クロロスルファマート水溶液
 ・35%過酸化水素水溶液
(製剤例2-7)
 ・25%N-クロロスルファマート水溶液
 ・30%塩化マンガン水溶液
(製剤例2-8)
 ・25%N-クロロスルファマート水溶液
 ・15%塩化第一銅水溶液
(製剤例2-9)
 ・20%N-クロロスルファマート水溶液
 ・25%塩化第二銅水溶液
(製剤例2-10)
 ・20%N-クロロスルファマート水溶液
 ・40%塩化亜鉛水溶液
(製剤例2-11)
 ・25%N-クロロスルファマート水溶液
 ・25%塩化第一鉄水溶液
(Formulation Example 2-6)
20% N-chlorosulfamate aqueous solution 35% hydrogen peroxide aqueous solution (Formulation Example 2-7)
・ 25% N-chlorosulfamate aqueous solution ・ 30% manganese chloride aqueous solution (Formulation Example 2-8)
・ 25% N-chlorosulfamate aqueous solution ・ 15% cuprous chloride aqueous solution (Formulation Example 2-9)
20% N-chlorosulfamate aqueous solution 25% cupric chloride aqueous solution (Formulation Example 2-10)
20% N-chlorosulfamate aqueous solution 40% zinc chloride aqueous solution (Formulation Example 2-11)
・ 25% N-chlorosulfamate aqueous solution ・ 25% ferrous chloride aqueous solution
 下記の試験例2-1および試験例2-3では、表5に示す水質を有するように調製した合成水(pH8.2)に、シアン化物イオン(遊離シアン:F-CN)、シアノ錯体、チオシアン酸イオン(SCN-)およびアンモニウムイオン(NH4 +)が表5に示す含有量になるように調製した合成シアン含有廃水2-Aを用いた。
 上記の合成シアン含有廃水の調製には、フェロシアン化カリウム水溶液、シアン化カリウム水溶液、チオシアン酸カリウム水溶液、塩化カルシウム2水和物水溶液、塩化ナトリウム水溶液、硫酸ナトリウム水溶液、塩化アンモニウム水溶液および炭酸水素ナトリウム水溶液を用いた。
In Test Example 2-1 and Test Example 2-3 below, cyanide ions (free cyanide: F-CN), cyano complex, synthetic water (pH 8.2) prepared to have the water quality shown in Table 5 were used. Synthetic cyanine-containing wastewater 2-A prepared so that the thiocyanate ion (SCN ) and ammonium ion (NH 4 + ) contents shown in Table 5 were used.
The above synthetic cyanide-containing wastewater was prepared using potassium ferrocyanide aqueous solution, potassium cyanide aqueous solution, potassium thiocyanate aqueous solution, calcium chloride dihydrate aqueous solution, sodium chloride aqueous solution, sodium sulfate aqueous solution, ammonium chloride aqueous solution and sodium hydrogen carbonate aqueous solution. .
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 下記の試験例2-2では、某製鉄所のコークス炉廃水ラインより採取した、表6に示す水質を有するシアン含有廃水2-B(pH7.1)を用いた。 In Test Example 2-2 below, cyan-containing wastewater 2-B (pH 7.1) having water quality shown in Table 6 collected from a coke oven wastewater line at Sakai Steel Works was used.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
(製剤例2-A:N-クロロスルファマートの調製)
 製剤例1-1に同じ
(製剤例2-B:N-ブロモスルファマートの調製)
 製剤例1-2に同じ
(Formulation Example 2-A: Preparation of N-chlorosulfamate)
Same as Formulation Example 1-1 (Formulation Example 2-B: Preparation of N-bromosulfamate)
Same as Formulation Example 1-2
(試験例2-1)
 容量100mLのビーカーに、それぞれシアン含有廃水2-Aを100mL分注し、表7に示す濃度になるようにN-クロロスルファマート、N-ブロモスルファマート、次亜塩素酸ナトリウムとスルファミン酸との組み合わせから選択される1種、過酸化水素ならびに塩化マンガンをそれぞれ添加して試験水を得た。
 一部の試験水には、硫酸水溶液または水酸化ナトリウム水溶液を添加して、試験水のpHが表7に示す値になるように調整した。
(Test Example 2-1)
Dispense 100 mL of cyanide-containing wastewater 2-A into a beaker with a capacity of 100 mL, and adjust the concentrations shown in Table 7 to N-chlorosulfamate, N-bromosulfamate, sodium hypochlorite and sulfamic acid. Test water was obtained by adding each of hydrogen peroxide and manganese chloride selected from the combination of
In some test waters, an aqueous sulfuric acid solution or an aqueous sodium hydroxide solution was added to adjust the pH of the test water to the values shown in Table 7.
 次いで、得られた試験水を、撹拌装置(アズワン株式会社製、マグネチックスターラー、型式:RS-4AR、撹拌子:プレーン形、最長辺30mm)を用いて回転数250rpmで撹拌した。具体的には、N-クロロスルファマート、N-ブロモスルファマート、または次亜塩素酸ナトリウムとスルファミン酸との組み合わせを添加してから1分間、その後過酸化水素を添加してから1分間、さらに塩化マンガンを添加してから15分間となるように撹拌した。試験後、ろ紙(東洋濾紙株式会社(ADVANTEC)製、品名:No.5C)を用いて、試験水を濾過し、得られたろ液を処理液とした。 Next, the obtained test water was stirred at a rotational speed of 250 rpm using a stirrer (manufactured by As One Co., Ltd., magnetic stirrer, model: RS-4AR, stirrer: plain, longest side 30 mm). Specifically, 1 minute after adding N-chlorosulfamate, N-bromosulfamate, or a combination of sodium hypochlorite and sulfamic acid, and then 1 minute after adding hydrogen peroxide. Further, the mixture was stirred for 15 minutes after adding manganese chloride. After the test, the test water was filtered using a filter paper (product name: No. 5C, manufactured by Toyo Roshi Kaisha, Ltd. (ADVANTEC)), and the obtained filtrate was used as a treatment liquid.
 次いで、試験水(処理液)中の全シアン濃度(T-CN)を、全シアン検定器(株式会社共立理化学研究所製、型式:WA-CNT)を用いてピクリン酸法により測定し、各試験水におけるシアン化合物の除去効果を評価した。
 この試験においては、薬剤を添加しないブランク試験(比較例2-4)を同時に行った。
 得られた結果を、添加化合物とその添加量および試験水のpHと共に表7に示す。
Next, the total cyan concentration (T-CN) in the test water (treatment liquid) was measured by the picric acid method using a total cyan tester (manufactured by Kyoritsu Riken Co., Ltd., model: WA-CNT). The effect of removing cyanide in the test water was evaluated.
In this test, a blank test (Comparative Example 2-4) in which no drug was added was simultaneously performed.
The obtained results are shown in Table 7 together with the additive compound, its addition amount, and the pH of the test water.
 表7の試験結果から次のことがわかる。
・本発明のシアン含有廃水用処理剤で処理した場合には、十分なシアン除去効果を有すること(実施例2-1~2-7)
・塩化マンガンのみ、塩化マンガンと次亜塩素酸ナトリウムおよび/または過酸化水素を含有するシアン含有廃水用処理剤で処理した場合には、十分なシアン除去の効果が得られないこと(比較例2-1~2-5)
The following can be seen from the test results in Table 7.
-When treated with the cyanide-containing wastewater treatment agent of the present invention, it has a sufficient cyan removal effect (Examples 2-1 to 2-7)
-When treated with a treatment solution for wastewater containing cyanide containing only manganese chloride, manganese chloride and sodium hypochlorite and / or hydrogen peroxide, a sufficient cyan removal effect cannot be obtained (Comparative Example 2). -1 to 2-5)
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
(試験例2-2)
 容量300mLのビーカーに、それぞれシアン含有廃水Bを300mL分注し、表8に示す濃度になるようにN-クロロスルファマートおよび過酸化水素をそれぞれ添加して試験水を得た。
 一部の試験水には、硫酸水溶液または水酸化ナトリウム水溶液を添加して、試験水のpHが表8に示す値になるように調整した。
(Test Example 2-2)
300 mL of cyan-containing waste water B was dispensed into 300 mL beakers, and N-chlorosulfamate and hydrogen peroxide were added to the concentrations shown in Table 8 to obtain test water.
In some test waters, an aqueous sulfuric acid solution or an aqueous sodium hydroxide solution was added to adjust the pH of the test water to the values shown in Table 8.
 次いで、得られた試験水を、撹拌装置(アズワン株式会社製、マグネチックスターラー、型式:RS-4AR、撹拌子:プレーン形、最長辺30mm)を用いて回転数250rpmで撹拌した。具体的には、過酸化水素を添加してから10分間(第一段階)、その後N-クロロスルファマートを添加してから40分間(第二段階)となるように撹拌した。試験後、ろ紙(東洋濾紙株式会社(ADVANTEC)製、品名:No.5C)を用いて、試験水を濾過し、得られたろ液を処理液とした。 Next, the obtained test water was stirred at a rotational speed of 250 rpm using a stirrer (manufactured by As One Co., Ltd., magnetic stirrer, model: RS-4AR, stirrer: plain, longest side 30 mm). Specifically, the mixture was stirred for 10 minutes (first stage) after the addition of hydrogen peroxide, and then 40 minutes (second stage) after the addition of N-chlorosulfamate. After the test, the test water was filtered using a filter paper (product name: No. 5C, manufactured by Toyo Roshi Kaisha, Ltd. (ADVANTEC)), and the obtained filtrate was used as a treatment liquid.
 次いで、試験水(処理液)中の全シアン濃度(T-CN)をJIS K0102に準拠して測定し、各試験水におけるシアン化合物の除去効果を評価した。
 この試験においては、薬剤を添加しないブランク試験(比較例2-7)およびN-クロロスルファマート単独で添加する試験(参考例)を同時に行った。
 得られた結果を、添加化合物とその添加量および試験水のpHと共に表8に示す。
Subsequently, the total cyan density | concentration (T-CN) in test water (treatment liquid) was measured based on JISK0102, and the removal effect of the cyanide compound in each test water was evaluated.
In this test, a blank test in which no drug was added (Comparative Example 2-7) and a test in which N-chlorosulfamate was added alone (Reference Example) were simultaneously performed.
The obtained results are shown in Table 8 together with the additive compound, its addition amount, and the pH of the test water.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表8の試験結果から次のことがわかる。
・本発明のシアン含有廃水用処理剤で処理した場合には、十分なシアン除去効果を有し、N-クロロスルファマート単独で処理した場合(参考例)よりもさらに優れたシアン除去効果を有すること(実施例2-8)
 ・過酸化水素単独で処理した場合には、十分なシアン除去の効果が得られないこと(比較例2-7)
The following can be seen from the test results in Table 8.
-When treated with the cyanide-containing wastewater treatment agent of the present invention, it has a sufficient cyan removal effect, and even better cyan removal effect than when treated with N-chlorosulfamate alone (reference example). (Example 2-8)
-When treated with hydrogen peroxide alone, sufficient cyan removal effect cannot be obtained (Comparative Example 2-7)
(試験例2-3)
 容量100mLのビーカーに、それぞれシアン含有廃水Aを100mL分注し、表5に示す濃度になるようにN-クロロスルファマート、過酸化水素、金属化合物として塩化第一銅、塩化第二銅および塩化亜鉛から選択される1種をそれぞれ添加して試験水を得た。
 得られた試験水を用いて試験例2-1と同様の操作により、各試験水におけるシアン化合物の除去効果を評価した。
 この試験においては、薬剤を添加しないブランク試験(比較例2-8)を同時に行った。
 得られた結果を、添加化合物とその添加量および試験水のpHと共に表9に示す
(Test Example 2-3)
In a 100 mL beaker, 100 mL of cyanide-containing wastewater A was dispensed, and N-chlorosulfamate, hydrogen peroxide, cuprous chloride, cupric chloride and metal compounds as the concentrations shown in Table 5 were used. One water selected from zinc chloride was added to obtain test water.
Using the obtained test water, the cyanide removal effect in each test water was evaluated in the same manner as in Test Example 2-1.
In this test, a blank test (Comparative Example 2-8) in which no drug was added was simultaneously performed.
The obtained results are shown in Table 9 together with the added compound, its added amount, and the pH of the test water.
 表9の試験結果から次のことがわかる。
・本発明のシアン含有廃水用処理剤で処理した場合には、十分なシアン除去効果を有すること(実施例2-9~2-12)
The following can be seen from the test results in Table 9.
When it is treated with the cyanide-containing wastewater treatment agent of the present invention, it has a sufficient cyan removal effect (Examples 2-9 to 2-12)
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009

Claims (10)

  1.  N-クロロスルファマートおよび/またはN-ブロモスルファマートを含有する水溶液であるシアン含有廃水用処理剤。 A treatment agent for waste water containing cyanide, which is an aqueous solution containing N-chlorosulfamate and / or N-bromosulfamate.
  2.  前記N-クロロスルファマートおよびN-ブロモスルファマートが、スルファミン酸と、次亜塩素酸および/または次亜臭素酸との反応生成物である請求項1に記載のシアン含有廃水用処理剤。 The treatment agent for cyanogen-containing wastewater according to claim 1, wherein the N-chlorosulfamate and N-bromosulfamate are reaction products of sulfamic acid and hypochlorous acid and / or hypobromite. .
  3.  前記N-クロロスルファマートおよび/またはN-ブロモスルファマートを含有する水溶液と、過酸化水素または金属化合物を含有する水溶液との2液、または前記N-クロロスルファマートおよび/またはN-ブロモスルファマートを含有する水溶液と、過酸化水素を含有する水溶液と、金属化合物を含有する水溶液との3液の組み合わせからなる請求項1に記載のシアン含有廃水用処理剤。 Two solutions of an aqueous solution containing the N-chlorosulfamate and / or N-bromosulfamate and an aqueous solution containing hydrogen peroxide or a metal compound, or the N-chlorosulfamate and / or N- The treatment agent for cyanide-containing wastewater according to claim 1, comprising a combination of three solutions of an aqueous solution containing bromosulfamate, an aqueous solution containing hydrogen peroxide, and an aqueous solution containing a metal compound.
  4.  前記金属化合物が、マンガン、銅、亜鉛または鉄を含有する化合物である請求項3に記載のシアン含有廃水用処理剤。 The cyanide-containing wastewater treatment agent according to claim 3, wherein the metal compound is a compound containing manganese, copper, zinc, or iron.
  5.  請求項1または3に記載のシアン含有廃水用処理剤を、シアン含有廃水中に存在させ、該廃水中のシアンを分解もしくは不溶化させて該廃水からシアンを除去するシアン含有廃水の処理方法。 A method for treating cyanide-containing wastewater, wherein the treatment agent for cyanide-containing wastewater according to claim 1 or 3 is present in cyanide-containing wastewater, and cyanide in the wastewater is decomposed or insolubilized to remove cyan from the wastewater.
  6.  前記シアン含有廃水中のシアン含有量に対して、前記シアン含有廃水用処理剤を、N-クロロスルファマートおよびN-ブロモスルファマートの合計の有効ハロゲン濃度が0.2モル当量以上になるように存在させる請求項5に記載のシアン含有廃水の処理方法。 The total effective halogen concentration of N-chlorosulfamate and N-bromosulfamate is 0.2 molar equivalent or more with respect to the cyan content in the cyan-containing waste water. The processing method of the wastewater containing cyanide according to claim 5 to be present as described above.
  7.  前記シアン含有廃水中のシアン含有量に対して、前記シアン含有廃水用処理剤を、前記過酸化水素濃度が0.1モル当量以上になるように存在させる請求項5に記載のシアン含有廃水の処理方法。 The cyanide-containing wastewater according to claim 5, wherein the cyanide-containing wastewater treatment agent is present so that the hydrogen peroxide concentration is 0.1 molar equivalent or more with respect to the cyan content in the cyan-containing wastewater. Processing method.
  8.  前記シアン含有廃水中のシアン含有量に対して、前記シアン含有廃水用処理剤を、前記金属化合物の金属イオン濃度が0.1モル当量以上になるように存在させる請求項5に記載のシアン含有廃水の処理方法。 The cyanide-containing composition according to claim 5, wherein the cyanide-containing wastewater treatment agent is present such that the metal ion concentration of the metal compound is 0.1 molar equivalent or more with respect to the cyan content in the cyan-containing wastewater. Wastewater treatment method.
  9.  前記シアン含有廃水が、チオシアン酸およびその塩ならびにアンモニウムイオンから選択される1種以上の共存物質を含有する廃水である請求項5に記載のシアン含有廃水の処理方法。 The method for treating cyanide-containing wastewater according to claim 5, wherein the cyanide-containing wastewater is wastewater containing one or more coexisting substances selected from thiocyanic acid and salts thereof and ammonium ions.
  10.  前記シアン含有廃水が、pH6~11に調整された廃水である請求項5に記載のシアン含有廃水の処理方法。 The method for treating cyanide-containing wastewater according to claim 5, wherein the cyanide-containing wastewater is wastewater adjusted to pH 6-11.
PCT/JP2016/076992 2016-03-11 2016-09-13 Agent for treating cyanide-containing wastewater and method for treating cyanide-containing wastewater using same WO2017154243A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2016397146A AU2016397146B2 (en) 2016-03-11 2016-09-13 Agent for treating cyanide-containing wastewater and method for treating cyanide-containing wastewater using same
KR1020187028529A KR102117850B1 (en) 2016-03-11 2016-09-13 Treatment agent for cyanide-containing wastewater and method for treating cyanide-containing wastewater using the same
CN201680083212.8A CN108779008B (en) 2016-03-11 2016-09-13 Cyanide-containing wastewater treatment agent and method for treating cyanide-containing wastewater by using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-048486 2016-03-11
JP2016048486A JP5990717B1 (en) 2016-03-11 2016-03-11 Cyanogen-containing wastewater treatment agent and cyanide-containing wastewater treatment method using the same
JP2016164880A JP6578561B2 (en) 2016-08-25 2016-08-25 Cyanogen-containing wastewater treatment agent and cyanide-containing wastewater treatment method using the same
JP2016-164880 2016-08-25

Publications (1)

Publication Number Publication Date
WO2017154243A1 true WO2017154243A1 (en) 2017-09-14

Family

ID=59789347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076992 WO2017154243A1 (en) 2016-03-11 2016-09-13 Agent for treating cyanide-containing wastewater and method for treating cyanide-containing wastewater using same

Country Status (4)

Country Link
KR (1) KR102117850B1 (en)
CN (1) CN108779008B (en)
AU (1) AU2016397146B2 (en)
WO (1) WO2017154243A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109384276A (en) * 2018-10-22 2019-02-26 鞍山市鑫诚水处理有限公司 A kind of efficient decolorizing, decyanation, the COD that degrades Waste water treatment medicament
CN114163843A (en) * 2021-12-02 2022-03-11 中国科学院上海硅酸盐研究所 Preparation method of HMPB, Prussian blue-based fluorescent probe and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110318066A (en) * 2019-06-20 2019-10-11 青岛鼎海电化学科技有限公司 A kind of preparation method of tetra-alkyl ammonium hydroxide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5155774A (en) * 1974-11-11 1976-05-17 Asahi Chemical Ind Haiekino shoriho
JP2004531579A (en) * 2001-06-29 2004-10-14 ロンザ インコーポレイテッド Mixtures of halogen generating biocides, halogen stabilizers and nitrogen containing biocides
JP2014176799A (en) * 2013-03-14 2014-09-25 Kurita Water Ind Ltd Reverse osmotic membrane separation method
JP2015501307A (en) * 2011-10-21 2015-01-15 ナルコ カンパニー Improvement of ecological control by using chlorine stabilizer mixture

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59169914A (en) * 1983-03-11 1984-09-26 Sumikin Coke Co Ltd Production of ammonium sulfamate
CN1007041B (en) * 1987-12-31 1990-03-07 冶金工业部建筑研究总院 Comprehensive processing method for cyanogen-contg. waste water and so2-contg. exhaust flue gas
JPH0235991A (en) 1988-07-22 1990-02-06 Katayama Chem Works Co Ltd Treatment of waste water containing cyanic compound
US5922745A (en) * 1997-11-03 1999-07-13 Nalco Chemical Company Composition and method for inhibiting the growth of microorganisms including stabilized sodium hypobromite and isothiazolones
JP4106415B2 (en) 2000-04-21 2008-06-25 株式会社片山化学工業研究所 Treatment method of wastewater containing cyanide
CN101494985B (en) * 2005-06-10 2013-03-20 雅宝公司 High concentrated, biocidally active compositions and aqueous mixtures and methods of making the same
CN103011161A (en) * 2012-12-19 2013-04-03 宁夏兴平精细化工股份有限公司 Comprehensive utilization method of cyanamide waste residue
CN105152391A (en) * 2015-08-13 2015-12-16 浙江捷华电子有限公司 Electroplating wastewater treatment method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5155774A (en) * 1974-11-11 1976-05-17 Asahi Chemical Ind Haiekino shoriho
JP2004531579A (en) * 2001-06-29 2004-10-14 ロンザ インコーポレイテッド Mixtures of halogen generating biocides, halogen stabilizers and nitrogen containing biocides
JP2015501307A (en) * 2011-10-21 2015-01-15 ナルコ カンパニー Improvement of ecological control by using chlorine stabilizer mixture
JP2014176799A (en) * 2013-03-14 2014-09-25 Kurita Water Ind Ltd Reverse osmotic membrane separation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109384276A (en) * 2018-10-22 2019-02-26 鞍山市鑫诚水处理有限公司 A kind of efficient decolorizing, decyanation, the COD that degrades Waste water treatment medicament
CN114163843A (en) * 2021-12-02 2022-03-11 中国科学院上海硅酸盐研究所 Preparation method of HMPB, Prussian blue-based fluorescent probe and preparation method thereof
CN114163843B (en) * 2021-12-02 2022-11-25 中国科学院上海硅酸盐研究所 Preparation method of HMPB, prussian blue-based fluorescent probe and preparation method thereof

Also Published As

Publication number Publication date
CN108779008A (en) 2018-11-09
CN108779008B (en) 2021-08-24
AU2016397146B2 (en) 2020-01-02
KR20180118759A (en) 2018-10-31
KR102117850B1 (en) 2020-06-02
AU2016397146A1 (en) 2018-10-04

Similar Documents

Publication Publication Date Title
JP7204140B2 (en) Method for treating wastewater containing cyanide
JP7398021B2 (en) Treatment method and treatment equipment for cyanide-containing water
JP6145682B2 (en) Method of treating complex cyanide-containing wastewater and treating agent used therefor
JP4382556B2 (en) Treatment method of wastewater containing cyanide
WO2017154243A1 (en) Agent for treating cyanide-containing wastewater and method for treating cyanide-containing wastewater using same
JP5945682B2 (en) Treatment method of wastewater containing cyanide
JP6578561B2 (en) Cyanogen-containing wastewater treatment agent and cyanide-containing wastewater treatment method using the same
JP5990717B1 (en) Cyanogen-containing wastewater treatment agent and cyanide-containing wastewater treatment method using the same
JP2009254959A (en) Method and apparatus for treating wastewater
JP2021053620A (en) Treatment method for cyanide-containing wastewater
JP6201114B2 (en) Treatment method of wastewater containing cyanide
JP6712706B2 (en) Method for suppressing volatilization of cyanogen chloride
JP2005313112A (en) Method for treating waste water containing cyanogen
JP7454096B1 (en) Wastewater treatment method
JP7353619B2 (en) Treatment method for cyanide-containing wastewater
JP7440031B2 (en) Treatment method for cyanide-containing wastewater
JP2020196000A (en) Treatment method for cyanide-containing wastewater
JP7299381B2 (en) How to treat collected dust
JP7448129B2 (en) How to treat wastewater

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187028529

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016397146

Country of ref document: AU

Date of ref document: 20160913

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16893567

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16893567

Country of ref document: EP

Kind code of ref document: A1