JP2001038368A - Treatment of water containing fluorine - Google Patents

Treatment of water containing fluorine

Info

Publication number
JP2001038368A
JP2001038368A JP11218990A JP21899099A JP2001038368A JP 2001038368 A JP2001038368 A JP 2001038368A JP 11218990 A JP11218990 A JP 11218990A JP 21899099 A JP21899099 A JP 21899099A JP 2001038368 A JP2001038368 A JP 2001038368A
Authority
JP
Japan
Prior art keywords
sludge
fluorine
tank
containing water
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11218990A
Other languages
Japanese (ja)
Inventor
Isamu Kato
勇 加藤
Yoji Fukuyama
洋二 福山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP11218990A priority Critical patent/JP2001038368A/en
Publication of JP2001038368A publication Critical patent/JP2001038368A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce high concentration sludge containing CaF2 sludge particles having a larger particle size by adding sulfate ions to fluorine-containing water in the process of treating the fluorine-containing water by bringing a part of the produced calcium fluoride sludge into contact with a calcium compound and then adding the resultant product to the fluorine-containing water. SOLUTION: The raw water (fluorine-containing water) discharged from a semiconductor factory or the like is reserved in a raw water tank 1, to which a sulfate ion-containing liquid is added, and then the water is introduced into a neutralization tank 3 to produce CaF2 sludge by the reaction with a reformed sludge added from a reaction tank 2. The neutralized reaction liquid is sent to a flocculation tank 4, to which a polymer is added from a polymer reservoir 7 to flocculate the liquid. Then the liquid is subjected to solid-liquid separation in a sedimentation tank 5. A part of the separated sludge drained from the sedimentation tank 5 is sent back to the reaction tank 2, however, the increment of the sludge is drained from the system so as to keep the sludge amount in the system constant. In the reaction tank 2, Ca(OH)2 from a Ca(OH)2 reservoir 6 and the returned sludge are mixed and the obtained reformed sludge is supplied to the neutralization tank 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、フッ素化合物製造
工場、鉄鋼業、肥料製造工場、或いは半導体工場から排
出されるフッ素含有排水をカルシウム(Ca)塩で処理
して含有されるフッ素をフッ化カルシウム(CaF2
汚泥として分離除去する方法に係り、特に、この方法に
おいて、粒径の大きなCaF2汚泥粒子を含む高濃度汚
泥を得る方法に関する。
TECHNICAL FIELD The present invention relates to a fluorine-containing wastewater discharged from a fluorine compound production plant, a steel industry, a fertilizer production plant, or a semiconductor plant, which is treated with a calcium (Ca) salt to convert the fluorine contained. Calcium (CaF 2 )
The present invention relates to a method for separating and removing sludge as sludge, and particularly to a method for obtaining high-concentration sludge containing CaF 2 sludge particles having a large particle diameter in this method.

【0002】[0002]

【従来の技術】従来、フッ素含有水の処理方法として、
反応槽にてフッ素含有水にCa塩を添加して含有される
フッ素をCaF2として分離除去する方法が知られてい
る。このようなフッ素含有水の処理方法において、分離
したCaF2汚泥を反応槽に返送することにより、高濃
度汚泥を得る方法、より具体的には、CaF2汚泥をC
a塩と混合して反応槽に添加することにより汚泥を改質
する方法が提案されている(特開平5−293474号
公報、同10−479号公報。以下、この方法を「汚泥
返送法」と称す。)。
2. Description of the Related Art Conventionally, as a method of treating fluorine-containing water,
A method is known in which a Ca salt is added to fluorine-containing water in a reaction tank to separate and remove fluorine contained as CaF 2 . In such a method of treating water containing fluorine, a method of obtaining high-concentration sludge by returning separated CaF 2 sludge to a reaction tank, more specifically, converting CaF 2 sludge to C
A method has been proposed in which sludge is reformed by mixing it with a salt and adding it to a reaction tank (JP-A-5-293474 and JP-A-10-479; hereinafter, this method is referred to as "sludge return method"). Called.)

【0003】フッ素含有水の処理において、上記汚泥返
送法を採用することにより、高濃度汚泥を得ることがで
き、生成した高濃度汚泥は、その後の脱水工程での脱水
効率が高く、含水率の低い脱水ケーキを得ることができ
るため、産業廃棄物発生量の削減等において非常に有効
であることから、近年、汚泥返送法を採用するケースが
益々増えている。
In the treatment of fluorine-containing water, high-concentration sludge can be obtained by adopting the above-mentioned sludge return method, and the high-concentration sludge generated has a high dehydration efficiency in the subsequent dehydration step and a high water content. Since a low dewatered cake can be obtained, it is very effective in reducing the amount of industrial waste generated and the like, and in recent years, the number of cases in which the sludge return method is adopted has been increasing.

【0004】ところで、最近になって、このようなフッ
素含有水の処理で得られるCaF2汚泥からフッ化水素
(HF)を回収して再利用することが行われるようにな
ってきている。この場合、HFの回収は、CaF2汚泥
を脱水して得た脱水ケーキを乾燥した後、硫酸(H2
4)を添加し、CaF2+H2SO4→CaSO4+2H
Fの反応でHFガスを発生させることにより行われる。
[0004] Recently, hydrogen fluoride (HF) has been recovered from CaF 2 sludge obtained by such treatment of fluorine-containing water and reused. In this case, HF is recovered by drying a dehydrated cake obtained by dehydrating CaF 2 sludge and then adding sulfuric acid (H 2 S
O 4 ) and add CaF 2 + H 2 SO 4 → CaSO 4 + 2H
This is performed by generating HF gas by the reaction of F.

【0005】このようにHFの回収を行う場合において
は、脱水ケーキの乾燥を行うため、この乾燥効率の面か
ら、より含水率の低い脱水ケーキを得ることが必要とさ
れ、このため、フッ素含有排水の処理に当っては、低含
水率の脱水ケーキが得られる汚泥返送法を採用すること
が最適とされていた。
In the case of recovering HF as described above, in order to dry the dehydrated cake, it is necessary to obtain a dehydrated cake having a lower moisture content from the viewpoint of the drying efficiency. In the treatment of wastewater, it was considered optimal to adopt a sludge return method that can obtain a dewatered cake having a low water content.

【0006】[0006]

【発明が解決しようとする課題】脱水ケーキを乾燥する
場合、効率的な乾燥を行うためには、脱水ケーキの含水
率が低いだけでなく、脱水ケーキ中に含まれるCaF2
汚泥粒子の粒径が大きいことが重要な要件となる。
When the dehydrated cake is dried, not only the dehydrated cake has a low water content but also CaF 2 contained in the dehydrated cake in order to carry out efficient drying.
An important requirement is that the particle size of the sludge particles is large.

【0007】即ち、CaF2汚泥粒子の粒径が小さい場
合、脱水ケーキに粘着性が発生し、脱水ケーキの内部ま
で十分に乾燥することが困難である。また、脱水ケーキ
の乾燥は、通常の場合、熱風の吹き込みで行われるが、
この際、微細なCaF2汚泥粒子は熱風により飛散し、
乾燥器出口のバグフィルタを早期に閉塞させるため、メ
ンテナンス頻度が増えて作業効率も悪いものとなる。
That is, when the particle size of the CaF 2 sludge particles is small, the dewatered cake becomes sticky, and it is difficult to sufficiently dry the inside of the dewatered cake. In addition, drying of the dehydrated cake is usually performed by blowing hot air,
At this time, fine CaF 2 sludge particles are scattered by hot air,
Since the bag filter at the outlet of the dryer is closed at an early stage, the frequency of maintenance increases and the work efficiency becomes poor.

【0008】しかしながら、従来の汚泥返送法では、含
水率の低い脱水ケーキを得ることはできるものの、この
CaF2汚泥粒子の粒径が十分に大きいとは言えず、乾
燥効率及びHFの回収効率の向上の面から、より粒径の
大きなCaF2汚泥粒子を生成させることが望まれてい
た。
However, in the conventional sludge return method, although a dewatered cake having a low water content can be obtained, the particle size of the CaF 2 sludge particles cannot be said to be sufficiently large, and the drying efficiency and the recovery efficiency of HF are low. From the viewpoint of improvement, it has been desired to generate CaF 2 sludge particles having a larger particle size.

【0009】本発明は上記従来の実情に鑑みてなされた
ものであって、汚泥返送法によるフッ素含有水の処理に
おいて、より粒径の大きなCaF2汚泥粒子を含む高濃
度汚泥を生成させることができるフッ素含有水の処理方
法を提供することを目的とする。
[0009] The present invention has been made in view of the above-mentioned conventional circumstances, and in the treatment of fluorine-containing water by the sludge return method, it is possible to generate high-concentration sludge containing CaF 2 sludge particles having a larger particle diameter. An object of the present invention is to provide a method for treating fluorine-containing water that can be performed.

【0010】[0010]

【課題を解決するための手段】本発明のフッ素含有水の
処理方法は、フッ素含有水にカルシウム化合物を添加し
てフッ化カルシウム汚泥を生成させ、生成したフッ化カ
ルシウム汚泥を分離するフッ素含有水の処理方法であっ
て、生成したフッ化カルシウム汚泥の一部をカルシウム
化合物と接触させた後、フッ素含有水に添加するフッ素
含有水の処理方法において、該フッ素含有水に硫酸イオ
ンを添加することを特徴とする。
The method for treating fluorine-containing water according to the present invention comprises adding a calcium compound to fluorine-containing water to form calcium fluoride sludge, and separating the generated calcium fluoride sludge. A method of treating a fluorine-containing water, wherein a part of the generated calcium fluoride sludge is brought into contact with a calcium compound and then added to the fluorine-containing water, wherein sulfate ions are added to the fluorine-containing water. It is characterized by.

【0011】本発明に従って、原水であるフッ素含有水
に硫酸イオンを添加して汚泥返送法により処理を行うこ
とにより、粒径の大きなCaF2汚泥粒子を得ることが
できる。
According to the present invention, CaF 2 sludge particles having a large particle size can be obtained by adding a sulfate ion to the fluorine-containing water as raw water and treating it by a sludge return method.

【0012】本発明における硫酸イオンによるCaF2
汚泥粒子の粒大化効果の作用機構の詳細は明らかではな
いが、主に次の及び/又はの反応によるものと推定
される。
In the present invention, CaF 2 by sulfate ion is used.
Although the details of the mechanism of the effect of increasing the size of the sludge particles are not clear, it is presumed to be mainly due to the following and / or reaction.

【0013】 硫酸イオンの存在下では、局部的かつ
過渡的にCaSO4結晶が生成し、これがCaF2汚泥粒
子の核となり、CaSO4が共存しない場合に比べ、よ
り大きなCaF2汚泥粒子が得られる。
In the presence of sulfate ions, CaSO 4 crystals are locally and transiently generated, which serve as nuclei for CaF 2 sludge particles, and larger CaF 2 sludge particles can be obtained as compared with the case where CaSO 4 does not coexist. .

【0014】 硫酸イオンの存在でCax(SO4y
zの混晶が生成することになるが、この混晶はCaF2
よりも粒径の大きい結晶に成長するため、大粒径のCa
2汚泥粒子が得られる。
Ca x (SO 4 ) y in the presence of sulfate ions
Although a mixed crystal of F z is be generated, the mixed crystal CaF 2
To grow into crystals having a larger grain size than
F 2 sludge particles are obtained.

【0015】本発明において、硫酸イオンは、フッ素含
有水中のフッ化物イオンに対する硫酸イオン量が0.0
1〜0.1望ましくは0.02〜0.1当量となるよう
に添加することが好ましい。
In the present invention, the amount of sulfate ion relative to fluoride ion in the fluorine-containing water is 0.04%.
It is preferable to add so as to be 1 to 0.1, preferably 0.02 to 0.1 equivalent.

【0016】また、本発明においてCaF2汚泥の返送
比は15〜60とするのが好ましい。
In the present invention, the return ratio of CaF 2 sludge is preferably 15 to 60.

【0017】なお、このCaF2汚泥の返送比とは、後
述の図1に示す汚泥返送法では、下記式で定義される値
Rである。
The return ratio of the CaF 2 sludge is a value R defined by the following equation in the sludge return method shown in FIG. 1 described later.

【0018】[0018]

【数1】 (Equation 1)

【0019】また、後述の図2に示す、CaF2汚泥を
固液分離せずにCaF2汚泥含有液を直接返送する汚泥
返送法(以下「ダイレクト汚泥返送法」と称する場合が
ある。)では、下記式で定義される値Rである。
[0019] FIG. 2 described later, (sometimes hereinafter referred to as "direct sludge return method".) Sludge return method for returning the CaF 2 sludge-containing liquid directly without solid-liquid separation CaF 2 sludge in , A value R defined by the following equation:

【0020】[0020]

【数2】 (Equation 2)

【0021】本発明の方法は、得られたCaF2汚泥を
脱水、乾燥してHF製造原料として再利用する場合に特
に有効である。
The method of the present invention is particularly effective when the obtained CaF 2 sludge is dehydrated, dried and reused as a raw material for producing HF.

【0022】[0022]

【発明の実施の形態】以下、図面を参照して本発明のフ
ッ素含有水の処理方法の実施の形態を詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of the method for treating fluorine-containing water of the present invention will be described in detail with reference to the drawings.

【0023】図1,2は本発明のフッ素含有水の処理方
法の実施の形態を示す系統図である。なお、図1及び図
2において、同一機能を奏する部材には、同一符号を付
してある。
FIGS. 1 and 2 are system diagrams showing an embodiment of the method for treating fluorine-containing water of the present invention. In FIGS. 1 and 2, members having the same function are denoted by the same reference numerals.

【0024】図1の方法においては、原水(フッ素含有
水)は原水槽1にて硫酸イオン含有液が添加された後、
中和槽3に導入され、反応槽2から添加される後述の改
質汚泥との反応でCaF2汚泥が生成する。この中和反
応液は、次いで凝集槽4に送給され、ポリマー(高分子
凝集剤)貯槽7からポリマーが添加されて凝集処理され
た後、沈殿槽5で固液分離される。沈殿槽5の分離液は
処理水として系外へ排出される。沈殿槽5から引き抜か
れた分離汚泥の一部は反応槽2に返送されるが、系内の
汚泥量を一定に保つため増加分汚泥は系外へ排出され
る。
In the method of FIG. 1, raw water (fluorine-containing water) is added to a raw water tank 1 after a sulfate ion-containing liquid is added thereto.
CaF 2 sludge is generated by a reaction with the later-described modified sludge introduced into the neutralization tank 3 and added from the reaction tank 2. The neutralized reaction solution is then fed to the coagulation tank 4, where the polymer is added from the polymer (polymer coagulant) storage tank 7 and subjected to coagulation treatment, and then solid-liquid separated in the precipitation tank 5. The separated liquid in the precipitation tank 5 is discharged out of the system as treated water. A part of the separated sludge withdrawn from the sedimentation tank 5 is returned to the reaction tank 2, but the increased sludge is discharged out of the system in order to keep the amount of sludge in the system constant.

【0025】反応槽2では、Ca(OH)2(消石灰)
貯槽6からのCa(OH)2と返送汚泥とが混合され
(以下、この混合汚泥を「改質汚泥」と称す。)、改質
汚泥は中和槽3に供給される。
In the reaction tank 2, Ca (OH) 2 (slaked lime)
Ca (OH) 2 from the storage tank 6 and the returned sludge are mixed (hereinafter, this mixed sludge is referred to as “modified sludge”), and the modified sludge is supplied to the neutralization tank 3.

【0026】このような方法において、原水に添加する
硫酸イオン含有液としては、H2SO4又はNa2SO4
の硫酸塩や、硫酸イオンを含む廃水等を用いることがで
き、その添加量は原水中のFに対する硫酸イオン量が
0.01〜0.1当量、好ましくは0.02〜0.1当
量となる量とするのが好ましい。この硫酸イオン濃度が
0.01当量未満では、硫酸イオン含有液を添加するこ
とによる十分な改良効果が得られず、0.1当量を超え
ると後段の中和槽のpH調整のための薬剤使用量が増え
好ましくなく、処理水のF濃度も高くなる。
In such a method, as the sulfate ion-containing liquid to be added to the raw water, a sulfate such as H 2 SO 4 or Na 2 SO 4 or waste water containing sulfate ions can be used. Is preferably an amount such that the amount of sulfate ion with respect to F in the raw water is 0.01 to 0.1 equivalent, preferably 0.02 to 0.1 equivalent. When the sulfate ion concentration is less than 0.01 equivalent, a sufficient improvement effect by adding the sulfate ion-containing solution cannot be obtained, and when the sulfate ion concentration exceeds 0.1 equivalent, use of a chemical for adjusting the pH of the subsequent neutralization tank is not possible. The amount increases, which is not preferable, and the F concentration of the treated water also increases.

【0027】また、中和槽3における反応はpH5〜1
1で行うのが好ましく、このようなpH範囲となるよう
に、中和槽3に設けられたpH計3Aに連動するバルブ
1,V2の開閉で反応槽2を経て中和槽3に供給される
Ca(OH)2の量を調節する。
The reaction in the neutralization tank 3 is carried out at pH 5-1.
It is preferable to perform the reaction in the neutralization tank 3 through the reaction tank 2 by opening and closing the valves V 1 and V 2 linked to the pH meter 3A provided in the neutralization tank 3 so that the pH is within such a range. The amount of Ca (OH) 2 supplied is adjusted.

【0028】なお、Ca化合物としては、Ca(OH)
2の他、CaCl2、その他のカルシウム化合物を用いる
ことができ、アルカリ性でないCa塩を用いた場合、別
途NaOH等のアルカリを添加してpH調整すれば良
い。また、Ca(OH)2を用いる場合には必要なカル
シウムイオンを確保するために塩酸などを併用しても良
い。
As the Ca compound, Ca (OH)
In addition to 2 , CaCl 2 and other calcium compounds can be used. When a non-alkaline Ca salt is used, the pH may be adjusted by separately adding an alkali such as NaOH. When Ca (OH) 2 is used, hydrochloric acid or the like may be used in combination to secure necessary calcium ions.

【0029】この汚泥返送法であれば、原水に硫酸イオ
ン含有液が添加されることでCaF2汚泥粒子の成長が
促進されて大粒子を得ることができると共に、返送汚泥
がCa(OH)2と混合されて中和槽3に添加されるこ
とで汚泥が改質され、高濃度汚泥を得ることができる。
According to this sludge return method, the growth of CaF 2 sludge particles can be promoted by adding a sulfate ion-containing solution to the raw water, large particles can be obtained, and the returned sludge is Ca (OH) 2 The sludge is reformed by being mixed with and added to the neutralization tank 3, and high-concentration sludge can be obtained.

【0030】図2に示す方法は、沈殿槽5で分離された
汚泥を反応槽2に返送するかわりに、中和槽3からの汚
泥含有液を凝集分離することなく、そのまま反応槽2に
返送する点が図1に示す方法と異なり、その他は同様の
構成とされている。このダイレクト汚泥返送法は、特に
F濃度が高い濃厚原水の処理に有効であり、この方法に
おいても、硫酸イオン含有液の添加でCaF2汚泥の粒
径が粗大化されると共に、F返送汚泥がCa(OH)2
と混合されて中和槽3に添加されることにより高濃度汚
泥を得ることができる。
In the method shown in FIG. 2, instead of returning the sludge separated in the sedimentation tank 5 to the reaction tank 2, the sludge-containing liquid from the neutralization tank 3 is returned to the reaction tank 2 without coagulation and separation. 1 is different from the method shown in FIG. This direct sludge return method is particularly effective in treating concentrated raw water having a high F concentration. In this method as well, the addition of a sulfate ion-containing solution increases the particle size of CaF 2 sludge and reduces the F return sludge. Ca (OH) 2
And the mixture is added to the neutralization tank 3 to obtain high-concentration sludge.

【0031】なお、このような本発明のフッ素含有水の
処理方法において、前述の汚泥の返送比Rは15〜60
とするのが好ましい。この返送比Rが15未満では、汚
泥を返送することによる改良効果が十分に得られず、高
濃度汚泥、高水質処理水が得られない。この返送比Rが
60を超えても汚泥濃度が低くなり処理水水質も低下す
る傾向があることから、この返送比Rは15〜60とす
るのが好ましい。
In the method for treating fluorine-containing water of the present invention, the sludge return ratio R is 15 to 60.
It is preferred that If the return ratio R is less than 15, the effect of returning sludge cannot be sufficiently improved, and high-concentration sludge and high-quality treated water cannot be obtained. Even if the return ratio R exceeds 60, the sludge concentration tends to decrease and the quality of the treated water tends to decrease. Therefore, the return ratio R is preferably set to 15 to 60.

【0032】なお、図1,2に示す方法は本発明のフッ
素含有水の処理方法の実施の形態の一例であって、本発
明はその要旨を超えない限り、何ら図示の方法に限定さ
れるものではない。
The method shown in FIGS. 1 and 2 is an example of the embodiment of the method for treating fluorine-containing water of the present invention, and the present invention is not limited to the illustrated method unless it exceeds the gist. Not something.

【0033】例えば、硫酸イオン含有液の添加箇所は、
CaF2汚泥が生成する系内に硫酸イオンが存在するよ
うな添加箇所であれば良く、図1,2に示す如く、原水
槽1に添加する他、原水槽1から中和槽3への原水の移
送配管や、中和槽3、或いは反応槽2に添加しても良い
が原水槽への添加が望ましい。また、凝集槽4は汚泥の
沈降分離性向上のために設けたものであるが、必ずしも
必要とされず、配管中にポリマーを添加させて凝集させ
る方法を採用することもできる。
For example, the addition point of the sulfate ion-containing liquid is as follows:
It is sufficient that the addition point is such that sulfate ions are present in the system in which the CaF 2 sludge is generated. As shown in FIGS. 1 and 2, the addition to the raw water tank 1 and the addition of raw water from the raw water tank 1 to the neutralization tank 3 are performed. May be added to the transfer pipe, the neutralization tank 3 or the reaction tank 2, but is preferably added to the raw water tank. Further, the flocculation tank 4 is provided for improving the sedimentation and separability of the sludge, but is not always necessary, and a method of adding a polymer to the pipes to perform flocculation may be employed.

【0034】[0034]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
The present invention will be described more specifically below with reference to examples and comparative examples.

【0035】実施例1〜4 図1に示す方法でCaF2汚泥の回収を行った。Examples 1 to 4 CaF 2 sludge was recovered by the method shown in FIG.

【0036】原水としては半導体工場廃液(pH:7.
3,F:20,200mg/L,NH4−N:15,7
00mg/L)を40L/hrの通液速度で処理した。
この原水には原水槽において1.2当量の塩酸と共にH
2SO4をフッ素に対して表1に示す量となるように添加
した。また、Ca化合物としては25%Ca(OH)2
乳濁液を使用し、処理pHは6.5に調整した。汚泥返
送比Rは30の条件で汚泥返送法で処理を行った。ま
た、凝集槽ではポリマーとしてポリアクリルアミド部分
加水分解物を5mg/L添加した。
As raw water, semiconductor factory waste liquid (pH: 7.
3, F: 20, 200 mg / L, NH 4 —N: 15, 7
(00 mg / L) at a flow rate of 40 L / hr.
In the raw water, H was added to the raw water tank together with 1.2 equivalents of hydrochloric acid.
2 SO 4 was added in an amount shown in Table 1 with respect to fluorine. Further, as the Ca compound, 25% Ca (OH) 2
Using an emulsion, the treatment pH was adjusted to 6.5. The treatment was carried out by the sludge return method at a sludge return ratio R of 30. In the flocculation tank, 5 mg / L of polyacrylamide partial hydrolyzate was added as a polymer.

【0037】各槽の容量は次の通りである。The capacity of each tank is as follows.

【0038】原水槽:100L 反応槽:3L 中和槽:10L 凝集槽:10L 沈殿槽:150L この処理において、処理状態が安定した後に得られた汚
泥の濃度(分離汚泥及び返送汚泥の濃度)は表1に示す
通りであり、また、CaF2汚泥粒子の粒径(粒度分布
における最大ピーク値)は表1に示す通りであった。
Raw water tank: 100 L Reaction tank: 3 L Neutralization tank: 10 L Coagulation tank: 10 L Precipitation tank: 150 L In this treatment, the concentration of the sludge obtained after the treatment condition is stabilized (the concentration of separated sludge and returned sludge) is as follows: As shown in Table 1, the particle size (maximum peak value in the particle size distribution) of the CaF 2 sludge particles was as shown in Table 1.

【0039】なお、実施例3におけるCaF2汚泥粒子
の粒度分布は図3に示す通りであった。
The particle size distribution of the CaF 2 sludge particles in Example 3 was as shown in FIG.

【0040】比較例1 実施例1において、H2SO4を添加せず、原水のフッ素
に対して1.2当量の塩酸を添加してCaF2生成に必
要なCa(OH)2を確保したこと以外は同様にして同
一装置、同一条件で処理を行った。
Comparative Example 1 In Example 1, without adding H 2 SO 4 , 1.2 equivalents of hydrochloric acid with respect to the fluorine in the raw water was added to secure Ca (OH) 2 necessary for producing CaF 2 . Except for this, processing was performed in the same manner under the same apparatus and under the same conditions.

【0041】この処理で得られた汚泥濃度(分離汚泥及
び返送汚泥の濃度)は表1に示す通りであり、また、C
aF2汚泥粒子の粒径(粒度分布におけるピーク値)は
表1に示す通りであった。なお、この比較例1における
CaF2汚泥粒子の粒度分布は図4に示す通りであっ
た。
The sludge concentration (concentration of separated sludge and returned sludge) obtained in this treatment is as shown in Table 1, and C
The particle size (peak value in the particle size distribution) of the aF 2 sludge particles was as shown in Table 1. The particle size distribution of the CaF 2 sludge particles in Comparative Example 1 was as shown in FIG.

【0042】[0042]

【表1】 [Table 1]

【0043】表1及び図3,4より、本発明によれば、
粒径の大きなCaF2汚泥粒子を得ることができること
がわかる。
From Table 1 and FIGS. 3 and 4, according to the present invention,
It can be seen that CaF 2 sludge particles having a large particle size can be obtained.

【0044】なお、図2に示すダイレクト汚泥返送法で
同様に処理を行った場合にも(ただし、図2に示す方法
においては、反応槽及び中和槽の容量は100Lとし
た。)、同様の結果が得られた。
The same applies to the case where the same treatment is performed by the direct sludge return method shown in FIG. 2 (however, in the method shown in FIG. 2, the capacity of the reaction tank and the neutralization tank was 100 L). Was obtained.

【0045】[0045]

【発明の効果】以上詳述した通り、本発明のフッ素含有
水の処理方法によれば、汚泥返送法によるフッ素含有水
の処理において、より粒径の大きなCaF2汚泥粒子を
含む高濃度汚泥を生成させることができる。このため、
本発明の方法で得られたCaF2汚泥は、これを脱水、
乾燥してHFの回収のための原料とするに際し、低含水
率脱水ケーキを得、この脱水ケーキについて少ない熱量
で良好な操作性のもとに効率的な乾燥を行って、HFを
効率的に回収することができる。
As described in detail above, according to the method for treating fluorine-containing water of the present invention, in the treatment of fluorine-containing water by the sludge return method, high-concentration sludge containing CaF 2 sludge particles having a larger particle size is removed. Can be generated. For this reason,
The CaF 2 sludge obtained by the method of the present invention dehydrates it,
Upon drying to obtain a raw material for the recovery of HF, a dehydrated cake having a low moisture content is obtained, and the dehydrated cake is efficiently dried with a small amount of heat and good operability to efficiently convert HF. Can be recovered.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のフッ素含有水の処理方法の実施の形態
を示す系統図である。
FIG. 1 is a system diagram showing an embodiment of a method for treating fluorine-containing water of the present invention.

【図2】本発明のフッ素含有水の処理方法の別の実施の
形態を示す系統図である。
FIG. 2 is a system diagram showing another embodiment of the method for treating fluorine-containing water of the present invention.

【図3】実施例3において得られたCaF2汚泥の粒度
分布を示すグラフである。
FIG. 3 is a graph showing the particle size distribution of CaF 2 sludge obtained in Example 3.

【図4】比較例1において得られたCaF2汚泥の粒度
分布を示すグラフである。
FIG. 4 is a graph showing the particle size distribution of CaF 2 sludge obtained in Comparative Example 1.

【符号の説明】[Explanation of symbols]

1 原水槽 2 反応槽 3 中和槽 4 凝集槽 5 沈殿槽 1 Raw water tank 2 Reaction tank 3 Neutralization tank 4 Coagulation tank 5 Sedimentation tank

フロントページの続き Fターム(参考) 4D038 AA08 AB41 BA02 BA04 BB13 BB18 4D059 AA30 BD00 BE00 BE53 BE56 BF12 BF13 BF14 DA03 DA05 DA32 DA33 DA35 DB24 EB11Continued on the front page F term (reference) 4D038 AA08 AB41 BA02 BA04 BB13 BB18 4D059 AA30 BD00 BE00 BE53 BE56 BF12 BF13 BF14 DA03 DA05 DA32 DA33 DA35 DB24 EB11

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 フッ素含有水にカルシウム化合物を添加
してフッ化カルシウム汚泥を生成させ、生成したフッ化
カルシウム汚泥を分離するフッ素含有水の処理方法であ
って、生成したフッ化カルシウム汚泥の一部をカルシウ
ム化合物と接触させた後、フッ素含有水に添加するフッ
素含有水の処理方法において、 該フッ素含有水に硫酸イオンを添加することを特徴とす
るフッ素含有水の処理方法。
1. A method of treating a fluorine-containing water, wherein a calcium compound is added to the fluorine-containing water to generate calcium fluoride sludge, and the generated calcium fluoride sludge is separated. A method for treating fluorine-containing water, which comprises adding a sulfuric acid ion to the fluorine-containing water after contacting the part with a calcium compound and then adding the fluorine-containing water to the fluorine-containing water.
【請求項2】 硫酸イオンを、フッ素含有水中のフッ化
物イオンに対する硫酸イオン量が0.01〜0.1当量
となるように添加することを特徴とする請求項1のフッ
素含有水の処理方法。
2. The method for treating fluorine-containing water according to claim 1, wherein the sulfate ions are added so that the amount of sulfate ions with respect to the fluoride ions in the fluorine-containing water is 0.01 to 0.1 equivalent. .
【請求項3】 フッ化カルシウム汚泥の返送比が15〜
60であることを特徴とする請求項1又は2のフッ素含
有水の処理方法。
3. The return ratio of calcium fluoride sludge is 15 to
The method for treating fluorine-containing water according to claim 1 or 2, wherein the number is 60.
【請求項4】 フッ化カルシウム汚泥を脱水して乾燥し
た後、フッ化水素製造原料として再利用することを特徴
とするフッ素含有水の処理方法。
4. A method for treating fluorine-containing water, comprising dehydrating and drying calcium fluoride sludge and reusing it as a raw material for producing hydrogen fluoride.
JP11218990A 1999-08-02 1999-08-02 Treatment of water containing fluorine Pending JP2001038368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11218990A JP2001038368A (en) 1999-08-02 1999-08-02 Treatment of water containing fluorine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11218990A JP2001038368A (en) 1999-08-02 1999-08-02 Treatment of water containing fluorine

Publications (1)

Publication Number Publication Date
JP2001038368A true JP2001038368A (en) 2001-02-13

Family

ID=16728552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11218990A Pending JP2001038368A (en) 1999-08-02 1999-08-02 Treatment of water containing fluorine

Country Status (1)

Country Link
JP (1) JP2001038368A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001276848A (en) * 2000-03-29 2001-10-09 Kurita Water Ind Ltd Water treating equipment
JP2003275772A (en) * 2002-03-26 2003-09-30 Kurita Water Ind Ltd Method and device for treating fluorine-containing water
JP2006255499A (en) * 2005-03-15 2006-09-28 Kurita Water Ind Ltd Fluorine-containing wastewater treatment method and apparatus
JP2006320869A (en) * 2005-05-20 2006-11-30 Nippon Rensui Co Ltd Method for treating waste water containing fluoride ion
JP2009286639A (en) * 2008-05-27 2009-12-10 Japan Organo Co Ltd Apparatus and method for recovering fluorine and ammonia
JP2012210629A (en) * 2008-01-31 2012-11-01 Japan Organo Co Ltd Crystallization reactor apparatus and crystallization reaction method
CN110921898A (en) * 2019-12-04 2020-03-27 山东潍坊润丰化工股份有限公司 Wastewater treatment method for fluorine-containing aniline compound

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4990273A (en) * 1972-12-28 1974-08-28
JPS5015355A (en) * 1973-06-12 1975-02-18
JPS51102354A (en) * 1975-03-06 1976-09-09 Mitsubishi Metal Corp SHOSANKONOGANJUSURUGANFUTSUSOHAISUINOSHORIHO
JPS5331362A (en) * 1976-08-12 1978-03-24 Toyo Soda Mfg Co Ltd Treating method of fluorine containing waste water
JPS56144792A (en) * 1980-04-15 1981-11-11 Hitachi Plant Eng & Constr Co Ltd Disposal of fluorine-containing waste water
JPH0315512B2 (en) * 1983-11-01 1991-03-01 Kurita Water Ind Ltd
JPH04228401A (en) * 1990-06-01 1992-08-18 Asahi Glass Co Ltd Production of hydrogen fluoride
JPH05293474A (en) * 1992-04-17 1993-11-09 Kurita Water Ind Ltd Treatment of drainage containing fluoride ion
JPH0615512B2 (en) * 1986-11-17 1994-03-02 徳山曹達株式会社 Haloacetamide compound
JPH10479A (en) * 1996-06-12 1998-01-06 Kurita Water Ind Ltd Fluorine removing device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4990273A (en) * 1972-12-28 1974-08-28
JPS5015355A (en) * 1973-06-12 1975-02-18
JPS51102354A (en) * 1975-03-06 1976-09-09 Mitsubishi Metal Corp SHOSANKONOGANJUSURUGANFUTSUSOHAISUINOSHORIHO
JPS5331362A (en) * 1976-08-12 1978-03-24 Toyo Soda Mfg Co Ltd Treating method of fluorine containing waste water
JPS56144792A (en) * 1980-04-15 1981-11-11 Hitachi Plant Eng & Constr Co Ltd Disposal of fluorine-containing waste water
JPH0315512B2 (en) * 1983-11-01 1991-03-01 Kurita Water Ind Ltd
JPH0615512B2 (en) * 1986-11-17 1994-03-02 徳山曹達株式会社 Haloacetamide compound
JPH04228401A (en) * 1990-06-01 1992-08-18 Asahi Glass Co Ltd Production of hydrogen fluoride
JPH05293474A (en) * 1992-04-17 1993-11-09 Kurita Water Ind Ltd Treatment of drainage containing fluoride ion
JPH10479A (en) * 1996-06-12 1998-01-06 Kurita Water Ind Ltd Fluorine removing device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001276848A (en) * 2000-03-29 2001-10-09 Kurita Water Ind Ltd Water treating equipment
JP2003275772A (en) * 2002-03-26 2003-09-30 Kurita Water Ind Ltd Method and device for treating fluorine-containing water
JP2006255499A (en) * 2005-03-15 2006-09-28 Kurita Water Ind Ltd Fluorine-containing wastewater treatment method and apparatus
JP2006320869A (en) * 2005-05-20 2006-11-30 Nippon Rensui Co Ltd Method for treating waste water containing fluoride ion
JP2012210629A (en) * 2008-01-31 2012-11-01 Japan Organo Co Ltd Crystallization reactor apparatus and crystallization reaction method
JP2009286639A (en) * 2008-05-27 2009-12-10 Japan Organo Co Ltd Apparatus and method for recovering fluorine and ammonia
CN110921898A (en) * 2019-12-04 2020-03-27 山东潍坊润丰化工股份有限公司 Wastewater treatment method for fluorine-containing aniline compound

Similar Documents

Publication Publication Date Title
US7419643B1 (en) Methods and apparatus for recovering gypsum and magnesium hydroxide products
JP5157040B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP2001038368A (en) Treatment of water containing fluorine
AU2007221951B2 (en) Water treatment
JP4572812B2 (en) Fluorine-containing water treatment method
JPH0967118A (en) Production of gypsum from sulfuric acid waste liquid
JP2010036107A (en) Sewage treatment method
JP3903591B2 (en) Treatment method for fluorine and phosphorus containing wastewater
JP2007175673A (en) Treatment method of ammonia-containing drain
JP2005125153A (en) Method and apparatus for treating fluorine-containing waste water
JP2008073662A (en) Recycling method of hydroxyapatite crystal
JP2004000846A (en) Treatment method for fluorine-containing water
JP2005144209A (en) Fluorine-containing waste water treatment method
JP3918294B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP4169996B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP4335065B2 (en) Organic wastewater or sludge treatment method and apparatus
JP4154810B2 (en) Waste water treatment equipment
KR100324078B1 (en) Process for removing fluorine from desulfurization waste water of flue gas
JP2001137864A (en) Method for treating waste water containing hydrofluoric acid
JP6723057B2 (en) Water treatment method and water treatment system
JP4485562B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP5142945B2 (en) Phosphoric acid-containing water treatment apparatus and phosphoric acid-containing water treatment method
JP6723058B2 (en) Water treatment method and water treatment system
JPH1057969A (en) Fluorine-containing waste water treating device and its treatment
JP3593726B2 (en) Method for treating wastewater containing sulfuric acid and copper

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060523