JPH10479A - Fluorine removing device - Google Patents

Fluorine removing device

Info

Publication number
JPH10479A
JPH10479A JP8151414A JP15141496A JPH10479A JP H10479 A JPH10479 A JP H10479A JP 8151414 A JP8151414 A JP 8151414A JP 15141496 A JP15141496 A JP 15141496A JP H10479 A JPH10479 A JP H10479A
Authority
JP
Japan
Prior art keywords
sludge
tank
solid
liquid separation
reaction tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8151414A
Other languages
Japanese (ja)
Other versions
JP3196640B2 (en
Inventor
Isamu Kato
勇 加藤
Tomei Kobayashi
東明 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP15141496A priority Critical patent/JP3196640B2/en
Publication of JPH10479A publication Critical patent/JPH10479A/en
Application granted granted Critical
Publication of JP3196640B2 publication Critical patent/JP3196640B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently remove fluorine and to obtain treated water having high quality and also to obtain sludge having good dewatering properties by depositing heavy deposit to produce sedimentating sludge and utilizing characteristic of this sludge to form a sludge blanket and performing solid-liquid separation at high speed and thereby increasing area load for solid-liquid separation. SOLUTION: Aluminum compound 27 is added to water 5 containing fluorine and the mixture is introduced into a reaction tank 1 and reacted with calcium compound adsorbed to sludge circulated through a circulation path 6. Reaction liquid is transferred from the reaction tank 1 to a coagulation device 2 and a polymer flocculant 11 is added to perform coagulation. Mixed liquid containing formed floc is introduced into a solid-liquid separation tank 3 and a sludge blanket 19 is formed by an upflow to perform solid-liquid separation at high speed. A part of separated sludge is introduced into a mixing tank 4 and calcium compound 25 is added and the mixture is circulated to the reaction tank 1 through the circulation path 6 and reacted with raw water to produce calcium fluoride.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はフッ素含有水からフ
ッ素を除去するためのフッ素除去装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluorine removing device for removing fluorine from water containing fluorine.

【0002】[0002]

【従来の技術】フッ素含有水からフッ素を除去する方法
として、反応槽においてフッ素含有水に消石灰、あるい
は塩化カルシウムと水酸化ナトリウムなどのカルシウム
化合物を添加してpH6〜10に調整してフッ化カルシ
ウムを含む析出物を析出させ、凝集槽において高分子凝
集剤を添加して凝集反応を行い、沈殿槽で沈殿分離する
方法が行われている。処理目標値が厳しい場合には、さ
らに反応槽にアルミニウム化合物などの無機凝集剤を添
加し、凝集を行っている。
2. Description of the Related Art As a method for removing fluorine from fluorine-containing water, calcium fluoride such as slaked lime or calcium compounds such as calcium chloride and sodium hydroxide is added to the fluorine-containing water in a reaction tank to adjust the pH to 6-10. Has been carried out by precipitating a precipitate containing, a polymer flocculant is added in a flocculation tank to perform a flocculation reaction, and a precipitate is separated in a precipitation tank. When the treatment target value is severe, an inorganic coagulant such as an aluminum compound is further added to the reaction tank to perform coagulation.

【0003】しかしこのような処理方法では、生成する
フロックは多量に水を含むゲル状の水酸化物であるた
め、沈降性が悪く、このため沈殿槽の水面積負荷は0.
6〜0.8m3/m2・hrとなり、沈降分離に広大な敷
地面積を必要とする。また生成する汚泥は通常汚泥濃度
が1〜3%程度で脱水性が悪く、その処理は困難であっ
た。一方、処理水フッ素濃度は15〜22mg/l程度
であり、8mg/l以下の高度処理は困難であった。
However, in such a treatment method, the floc generated is a gel-like hydroxide containing a large amount of water, so that the sedimentation is poor.
It is 6 to 0.8 m 3 / m 2 · hr, and a vast site area is required for sedimentation and separation. Further, the sludge to be formed usually has a sludge concentration of about 1 to 3% and has a poor dewatering property, and its treatment is difficult. On the other hand, the concentration of fluorine in the treated water was about 15 to 22 mg / l, and it was difficult to perform advanced treatment at 8 mg / l or less.

【0004】このような点を改善する方法として、沈殿
槽で得られる汚泥にカルシウム化合物およびアルカリ剤
を添加したのちフッ素含有水と反応させ、さらに凝集沈
殿処理を行う方法が提案されている(特開昭60−97
090〜1号)。この方法では汚泥の沈降性は改善され
るが、凝集汚泥は沈殿槽で沈降分離を行っているため、
水面積負荷はそれほど改善されず、なお改良の余地を残
している。
As a method for improving such a point, there has been proposed a method of adding a calcium compound and an alkali agent to sludge obtained in a sedimentation tank, reacting the sludge with water containing fluorine, and further performing a coagulation sedimentation treatment (particularly, Japanese Patent Laid-Open No. 2004-157572). Kaisho 60-97
090-1). This method improves the sedimentation of sludge, but flocculated sludge is settled and separated in a sedimentation tank.
The water area load has not been significantly improved and still leaves room for improvement.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は上記問
題点を解決するため、重質の析出物を析出させて沈降性
の汚泥を形成し、この汚泥の特性を利用してスラッジブ
ランケットを形成して高速で固液分離し、これにより固
液分離のための面積負荷を大きくして効率よくフッ素を
除去し、高水質の処理水を得るとともに脱水性のよい汚
泥を得ることができ、汚泥発生量も少ないフッ素除去装
置を提供することである。
SUMMARY OF THE INVENTION The object of the present invention is to solve the above problems by depositing heavy sediment to form settling sludge, and utilizing the characteristics of this sludge to form a sludge blanket. Forming and solid-liquid separation at high speed, thereby increasing the area load for solid-liquid separation, efficiently removing fluorine, obtaining high quality treated water and obtaining dewaterable sludge, An object of the present invention is to provide a fluorine removing device that generates a small amount of sludge.

【0006】[0006]

【課題を解決するための手段】本発明は、フッ素含有水
とカルシウム化合物を反応させる反応槽と、この反応槽
にフッ素含有水を導入する原水路と、反応槽から反応液
を移送し高分子凝集剤を添加して凝集を行う凝集装置
と、凝集装置において形成されるフロックを含む混合液
を導入して上向流通水によりスラッジブランケットを形
成し固液分離を行う固液分離槽と、固液分離槽で分離さ
れた汚泥の一部にカルシウム化合物を添加して反応槽に
循環させる循環路とを有するフッ素除去装置である。
SUMMARY OF THE INVENTION The present invention provides a reaction tank for reacting fluorine-containing water with a calcium compound, a raw water channel for introducing fluorine-containing water into the reaction tank, and a method for transferring a reaction solution from the reaction tank to a polymer. A coagulation device for performing coagulation by adding a coagulant, a solid-liquid separation tank for forming a sludge blanket with upward flowing water by introducing a mixed solution containing flocs formed in the coagulation device, and performing solid-liquid separation, This is a fluorine removing apparatus having a circulation path for adding a calcium compound to a part of the sludge separated in the liquid separation tank and circulating the sludge in the reaction tank.

【0007】本発明で処理の対象となるフッ素含有水
は、フッ素をフッ化物イオンの形で含含む水であり、例
えば排煙脱硫工程、アルミニウムの電解精練工程、リン
酸肥料の製造工程、半導体を含む電子部品製造工程、ウ
ラン製練工程、表面処理洗浄工程等の排水などがあげら
れる。
The fluorine-containing water to be treated in the present invention is water containing fluorine in the form of fluoride ions, such as a flue gas desulfurization step, an aluminum electrolytic scouring step, a phosphate fertilizer production step, and a semiconductor fertilizer. And effluent water from a uranium refining process, a surface treatment cleaning process, and the like.

【0008】反応槽は原水路、循環路および移送路が連
絡し、原水路から導入するフッ素含有水と、循環路から
循環する汚泥に担持されたカルシウム化合物とを反応さ
せるように構成される。具体的には槽内液を急速攪拌す
る攪拌装置、および槽内液のpHを測定するpH計を設
置し、pHが一定範囲を維持するように、必要によりp
H調整剤を注入して、急速攪拌しながら反応させるよう
に構成することができる。pHとしては5.5〜7とす
るのが好ましい。反応槽は連続式が好ましいが、バッチ
式でもよく、公知のものが使用できる。
The reactor is connected to a raw water channel, a circulation channel, and a transfer channel, and is configured to react fluorine-containing water introduced from the raw water channel with a calcium compound carried on sludge circulated from the circulation channel. Specifically, a stirrer for rapidly stirring the liquid in the tank and a pH meter for measuring the pH of the liquid in the tank are installed.
It can be configured to inject an H adjuster and react while rapidly stirring. The pH is preferably 5.5 to 7. The reaction tank is preferably of a continuous type, but may be of a batch type, and a known type can be used.

【0009】凝集装置は反応槽の反応液に高分子凝集剤
を添加して凝集させ、フロックを成長させるものであれ
ばよく、ラインミキサなどによってもよいが、凝集槽が
好ましい。凝集槽は高分子凝集剤注入路および移送路が
連絡し、さらに緩速攪拌用の攪拌機を備え、反応槽から
移送路を通して移送される反応液に高分子凝集剤を注入
して緩速攪拌し、フロックを形成して成長させるように
構成される。凝集槽も連続式のものが好ましいが、バッ
チ式でもよく、公知のものが使用できる。
The aggregating apparatus may be any apparatus that adds a polymer coagulant to the reaction solution in the reaction tank to cause agglomeration to grow flocs, and may use a line mixer or the like, but a coagulation tank is preferable. The flocculation tank is connected to the polymer coagulant injection path and transfer path, and is further equipped with a stirrer for slow stirring. The polymer coagulant is injected into the reaction solution transferred from the reaction tank through the transfer path, and the mixture is slowly stirred. , To form and grow flock. The coagulation tank is also preferably of a continuous type, but may be of a batch type, and a known type can be used.

【0010】固液分離槽はスラッジブランケットを形成
するために上向流を形成する必要があり、このために槽
内の下部にディストリビュータを備えたものが使用され
る。ディストリビュータは汚泥を膨張させてスラッジブ
ランケットを形成するように槽内に均一に液を分配する
必要があり、このためには槽底部に管状のディストリビ
ュータを回転式に配置し、その長手方向に給液口を均一
に開口させるのが好ましい。一般には給液口は下向きに
開口し、その下側にバッフル板を設ける構造のディスト
リビュータが使用されており、このような構造のものも
使用できるが、回転方法の後側に給液口が開口し、その
上側にバッフル板を有するものが好ましい。
In the solid-liquid separation tank, it is necessary to form an upward flow in order to form a sludge blanket. For this purpose, a tank provided with a distributor at a lower portion in the tank is used. The distributor needs to distribute the liquid uniformly in the tank so that the sludge expands to form a sludge blanket.To do this, a tubular distributor is arranged at the bottom of the tank in a rotary manner, and the liquid is supplied in the longitudinal direction. Preferably, the mouth is uniformly opened. Generally, a liquid supply port is opened downward, and a distributor having a structure in which a baffle plate is provided below the liquid supply port is used. Such a structure can also be used, but the liquid supply port is opened at the rear side of the rotating method. It is preferable to have a baffle plate on the upper side.

【0011】固液分離槽の下部には凝集槽からディスト
リビュータに移送路が連絡し、上部には処理水路が連絡
する。また固液分離槽のスラッジブランケット形成部の
任意の位置、一般的には底部に汚泥濃縮部を設け、これ
に排泥路および循環路が連絡する。
A transfer path communicates with the distributor from the flocculation tank to the lower part of the solid-liquid separation tank, and a treatment water path communicates with the upper part. Further, a sludge thickening section is provided at an arbitrary position of the sludge blanket forming section of the solid-liquid separation tank, generally at the bottom, and a sludge passage and a circulation path are connected to the sludge thickening section.

【0012】循環路は反応槽に連絡し、固液分離槽で分
離した汚泥の一部を反応槽に循環する際、カルシウム化
合物を混合して反応させるように混合装置を設ける。混
合装置としてはラインミキサのように移送中に混合反応
を行うものでもよいが、攪拌器を備えた混合槽のよう
に、ある程度滞留して混合、吸着を行うものが好まし
い。混合槽にはカルシウム化合物注入路および必要によ
りアルカリ剤注入路を連絡し、これらには制御弁を設け
て、反応槽のpH計に連動させて薬注量を制御するもの
が好ましい。
The circulation path communicates with the reaction tank, and a mixing device is provided to mix and react the calcium compound when a part of the sludge separated in the solid-liquid separation tank is circulated to the reaction tank. As the mixing device, a device that performs a mixing reaction during transfer, such as a line mixer, may be used, but a device that performs mixing and adsorption with some stagnation, such as a mixing tank equipped with a stirrer, is preferable. The mixing tank is preferably connected to a calcium compound injection path and, if necessary, an alkali agent injection path, and these are preferably provided with a control valve for controlling the chemical injection amount in conjunction with the pH meter of the reaction tank.

【0013】カルシウム化合物としては消石灰、塩化カ
ルシウムなどが使用でき、アルカリ剤としては水酸化ナ
トリウム、水酸化マグネシウム、消石灰などが使用でき
るが、消石灰を使用すると両者を兼用できる。これらは
反応槽と混合装置の両方に分割注入するようにしてもよ
いが、全部を混合装置に注入するようにするのが好まし
い。
As the calcium compound, slaked lime, calcium chloride and the like can be used, and as the alkali agent, sodium hydroxide, magnesium hydroxide, slaked lime and the like can be used. When slaked lime is used, both can be used. These may be dividedly injected into both the reaction tank and the mixing device, but it is preferable that all of them are injected into the mixing device.

【0014】反応槽にアルミニウム化合物を注入する
と、凝集の効果が上がるが、アルミニウム化合物注入路
を原水路に連絡して、反応槽に入る前の原水にアルミニ
ウム化合物を注入すると、凝集効果はさらに高くなり、
処理水質が向上するので好ましい。アルミニウム化合物
としては、硫酸バンド、塩化アルミニウム、アルミン酸
ナトリウムなどが使用できる。
When the aluminum compound is injected into the reaction tank, the effect of aggregation increases. However, when the aluminum compound injection path is connected to the raw water channel and the aluminum compound is injected into the raw water before entering the reaction tank, the aggregation effect is further enhanced. Become
This is preferable because the quality of treated water is improved. As the aluminum compound, a sulfuric acid band, aluminum chloride, sodium aluminate and the like can be used.

【0015】上記の装置によるフッ素除去方法は次のよ
うに行われる。まず原水路から反応槽にフッ素含有水を
導入する際、アルミニウム化合物を注入して原水と混合
し、反応槽に導入する。反応槽では循環路から循環する
汚泥とカルシウム化合物およびpH調整剤の混合反応物
を、原水とアルミニウム化合物の混合物に添加し、急速
攪拌により混合して反応させ、これにより中和を行うと
ともにフッ化カルシウム、さらには水酸化アルミニウム
を含む析出物を析出させる。
The method for removing fluorine by the above-described apparatus is performed as follows. First, when introducing fluorine-containing water from the raw water channel into the reaction tank, an aluminum compound is injected, mixed with the raw water, and introduced into the reaction tank. In the reaction tank, a mixed reaction product of the sludge circulated from the circulation path, the calcium compound, and the pH adjuster is added to the mixture of the raw water and the aluminum compound, and mixed and reacted by rapid stirring, thereby neutralizing and fluorinating. A precipitate containing calcium and furthermore aluminum hydroxide is deposited.

【0016】反応槽の反応液は移送路から凝集装置に導
入し、凝集剤注入路から高分子凝集剤を注入して凝集を
行い、フロックを成長させる。凝集槽を用いる場合は攪
拌器により緩速攪拌を行いフロックの成長を促進する。
高分子凝集剤としては、ポリアクリルアミド等のノニオ
ン性高分子凝集剤、ポリアクリルアミドの加水分解物等
のアニオン性高分子凝集剤、アミノアクリル四級化物等
のカチオン性高分子凝集剤などが使用できる。
The reaction solution in the reaction tank is introduced into the aggregating apparatus from the transfer path, and a polymer flocculant is injected from the flocculant injection path to perform flocculation and grow flocs. When a flocculation tank is used, slow growth is performed by a stirrer to promote floc growth.
As the polymer flocculant, a nonionic polymer flocculant such as polyacrylamide, an anionic polymer flocculant such as a hydrolyzate of polyacrylamide, and a cationic polymer flocculant such as an aminoacryl quaternary compound can be used. .

【0017】凝集によりフロックを形成した混合液は固
液分離槽に導入して上向流通水によりスラッジブランケ
ットを形成し、フロックをスラッジブランケットに捕捉
させて分離し、高水質の処理水を上部から処理水路に排
出する。回転式のディストリビュータを用いる場合、混
合液は槽内に均一に導入されて汚泥の局部的な沈降がな
くなり、均一なスラッジブランケットが形成される。下
向に開口部を有する場合は上向流によりスラッジブラン
ケットが乱れる場合があるが、進行方向の後側に開口部
を有する場合は乱れはなく、均一なスラッジブランケッ
トが形成される。
The mixed liquid having flocs formed by coagulation is introduced into a solid-liquid separation tank to form a sludge blanket with upward flowing water, and the flocs are trapped and separated by the sludge blanket. Discharge to treated water channel. When a rotary distributor is used, the mixed solution is uniformly introduced into the tank so that local sludge settling is eliminated, and a uniform sludge blanket is formed. When the opening has a downward direction, the sludge blanket may be disturbed by the upward flow. However, when the opening has the opening on the rear side in the traveling direction, there is no disturbance and a uniform sludge blanket is formed.

【0018】汚泥濃縮部に濃縮された汚泥は、一部を排
泥路から排出し、残部を循環路から反応槽に循環させ
る。このときカルシウム化合物注入路からカルシウム化
合物を注入しまた必要によりアルカリ剤注入路からアル
カリ剤を注入し、混合装置において混合し、これらを汚
泥に吸着させる。汚泥の循環量は原水Qに対して0.1
〜0.5Qとする。
A part of the sludge concentrated in the sludge concentration section is discharged from a sludge passage, and the remaining sludge is circulated from a circulation passage to a reaction tank. At this time, a calcium compound is injected from a calcium compound injection channel, and an alkali agent is injected from an alkali agent injection channel if necessary, mixed in a mixing device, and adsorbed to sludge. The amount of sludge circulation is 0.1
To 0.5Q.

【0019】本発明では装置の立上げ時、他の装置から
種汚泥を導入すると、立上げ時点から定常運転を開始す
ることができるが、種汚泥がない状態から立上げる場合
には、初期の時点で反応槽にカルシウム化合物およびア
ルカリ剤を注入して中和およびフッ化カルシウムの析出
を行う。そして凝集槽で凝集、フロックの生長を行い、
固液分離槽でスラッジブランケットを形成して固液分離
を行う。
According to the present invention, when the apparatus is started up, when the seed sludge is introduced from another apparatus, the steady operation can be started from the start-up time. At this point, a calcium compound and an alkali agent are injected into the reaction tank to neutralize and precipitate calcium fluoride. And flocculation in flocculation tank, floc growth,
A sludge blanket is formed in a solid-liquid separation tank to perform solid-liquid separation.

【0020】固液分離槽の汚泥はフッ化カルシウム、水
酸化アルミニウム、フッ化アルミニウム等が複合した汚
泥となっているが、混合装置においてこの汚泥にカルシ
ウム化合物およびアルカリ剤が混合されると、カルシウ
ム化合物およびアルカリ剤は汚泥に吸着されて一部が結
晶に取り込まれ結晶が生長するとともに結晶表面がカル
シウム化合物過剰の状態となる。
The sludge in the solid-liquid separation tank is a sludge in which calcium fluoride, aluminum hydroxide, aluminum fluoride and the like are compounded. The compound and the alkaline agent are adsorbed by the sludge, and a part of the compound and the alkali agent are taken into the crystal, whereby the crystal grows and the crystal surface becomes in an excess state of the calcium compound.

【0021】この状態で反応槽に循環した汚泥が原水と
接触すると、原水中のフッ化物イオンは汚泥の表面のカ
ルシウム化合物と反応し、汚泥表面でフッ化カルシウム
が生成するため、結晶が生長する。原水中に添加された
アルミニウム化合物はアルカリ剤と反応して水酸化アル
ミニウムとなるほか、一部はアルカリ状態でフッ化アル
ミニウムとなり、結晶に取り込まれる。
When the sludge circulated in the reaction tank in this state comes into contact with raw water, fluoride ions in the raw water react with calcium compounds on the surface of the sludge, and calcium fluoride is generated on the sludge surface, so that crystals grow. . The aluminum compound added to the raw water reacts with the alkaline agent to form aluminum hydroxide, and a part of the aluminum compound becomes aluminum fluoride in an alkaline state and is taken into the crystal.

【0022】汚泥が反応槽と固液分離槽との間を循環す
る間に汚泥は生長して重質化し、沈降性が高くなる。本
発明ではこの沈降性を利用して固液分離槽において安定
なスラッジブランケットを形成することにより、高速で
固液分離を行い、しかも高水質の処理水を得る。すなわ
ち従来は汚泥を循環して沈降性のよい汚泥を形成して
も、単なる沈殿分離を行っていたが、一部結晶の外で析
出する微細な汚泥は沈降性が悪いため、これらの微細な
析出物を沈殿させるためには長い滞留時間を必要とし、
固液分離効率はあまり改善されず、大型の沈殿槽が必要
であった。
While the sludge circulates between the reaction tank and the solid-liquid separation tank, the sludge grows and becomes heavy, and the sedimentation property increases. In the present invention, a solid sludge blanket is formed in a solid-liquid separation tank utilizing this sedimentation property, thereby performing solid-liquid separation at a high speed and obtaining treated water of high quality. That is, in the past, even if sludge was circulated to form sludge having good sedimentation properties, mere sedimentation and separation were performed.However, fine sludge precipitated outside of some crystals had poor sedimentation properties, so these fine sludges were not used. It requires a long residence time to precipitate the precipitate,
The efficiency of solid-liquid separation was not significantly improved, and a large sedimentation tank was required.

【0023】本発明では上向流によりスラッジブランケ
ットを形成することにより、密度の高い汚泥により安定
したスラッジブランケットを形成して高速で固液分離を
行うことができる。微細な析出物は上昇する際スラッジ
ブランケットに捕促されて結晶生長の核となり、スラッ
ジブランケットから流出する処理水の水質も高くなる。
汚泥の重質化により汚泥濃度も20〜30%と高くな
り、汚泥発生量が少なくなる。
In the present invention, by forming a sludge blanket by upward flow, a stable sludge blanket can be formed by high-density sludge and solid-liquid separation can be performed at high speed. When the fine precipitates rise, they are trapped by the sludge blanket and become nuclei for crystal growth, and the quality of treated water flowing out of the sludge blanket also increases.
As the sludge becomes heavier, the sludge concentration also increases to 20 to 30%, and the sludge generation amount decreases.

【0024】原水中のフッ素がカルシウム化合物のみの
添加により析出する場合は、カルシウム化合物のみを添
加するだけでよいが、通常原水は酸性であるため、一般
的にはカルシウム化合物とアルカリ剤とを添加し、フッ
化カルシウムを析出させる。消石灰を用いる場合は、カ
ルシウム化合物とアルカリ剤の両方の性格を有するた
め、他の薬剤を添加しなくてもよい。アルミニウム化合
物は必ずしも添加しなくてもよいが、これを添加すると
処理水質が向上する。
When fluorine in the raw water is precipitated by adding only the calcium compound, it is only necessary to add the calcium compound alone. However, since the raw water is usually acidic, the calcium compound and the alkali agent are generally added. Then, calcium fluoride is precipitated. When slaked lime is used, it has both the properties of a calcium compound and an alkaline agent, so that other agents need not be added. The aluminum compound does not always need to be added, but when it is added, the quality of the treated water is improved.

【0025】[0025]

【発明の実施の形態】以下、本発明の実施の形態を図面
により説明する。図1は実施形態のフッ素除去装置を示
す系統図、図2(a)(b)はディストリビュータの断
面図である。図1において、1は反応槽、2は凝集槽、
3は固液分離槽、4は混合槽である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a system diagram showing a fluorine removing apparatus according to an embodiment, and FIGS. 2A and 2B are sectional views of a distributor. In FIG. 1, 1 is a reaction tank, 2 is a coagulation tank,
3 is a solid-liquid separation tank, and 4 is a mixing tank.

【0026】反応槽1には原水路5、循環路6および移
送路7が連絡しており、槽内液を急速攪拌する攪拌器8
およびpHを測定するpH計9が設けられている。凝集
槽2には移送路7、10および凝集剤注入路11が連絡
しており、また槽内液を緩速攪拌する攪拌器12が設け
られている。固液分離槽3には回転式のディストリビュ
ータ13が下部に設けられ、その中空のシャフト14を
介して連通するフィードウエル15が上部に設けられて
おり、移送路10はフィードウエル15に連絡してい
る。
A raw water channel 5, a circulation channel 6 and a transfer channel 7 are connected to the reaction tank 1, and a stirrer 8 for rapidly stirring the liquid in the tank.
And a pH meter 9 for measuring pH. The transfer paths 7 and 10 and the flocculant injection path 11 are connected to the flocculation tank 2, and a stirrer 12 for slowly stirring the liquid in the tank is provided. A rotary distributor 13 is provided at the lower part of the solid-liquid separation tank 3, and a feed well 15 communicating with the hollow distributor 14 is provided at an upper part. The transfer path 10 is connected to the feed well 15. I have.

【0027】ディストリビュータ13は図2(a)に示
すように、シャフト14を中心にして回転する管状体1
6の回転方向Rの後側に円形の開口部17を長手方向に
ほぼ均一に有し、その上側を覆うようにバッフル板18
が設けられている。バッフル板18の長さは開口部17
の口径の3〜5倍が好ましい。ディストリビュータ13
としては図2(b)に示すように、開口部17が下向に
開口し、その下側にバッフル板18が設けられている従
来形式のものも用いることができる。
As shown in FIG. 2A, the distributor 13 is a tubular member 1 which rotates around a shaft 14.
6 has a circular opening 17 substantially uniformly in the longitudinal direction on the rear side in the rotation direction R, and a baffle plate 18
Is provided. The length of the baffle plate 18 is the opening 17
Is preferably 3 to 5 times the caliber. Distributor 13
As shown in FIG. 2B, a conventional type in which an opening 17 is opened downward and a baffle plate 18 is provided below the opening 17 can be used.

【0028】固液分離槽3ではディストリビュータ13
の開口部17から混合液を導入して上向流を形成するこ
とにより、スラッジブランケット19を形成するように
なっている。固液分離槽3の上部には溢流部20が設け
られていて処理水路21が連絡し、底部には汚泥濃縮部
22が設けられていて、循環路6および排泥路23が連
絡している。
In the solid-liquid separation tank 3, the distributor 13
The sludge blanket 19 is formed by introducing a mixed solution from the opening 17 of the nozzle and forming an upward flow. An overflow section 20 is provided at an upper portion of the solid-liquid separation tank 3 and a treatment water channel 21 communicates therewith. A sludge concentration section 22 is provided at a bottom portion of the solid-liquid separation tank 3 and a circulation channel 6 and a drainage channel 23 communicate with each other. I have.

【0029】循環路6には攪拌器24を有する混合槽4
が設けられていて、カルシウム化合物注入路25が連絡
している。カルシウム化合物注入路25には制御弁26
が設けられていて、pH計9のpH検出値を一定にする
ように開閉し、カルシウム化合物の注入量を制御するよ
うに構成されている。カルシウム化合物としては消石灰
が使用される。原水路5にはアルミニウム化合物注入路
27が連絡している。アルミニウム化合物としては硫酸
バンドが使用されるようになっている。
A mixing tank 4 having a stirrer 24 is provided in the circulation path 6.
Are provided, and the calcium compound injection path 25 is in communication. A control valve 26 is provided in the calcium compound injection path 25.
Is opened and closed so as to keep the detected pH value of the pH meter 9 constant, and is configured to control the injection amount of the calcium compound. Slaked lime is used as the calcium compound. An aluminum compound injection channel 27 is connected to the raw water channel 5. Sulfuric acid bands have been used as aluminum compounds.

【0030】上記の装置によるフッ素除去方法は次のよ
うに行われる。まず、原水路5から反応槽1に原水(フ
ッ号含有水)を導入する際、アルミニウム化合物注入路
27からアルミニウム化合物を注入して原水と混合した
のち、反応槽1に導入する。反応槽1では循環路6から
循環する汚泥とカルシウム化合物(消石灰)の混合反応
物を、原水とアルミニウム化合物の混合物に添加し、攪
拌器8により急速攪拌して反応させ、これにより中和を
行うとともに、フッ化カルシウム、さらには水酸化アル
ミニウムを含む析出物を析出させる。
The method for removing fluorine by the above apparatus is performed as follows. First, when introducing the raw water (water containing the F-number) from the raw water channel 5 into the reaction tank 1, an aluminum compound is injected from the aluminum compound injection path 27, mixed with the raw water, and then introduced into the reaction tank 1. In the reaction tank 1, a mixed reaction product of the sludge and the calcium compound (slaked lime) circulated from the circulation path 6 is added to a mixture of the raw water and the aluminum compound, and the mixture is rapidly stirred by the stirrer 8 to react, thereby neutralizing. At the same time, a precipitate containing calcium fluoride and further aluminum hydroxide is deposited.

【0031】反応槽1の反応液は移送路7から凝集槽2
へ導入し、凝集剤注入路11から高分子凝集剤を注入し
て凝集を行い、フロックを成長させる。凝集槽2では攪
拌器12により緩速攪拌を行い、粒子を衝突させてフロ
ックの成長を促進する。高分子凝集剤としては、ポリア
クリルアミドの加水分解物等のアニオン性高分子凝集剤
が使用される。
The reaction solution in the reaction tank 1 is transferred from the transfer path 7 to the coagulation tank 2.
And flocculation is performed by injecting a polymer coagulant from the coagulant injection path 11 to grow flocs. In the flocculation tank 2, slow stirring is performed by the stirrer 12 to collide the particles and promote the growth of flocs. As the polymer coagulant, an anionic polymer coagulant such as a hydrolyzate of polyacrylamide is used.

【0032】凝集によりフロックを形成した混合液は移
送路10から固液分離槽3のフィードウエル15に導入
し、シャフト14を通して回転するディストリビュータ
13の開口部17から槽内に噴出させて上向流通水によ
りスラッジブランケット19を形成する。これにより混
合液中のフロックをスラッジブランケット19に捕捉さ
せて分離し、高水質の処理水を上部の溢流部20から処
理水路21に排出する。ディストリビュータ13の回転
速度は先端部で0.5〜1.5m/分、混合液の吹出速
度は1〜3m/分程度とする。
The mixed liquid having formed flocs by coagulation is introduced into the feed well 15 of the solid-liquid separation tank 3 from the transfer path 10, and is ejected into the tank from the opening 17 of the distributor 13 which rotates through the shaft 14 and flows upward. A sludge blanket 19 is formed with water. As a result, the flocs in the mixed solution are captured and separated by the sludge blanket 19, and the high-quality treated water is discharged from the overflow section 20 at the upper portion to the treated water passage 21. The rotation speed of the distributor 13 is 0.5 to 1.5 m / min at the tip, and the blowing speed of the mixture is about 1 to 3 m / min.

【0033】回転式のディストリビュータ13を用いる
ことにより、混合液は槽内に均一に導入されて汚泥の局
部的な沈降がなくなり、均一なスラッジブランケット1
9が形成される。図2(b)のように下向に開口部17
を有する場合は上向流によりスラッジブランケットが乱
れる場合があるが、図2(a)のように進行方向Rの後
側に開口部17を有する場合は乱れはなく、均一なスラ
ッジブランケット19が形成される。
By using the rotary distributor 13, the mixed liquid is uniformly introduced into the tank so that local sedimentation of sludge is eliminated, and the uniform sludge blanket 1
9 is formed. The opening 17 is directed downward as shown in FIG.
2A, the sludge blanket may be disturbed by the upward flow. However, when the opening 17 is provided on the rear side in the traveling direction R as shown in FIG. 2A, there is no disturbance and a uniform sludge blanket 19 is formed. Is done.

【0034】汚泥濃縮部22で濃縮された汚泥は一部を
排泥路23から排出し、残部を循環路6から反応槽1に
循環させる。このとき混合槽4においてカルシウム化合
物注入路25から、カルシウム化合物およびアルカリ剤
として消石灰を注入し、攪拌器24により攪拌、混合し
て消石灰を汚泥に吸着させるとともに、一部反応させ
る。消石灰の注入量はpH計9のpH検出値が一定値を
保つように制御弁26の開度を調整して制御する。
A part of the sludge concentrated in the sludge concentration section 22 is discharged from the sludge passage 23, and the remaining sludge is circulated from the circulation passage 6 to the reaction tank 1. At this time, slaked lime as a calcium compound and an alkali agent is injected from the calcium compound injection passage 25 in the mixing tank 4 and stirred and mixed by the stirrer 24 to adsorb slaked lime to the sludge and partially react. The injection amount of slaked lime is controlled by adjusting the opening of the control valve 26 so that the detected pH value of the pH meter 9 maintains a constant value.

【0035】上記の装置の立上げ時、他の装置から種汚
泥を導入すると、立上げ時点から定常運転を開始するこ
とができるが、種汚泥がない状態から立上げる場合に
は、初期の時点で反応槽1にカルシウム化合物およびア
ルカリ剤として消石灰を注入して中和およびフッ化カル
シウムの析出を行う。そして凝集槽2で凝集、フロック
の生長を行い、固液分離槽3でスラッジブランケットを
形成して固液分離を行う。
When the above-mentioned apparatus is started up, by introducing seed sludge from another apparatus, steady operation can be started from the start-up time. Injects slaked lime as a calcium compound and an alkaline agent into the reaction tank 1 to neutralize and deposit calcium fluoride. Then, flocculation and floc growth are performed in the flocculation tank 2, and a sludge blanket is formed in the solid-liquid separation tank 3 to perform solid-liquid separation.

【0036】固液分離槽3の汚泥はフッ化カルシウム、
水酸化アルミニウム、フッ化アルミニウム等が複合した
汚泥となっているが、混合槽4においてこの汚泥にカル
シウム化合物およびアルカリ剤として消石灰が混合され
ると、消石灰は汚泥に吸着されて一部が反応して結晶に
取り込まれ結晶が生長するとともに、結晶表面がカルシ
ウム化合物過剰の状態となる。
The sludge in the solid-liquid separation tank 3 is calcium fluoride,
The sludge is a composite of aluminum hydroxide, aluminum fluoride, and the like. When slaked lime is mixed with the sludge in the mixing tank 4 as a calcium compound and an alkaline agent, the slaked lime is adsorbed by the sludge and partially reacts. As a result, the crystal grows and the crystal grows, and the crystal surface becomes excessive in the calcium compound.

【0037】この状態で反応槽1に循環した汚泥が原水
と接触すると、原水中のフッ化物イオンは汚泥の表面の
消石灰と反応し、汚泥表面でフッ化カルシウムが生成す
るため、結晶が生長する。原水中に添加されたアルミニ
ウム化合物としての硫酸バンドは消石灰と反応して水酸
化アルミニウムとなるほか、一部はアルカリ状態でフッ
化アルミニウムとなり、結晶に取り込まれる。
In this state, when the sludge circulated in the reaction tank 1 comes into contact with raw water, fluoride ions in the raw water react with slaked lime on the sludge surface, and calcium fluoride is generated on the sludge surface, and crystals grow. . The sulfuric acid band as an aluminum compound added to the raw water reacts with slaked lime to form aluminum hydroxide, and a part thereof becomes aluminum fluoride in an alkaline state and is taken into the crystal.

【0038】汚泥が反応槽1と固液分離槽3との間を循
環する間に汚泥は生長して重質化し、沈殿性が高くな
る。このような汚泥の沈降性を利用して、固液分離槽3
において安定なスラッジブランケット19を形成するこ
とにより、高速で固液分離を行い、しかも高水質の処理
水を得ることができる。
While the sludge circulates between the reaction tank 1 and the solid-liquid separation tank 3, the sludge grows and becomes heavy, and the sedimentability increases. Utilizing such sedimentation of sludge, solid-liquid separation tank 3
By forming a stable sludge blanket 19, solid-liquid separation can be performed at a high speed, and high-quality treated water can be obtained.

【0039】従来のように汚泥を循環して沈降性のよい
汚泥を形成しても、単なる沈殿分離を行うと、一部結晶
の外で析出する微細な汚泥は沈降性が悪いため、これら
の微細な析出物を沈殿させるためには長い滞留時間を必
要とし、固液分離効率はあまり改善されず、大型の沈殿
槽が必要であったが、上向流によりスラッジブランケッ
ト19を形成することにより、沈降性の高い汚泥により
安定したスラッジブランケットを形成して高速で固液分
離を行うことができる。微細な析出物は上昇する際スラ
ッジブランケットに捕捉されて結晶生長の核となり、ス
ラッジブランケットから流出する処理水の水質も高くな
る。
Even if the sludge is circulated to form sludge having good sedimentation as in the prior art, fine sedimentation outside of some crystals is poor in sedimentation if mere sedimentation is performed. In order to precipitate fine precipitates, a long residence time was required, solid-liquid separation efficiency was not so much improved, and a large sedimentation tank was required. However, by forming a sludge blanket 19 by upward flow, In addition, a stable sludge blanket is formed by sludge having a high sedimentation property, and solid-liquid separation can be performed at high speed. The fine precipitates are caught by the sludge blanket when ascending and become nuclei for crystal growth, and the quality of treated water flowing out of the sludge blanket also increases.

【0040】[0040]

【実施例】以下、実施例について説明する。 実施例1 pH1.5〜1.8、F:100〜200mg/l、P
4−P:20〜30mg/l、NH4−N:30〜40
mg/l、NO3−N:40〜60mg/lのフッ素含
有水(Q:10m3/hr)を図1の装置で処理した。
反応槽1として2m3容のものを用い、原水路に硫酸バ
ンド1000mg/lを注入し、pH計の設定pHを
6.5として反応を行った。凝集槽2として2m3容の
ものを用い、ポリアクリルアミド加水分解物を注入して
凝集を行った。固液分離槽3として、直径1.6m高さ
3.5mのものを用い、ディストリビュータ13として
図2(a)のものを回転速度1.5m/分、吹出速度2
m/分、で用いた。混合槽4として0.2m3容のもの
を用い、汚泥循環量を0.2Qとし、pH計9に連動し
て消石灰を注入して処理を行った。
Embodiments will be described below. Example 1 pH 1.5 to 1.8, F: 100 to 200 mg / l, P
O 4 -P: 20 to 30 mg / l, NH 4 -N: 30 to 40
mg / l, NO 3 —N: 40 to 60 mg / l fluorine-containing water (Q: 10 m 3 / hr) was treated with the apparatus of FIG.
Used as the 2m 3 volumes as reaction vessel 1 was injected aluminum sulfate 1000 mg / l in the original water channel, the reaction was carried out setting the pH of the pH meter as 6.5. A coagulation tank 2 having a volume of 2 m 3 was used, and polyacrylamide hydrolyzate was injected to perform coagulation. A solid-liquid separation tank 3 having a diameter of 1.6 m and a height of 3.5 m was used, and a distributor 13 shown in FIG.
m / min. A mixing tank 4 having a volume of 0.2 m 3 was used, the sludge circulation amount was set to 0.2 Q, and slaked lime was injected in conjunction with the pH meter 9 to perform treatment.

【0041】実施例2 実施例1において、ディストリビュータ13として図2
(b)のものを回転速度5m/分、吹出速度5m/分で
用いた他は同条件で処理した。
Embodiment 2 In Embodiment 1, the distributor 13 shown in FIG.
(B) was processed under the same conditions except that the rotation speed was 5 m / min and the blowing speed was 5 m / min.

【0042】実施例3 実施例1において、硫酸バンドを反応槽に直接注入した
他は同条件で処理した。
Example 3 The procedure of Example 1 was repeated, except that the sulfuric acid band was directly injected into the reactor.

【0043】比較例1 実施例1において、汚泥循環を行わない他は同条件で処
理した。
Comparative Example 1 The procedure of Example 1 was repeated except that the sludge circulation was not performed.

【0044】比較例2 実施例1において固液分離槽として直径4mの従来型の
沈殿槽を用いた他は同条件で処理した。
Comparative Example 2 Processing was performed under the same conditions as in Example 1 except that a conventional sedimentation tank having a diameter of 4 m was used as the solid-liquid separation tank.

【0045】比較例3 実施例1において、固液分離槽として直径2mの従来型
の沈殿槽を用いた他は同条件で処理した。
Comparative Example 3 Processing was performed in the same manner as in Example 1 except that a conventional sedimentation tank having a diameter of 2 m was used as the solid-liquid separation tank.

【0046】上記各例の結果を表1に示す。Table 1 shows the results of the above examples.

【0047】[0047]

【表1】 [Table 1]

【0048】上記の結果より同じ薬注量では処理水SS
は実施例1が実施例3、比較例2より低くなっている
が、実施例3では硫酸バンドの汚泥改質が起きない割合
だけ、汚泥濃度が低くなっており、比較例2では設置面
積が大きくなる。比較例3では汚泥ゾーンがないため処
理水水質は最も悪い。実施例2では処理水SSが悪くな
っているが、汚泥ゾーンの安定性が悪いためである。比
較例1は汚泥返送を行なっていないため、汚泥改質が起
きずその結果、溶解度の低減効果が発生しないため、処
理水SSは低いがフッ素は高くなっている。
From the above results, at the same chemical injection amount, the treated water SS
Is lower in Example 1 than in Example 3 and Comparative Example 2. However, in Example 3, the sludge concentration is lower by the ratio at which sludge reforming of the sulfuric acid band does not occur. In Comparative Example 2, the installation area is smaller. growing. In Comparative Example 3, the quality of the treated water is the worst since there is no sludge zone. In Example 2, the treated water SS is poor, but the stability of the sludge zone is poor. In Comparative Example 1, since sludge was not returned, sludge reforming did not occur, and as a result, the effect of reducing the solubility did not occur. Thus, the treated water SS was low but the fluorine was high.

【0049】[0049]

【発明の効果】本発明によれば、汚泥にカルシウム化合
物を混合して循環し、スラッジブランケット形の固液分
離槽で高速固液分離するようにしたので、重質の析出物
を析出させて沈降性の汚泥を形成し、この汚泥の特性を
利用してスラッジブランケットを形成して高速で固液分
離し、これにより固液分離のための面積負荷を大きくし
て効率よくフッ素を除去し、高水質の処理水を得るとと
もに脱水性のよい汚泥を得ることができ、汚泥発生量も
少ないフッ素除去装置が得られる。
According to the present invention, the sludge is mixed with a calcium compound, circulated, and separated at a high speed in a sludge blanket-type solid-liquid separation tank. Forming sedimentable sludge, forming sludge blanket by utilizing the characteristics of this sludge and separating solid-liquid at high speed, thereby increasing the area load for solid-liquid separation and removing fluorine efficiently, It is possible to obtain sludge with good dewatering properties as well as to obtain treated water of high water quality, and to obtain a fluorine removing apparatus that generates a small amount of sludge.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態のフッ素除去装置の系統図である。FIG. 1 is a system diagram of a fluorine removing apparatus according to an embodiment.

【図2】(a)、(b)はそれぞれディストリビュータ
の断面図である。
FIGS. 2A and 2B are cross-sectional views of a distributor.

【符号の説明】 1 反応槽 2 凝集槽 3 固液分離槽 4 混合槽 5 原水路 6 循環路 7、10 移送路 8、12、24 攪拌器 9 pH計 11 凝集剤注入路 13 ディストリビュータ 14 シャフト 15 フィードウエル 16 管状体 17 開口部 18 バッフル板 19 スラッジブランケット 20 溢流部 21 処理水路 22 汚泥濃縮部 23 排泥路 25 カルシウム化合物注入路 26 制御弁 27 アルミニウム化合物注入路[Description of Signs] 1 Reaction tank 2 Coagulation tank 3 Solid-liquid separation tank 4 Mixing tank 5 Raw water path 6 Circulation path 7, 10 Transfer path 8, 12, 24 Stirrer 9 pH meter 11 Coagulant injection path 13 Distributor 14 Shaft 15 Feed well 16 Tubular body 17 Opening 18 Baffle plate 19 Sludge blanket 20 Overflow part 21 Treatment water channel 22 Sludge enrichment unit 23 Drainage channel 25 Calcium compound injection channel 26 Control valve 27 Aluminum compound injection channel

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 フッ素含有水とカルシウム化合物を反応
させる反応槽と、 この反応槽にフッ素含有水を導入する原水路と、 反応槽から反応液を移送し高分子凝集剤を添加して凝集
を行う凝集装置と、 凝集装置において形成されるフロックを含む混合液を導
入して上向流通水によりスラッジブランケットを形成し
固液分離を行う固液分離槽と、 固液分離槽で分離された汚泥の一部にカルシウム化合物
を添加して反応槽に循環させる循環路とを有するフッ素
除去装置。
1. A reaction tank for reacting fluorine-containing water with a calcium compound, a raw water channel for introducing fluorine-containing water into the reaction tank, a reaction liquid transferred from the reaction tank, and a polymer flocculant is added thereto for aggregation. A flocculation device to perform, a solid-liquid separation tank that forms a sludge blanket with upward flowing water by introducing a mixed solution containing flocs formed in the flocculation device to perform solid-liquid separation, and sludge separated by the solid-liquid separation tank And a circulation path for adding a calcium compound to a part of the reaction tank and circulating the mixture in a reaction tank.
JP15141496A 1996-06-12 1996-06-12 Fluorine removal equipment Expired - Fee Related JP3196640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15141496A JP3196640B2 (en) 1996-06-12 1996-06-12 Fluorine removal equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15141496A JP3196640B2 (en) 1996-06-12 1996-06-12 Fluorine removal equipment

Publications (2)

Publication Number Publication Date
JPH10479A true JPH10479A (en) 1998-01-06
JP3196640B2 JP3196640B2 (en) 2001-08-06

Family

ID=15518096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15141496A Expired - Fee Related JP3196640B2 (en) 1996-06-12 1996-06-12 Fluorine removal equipment

Country Status (1)

Country Link
JP (1) JP3196640B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000003952A1 (en) * 1998-07-17 2000-01-27 Nec Corporation Method for treating a fluorine-containing waste water and treating apparatus
JP2000084570A (en) * 1998-07-17 2000-03-28 Nec Corp Treatment of fluorine-containing waste water and treating apparatus
JP2000140863A (en) * 1998-11-05 2000-05-23 Nec Environment Eng Ltd Treatment of fluorine-containing waste water
JP2000218280A (en) * 1999-01-28 2000-08-08 Sharp Corp Method and device for treating waste water
JP2000334470A (en) * 1999-05-26 2000-12-05 Kurita Water Ind Ltd Treatment of fluorine containing waste water
JP2001038368A (en) * 1999-08-02 2001-02-13 Kurita Water Ind Ltd Treatment of water containing fluorine
JP2001276848A (en) * 2000-03-29 2001-10-09 Kurita Water Ind Ltd Water treating equipment
JP2001286873A (en) * 2000-04-07 2001-10-16 Sharp Corp Method and device for treating waste water
JP2002059174A (en) * 2000-08-23 2002-02-26 National Institute Of Advanced Industrial & Technology Method of removing fluoride ion and removing agent for the same
JP2006055728A (en) * 2004-08-19 2006-03-02 Matsushita Electric Ind Co Ltd Method and apparatus for treating fluorine-containing wastewater
JP2006159176A (en) * 2004-11-15 2006-06-22 Matsushita Electric Ind Co Ltd Method and device for treating fluorine-containing water
JP2006167631A (en) * 2004-12-16 2006-06-29 Kurita Water Ind Ltd Treatment method and treatment equipment for fluorine-containing waste water including phosphoric acid
JP2006272121A (en) * 2005-03-29 2006-10-12 Kurita Water Ind Ltd Starting-up method of water treatment apparatus
JP2007098325A (en) * 2005-10-06 2007-04-19 Kurita Water Ind Ltd Treatment method and apparatus for fluorine-containing water
JP2010075780A (en) * 2008-09-24 2010-04-08 Japan Organo Co Ltd Apparatus for treating phosphoric acid-containing water
WO2011115230A1 (en) * 2010-03-18 2011-09-22 栗田工業株式会社 Method for starting high-density-sludge generating water treatment device
WO2015141375A1 (en) * 2014-03-20 2015-09-24 住友重機械エンバイロメント株式会社 Sedimentation tank and sedimentation system
JP2018161635A (en) * 2017-03-27 2018-10-18 住友重機械エンバイロメント株式会社 Flocculation and sedimentation treatment apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61129011A (en) * 1984-11-29 1986-06-17 Japan Organo Co Ltd Floc blanket type flocculative sedimentation apparatus
JPS6227016A (en) * 1985-07-29 1987-02-05 Japan Organo Co Ltd Floc blanket type flocculation sedimentating device
JPH05293474A (en) * 1992-04-17 1993-11-09 Kurita Water Ind Ltd Treatment of drainage containing fluoride ion

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61129011A (en) * 1984-11-29 1986-06-17 Japan Organo Co Ltd Floc blanket type flocculative sedimentation apparatus
JPS6227016A (en) * 1985-07-29 1987-02-05 Japan Organo Co Ltd Floc blanket type flocculation sedimentating device
JPH05293474A (en) * 1992-04-17 1993-11-09 Kurita Water Ind Ltd Treatment of drainage containing fluoride ion

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000003952A1 (en) * 1998-07-17 2000-01-27 Nec Corporation Method for treating a fluorine-containing waste water and treating apparatus
JP2000084570A (en) * 1998-07-17 2000-03-28 Nec Corp Treatment of fluorine-containing waste water and treating apparatus
GB2354516A (en) * 1998-07-17 2001-03-28 Nec Corp Method for treating a fluorine-containing waste water and treating apparatus
JP2000140863A (en) * 1998-11-05 2000-05-23 Nec Environment Eng Ltd Treatment of fluorine-containing waste water
JP2000218280A (en) * 1999-01-28 2000-08-08 Sharp Corp Method and device for treating waste water
JP2000334470A (en) * 1999-05-26 2000-12-05 Kurita Water Ind Ltd Treatment of fluorine containing waste water
JP2001038368A (en) * 1999-08-02 2001-02-13 Kurita Water Ind Ltd Treatment of water containing fluorine
JP2001276848A (en) * 2000-03-29 2001-10-09 Kurita Water Ind Ltd Water treating equipment
JP2001286873A (en) * 2000-04-07 2001-10-16 Sharp Corp Method and device for treating waste water
JP2002059174A (en) * 2000-08-23 2002-02-26 National Institute Of Advanced Industrial & Technology Method of removing fluoride ion and removing agent for the same
JP4661132B2 (en) * 2004-08-19 2011-03-30 パナソニック株式会社 Method and apparatus for treating fluorine-containing wastewater
JP2006055728A (en) * 2004-08-19 2006-03-02 Matsushita Electric Ind Co Ltd Method and apparatus for treating fluorine-containing wastewater
JP2006159176A (en) * 2004-11-15 2006-06-22 Matsushita Electric Ind Co Ltd Method and device for treating fluorine-containing water
JP4591170B2 (en) * 2004-11-15 2010-12-01 パナソニック株式会社 Fluorine-containing water treatment equipment
JP4631425B2 (en) * 2004-12-16 2011-02-16 栗田工業株式会社 Method and apparatus for treating fluorine-containing wastewater containing phosphoric acid
JP2006167631A (en) * 2004-12-16 2006-06-29 Kurita Water Ind Ltd Treatment method and treatment equipment for fluorine-containing waste water including phosphoric acid
JP2006272121A (en) * 2005-03-29 2006-10-12 Kurita Water Ind Ltd Starting-up method of water treatment apparatus
JP2007098325A (en) * 2005-10-06 2007-04-19 Kurita Water Ind Ltd Treatment method and apparatus for fluorine-containing water
JP2010075780A (en) * 2008-09-24 2010-04-08 Japan Organo Co Ltd Apparatus for treating phosphoric acid-containing water
WO2011115230A1 (en) * 2010-03-18 2011-09-22 栗田工業株式会社 Method for starting high-density-sludge generating water treatment device
JP5700036B2 (en) * 2010-03-18 2015-04-15 栗田工業株式会社 Start-up method of high-density sludge generation type water treatment equipment
WO2015141375A1 (en) * 2014-03-20 2015-09-24 住友重機械エンバイロメント株式会社 Sedimentation tank and sedimentation system
JP2015181975A (en) * 2014-03-20 2015-10-22 住友重機械エンバイロメント株式会社 Flocculation and sedimentation tank and flocculation and sedimentation system
JP2018161635A (en) * 2017-03-27 2018-10-18 住友重機械エンバイロメント株式会社 Flocculation and sedimentation treatment apparatus

Also Published As

Publication number Publication date
JP3196640B2 (en) 2001-08-06

Similar Documents

Publication Publication Date Title
JP3196640B2 (en) Fluorine removal equipment
JPWO2008120704A1 (en) Fluorine-containing wastewater treatment apparatus and treatment method
CN216711770U (en) Water treatment system for realizing crystal seed regeneration
CN207525068U (en) The system of silica and hardness in a kind of removal industrial wastewater
CN212450783U (en) Sewage treatment system for removing silicon and hardness
CN111892142A (en) Silicon removal agent, silicon removal and hardness removal sewage treatment system and method
JP5439439B2 (en) Sludge treatment apparatus, phosphorus production method and sludge treatment method
CN108059269A (en) The system and technique of silica and hardness in a kind of removal industrial wastewater
JP4272122B2 (en) Coagulated water treatment method and apparatus
KR101031160B1 (en) Method for removing phosphorus in wastewater
JP3862888B2 (en) Continuous sludge aggregation method
JP4334718B2 (en) Method and apparatus for treating silver-containing wastewater
EA005306B1 (en) A method for the removal of metals from an aqueous solution using lime precipitation
JP4395924B2 (en) Fluorine removal method and apparatus
JPS6372309A (en) Flocculation and precipitation treating apparatus
JPH0138523B2 (en)
SE447370B (en) DEVICE AND PROCEDURE FOR CHEMICAL CONDITIONING OF SLAM
JP3412641B2 (en) Coagulation treatment of low turbidity wastewater from power plants
JP3592175B2 (en) Treatment method for wastewater containing fluorine
JP3457013B2 (en) Treatment method for wastewater containing fluoride ions
JPH06262183A (en) Treatment of muddy water treatment device
JP4626268B2 (en) Method for treating copper-containing liquid
JP3420777B2 (en) Aluminum insolubilization method
JP3260257B2 (en) Sludge dewatering method
JP2019155282A (en) Solid/liquid separation apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090608

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090608

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140608

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees