WO2000003952A1 - Method for treating a fluorine-containing waste water and treating apparatus - Google Patents

Method for treating a fluorine-containing waste water and treating apparatus Download PDF

Info

Publication number
WO2000003952A1
WO2000003952A1 PCT/JP1999/003789 JP9903789W WO0003952A1 WO 2000003952 A1 WO2000003952 A1 WO 2000003952A1 JP 9903789 W JP9903789 W JP 9903789W WO 0003952 A1 WO0003952 A1 WO 0003952A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
calcium
aluminum hydroxide
aluminum
amount
Prior art date
Application number
PCT/JP1999/003789
Other languages
French (fr)
Japanese (ja)
Inventor
Arata Toyoda
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to GB0101249A priority Critical patent/GB2354516A/en
Priority to KR1020017000715A priority patent/KR20010071946A/en
Publication of WO2000003952A1 publication Critical patent/WO2000003952A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/24Feed or discharge mechanisms for settling tanks
    • B01D21/2488Feed or discharge mechanisms for settling tanks bringing about a partial recirculation of the liquid, e.g. for introducing chemical aids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/02Settling tanks with single outlets for the separated liquid
    • B01D21/08Settling tanks with single outlets for the separated liquid provided with flocculating compartments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/24Feed or discharge mechanisms for settling tanks
    • B01D21/245Discharge mechanisms for the sediments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/30Control equipment
    • B01D21/34Controlling the feed distribution; Controlling the liquid level ; Control of process parameters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5281Installations for water purification using chemical agents

Definitions

  • the present invention relates to a method for treating fluorine-containing wastewater, and particularly to a method for treating fluorine-containing wastewater in which most of the fluorine in the wastewater is fixed as calcium fluoride and residual fluorine is adsorbed on aluminum hydroxide. It relates to a method for reducing the amount of equipment investment and chemicals, and the amount of sludge generated during treatment.
  • the present invention also relates to a fluorine-containing wastewater treatment apparatus suitable for the treatment method. Background art
  • Fluorine is a useful substance that is used in large quantities in various industrial fields, such as the chemical industry and semiconductor manufacturing, but is harmful to the human body and the environment.
  • the Pollution Control Law limits the concentration to 15 mg / 1 or less.
  • many Japanese municipalities have stricter additional standards of less than 1 Omg / l or less than 5 mg / l, and in some cases the strictest regulatory value is less than 0.8 mg / l.
  • the basic method of removing fluorine in wastewater is to add a calcium salt to the wastewater in the primary treatment tank 10 as shown in Fig. 6 to generate sparingly soluble calcium fluoride. . Since the generated calcium fluoride particles are very fine and easily dispersed in the liquid, about 0.1 times the aluminum salt is dissolved in the molar concentration of the generated calcium fluoride, and the water generated by neutralization is dissolved. Calcium fluoride is coagulated in the first coagulation tank 11 using aluminum oxide as a coagulation aid, and then sedimented and separated in the first settling tank 12. At this stage, most of the fluorine in the wastewater can be removed. ⁇ In general, the fluorine concentration in this method depends on the inhibition of the calcium fluoride production reaction by the contaminants contained in the wastewater and the solubility of calcium fluoride itself. Processing up to about 2 Omg / 1 You.
  • this method has a problem that a large amount of aluminum hydroxide adsorbing calcium fluoride and fluorine is generated as sludge.
  • the amount of fluorine-adsorbed aluminum hydroxide generated during advanced treatment is enormous.
  • the full Uz of calcium that occur when processing waste water 1 0 m 3 fluorine concentration 2 1 0 mg / 1 up to 2 0 mg / 1 is about ⁇ . 3 9 kg (about 5 moles)
  • the Aruminiumu hydroxide takes about Al (OH) 3 and to at least 2 kg (2 5. 6 mol) .
  • aluminum hydroxide is gel-like and difficult to dehydrate. Even if the water content is reduced to 70%, its water content is about 5 kg, which is disposed of as sludge.
  • This method also has the problem of requiring two settling tanks that require a large site area. For example, as shown in Fig. 7, a calcium salt is added to a fluorine-containing wastewater in a reaction tank 16 to generate calcium fluoride, and at the same time, a large amount of aluminum salt is dissolved and neutralized to form an aluminum hydroxide.
  • the drainage standard is 15 If it is not severe at about mg / 1, aluminum hydroxide does not need to be used in a large amount, so even a single-step treatment can be achieved if it is practical. In particular, when the amount of contaminants in the wastewater is small, it is possible to meet the wastewater standards by using aluminum hydroxide that is slightly larger than the required amount as a coagulation aid.
  • Japanese Patent Application Laid-Open Publication No. Hei 6-15464767 discloses that fluorine in wastewater is treated to a sufficiently low concentration without increasing the amount of aluminum salt used and the amount of sludge generated in a single-stage treatment.
  • a technique has been disclosed. In this technology, as shown in Fig. 8, calcium salt and aluminum salt are added to a fluorine-containing wastewater in a reaction tank 19 to neutralize it, and the generated calcium fluoride is treated with aluminum hydroxide as a coagulant aid.
  • the sedimentation After coagulation at 0, the sedimentation is separated in the sedimentation tank 21 and a part of the sediment is returned to the reaction tank and circulated through the sludge, the concentrations of calcium fluoride and aluminum hydroxide are increased, and the It improves the processability of fluorine by the seed crystal effect and the coprecipitation effect of aluminum hydroxide. Since aluminum hydroxide is circulated and used after being concentrated, it is not necessary to add a large excess of aluminum salt. According to the above-mentioned publication, aluminum hydroxide is produced by calcium fluoride.
  • the amount is preferably from 0.11 to 1.1 times, more preferably from 0.22 to 0.46 times the molar concentration of Therefore, this technology makes it possible to treat fluorine in wastewater to a sufficiently low concentration without increasing the amount of sludge by a single-stage treatment without adding a large excess of aluminum salt.
  • An object of the present invention is to overcome the above-mentioned problems and constantly and stably treat fluorine to a sufficiently low concentration in a single-stage treatment of a continuously generated high-concentration fluorine-containing wastewater without requiring advanced treatment. And can be processed
  • An object of the present invention is to provide a method capable of greatly reducing the amount of chemicals used and the amount of sludge generated due to treatment.
  • Another object of the present invention is to provide a method capable of minimizing the amount of generated sludge by effectively controlling the optimal amount of chemicals used in accordance with the target concentration of fluorine. Is to provide.
  • the first method for treating fluorine-containing wastewater comprises: a first step of causing calcium to act on wastewater containing fluorine ions to fix most of the fluorine in the wastewater as calcium fluoride; A smaller amount of aluminum salt as aluminum than calcium fluoride newly generated in the above step is added to the treatment solution, and the calcium fluoride is coagulated and settled using the formed aluminum hydroxide as a coagulation aid to form a precipitate slurry. And a third step of solid-liquid separating wastewater containing the precipitate slurry, draining the supernatant liquid phase, and discharging the solid precipitate slurry as sludge.
  • a method for treating a fluorine-containing wastewater wherein a part of the sediment slurry discharged as the sludge is withdrawn, and calcium is acted on at a pH of 9 or less to treat the sediment slurry.
  • the treated precipitate slurry is returned to the first step, and the series of steps is performed.
  • the second method for treating fluorine-containing wastewater of the present invention comprises: a first step of causing calcium to act on wastewater containing fluorine ions to fix most of the fluorine in the wastewater as calcium fluoride; A smaller amount of aluminum salt as aluminum is added to the treatment liquid as aluminum than calcium fluoride newly generated in the above step, and the calcium fluoride is coagulated and settled using aluminum hydroxide as an agglomeration aid to precipitate sediment slurry.
  • a fluorine-containing wastewater treatment method having a third step of discharging the sludge, wherein a part of the sediment slurry discharged as the sludge is withdrawn, and calcium is acted on at a pH of 9 or less to act on the sediment slurry.
  • the treated precipitate slurry is returned to the first step, and the series of steps is repeated.
  • the amount of aluminum hydroxide in the system is maintained at a level at least necessary for the aggregation of calcium fluoride, but the increase in aluminum hydroxide contributing to fluorine adsorption is controlled by controlling the amount of aluminum salt added. This is a method for treating fluorine-containing wastewater.
  • the treatment liquid is adjusted to be weakly acidic to neutral, and the amount of aluminum is smaller than the total amount of calcium fluoride and calcium phosphate newly produced in the above step as aluminum.
  • a method for treating fluorine-containing wastewater comprising a third step of separating, draining a supernatant liquid phase, and discharging a solid-phase sediment slurry as sludge,
  • a part of the sediment slurry discharged as the sludge is withdrawn, and calcium is acted on at a pH of 9 or less to remove fluorine adsorbed on the aluminum hydroxide contained in the sediment slurry. After being fixed as calcium iodide, the treated precipitate slurry is returned to the first step, and the series of steps is repeated.
  • the present invention also provides a reaction tank in which calcium acts on wastewater containing fluorine ions to fix most of the fluorine in the wastewater as calcium fluoride, and aluminum hydroxide formed by adding an aluminum salt.
  • a fluorine-containing wastewater treatment apparatus having a flocculation tank for flocculating and precipitating the calcium fluoride as a flocculation aid, and a sedimentation tank for solid-liquid separation of the obtained precipitate slurry;
  • the method is applied to the second treatment method, in which a calcium salt is added under a condition of pH 9 or less to remove fluorine adsorbed on aluminum hydroxide contained in the precipitate slurry.
  • a treatment apparatus comprising means for returning aluminum hydroxide and calcium fluoride regenerated in the regenerating tank to the reaction tank, or a fluorine-containing wastewater containing phosphoric acid
  • a fluorine-containing wastewater treatment apparatus having a coagulation tank for forming a sediment slurry by coagulation and sedimentation, and a sedimentation tank for solid-liquid separation of the obtained sediment slurry, wherein the treatment apparatus is the third treatment method described above.
  • a calcium salt is added under the condition of pH 9 or less, and the fluorine adsorbed on the aluminum hydroxide contained in the precipitate slurry is fixed as calcium fluoride.
  • An aluminum regeneration tank for regenerating the aluminum hydroxide by means of: recovering a part of the precipitate slurry solid-liquid separated in the sedimentation tank and returning the slurry to the aluminum regeneration tank; And a means for returning the aluminum hydroxide and calcium fluoride to the first reaction tank.
  • FIG. 1 is a system configuration diagram of the first embodiment of the present invention.
  • FIG. 2 is a graph schematically showing the constitution of each component present in the system in order to explain the operation of the present invention.
  • FIG. 3 is a system configuration diagram of the second embodiment of the present invention.
  • FIG. 4 is a system configuration diagram of the third embodiment of the present invention.
  • FIG. 5 is a graph schematically showing the configuration of each component present in the system in order to explain the operation of the fourth embodiment of the present invention.
  • Fig. 6 is a system configuration diagram of a general fluorine-containing wastewater treatment technology.
  • Fig. 7 is a system configuration diagram when a general fluorine-containing wastewater treatment technology is simplified.
  • FIG. 8 is a system configuration diagram of a conventional technology for solving the problems of a general fluorine-containing wastewater treatment technology.
  • BEST MODE FOR CARRYING OUT THE INVENTION the extracted sediment slurry always contains fluorine adsorbed on aluminum hydroxide contained in the sediment slurry.
  • Aluminum hydroxide is circulated at high concentration in the system because it is fixed as calcium fluoride by the action of calcium and then returned to the reaction tank. The concentration of fluorine in water can be reduced to a level significantly lower than the value corresponding to the solubility of calcium fluoride.
  • the main purpose is fixation by the formation of calcium fluoride, so that the newly added aluminum salt is necessary for coagulating the newly generated calcium fluoride in the reaction tank.
  • the amount is sufficient, and the amount of sludge generated as a result can be minimized.
  • the width of the aluminum hydroxide to be reduced can be sufficiently widened, and the amount of aluminum hydroxide can be controlled within this range. Operational control becomes extremely easy, and at the same time, the reduced amount of aluminum hydroxide can be used directly as the amount of sludge reduction. Temporary fluctuations in the concentration of fluorine in wastewater and aluminum Even if the amount of salt added fluctuates slightly, the slurry is returned after a sufficient amount has accumulated in the settling tank, so the composition ratio of the slurry always converges to an average value, There is almost no effect on the control of the amount of aluminum oxide.
  • FIG. 1 is a schematic diagram showing a configuration example according to the first exemplary embodiment of the present invention.
  • the flow of the treatment system is as follows: First, in the reaction tank 1 maintained at neutral pH, calcium ions act on the continuously flowing high-concentration fluorine-containing wastewater to remove fluorine ions in the wastewater. While fixing as calcium fluoride, an aluminum salt is added and neutralized to form aluminum hydroxide, which is used as a flocculant for calcium fluoride. Subsequently, a coagulant is added in the coagulation tank 2 to coagulate the solid components, and the sedimentation tank 3 performs solid-liquid separation as a precipitate. In the sedimentation tank 3, this sediment is sufficiently accumulated in advance.
  • a part of the sediment is extracted, a part of the extracted sediment slurry is discharged out of the system as sludge, and the remainder is reacted through an aluminum regeneration tank 4 maintained at pH 3 to 9. Return to tank 1.
  • a calcium salt is added to the aluminum regeneration tank 4.
  • the calcium salt added here flows into the reaction tank 1 and acts on fluorine in the wastewater to generate calcium fluoride.
  • an aluminum salt is newly added to the reaction tank 1.
  • the amount of calcium salt to be added to the aluminum regeneration tank 4 is such that the calcium concentration when flowing into the reaction tank 1 is equal to or more than the chemical equivalent for generating calcium fluoride from fluorine in the wastewater, and is preferably twice. Set so that it is at least equivalent.
  • the amount of the aluminum salt to be added to the reaction tank 1 is the minimum amount required for the aluminum hydroxide generated in the coagulation tank to function as a coagulation aid for calcium fluoride.
  • an amount of nickel an amount smaller than the amount of newly generated calcium fluoride is added every cycle.
  • the amount of aluminum is set in the range of 1 to 30% as aluminum based on the amount of newly generated calcium fluoride.
  • the amount of sediment slurry discharged so that the amount of calcium fluoride newly generated in each cycle is equal to the amount of calcium fluoride contained in the sediment discharged as sludge.
  • the amount of aluminum salt added is set so that the amount of aluminum salt added and the amount of aluminum hydroxide contained in the sediment discharged as sludge are equal to aluminum.
  • the inflow of fluorine-containing wastewater and the return and discharge of calcium fluoride and aluminum hydroxide contained in the sediment slurry should be set to always be constant.
  • the sedimentation was set in order to set the discharge amount of sediment slurry, while keeping the inflow of fluorine-containing wastewater and the return amount of sediment slurry constant. Focusing on the solid-liquid interface level in Vessel 3, and adjusting the discharge amount of the sediment slurry so that the solid-liquid interface is always kept within a predetermined range when the circulation of the sediment slurry is repeated, can be broached. It is.
  • means for monitoring the solid-liquid interface level for example, a normal level sensor, and a mechanism for controlling the removal of the sediment slurry so that the solid-liquid interface level is within a predetermined range, for example, a pump (not shown) It becomes possible by linking a valve and the like.
  • each tank is not particularly limited, and can be appropriately adjusted according to the design.
  • the aluminum regeneration tank 4 is 1/10 or less of the reaction tank 1
  • the sedimentation tank 3 is the reaction tank. Can be more than 5 times 1 Wear.
  • the coagulation tank 2 can be set to 1 of the reaction tank 1.
  • the amount of sediment previously accumulated in sedimentation tank 3 shall be 10 times or more the amount of sediment newly generated in each cycle.
  • reaction tank 1 most of the fluorine ions in the wastewater are fixed as calcium fluoride. Further, since the reaction tank 1 is kept neutral, the dissolved aluminum salt is neutralized to produce aluminum hydroxide. Since this acts as a coagulation aid for calcium fluoride, it is possible to easily coagulate calcium fluoride particles dispersed in the liquid.
  • the amount of addition of the aluminum salt to the amount of calcium fluoride to be generated is only such that the effect of aluminum hydroxide as a coagulation aid of calcium fluoride can be sufficiently obtained as described above.
  • the concentration of calcium fluoride and aluminum hydroxide in reaction tank 1 is increased by circulating the precipitate consisting of calcium fluoride and aluminum hydroxide in the system.
  • fluorine is adsorbed on the aluminum hydroxide in the sediment stored in the settling tank 3, and the amount of fluorine is not absolutely large as described above, but the amount of fluorine adsorbed per aluminum From the viewpoint of this, it is close to the saturated adsorption amount. Therefore, this precipitate slurry is also in a state where fluorine is concentrated together with calcium fluoride and aluminum hydroxide.
  • the fluorine adsorbed on the system is fixed here as calcium fluoride.
  • the aluminum hydroxide returned to the reaction tank 1 can contribute to fluorine adsorption. As described above, the concentration of aluminum hydroxide in the reaction tank 1 increases due to the circulation of the sediment slurry, while the amount of fluorine to be treated is constant. Can be sufficiently reduced.
  • Fig. 2 shows that the amount of aluminum hydroxide that can contribute to fluorine adsorption increases when the treatment is performed while circulating a precipitate slurry consisting of calcium fluoride and aluminum hydroxide, while the treatment is performed transiently.
  • Fig. 4 is a graph schematically showing the operation.
  • the amount of newly generated calcium fluoride and newly added aluminum (as aluminum salt), and the amount of calcium fluoride and aluminum (hydroxylated) contained in the discharged sludge (As aluminum) is always the same, even if the concentration of calcium fluoride and aluminum hydroxide in reaction tank 1 is high, the ratio itself is always constant, and the slurry is cycled again.
  • the solid-liquid interface of the settling tank 3 does not change. If the inflow of fluorine-containing wastewater and the return and discharge of sediment slurry are always constant, the concentrations of calcium fluoride and aluminum hydroxide in the reaction tank 1 equilibrate at a constant value, and The value can be set freely by manipulating each of the above quantities.
  • the pH of the aluminum regeneration tank 4 is such that, in the case of strong alkalinity, aluminum hydroxide dissolves as aluminate ions and reacts with calcium ions to form stable calcium aluminate. It is important to keep the pH at 9 or less because regeneration as a fluorine adsorbent becomes impossible. Further, since the fluorine adsorption property of aluminum hydroxide is strongly pH-dependent, it is preferable to keep the pH of the reaction tank 1 in the range of 6 to 7 for efficient treatment.
  • the system including the reaction tank, the coagulation tank, and the sedimentation tank which corresponds to the primary treatment of the general fluorine-containing wastewater treatment system using the two-stage treatment, Much smaller than With a minimal system configuration that simply adds a luminium regeneration tank (for example, a capacity of 1/10 to 1/40 of the reaction tank), it can treat fluorine in wastewater to a sufficiently low concentration without requiring any advanced treatment. It is possible.
  • a luminium regeneration tank for example, a capacity of 1/10 to 1/40 of the reaction tank
  • the reaction vessel 1 is 30 m 3
  • sedimentation tank 3 is 300 m
  • aluminum regeneration tank 4 is 2 m 3.
  • the fluorine-containing wastewater to be treated is introduced into the reaction tank 1 at an average fluorine concentration of 200 mg / l and a pH of 5 at an inflow of 1 m 3 / min.
  • slaked lime was added so that the calcium concentration in the reaction tank 1 became 500 mg / 1
  • aluminum sulfate was further added so that the aluminum concentration became 20 mg / l.
  • the pH was adjusted with sulfuric acid so that the pH of the reaction tank 1 was always in the range of 6 to 7.
  • coagulation tank 2 a polyacrylamide-based polymer coagulant was added as a coagulant to coagulate calcium fluoride and aluminum hydroxide generated in reaction tank 1.
  • the mixture of aggregated calcium fluoride and aluminum hydroxide was precipitated in settling tank 3. This operation was continued, and 100 m 3 of the precipitate was accumulated in the settling tank 3.
  • the concentration of fluorine in the supernatant of sedimentation tank 3 was 18 mg / 1.
  • the concentrations of calcium fluoride and aluminum hydroxide in the reaction vessel 1 increased sharply at first, but gradually decreased and reached an equilibrium state.
  • the concentration of calcium fluoride was 4535.lmg / l
  • the concentration of aluminum hydroxide was 276.7mg / l as aluminum.
  • This aluminum concentration includes 20 mg / 1 minute of aluminum that is newly added every cycle, but a considerable portion is considered to be in a state that can contribute to fluorine adsorption, and The fluorine concentration could be constantly reduced to 5 mgZ1.
  • hydroxide secondary aluminum ⁇ beam and calcium fluoride is 453 1: 2 7 6 force will be included in a ratio of 7 s, the discharge flow rate There 0. 0 1 5 6 m 3 / min, the precipitate since slurries of water content of 97%, emissions hydroxide ⁇ Rumi two ⁇ beam and calcium fluoride which it 39 8. 2 m 3 / min, is calculated to be 69. 3 m 3 / min. This value is considered to be almost equal to the newly generated amounts of calcium fluoride and aluminum hydroxide in the reaction tank 1, and the solid-liquid interface in the sedimentation tank 3 did not change even if the treatment cycle was repeated.
  • slaked lime as a calcium salt is added not only to the aluminum regeneration tank 4 but also to the reaction tank 1 for the strongly acidic fluorine-containing wastewater.
  • the total amount of slaked lime was the same as in Example 1, and the amount of slaked lime added to reactor 1 was neutral (pH Adjust the amount to keep 6 to 7), and add the rest to the aluminum regeneration tank 4.
  • pH Adjust the amount to keep 6 to 7 the rest to the aluminum regeneration tank 4.
  • the calcium concentration in the reaction tank 1 is set to 210 mg / l
  • Slaked lime is added to the regenerating tank 4 so that the concentration of the potash is 1740 mg / l.
  • the pH of the strongly acidic fluorine-containing wastewater was adjusted with slaked lime only in reaction tank 1, so that the PH adjustment operation by adding sulfuric acid or sodium hydroxide in reaction tank 1 was unnecessary. There is an advantage that it becomes.
  • the pH can be similarly adjusted by using an acidic calcium salt, for example, calcium chloride.
  • the first reaction tank 5 maintained at a pH of 8 to 10 with respect to wastewater containing phosphoric acid together with fluorine
  • calcium is actuated to remove calcium fluoride and calcium phosphate.
  • fluorine remaining in the second reaction tank 6 maintained at pH 6 to 7 is subjected to an adsorption treatment with aluminum hydroxide.
  • the aluminum hydroxide also acts as a coagulation aid for sedimenting and separating calcium fluoride and calcium phosphate in the sedimentation tank 8.
  • the amount of newly added aluminum salt is sufficient to coagulate and sediment the calcium fluoride and calcium phosphate newly formed in the reaction tank 1. A small amount is sufficient.
  • Other treatment conditions are the same as in the first embodiment, but when the concentration of phosphoric acid in the wastewater is high, the amount of calcium salt added to the aluminum regeneration tank 9 is increased accordingly.
  • This embodiment corresponds to a case where the target value of the fluorine concentration in the treated water is 13 mg / 1, and the system configuration is the same as that of the first embodiment.
  • the amount of aluminum sulfate added to reactor 1 shall be 9 mg / l as aluminum concentration.
  • the amount of aluminum hydroxide that can contribute to fluorine adsorption in the reaction tank 1 becomes extremely large, so that the concentration of fluorine in the treated water decreases to 5 mg / 1, but as shown in FIG.
  • the amount of aluminum hydroxide can be significantly reduced in order to make the fluorine concentration in the treated water 13 mg / l, and the amount of aluminum sulfate added to the reaction tank 1 was reduced from 2 Omg / 1 as aluminum concentration.
  • the concentration of fluorine in the treated water could be reduced to 13 mg / l or less.
  • the concentration of fluorine in the treated water is 13 mg / 1.
  • the amount of aluminum sulfate added temporarily drops slightly and drops below 8 mg / l, the cohesiveness of calcium fluoride deteriorates rapidly, the treated water becomes cloudy and the fluorine concentration increases. Also exceeds 15 mg / l.
  • the fluctuation of the fluorine concentration in the raw wastewater is large, and the same phenomenon occurs when the concentration temporarily exceeds 300 mg / 1.
  • the set value of the amount of added aluminum sulfate is 2 Omg / 1 or more with a margin.
  • the first effect of the present invention is to continuously and stably reduce the concentration of fluorine to a sufficiently low level using high-concentration fluorine-containing wastewater by using equipment and chemicals required for conventional primary treatment without requiring advanced treatment. Can be processed. This eliminates the need for equipment and chemicals, including huge sedimentation tanks, required for advanced treatment, and at the same time eliminates the huge sludge generated by advanced treatment.
  • a second effect of the present invention is that the use amount of the pH adjuster can be optimized for a strongly acidic or weakly alkaline fluorine-containing wastewater. For this reason, the use of chemicals such as sulfuric acid and sodium hydroxide used as pH adjusters can be reduced.
  • the reason is that a part of the strong alkaline slaked lime or the weakly acidic calcium chloride added to generate calcium fluoride can be used for neutralizing the acid or base in the reaction tank.
  • a third effect of the present invention is that wastewater containing phosphoric acid in addition to fluorine can be sufficiently treated with both fluorine and phosphoric acid, and in particular, fluorine can be treated with high efficiency. Therefore, the amount of aluminum hydroxide used also as a fluorine adsorbent can be reduced.
  • the fourth effect of the present invention is that when the wastewater standard originally does not require advanced treatment, calcium fluoride due to temporary fluctuations of the fluorine concentration in raw wastewater and fluctuations in the amount of aluminum salt added, etc.
  • a stable treatment can be achieved with a minimum amount of aluminum hydroxide without causing problems such as deterioration of cohesiveness and fluorination property.
  • the addition amount of aluminum sulfate which was conventionally set relatively high in view of safety, is greatly reduced, and the sludge amount can be reduced accordingly.
  • the width of the aluminum hydroxide to be reduced can be made sufficiently large, and the amount of aluminum hydroxide can be controlled within this range, and Since the slurry is returned after a sufficient amount has been accumulated in the settling tank, the composition of the slurry is not affected by temporary fluctuations in the fluorine concentration in the wastewater and slight fluctuations in the amount of A1 salt added. This is because the ratio always converges to an average value, and there is almost no effect on the control of the amount of aluminum hydroxide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Removal Of Specific Substances (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

A method for treating a fluorine-containing waste water which comprises fixing a fluoride ion as potassium fluoride in a reacting tank (1), sedimenting it by using aluminum hydroxide as a coagulant aid in a sedimentation tank (3), withdrawing a part of a sediment slurry comprising potassium fluoride and aluminum hydroxide to return it to an aluminum regenerating tank (4), reacting the fluorine adsorbed on aluminum hydroxide particles with a solution containing a high concentration of calcium at a pH of 9 or lower in the aluminum regenerating tank (4), to fix the fluorine as potassium fluoride, and returning it to the reactor (1), thereby conducting circulation in a manner such that aluminum hydroxide, which has adsorptive ability for fluorine, is present at a high concentration in the whole system.

Description

フッ素含有廃水の処理方法及び処理装置 技術分野  Method and apparatus for treating fluorine-containing wastewater
本発明はフッ素含有廃水の処理方法に関し、 特に廃水中の大部分の フッ素をフッ化カルシウムとして固定し、 残留フッ素を水酸化アルミ 二ゥムに吸着させるフッ素含有廃水の処理方法において、 処理に要す る設備投資及び薬剤量、 並びに処理に伴い発生する汚泥量を低減する ための方法に関する。 また、 本発明は該処理方法に適したフッ素含有 廃水の処理装置にも関する。 背景技術  TECHNICAL FIELD The present invention relates to a method for treating fluorine-containing wastewater, and particularly to a method for treating fluorine-containing wastewater in which most of the fluorine in the wastewater is fixed as calcium fluoride and residual fluorine is adsorbed on aluminum hydroxide. It relates to a method for reducing the amount of equipment investment and chemicals, and the amount of sludge generated during treatment. The present invention also relates to a fluorine-containing wastewater treatment apparatus suitable for the treatment method. Background art
フッ素は化学工業や半導体製造など種々の産業分野で大量に利用さ れている有用な物質である一方、 人体や環境に対しては有害物であり、 各種産業排水に含まれるフッ素は日本の水質汚濁防止法によって 1 5 m g / 1以下の濃度に規制されている。 また多くの日本の自治体は 1 O m g / 1以下あるいは 5 m g / l以下といったさらに厳しい上乗せ 基準を設けており、 最も厳しい規制値として 0 . 8 m g / l以下とい うケースもある。  Fluorine is a useful substance that is used in large quantities in various industrial fields, such as the chemical industry and semiconductor manufacturing, but is harmful to the human body and the environment. The Pollution Control Law limits the concentration to 15 mg / 1 or less. Also, many Japanese municipalities have stricter additional standards of less than 1 Omg / l or less than 5 mg / l, and in some cases the strictest regulatory value is less than 0.8 mg / l.
一般に廃水中のフッ素を除去する方法としては従来、 図 6に示すよ うに、 一次処理槽 1 0において廃水中にカルシウム塩を添加し、 難溶 性のフッ化カルシウムを生成させるのが基本である。 生成したフッ化 カルシウムの粒子は非常に微細で液中に分散しやすいため、 生成フッ 化カルシウムのモル濃度に対して 0 . 1倍量程度のアルミニウム塩を 溶解し、 中和して生成する水酸化アルミニウムを凝集助剤として、 フ ッ化カルシウムを第 1凝集槽 1 1で凝集させた後、 第 1沈降槽 1 2で 沈降分離する。 この段階で廃水中の大部分のフッ素を除去することが できるカ^ 廃水中に含まれる夾雑物質によるフッ化カルシウム生成反 応の妨害、 およびフッ化カルシウム自体の溶解度により、 通常この方 法ではフッ素濃度として 2 O m g / 1程度まで処理するのが限界であ る。 In general, the basic method of removing fluorine in wastewater is to add a calcium salt to the wastewater in the primary treatment tank 10 as shown in Fig. 6 to generate sparingly soluble calcium fluoride. . Since the generated calcium fluoride particles are very fine and easily dispersed in the liquid, about 0.1 times the aluminum salt is dissolved in the molar concentration of the generated calcium fluoride, and the water generated by neutralization is dissolved. Calcium fluoride is coagulated in the first coagulation tank 11 using aluminum oxide as a coagulation aid, and then sedimented and separated in the first settling tank 12. At this stage, most of the fluorine in the wastewater can be removed. ^ In general, the fluorine concentration in this method depends on the inhibition of the calcium fluoride production reaction by the contaminants contained in the wastewater and the solubility of calcium fluoride itself. Processing up to about 2 Omg / 1 You.
したがって環境基準を達成するためにこのあとさらに高度処理とし て、 高度処理槽 1 3において多量のアルミニウム塩を溶解し、 中和す ることによって生成する水酸化アルミニウムに廃水中のフッ素を吸着 させ、 この水酸化アルミニウムを第 2凝集槽 1 4で凝集させた後、 第 2沈降槽 1 5で沈降分離する方法が一般的である。  Therefore, in order to achieve the environmental standards, further advanced treatment is carried out, and a large amount of aluminum salt is dissolved in the advanced treatment tank 13 and the aluminum hydroxide produced by neutralization is allowed to adsorb fluorine in wastewater, In general, the aluminum hydroxide is coagulated in the second coagulation tank 14 and then settled and separated in the second settling tank 15.
しかしながらこの方法は、 フヅ化カルシウムおよびフッ素を吸着し た水酸化アルミニウムが汚泥として大量に発生する問題がある。 特に 高度処理で発生する、 フッ素吸着した水酸化アルミニウム量は膨大で ある。 例えばフッ素濃度 2 1 0 m g / 1の廃水 1 0 m3を 2 0 m g / 1 まで処理する際に発生するフヅ化カルシウムは約◦ . 3 9 k g (約 5 モル) であるのに対して、 フッ素濃度 2 0 m g / 1の廃水 1 0 m3を 5 m g / 1まで処理するためには、 水酸化アルミニゥムは Al(OH)3 とし て少なく とも 2 k g ( 2 5 . 6モル) 程度要する。 実際には水酸化ァ ルミ二ゥムはゲル状で脱水が困難であり、 含水率を 7 0 %まで絞った としてもその含水重量は 5 k g程度になり、 これが汚泥として処分さ れる。 However, this method has a problem that a large amount of aluminum hydroxide adsorbing calcium fluoride and fluorine is generated as sludge. In particular, the amount of fluorine-adsorbed aluminum hydroxide generated during advanced treatment is enormous. Against for example the full Uz of calcium that occur when processing waste water 1 0 m 3 fluorine concentration 2 1 0 mg / 1 up to 2 0 mg / 1 is about ◦. 3 9 kg (about 5 moles) , in order to process the waste water 1 0 m 3 of fluorine concentration 2 0 mg / 1 to 5 mg / 1, the Aruminiumu hydroxide takes about Al (OH) 3 and to at least 2 kg (2 5. 6 mol) . Actually, aluminum hydroxide is gel-like and difficult to dehydrate. Even if the water content is reduced to 70%, its water content is about 5 kg, which is disposed of as sludge.
またこの方法は、 広大な敷地面積を必要とする沈降槽を 2つ必要と するという問題もある。 例えば、 図 7に示すように、 反応槽 1 6にお いてフッ素含有廃水にカルシウム塩を添加しフッ化カルシウムを生成 させると同時に多量のアルミニウム塩を溶解し、 中和して生成する水 酸化アルミニウムをフッ化カルシウム沈降分離のための凝集助剤とす ると共にフッ素の吸着処理に利用することにより沈降槽を 1つで済ま すことも可能ではあるが、 その場合、 水酸化アルミニウムの吸着サイ 卜がフッ化カルシウムで占有されるため、 十分なフッ素処理性を得る ためには生成フッ化カルシウムのモル濃度に対して数十倍という大過 剰のアルミニウムを必要とし、 その分汚泥量が増加してしまう。 一般 にフ ^素処理が上述したように二段に分けられ、 巨大な沈降槽がわざ わざ 2つ用いられているのはこのためである。 ただし排水基準が 1 5 m g / 1程度で厳しくない場合には、 水酸化アルミニウムはそれほど 多量に使用せずにすむので一段の処理でも現実的対応ば出きる。 特に 廃水中の夾雑物質が少ない場合には、 凝集助剤として必要な量より僅 かに多い程度の水酸化アルミニゥムを使用することによ り排水基準を 満たすことが可能である。 This method also has the problem of requiring two settling tanks that require a large site area. For example, as shown in Fig. 7, a calcium salt is added to a fluorine-containing wastewater in a reaction tank 16 to generate calcium fluoride, and at the same time, a large amount of aluminum salt is dissolved and neutralized to form an aluminum hydroxide. It is possible to use only one sedimentation tank by using as a flocculation aid for the precipitation and separation of calcium fluoride and to use it for the adsorption treatment of fluorine, but in that case, the adsorption site for aluminum hydroxide Is occupied by calcium fluoride, and in order to obtain sufficient fluoridation properties, a large excess of aluminum, several tens of times the molar concentration of the generated calcium fluoride, is required, and the amount of sludge increases accordingly. Would. This is why the fluorine treatment is generally divided into two stages as described above, and two huge sedimentation tanks are used. However, the drainage standard is 15 If it is not severe at about mg / 1, aluminum hydroxide does not need to be used in a large amount, so even a single-step treatment can be achieved if it is practical. In particular, when the amount of contaminants in the wastewater is small, it is possible to meet the wastewater standards by using aluminum hydroxide that is slightly larger than the required amount as a coagulation aid.
一方、 特開平 6 - 1 5 4 7 6 7号公報には、 一段の処理でアルミ二 ゥム塩の使用量および汚泥発生量を増加させずに、 廃水中のフッ素を 十分低濃度まで処理するための技術が開示されている。 この技術は図 8に示すように、 反応槽 1 9においてフッ素含有廃水にカルシウム塩 およびアルミニウム塩を添加して中和し、 生成するフッ化カルシウム を水酸化アルミニウムを凝集助剤として、 凝集槽 2 0で凝集させた後、 沈降槽 2 1で沈降分離し、 沈殿の一部を反応槽へ返送して汚泥循環さ せ、 フッ化カルシウムおよび水酸化アルミニウムの濃度を高く し、 フ ッ化カルシウムの種晶効果および水酸化アルミニウムの共沈効果によ りフッ素の処理性を高めるものである。 水酸化アルミ二ゥムは循環さ れ、 濃縮して使用されるので、 アルミニウム塩の添加量は大過剰にす る必要はなく、 上記公開公報によればアルミ二ゥムは生成フッ化カル シゥムのモル濃度に対して 0 . 1 1〜 1 . 1倍量が好ましく、 更に好 ましくは 0 . 2 2〜 0 . 4 6倍量であるとしている。 したがつてこの 技術によって、 アルミニウム塩を大過剰に添加することなく、 廃水中 のフッ素を一段での処理により、 汚泥量をほとんど増加させずに十分 低濃度まで処理することが可能である。  On the other hand, Japanese Patent Application Laid-Open Publication No. Hei 6-15464767 discloses that fluorine in wastewater is treated to a sufficiently low concentration without increasing the amount of aluminum salt used and the amount of sludge generated in a single-stage treatment. For this purpose, a technique has been disclosed. In this technology, as shown in Fig. 8, calcium salt and aluminum salt are added to a fluorine-containing wastewater in a reaction tank 19 to neutralize it, and the generated calcium fluoride is treated with aluminum hydroxide as a coagulant aid. After coagulation at 0, the sedimentation is separated in the sedimentation tank 21 and a part of the sediment is returned to the reaction tank and circulated through the sludge, the concentrations of calcium fluoride and aluminum hydroxide are increased, and the It improves the processability of fluorine by the seed crystal effect and the coprecipitation effect of aluminum hydroxide. Since aluminum hydroxide is circulated and used after being concentrated, it is not necessary to add a large excess of aluminum salt. According to the above-mentioned publication, aluminum hydroxide is produced by calcium fluoride. The amount is preferably from 0.11 to 1.1 times, more preferably from 0.22 to 0.46 times the molar concentration of Therefore, this technology makes it possible to treat fluorine in wastewater to a sufficiently low concentration without increasing the amount of sludge by a single-stage treatment without adding a large excess of aluminum salt.
しかしながら、 上述した技術は、 フッ化カルシウムの生成効率は向 上するが、 循環して使用される水酸化アルミニウムによるフッ素吸着 効果が十分得られないため、 最終的にフッ素の処理性は理想的な条件 でもフ ヅ化カルシウムの溶解度に相当する 8 m g / 1程度に制限され るという問題がある。 その理由は、 フッ化カルシウムとフッ素吸着し た水酸化アルミニウムからなる汚泥を反応槽に返送する際、 水酸化ァ ルミ二ゥムに吸着されているフ ッ素も同時に返送されるため、 汚泥循 環に伴い反応槽中の汚泥濃度の上昇する一方でフッ素濃度も上昇し、 ' フッ素濃度を十分低下させるためには水酸化アルミニウムの吸着容量 が全く不足するからである。 すなわち、 すでにフッ素を吸着している 水酸化アルミニゥムを返送しても、 その水酸化アルミニゥムにはそれ 以上フッ素を吸着する能力が乏しいため、 上記公開公報の実施例に示 されているような、 1〜 2回の循環であればそれなりの処理効果は見 られるが、 数回以上の循環を繰り返しただけで水酸化アルミニウムの フッ素吸着性は飽和に達し、 それ以降は循環する水酸化アルミニゥム によるフッ素吸着効果は全く得られない。 However, although the above-mentioned technology improves the efficiency of calcium fluoride production, it does not provide a sufficient fluorine adsorption effect of aluminum hydroxide used in circulation, so that the final fluorine treatability is ideal. Even under the conditions, there is a problem that the concentration is limited to about 8 mg / 1, which is equivalent to the solubility of calcium fluoride. The reason is that when sludge consisting of calcium fluoride and fluorine-adsorbed aluminum hydroxide is returned to the reaction tank, the fluorine adsorbed on the aluminum hydroxide is also returned at the same time. While the concentration of sludge in the reaction tank increases with the ring, the fluorine concentration also increases, and the adsorption capacity of aluminum hydroxide is completely insufficient to sufficiently reduce the fluorine concentration. That is, even if aluminum hydroxide already adsorbing fluorine is returned, the aluminum hydroxide has a poor ability to adsorb fluorine any more. Although moderate treatment effects can be seen if the circulation is performed twice or more, the fluoride adsorption of aluminum hydroxide reaches saturation only by repeating the circulation several times or more, and thereafter fluorine adsorption by the circulating aluminum hydroxide No effect is obtained.
したがって、 継続的に発生するフッ素含有廃水に対し、 廃水中のフ ッ素を常に 8 m g / 1より低い濃度まで安定に処理していく必要があ る場合には、 新規に追加するアルミニウム塩の添加量を増やすか、 あ るいは改めて高度処理を追加する必要があるが、 その場合には当然汚 泥量が増加する。 又排水基準が 1 5 m g / 1程度で、 1段の処理で済 ませよう とした場合、 水酸化アルミニウム使用量の制御が難しく、 運 用上アルミニウム塩の添加量を実際の必要量よりもかなり多めに設定 しなければならず、 その分汚泥量が増加するという問題点がある。 そ の理由は、 廃水中フッ素を 1 5 m g / 1程度まで低下させる場合に、 実際に必要な水酸化アルミ二ゥムの総量と、 そのうちフッ化カルシゥ ムの凝集に必要な量の差がわずかしかないため、 アルミニゥム塩の添 加量の揺らぎの影響が大きいことはもちろん、 廃水中のフッ素濃度が 変動することにより生成するフッ化カルシウム量が一時的に増加した ときに水酸化アルミニゥム量が不足する危険を避けるため、 常に多め に使用する必要があるからである。 発明の開示  Therefore, if it is necessary to constantly treat fluorine in wastewater to a concentration lower than 8 mg / 1 for continuously generated fluorine-containing wastewater, a new aluminum salt must be added. It is necessary to increase the amount of addition or to add an advanced treatment again, in which case the amount of sludge naturally increases. Also, if the wastewater standard is about 15 mg / 1 and it is attempted to complete the treatment in one step, it is difficult to control the amount of aluminum hydroxide used, and the amount of aluminum salt added during operation will be much larger than the actual required amount. There is a problem that the amount of sludge must be increased, and the amount of sludge increases accordingly. The reason is that when the amount of fluorine in wastewater is reduced to about 15 mg / 1, the difference between the total amount of aluminum hydroxide actually required and the amount required for the aggregation of calcium fluoride is small. Fluctuations in the amount of aluminum salt added, and of course, the amount of aluminum hydroxide is insufficient when the amount of calcium fluoride generated due to fluctuations in the concentration of fluorine in the wastewater temporarily increases. This is because it is necessary to always use more to avoid the danger of doing so. Disclosure of the invention
本発明の目的は、 上記問題点を克服し、 継続的に発生する高濃度の フッ素含有廃水に対し、 高度処理を必要とせずに一段の処理で、 常に 安定に十分低濃度までフッ素を処理することができ、 しかも処理に要 する薬剤量および処理に伴い発生する汚泥量を大幅に低減すること^ できる方法を提供することである。 また、 本発明のもう 1つの目的は、 フッ素の処理目標濃度に応じて、 最適の薬剤使用量を効果的に制御す ることにより、 発生する汚泥量を最小限にすることができる方法を提 供することである。 An object of the present invention is to overcome the above-mentioned problems and constantly and stably treat fluorine to a sufficiently low concentration in a single-stage treatment of a continuously generated high-concentration fluorine-containing wastewater without requiring advanced treatment. And can be processed An object of the present invention is to provide a method capable of greatly reducing the amount of chemicals used and the amount of sludge generated due to treatment. Another object of the present invention is to provide a method capable of minimizing the amount of generated sludge by effectively controlling the optimal amount of chemicals used in accordance with the target concentration of fluorine. Is to provide.
本発明の第 1のフッ素含有廃水の処理方法は、 フッ素イオンを含有 する廃水に対し、 カルシウムを作用させ廃水中の大部分のフッ素をフ ヅ化カルシウムとして固定する第 1の工程、 前記工程の処理液に前記 工程で新規に生成するフッ化カルシウムよりアルミニウムとして少な い量のアルミニウム塩を添加し、 生成する水酸化アルミニゥムを凝集 助剤として前記フッ化カルシウムを凝集沈降させ沈殿物スラ リーを形 成する第 2の工程、 及び該沈殿物スラ リ一を含む廃水を固液分離し、 上澄みの液相を排水すると共に固相の沈殿物スラリ一を汚泥として排 出する第 3の工程を有するフッ素含有廃水の処理方法であって、 前記汚泥として排出する沈殿物スラ リーの一部を引き抜き、 9以下 の p Hでカルシウムを作用させ該沈殿物スラ リ一に含まれる水酸化ァ ルミ二ゥムに吸着していたフッ素をフッ化カルシウムと して固定した 後、 前記第 1の工程に該処理された沈殿物スラ リーを返送し、 前記一 連の工程を繰り返すことで、 系内における水酸化アルミニウムをフッ 化カルシウムの凝集に少なく とも必要な量に維持するとともに、 フッ 素吸着に寄与する量を増加させることを特徴とする。  The first method for treating fluorine-containing wastewater according to the present invention comprises: a first step of causing calcium to act on wastewater containing fluorine ions to fix most of the fluorine in the wastewater as calcium fluoride; A smaller amount of aluminum salt as aluminum than calcium fluoride newly generated in the above step is added to the treatment solution, and the calcium fluoride is coagulated and settled using the formed aluminum hydroxide as a coagulation aid to form a precipitate slurry. And a third step of solid-liquid separating wastewater containing the precipitate slurry, draining the supernatant liquid phase, and discharging the solid precipitate slurry as sludge. A method for treating a fluorine-containing wastewater, wherein a part of the sediment slurry discharged as the sludge is withdrawn, and calcium is acted on at a pH of 9 or less to treat the sediment slurry. After the fluorine adsorbed on the aluminum hydroxide is fixed as calcium fluoride, the treated precipitate slurry is returned to the first step, and the series of steps is performed. By repeating the process, the amount of aluminum hydroxide in the system is maintained at a level at least necessary for agglomeration of calcium fluoride, and the amount contributing to fluorine adsorption is increased.
また本発明の第 2のフッ素含有廃水の処理方法は、 フッ素イオンを 含有する廃水に対し、 カルシウムを作用させ廃水中の大部分のフッ素 をフッ化カルシウムとして固定する第 1の工程、 前記工程の処理液に 前記工程で新規に生成するフッ化カルシウムよ りアルミニウムとして 少ない量のアルミ二ゥム塩を添加し、 生成する水酸化アルミニゥムを 凝集助剤として前記フッ化カルシウムを凝集沈降させ沈殿物スラ リー を形成する第 2の工程、 及び該沈殿物スラ リ一を含む廃水を固液分離 し、 上澄みの液相を排水すると共に固相の沈殿物スラ リーを汚泥とし て排出する第 3の工程を有するフッ素含有廃水の処理方法であって、 前記汚泥として排出する沈殿物スラ リーの一部を引き抜き、 9以下 の p Hでカルシウムを作用させ該沈殿物スラ リーに含まれる水酸化ァ ルミ二ゥムに吸着していたフッ素をフヅ化カルシウムとして固定した 後、 前記第 1の工程に該処理された沈殿物スラ リーを返送し、 前記一 連の工程を繰り返すことで、 系内における水酸化アルミニゥムをフッ 化カルシウムの凝集に少なく とも必要な量に維持するが、 フッ素吸着 に寄与する水酸化アルミニゥムの増加をアルミニウム塩の添加量を制 御することによって制限することを特徴とするフッ素含有廃水の処理 方法である。 Further, the second method for treating fluorine-containing wastewater of the present invention comprises: a first step of causing calcium to act on wastewater containing fluorine ions to fix most of the fluorine in the wastewater as calcium fluoride; A smaller amount of aluminum salt as aluminum is added to the treatment liquid as aluminum than calcium fluoride newly generated in the above step, and the calcium fluoride is coagulated and settled using aluminum hydroxide as an agglomeration aid to precipitate sediment slurry. A second step of forming a slurry, and a solid-liquid separation of wastewater containing the sediment slurry, draining the supernatant liquid phase, and converting the solid sediment slurry into sludge. A fluorine-containing wastewater treatment method having a third step of discharging the sludge, wherein a part of the sediment slurry discharged as the sludge is withdrawn, and calcium is acted on at a pH of 9 or less to act on the sediment slurry. After fixing the fluorine adsorbed on the contained aluminum hydroxide as calcium fluoride, the treated precipitate slurry is returned to the first step, and the series of steps is repeated. As a result, the amount of aluminum hydroxide in the system is maintained at a level at least necessary for the aggregation of calcium fluoride, but the increase in aluminum hydroxide contributing to fluorine adsorption is controlled by controlling the amount of aluminum salt added. This is a method for treating fluorine-containing wastewater.
又、 本発明の第 3の処理方法は、 リン酸を含むフッ素含有廃水に対 し、 弱アルカリ性の条件下でカルシウムを作用させてフッ素イオン及 びリン酸をフッ化カルシウム及び燐酸カルシウムとして固定する第 1 の工程、 前記処理液を弱酸性乃至中性に調整し、 前記工程で新規に生 成するフッ化カルシウム及びリ ン酸カルシウムの合計量よりアルミ二 ゥムとして少ない量のアルミ二ゥム塩を添加して生成する水酸化アル ミニゥムを凝集助剤として前記フッ化カルシゥム及び燐酸カルシウム を凝集沈降させ沈殿物スラ リーを形成する第 2の工程、 及び該沈殿物 スラリーを含む廃水を固液分離し、 上澄みの液相を排水すると共に固 相の沈殿物スラ リ一を汚泥として排出する第 3の工程を有するフッ素 含有廃水の処理方法であって、  Further, in the third treatment method of the present invention, calcium is allowed to act on a fluorine-containing wastewater containing phosphoric acid under a weak alkaline condition to fix fluoride ions and phosphoric acid as calcium fluoride and calcium phosphate. In the first step, the treatment liquid is adjusted to be weakly acidic to neutral, and the amount of aluminum is smaller than the total amount of calcium fluoride and calcium phosphate newly produced in the above step as aluminum. A second step of coagulating and sedimenting the calcium fluoride and calcium phosphate to form a precipitate slurry by using aluminum hydroxide formed by adding a salt as a coagulation aid, and solid-liquid wastewater containing the precipitate slurry A method for treating fluorine-containing wastewater comprising a third step of separating, draining a supernatant liquid phase, and discharging a solid-phase sediment slurry as sludge,
前記汚泥として排出する沈殿物スラ リーの一部を引き抜き、 9以下 の p Hでカルシウムを作用させ該沈殿物スラ リーに含まれる水酸化ァ ルミ二ゥムに吸着していたフヅ素をフッ化カルシウムと して固定した 後、 前記第 1の工程に該処理された沈殿物スラ リーを返送し、 前記一 連の工程を繰り返すことを特徴とする。  A part of the sediment slurry discharged as the sludge is withdrawn, and calcium is acted on at a pH of 9 or less to remove fluorine adsorbed on the aluminum hydroxide contained in the sediment slurry. After being fixed as calcium iodide, the treated precipitate slurry is returned to the first step, and the series of steps is repeated.
また本発明は、 フ ッ素イオンを含有する廃水に、 カルシウムを作用 させて廃水中の大部分のフッ素をフ ッ化カルシウムとして固定する反 応槽と、 アルミニウム塩の添加により生成する水酸化アルミニウムを 凝集助剤として該フッ化カルシウムを凝集沈殿させるための凝集槽と、 得られた沈殿物スラ リーを固液分離する沈降槽とを有するフッ素含有 廃水の処理装置において、 該装置は上記の第 1又は第 2の処理方法に 適用されるものであって、 p H 9以下の条件下でカルシウム塩を添加 し、 前記沈殿物スラ リーに含まれる水酸化アルミニゥムに吸着してい たフヅ素をフッ化力ルシゥムとして固定して水酸化アルミニゥムの再 生を行うアルミニウム再生槽を有し、 前記沈降槽で固液分離された沈 殿物スラリーの一部を取り出し、 前記アルミニウム再生槽に返送する 手段と、 該再生槽で再生された水酸化アルミニウム及びフッ化カルシ ゥムを前記反応槽に返送する手段を有することを特徴とする処理装置、 あるいはリ ン酸を含むフッ素含有廃水に対し、 弱アル力 リ性の条件下 でカルシウムを作用させてフヅ素イオン及びリ ン酸をフッ化カルシゥ ム及び燐酸カルシウムとして固定する第 1の反応槽と、 前記処理液を 弱酸性乃至中性に調整し、 アルミ二ゥム塩を添加して水酸化アルミ二 ゥムを生成する第 2の反応槽と、 前記生成した水酸化アルミニウムを 凝集助剤として前記フッ化カルシウム及び燐酸カルシウムを凝集沈降 させ沈殿物スラ リーを形成する凝集槽と、 得られた沈殿物スラ リ一を 固液分離する沈降槽とを有するフッ素含有廃水の処理装置において、 該処理装置は上記第 3の処理方法に適用されるものであって、 p H 9 以下の条件下でカルシウム塩を添加し、 前記沈殿物スラ リーに含まれ る水酸化アルミニゥムに吸着していたフッ素をフヅ化カルシウムとし て固定して水酸化アルミニウムの再生を行うアルミニゥム再生槽を有 し、 前記沈降槽で固液分離された沈殿物スラ リーの一部を取り出し、 前記アルミニゥム再生槽に返送する手段と、 該再生槽で再生された水 酸化アルミニウム及びフッ化カルシゥムを前記第 1の反応槽に返送す る手段を有することを特徴とする処理装置に関する。 図面の簡単な説明 The present invention also provides a reaction tank in which calcium acts on wastewater containing fluorine ions to fix most of the fluorine in the wastewater as calcium fluoride, and aluminum hydroxide formed by adding an aluminum salt. To A fluorine-containing wastewater treatment apparatus having a flocculation tank for flocculating and precipitating the calcium fluoride as a flocculation aid, and a sedimentation tank for solid-liquid separation of the obtained precipitate slurry; Alternatively, the method is applied to the second treatment method, in which a calcium salt is added under a condition of pH 9 or less to remove fluorine adsorbed on aluminum hydroxide contained in the precipitate slurry. Means for regenerating aluminum hydroxide by fixing it as a catalyst for regenerating aluminum hydroxide, extracting a part of the precipitate slurry solid-liquid separated in the sedimentation tank, and returning it to the aluminum regeneration tank; A treatment apparatus comprising means for returning aluminum hydroxide and calcium fluoride regenerated in the regenerating tank to the reaction tank, or a fluorine-containing wastewater containing phosphoric acid A first reaction tank for fixing calcium ions and calcium phosphate as calcium fluoride and calcium phosphate by reacting calcium under weak alkaline conditions; A second reaction tank that is adjusted to neutral and adds aluminum salt to produce aluminum hydroxide; and the calcium fluoride and calcium phosphate are used as a coagulation aid using the produced aluminum hydroxide. A fluorine-containing wastewater treatment apparatus having a coagulation tank for forming a sediment slurry by coagulation and sedimentation, and a sedimentation tank for solid-liquid separation of the obtained sediment slurry, wherein the treatment apparatus is the third treatment method described above. A calcium salt is added under the condition of pH 9 or less, and the fluorine adsorbed on the aluminum hydroxide contained in the precipitate slurry is fixed as calcium fluoride. An aluminum regeneration tank for regenerating the aluminum hydroxide by means of: recovering a part of the precipitate slurry solid-liquid separated in the sedimentation tank and returning the slurry to the aluminum regeneration tank; And a means for returning the aluminum hydroxide and calcium fluoride to the first reaction tank. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の第 1の実施の形態のシステム構成図である。 図 2は本発明の作用を説明するために、 系内に存在する各成分の構 成を模式的に示したグラフである。 FIG. 1 is a system configuration diagram of the first embodiment of the present invention. FIG. 2 is a graph schematically showing the constitution of each component present in the system in order to explain the operation of the present invention.
図 3は本発明の第 2の実施の形態のシステム構成図である。  FIG. 3 is a system configuration diagram of the second embodiment of the present invention.
図 4は本発明の第 3の実施の形態のシステム構成図である。  FIG. 4 is a system configuration diagram of the third embodiment of the present invention.
図 5は本発明の第 4の実施の形態の作用を説明するために、 系内に 存在する各成分の構成を模式的に示したグラフである。  FIG. 5 is a graph schematically showing the configuration of each component present in the system in order to explain the operation of the fourth embodiment of the present invention.
図 6は一般的なフッ素含有廃水処理技術のシステム構成図である。 図 7は一般的なフッ素含有廃水処理技術を簡略化した場合のシステ ム構成図である。  Fig. 6 is a system configuration diagram of a general fluorine-containing wastewater treatment technology. Fig. 7 is a system configuration diagram when a general fluorine-containing wastewater treatment technology is simplified.
図 8は一般的なフッ素含有廃水処理技術の問題点を解決するための、 従来の技術のシステム構成図である。 発明を実施するための最良の形態 本発明の第 1の処理方法では、 引き抜いた沈殿物スラ リーは、 沈殿 物スラ リ一に含まれる水酸化アルミ二ゥムに吸着していたフッ素が、 常にカルシウムの作用によりフッ化カルシウムとして固定されてから 反応槽に返送されるため、 系内を高濃度で循環している水酸化アルミ 二ゥムは十分なフッ素吸着性を有しており、 したがって処理水中のフ ッ素濃度はフッ化カルシウムの溶解度に相当する値よ り も大幅に低い 濃度まで低下させることができる。 又、 この方法では、 フヅ化カルシ ゥム生成による固定をメイ ンとしているため、 新規に添加するアルミ 二ゥム塩は、 反応槽で新規に生成するフッ化カルシウムを凝集させる ために必要な量程度で良く、 結果として発生する汚泥量を最小限にす ることができる。  FIG. 8 is a system configuration diagram of a conventional technology for solving the problems of a general fluorine-containing wastewater treatment technology. BEST MODE FOR CARRYING OUT THE INVENTION In the first treatment method of the present invention, the extracted sediment slurry always contains fluorine adsorbed on aluminum hydroxide contained in the sediment slurry. Aluminum hydroxide is circulated at high concentration in the system because it is fixed as calcium fluoride by the action of calcium and then returned to the reaction tank. The concentration of fluorine in water can be reduced to a level significantly lower than the value corresponding to the solubility of calcium fluoride. Also, in this method, the main purpose is fixation by the formation of calcium fluoride, so that the newly added aluminum salt is necessary for coagulating the newly generated calcium fluoride in the reaction tank. The amount is sufficient, and the amount of sludge generated as a result can be minimized.
また本発明の第 2の処理方法では、 削減対象となる水酸化アルミ二 ゥム量の幅を十分大きくすることができ、 この範囲内で水酸化アルミ 二ゥム量を制御すればよいので、 運用上制御は極めて容易となると同 時に、 削減した水酸化アルミニゥム量はそのまま汚泥の削減量とする ことができる。 又廃水中のフッ素濃度の一時的な変動やアルミニウム 塩の添加量に多少の揺らぎがあっても、 スラ リ一は沈降槽に十分な量 が蓄積されたあとに返送されるため、 スラ リーの組成比は常に平均的 な値に収束し、 水酸化アルミニゥム量の制御に対する影響がほとんど なくなる。 Further, in the second treatment method of the present invention, the width of the aluminum hydroxide to be reduced can be sufficiently widened, and the amount of aluminum hydroxide can be controlled within this range. Operational control becomes extremely easy, and at the same time, the reduced amount of aluminum hydroxide can be used directly as the amount of sludge reduction. Temporary fluctuations in the concentration of fluorine in wastewater and aluminum Even if the amount of salt added fluctuates slightly, the slurry is returned after a sufficient amount has accumulated in the settling tank, so the composition ratio of the slurry always converges to an average value, There is almost no effect on the control of the amount of aluminum oxide.
次に、 本発明の第 1の処理方法の実施の形態について図面を参照し て詳細に説明する。  Next, an embodiment of the first processing method of the present invention will be described in detail with reference to the drawings.
図 1は本発明の第 1の実施の形態における構成例を示す概略図であ る。 処理システムのフローは、 まず中性の p Hに保たれた反応槽 1に おいて、 連続的に流入してく る高濃度のフッ素含有廃水に対しカルシ ゥムを作用させ廃水中のフッ素イオンをフッ化カルシウムとして固定 するとともに、 アルミニウム塩を添加し、 中和して水酸化アルミニゥ ムを生成させ、 フッ化カルシウムの凝集助剤とする。 続いて凝集槽 2 において凝集剤を添加し、 固形成分を凝集させ、 沈降槽 3において沈 殿物として固液分離する。 沈降槽 3にはあらかじめこの沈殿物を十分 蓄積しておく。  FIG. 1 is a schematic diagram showing a configuration example according to the first exemplary embodiment of the present invention. The flow of the treatment system is as follows: First, in the reaction tank 1 maintained at neutral pH, calcium ions act on the continuously flowing high-concentration fluorine-containing wastewater to remove fluorine ions in the wastewater. While fixing as calcium fluoride, an aluminum salt is added and neutralized to form aluminum hydroxide, which is used as a flocculant for calcium fluoride. Subsequently, a coagulant is added in the coagulation tank 2 to coagulate the solid components, and the sedimentation tank 3 performs solid-liquid separation as a precipitate. In the sedimentation tank 3, this sediment is sufficiently accumulated in advance.
この後、 沈殿物の一部を引き抜き、 引き抜いた沈殿物スラ リーのう ち一部は汚泥として系外に排出し、 残りは p H 3〜 9に保たれたアル ミニゥム再生槽 4を経て反応槽 1 に返送する。 またアルミニウム再生 槽 4にはカルシウム塩を添加する。 ここで添加したカルシウム塩は、 反応槽 1に流入して、 廃水中のフッ素に作用しフッ化カルシウムを生 成する。 さらに反応槽 1には新規にアルミニウム塩を添加する。 以上 のサイクルを繰り返すことによって、 フッ化カルシゥムおよび水酸化 アルミニウムからなる沈殿物を系内で循環させる。  After that, a part of the sediment is extracted, a part of the extracted sediment slurry is discharged out of the system as sludge, and the remainder is reacted through an aluminum regeneration tank 4 maintained at pH 3 to 9. Return to tank 1. In addition, a calcium salt is added to the aluminum regeneration tank 4. The calcium salt added here flows into the reaction tank 1 and acts on fluorine in the wastewater to generate calcium fluoride. Further, an aluminum salt is newly added to the reaction tank 1. By repeating the above cycle, the precipitate consisting of calcium fluoride and aluminum hydroxide is circulated in the system.
ここでアルミニウム再生槽 4に添加するカルシウム塩の量は、 反応 槽 1に流入したときのカルシウム濃度が、 廃水中のフヅ素からフッ化 カルシウムを生成するための化学当量以上、 好ましくは 2倍当量以上 になるように設定する。 また、 反応槽 1に添加するアルミニウム塩の 量は、 凝集槽で生成する水酸化アルミニゥムによるフッ化カルシウム の凝集助剤としての作用が得られる必要最低限の量であって、 アルミ ニゥムとして、 1サイクル毎に新規に生成するフッ化カルシウムより' 少ない量を添加する。 好ましくは新規に生成するフッ化カルシウムの 量に対しアルミニウムとして 1〜 3 0 m 0 1 %の範囲で設定する。 な お 1サイクル毎に新規に生成するフッ化カルシウムの量と、 汚泥とし て排出する沈殿物に含まれるフッ化カルシウムの量は等しくなるよう に、 沈殿物スラ リーの排出量を設定する。 さらにアルミニウム塩の添 加量と、 汚泥として排出する沈殿物に含まれる水酸化アルミニウムの 量は、 アルミニウムとして等しくなるように、 アルミニウム塩の添加 量を設定する。 Here, the amount of calcium salt to be added to the aluminum regeneration tank 4 is such that the calcium concentration when flowing into the reaction tank 1 is equal to or more than the chemical equivalent for generating calcium fluoride from fluorine in the wastewater, and is preferably twice. Set so that it is at least equivalent. The amount of the aluminum salt to be added to the reaction tank 1 is the minimum amount required for the aluminum hydroxide generated in the coagulation tank to function as a coagulation aid for calcium fluoride. As an amount of nickel, an amount smaller than the amount of newly generated calcium fluoride is added every cycle. Preferably, the amount of aluminum is set in the range of 1 to 30% as aluminum based on the amount of newly generated calcium fluoride. Set the amount of sediment slurry discharged so that the amount of calcium fluoride newly generated in each cycle is equal to the amount of calcium fluoride contained in the sediment discharged as sludge. Further, the amount of aluminum salt added is set so that the amount of aluminum salt added and the amount of aluminum hydroxide contained in the sediment discharged as sludge are equal to aluminum.
またフッ素含有廃水の流入量と、 沈殿物スラ リーに含まれるフッ化 カルシウムと水酸化アルミ二ゥムの返送量および排出量はそれそれ常 に一定の比率になるように設定する。 ただしフッ素含有廃水の流入量 〉沈殿物スラリ一の返送量とする。  In addition, the inflow of fluorine-containing wastewater and the return and discharge of calcium fluoride and aluminum hydroxide contained in the sediment slurry should be set to always be constant. However, the inflow of fluorine-containing wastewater> the return of sediment slurry.
このように、 フッ素含有廃水の流入量、 及び沈殿物スラ リーの返送 量、 排出量を設定することによ り、 系内の物質収支のバランスを保つ ことで、 沈殿物スラ リーの循環を繰り返しても沈降槽 3の固液界面レ ベルを常に一定とすることができる。  In this way, by setting the inflow of fluorine-containing wastewater and the return and discharge of sediment slurry, the balance of the mass balance in the system is maintained, and the circulation of sediment slurry is repeated. However, the solid-liquid interface level of the settling tank 3 can always be kept constant.
尚、 物質収支のバランスを保っための手法として、 フッ素含有廃水 の流入量、 及び沈殿物スラ リーの返送量を一定とした上で、 沈殿物ス ラリ一の排出量を設定するために、 沈降槽 3における固液界面レベル に着目し、 沈殿物スラリーの循環を繰り返す際に固液界面が常に所定 の範囲に保たれるように沈殿物スラ リーの排出量を調整するといぅァ ブローチも可能である。 つまり、 固液界面レベルを監視する手段、 例 えば通常のレベルセンサなどと、 固液界面レベルが所定の範囲になる ように沈殿物スラ リーの取り出しを制御する機構、 例えば、 図示して いないポンプやバルブなどを連動させることで可能となる。  In addition, as a method of maintaining the balance of the material balance, the sedimentation was set in order to set the discharge amount of sediment slurry, while keeping the inflow of fluorine-containing wastewater and the return amount of sediment slurry constant. Focusing on the solid-liquid interface level in Vessel 3, and adjusting the discharge amount of the sediment slurry so that the solid-liquid interface is always kept within a predetermined range when the circulation of the sediment slurry is repeated, can be broached. It is. That is, means for monitoring the solid-liquid interface level, for example, a normal level sensor, and a mechanism for controlling the removal of the sediment slurry so that the solid-liquid interface level is within a predetermined range, for example, a pump (not shown) It becomes possible by linking a valve and the like.
各槽の容量としては、 特に規定されるものではなく、 設計に応じて 適宜調整することができるが、 例えば、 アルミニウム再生槽 4は反応 槽 1の 1 / 1 0以下、 沈降槽 3は反応槽 1の 5倍以上とすることがで きる。 また凝集槽 2は反応槽 1の 1 / 2 とすることができる。 なお、 ' 沈降槽 3にあらかじめ蓄積しておく沈殿物の量は、 1サイクル毎に新 規に生成する沈殿物の 1 0倍以上とする。 The capacity of each tank is not particularly limited, and can be appropriately adjusted according to the design.For example, the aluminum regeneration tank 4 is 1/10 or less of the reaction tank 1, and the sedimentation tank 3 is the reaction tank. Can be more than 5 times 1 Wear. Further, the coagulation tank 2 can be set to 1 of the reaction tank 1. The amount of sediment previously accumulated in sedimentation tank 3 shall be 10 times or more the amount of sediment newly generated in each cycle.
次に、 図 1の処理システムの動作について、 図を参照して説明する。 反応槽 1 において廃水中の大部分のフッ素イオンはフッ化カルシゥ ムとして固定される。 また、 反応槽 1は中性に保たれているために溶 解させたアルミニウム塩は中和され水酸化アルミニウムを生成する。 これがフッ化カルシウムの凝集助剤として作用するため、 液中に分散 しゃすいフッ化カルシウム粒子の凝集を容易にすることができる。  Next, the operation of the processing system of FIG. 1 will be described with reference to the drawings. In the reaction tank 1, most of the fluorine ions in the wastewater are fixed as calcium fluoride. Further, since the reaction tank 1 is kept neutral, the dissolved aluminum salt is neutralized to produce aluminum hydroxide. Since this acts as a coagulation aid for calcium fluoride, it is possible to easily coagulate calcium fluoride particles dispersed in the liquid.
ここで、 生成するフッ化カルシウム量に対するアルミニウム塩の添 加量は、 前記したように水酸化アルミニゥムによるフッ化カルシウム の凝集助剤としての作用が十分得られる程度にすぎず、 処理を一過性 で行った場合では、 水酸化アルミニウムのフッ素吸着作用による処理 効果までは期待できない。 なぜなら、 アルミニウム量が少ないため吸 着されるフッ素量も少なく、 フッ素濃度を低下させる効果はほとんど 得られないからである。 したがって一過性の処理では、 処理水中のフ ッ素濃度は、 理想的な条件でもフッ化カルシウムの溶解度に相当する 約 8 m g / 1を大幅に下回るまでにはできず、 通常 1 5〜 2 0 m g / 1が限度である。 しかしながら図 1の沈殿物循環による処理システム では、 フッ化カルシウムと水酸化アルミニウムからなる沈殿物を系内 で循環させることにより、 反応槽 1 におけるフッ化カルシウムと水酸 化アルミニウムの濃度を高くすることができる。 ここで沈降槽 3に蓄 積されている沈殿物中の水酸化アルミニゥムにはフッ素が吸着されて おり、 その量は上述したように絶対量としては多くはないが、 アルミ ニゥムあたりのフッ素吸着量という観点で見れば飽和吸着量に近い。 したがつてこの沈殿物スラ リ一にはフッ化カルシウム、 水酸化アルミ ニゥムとともにフッ素も濃縮された状態になっており、 アルミニウム 再生槽 4においてカルシウム塩を高濃度に添加すると、 水酸化アルミ 二ゥムに吸着されていたフ ッ素はここでフヅ化カルシウムとして固定 され、 反応槽 1 に返送される水酸化アルミニゥムはフッ素吸着に寄与 することができる。 前述したように沈殿物スラ リーの循環により反応 槽 1中の水酸化アルミニウムの濃度は高くなり、 一方、 処理すべきフ ッ素の量は一定なので、 フッ素吸着効果によ り廃水中のフッ素濃度を 十分低下させることができる。 Here, the amount of addition of the aluminum salt to the amount of calcium fluoride to be generated is only such that the effect of aluminum hydroxide as a coagulation aid of calcium fluoride can be sufficiently obtained as described above. In the case of performing the above, it is not possible to expect the treatment effect by the fluorine adsorption action of aluminum hydroxide. This is because the amount of fluorine absorbed is small because the amount of aluminum is small, and the effect of lowering the fluorine concentration is hardly obtained. Therefore, in a transient treatment, the concentration of fluorine in the treated water cannot be reduced to a value much less than about 8 mg / 1, which is equivalent to the solubility of calcium fluoride, even under ideal conditions. 0 mg / 1 is the limit. However, in the treatment system using precipitate circulation shown in Fig. 1, the concentration of calcium fluoride and aluminum hydroxide in reaction tank 1 is increased by circulating the precipitate consisting of calcium fluoride and aluminum hydroxide in the system. Can be. Here, fluorine is adsorbed on the aluminum hydroxide in the sediment stored in the settling tank 3, and the amount of fluorine is not absolutely large as described above, but the amount of fluorine adsorbed per aluminum From the viewpoint of this, it is close to the saturated adsorption amount. Therefore, this precipitate slurry is also in a state where fluorine is concentrated together with calcium fluoride and aluminum hydroxide. The fluorine adsorbed on the system is fixed here as calcium fluoride. The aluminum hydroxide returned to the reaction tank 1 can contribute to fluorine adsorption. As described above, the concentration of aluminum hydroxide in the reaction tank 1 increases due to the circulation of the sediment slurry, while the amount of fluorine to be treated is constant. Can be sufficiently reduced.
図 2は処理を一過性で行う場合に対して、 フッ化カルシウムと水酸 化アルミニウムからなる沈殿物スラ リーを循環させながら処理を行う 場合に、 フッ素吸着に寄与できる水酸化アルミニウム量が増加する様 子を模式的に示したグラフである。 ここで、 スラリー循環の 1サイク ルにっき、 新規に生成するフッ化カルシウムおよび新規に添加するァ ルミニゥム (アルミニウム塩として) の量と、 排出する汚泥に含まれ るフヅ化カルシウムおよびアルミニウム (水酸化アルミニウムとして) の量とが常に同じであれば、 反応槽 1 中のフッ化カルシウムおよび水 酸化アルミニウム濃度が高くなつても両者の比率自体は常に一定であ り、 さらにまたスラ リ一循環を繰り返しても沈降槽 3の固液界面が変 動することはない。 またフッ素含有廃水の流入量、 沈殿物スラ リーの 返送量および排出量が常に一定であれば、 反応槽 1 中のフッ化カルシ ゥムと水酸化アルミニゥムの濃度は一定の値で平衡し、 その値は上記 各量をそれそれ操作すれば自由に設定できる。  Fig. 2 shows that the amount of aluminum hydroxide that can contribute to fluorine adsorption increases when the treatment is performed while circulating a precipitate slurry consisting of calcium fluoride and aluminum hydroxide, while the treatment is performed transiently. Fig. 4 is a graph schematically showing the operation. Here, in one cycle of the slurry circulation, the amount of newly generated calcium fluoride and newly added aluminum (as aluminum salt), and the amount of calcium fluoride and aluminum (hydroxylated) contained in the discharged sludge (As aluminum) is always the same, even if the concentration of calcium fluoride and aluminum hydroxide in reaction tank 1 is high, the ratio itself is always constant, and the slurry is cycled again. However, the solid-liquid interface of the settling tank 3 does not change. If the inflow of fluorine-containing wastewater and the return and discharge of sediment slurry are always constant, the concentrations of calcium fluoride and aluminum hydroxide in the reaction tank 1 equilibrate at a constant value, and The value can be set freely by manipulating each of the above quantities.
なお、 アルミニウム再生槽 4の p Hは、 強アルカ リ性では水酸化ァ ルミ二ゥムがアルミン酸イオンとして溶解し、 カルシウムイオンと反 応して安定なアルミ ン酸カルシウムを生成することによって、 フッ素 吸着剤としての再生が不能になってしまうため、 p Hを 9以下に保つ ことが重要である。 また、 水酸化アルミニウムによるフッ素吸着特性 は p H依存性が強いので、 効率よく処理を行うために反応槽 1の p H は 6〜 7の範囲に保つのが好ましい。  In addition, the pH of the aluminum regeneration tank 4 is such that, in the case of strong alkalinity, aluminum hydroxide dissolves as aluminate ions and reacts with calcium ions to form stable calcium aluminate. It is important to keep the pH at 9 or less because regeneration as a fluorine adsorbent becomes impossible. Further, since the fluorine adsorption property of aluminum hydroxide is strongly pH-dependent, it is preferable to keep the pH of the reaction tank 1 in the range of 6 to 7 for efficient treatment.
以上のように、 この実施の形態では、 一般的な二段処理によるフッ 素含有廃水処理システムのうち一次処理に相当する、 反応槽、 凝集槽、 沈降槽からなるシステムに加えて、 反応槽に比べてはるかに小さいァ ルミニゥム再生槽 (例えば反応槽の 1/1 0〜 1/40の容量) を追' 加するだけの最小システム構成により、 高度処理を全く必要とせずに 廃水中のフッ素を十分低濃度まで処理することが可能である。 As described above, in this embodiment, in addition to the system including the reaction tank, the coagulation tank, and the sedimentation tank, which corresponds to the primary treatment of the general fluorine-containing wastewater treatment system using the two-stage treatment, Much smaller than With a minimal system configuration that simply adds a luminium regeneration tank (for example, a capacity of 1/10 to 1/40 of the reaction tank), it can treat fluorine in wastewater to a sufficiently low concentration without requiring any advanced treatment. It is possible.
尚、 上記の説明は本発明の第 2及び第 3の処理方法にもその構成の 要求に応じて適宜変更すればよい。  Note that the above description may be appropriately changed in the second and third processing methods of the present invention in accordance with the requirements of the configuration.
実施例 1  Example 1
本発明の第 1の処理方法の一実施例について、 図 1の処理フローを 参照して説明する。  One embodiment of the first processing method of the present invention will be described with reference to the processing flow of FIG.
本実施例において各槽の容量は、 反応槽 1が 30m3、 凝集槽 2が 1 5m3、 沈降槽 3が 300 m3、 アルミニウム再生槽 4が 2 m3である。 処理の対象となるフッ素含有廃水は、 平均フッ素濃度 200 mg/l、 p H 5で、 1 m3/m i nの流入量で反応槽 1に導入する。 Capacity of each tank in this embodiment, the reaction vessel 1 is 30 m 3, flocculation tank 2 1 5 m 3, sedimentation tank 3 is 300 m 3, aluminum regeneration tank 4 is 2 m 3. The fluorine-containing wastewater to be treated is introduced into the reaction tank 1 at an average fluorine concentration of 200 mg / l and a pH of 5 at an inflow of 1 m 3 / min.
まず反応槽 1におけるカルシウム濃度が 5 00 m g/ 1となるよう に消石灰を添 し、 さらにアルミニゥム濃度が 20mg/lとなるよ うに硫酸アルミニウムを添加した。 また、 反応槽 1の p Hが常に 6〜 7の範囲になるように硫酸で p H調整した。 凝集槽 2では、 反応槽 1 で生成したフッ化カルシウムおよび水酸化アルミニウムを凝集させる ために、 凝集剤としてポリアクリルアミ ド系高分子凝集剤を添加した。 凝集したフッ化カルシウムおよび水酸化アルミニウムの混合物は沈降 槽 3で沈殿させた。 この操作を継続し、 沈降槽 3中に沈殿物を 1 00 m3蓄積させた。 なお、 沈降槽 3の上澄み液中のフッ素濃度は 18mg /1であった。 First, slaked lime was added so that the calcium concentration in the reaction tank 1 became 500 mg / 1, and aluminum sulfate was further added so that the aluminum concentration became 20 mg / l. Further, the pH was adjusted with sulfuric acid so that the pH of the reaction tank 1 was always in the range of 6 to 7. In coagulation tank 2, a polyacrylamide-based polymer coagulant was added as a coagulant to coagulate calcium fluoride and aluminum hydroxide generated in reaction tank 1. The mixture of aggregated calcium fluoride and aluminum hydroxide was precipitated in settling tank 3. This operation was continued, and 100 m 3 of the precipitate was accumulated in the settling tank 3. The concentration of fluorine in the supernatant of sedimentation tank 3 was 18 mg / 1.
次に、 沈降槽 3から沈殿物のスラ リーを 0. 2 1 5 6 m3/m i nの 流量で引き抜き、 その一部を 0. 2m3/mi nの流量でアルミニウム 再生槽 4を経て反応槽 1へ返送させ、 残りは全て汚泥として系外へ排 出した。 なお、 この沈殿物スラ リ一の含水率は 97 %だった。 アルミ ニゥム再生槽 4にはカルシウム濃度が常に 3000 m g / 1となるよ うに消石灰を添加し、 かつアルミニゥム再生槽 4の p Hが 8〜 9の範 囲になるように硫酸で p H調整した。 反応槽 1にはアルミニウム濃度 が 2 Omg/1となるように硫酸アルミニウムを添加した。 また、 反 応槽 1の p Hが常に 6〜 7の範囲になるように硫酸または水酸化ナ ト リウムで p H調整した。 以上の操作を 1サイクルと して系内で沈殿物 スラリーを循環させた。 Then, the slurries of the precipitate from the sedimentation tank 3 withdrawal at a flow rate of 0. 2 1 5 6 m 3 / min, the reaction vessel through the aluminum regeneration tank 4 a part at a flow rate of 0. 2m 3 / mi n The waste was returned to 1 and the rest was discharged out of the system as sludge. The water content of the sediment slurry was 97%. Slaked lime was added to the aluminum regeneration tank 4 so that the calcium concentration was always 3000 mg / 1, and the pH was adjusted with sulfuric acid so that the pH of the aluminum regeneration tank 4 was in the range of 8-9. Aluminum concentration in reaction tank 1 Was added so that the concentration became 2 Omg / 1. The pH was adjusted with sulfuric acid or sodium hydroxide so that the pH of the reaction tank 1 was always in the range of 6 to 7. The above operation was defined as one cycle, and the precipitate slurry was circulated in the system.
沈殿物スラ リ一の循環を繰り返すにつれ、 反応槽 1中のフッ化カル シゥムおよび水酸化アルミニウム濃度は最初は急激に上昇したが、 徐々 に上昇速度は鈍り、 平衡状態に達した。 このときのフッ化カルシウム 濃度は 4535. l mg/l、 水酸化アルミニゥム濃度は、 アルミ二 ゥムとして 276. 7mg/lであった。 このアルミニウム濃度の値 は、 1サイクル毎に新規に追加される 20 m g/ 1分のアルミニゥム が含まれているが、 かなりの部分はフッ素吸着に寄与できる状態であ ると考えられ、 処理水中のフッ素濃度を定常的に 5 m gZ 1まで低下 させることができた。  As the circulation of the sediment slurry was repeated, the concentrations of calcium fluoride and aluminum hydroxide in the reaction vessel 1 increased sharply at first, but gradually decreased and reached an equilibrium state. At this time, the concentration of calcium fluoride was 4535.lmg / l, and the concentration of aluminum hydroxide was 276.7mg / l as aluminum. This aluminum concentration includes 20 mg / 1 minute of aluminum that is newly added every cycle, but a considerable portion is considered to be in a state that can contribute to fluorine adsorption, and The fluorine concentration could be constantly reduced to 5 mgZ1.
なお、 汚泥として系外に排出される沈殿物には、 フッ化カルシウム と水酸化アルミ二ゥムが 453 5. 1 : 2 7 6. 7の比率で含まれる ことになる力 s、 その排出流量が 0. 0 1 5 6 m3/m i n、 沈殿物スラ リーの含水率が 97%であることから、 フッ化カルシウムと水酸化ァ ルミ二ゥムの排出量はそれそれ 39 8. 2 m3/m i n、 69. 3 m3/ m i nと計算される。 この値は反応槽 1中におけるフッ化カルシウム および水酸化アルミ二ゥムの新規生成量とほぼ一致すると考えられ、 処理サイクルを繰り返しても沈降槽 3における固液界面は変動しなか つた。 Note that the precipitate is discharged from the system as sludge, 5. hydroxide secondary aluminum © beam and calcium fluoride is 453 1: 2 7 6 force will be included in a ratio of 7 s, the discharge flow rate There 0. 0 1 5 6 m 3 / min, the precipitate since slurries of water content of 97%, emissions hydroxide § Rumi two © beam and calcium fluoride which it 39 8. 2 m 3 / min, is calculated to be 69. 3 m 3 / min. This value is considered to be almost equal to the newly generated amounts of calcium fluoride and aluminum hydroxide in the reaction tank 1, and the solid-liquid interface in the sedimentation tank 3 did not change even if the treatment cycle was repeated.
実施例 2  Example 2
次に、 本発明の第 1の処理方法の別の実施例について、 図 3を参照 して説明する。  Next, another embodiment of the first processing method of the present invention will be described with reference to FIG.
図 3を参照すると、 強酸性のフッ素含有廃水に対し、 カルシウム塩 として消石灰をアルミ二ゥム再生槽 4だけでなく、 反応槽 1へも添加 するようにしている。 ただしここで、 消石灰の トータル添加量は実施 例 1の場合と同じとし、 反応槽 1への添加量は反応槽 1を中性 ( p H 6〜 7 ) に保つ程度に調整し、 残りはすべてアルミニウム再生槽 4に 添加する。 たとえばフッ素含有廃水の p Hが 2 . 5だった場合、 他の 処理条件が第 1の実施例と同じとして、 反応槽 1にはカルシウム濃度 が 2 1 0 m g / lになるように、 またアルミニウム再生槽 4には力ル シゥム濃度 1 7 4 0 m g / lになるようにそれそれ消石灰を添加する。 この実施例では、 強酸性のフッ素含有廃水に対して、 反応槽 1では 消石灰のみで p H調整しているため、 反応槽 1 において硫酸あるいは 水酸化ナ ト リゥムの添加による P H調整操作が不要になるという利点 がある。 弱アルカリ性のフッ素含有廃水の場合には、 酸性のカルシゥ ム塩、 例えば塩化カルシゥム等を用いれば同様に p H調整が可能とな る。 Referring to FIG. 3, slaked lime as a calcium salt is added not only to the aluminum regeneration tank 4 but also to the reaction tank 1 for the strongly acidic fluorine-containing wastewater. Here, the total amount of slaked lime was the same as in Example 1, and the amount of slaked lime added to reactor 1 was neutral (pH Adjust the amount to keep 6 to 7), and add the rest to the aluminum regeneration tank 4. For example, if the pH of the fluorine-containing wastewater is 2.5, the other treatment conditions are the same as in the first embodiment, and the calcium concentration in the reaction tank 1 is set to 210 mg / l, Slaked lime is added to the regenerating tank 4 so that the concentration of the potash is 1740 mg / l. In this example, the pH of the strongly acidic fluorine-containing wastewater was adjusted with slaked lime only in reaction tank 1, so that the PH adjustment operation by adding sulfuric acid or sodium hydroxide in reaction tank 1 was unnecessary. There is an advantage that it becomes. In the case of weak alkaline fluorine-containing wastewater, the pH can be similarly adjusted by using an acidic calcium salt, for example, calcium chloride.
実施例 3  Example 3
本発明の第 3の処理方法の実施例について、 図 4を参照して説明す る。  An embodiment of the third processing method of the present invention will be described with reference to FIG.
図 4を参照すると、 フッ素とともにリ ン酸を含有した廃水に対し、 まず p H 8〜 1 0に保たれた第 1反応槽 5 において、 カルシウムを作 用させフッ化カルシウムおよびリ ン酸カルシウムを生成させ、 廃水中 のフッ素およびリン酸を固定した後、 p H 6〜 7に保たれた第 2反応 槽 6において残留するフッ素を水酸化アルミニゥムによ り吸着処理す る。 なお、 ここで水酸化アルミニウムは、 沈降槽 8でフッ化カルシゥ ムおよびリ ン酸カルシウムを沈降分離させるための凝集助剤としても 作用する。 尚、 新規に添加するアルミニウム塩は、 反応槽 1で新規に 生成したフッ化カルシウム及びリ ン酸カルシウムを凝集沈降させるた めに必要な程度でよく、 これらの量に対してアルミ二ゥムとして少な い量でよい。 その他の処理条件は、 第 1の実施例と同じであるが、 廃 水中のリ ン酸濃度が高い場合には、 それに応じてアルミニゥム再生槽 9に添加するカルシウム塩の量を増やす。  Referring to FIG. 4, in the first reaction tank 5 maintained at a pH of 8 to 10 with respect to wastewater containing phosphoric acid together with fluorine, calcium is actuated to remove calcium fluoride and calcium phosphate. After the formation and fixation of fluorine and phosphoric acid in the wastewater, fluorine remaining in the second reaction tank 6 maintained at pH 6 to 7 is subjected to an adsorption treatment with aluminum hydroxide. Here, the aluminum hydroxide also acts as a coagulation aid for sedimenting and separating calcium fluoride and calcium phosphate in the sedimentation tank 8. The amount of newly added aluminum salt is sufficient to coagulate and sediment the calcium fluoride and calcium phosphate newly formed in the reaction tank 1. A small amount is sufficient. Other treatment conditions are the same as in the first embodiment, but when the concentration of phosphoric acid in the wastewater is high, the amount of calcium salt added to the aluminum regeneration tank 9 is increased accordingly.
この実施例では、 反応槽を 2つとし、 一方をリ ン酸カルシウムの生 成に適した p Hに調整し、 他方を水酸化アルミニウムの生成によるフ ヅ素吸着処理に適した p Hに調整しているため、 フッ素とリ ン酸を含 む廃水に対して、 フッ素とともにリン酸も処理することができる。 ま た生成したリン酸カルシウムの一部は、 フヅ化カルシウムおよび水酸 化アルミニウムとともに系内を循環するが、 リ ン酸カルシウムはフッ 素を吸着する作用が強いため、 フッ素の処理効率を向上させることが できるという利点がある。 In this example, there were two reactors, one adjusted to a pH suitable for the production of calcium phosphate, and the other to the aluminum hydroxide generation. Since the pH is adjusted to a value suitable for nitrogen adsorption treatment, wastewater containing fluorine and phosphoric acid can be treated with phosphoric acid along with fluorine. A part of the generated calcium phosphate circulates in the system together with calcium fluoride and aluminum hydroxide.However, calcium phosphate has a strong effect of adsorbing fluorine, so the efficiency of fluorine treatment must be improved. There is an advantage that can be.
実施例 4  Example 4
本発明の第 2の処理方法の実施例について、 図面を参照して説明す る。  An embodiment of the second processing method of the present invention will be described with reference to the drawings.
本実施例は処理水中フッ素濃度の目標値が 1 3 m g/ 1である場合 に対応し、 システム構成は実施例 1と同様である。 ただし、 反応槽 1 への硫酸アルミニゥム添加量をアルミニゥム濃度として 9mg/lと する。 実施例 1に基づいて処理した場合には、 反応槽 1においてフ ッ 素吸着に寄与できる水酸化アルミニゥム量が非常に多くなるため処理 水中フッ素濃度は 5 mg/ 1まで低下するが、 図 5に示すように、 処 理水中フッ素濃度を 1 3mg/lとするためには水酸化アルミニウム 量を大幅に削減することができ、 反応槽 1への硫酸アルミニゥム添加 量をアルミニウム濃度として 2 Omg/1から 9mg/lに低下させ ることにより、 処理水中フヅ素濃度は 13 m g/ 1以下とすることが できた。  This embodiment corresponds to a case where the target value of the fluorine concentration in the treated water is 13 mg / 1, and the system configuration is the same as that of the first embodiment. However, the amount of aluminum sulfate added to reactor 1 shall be 9 mg / l as aluminum concentration. In the case of treatment based on Example 1, the amount of aluminum hydroxide that can contribute to fluorine adsorption in the reaction tank 1 becomes extremely large, so that the concentration of fluorine in the treated water decreases to 5 mg / 1, but as shown in FIG. As shown in the figure, the amount of aluminum hydroxide can be significantly reduced in order to make the fluorine concentration in the treated water 13 mg / l, and the amount of aluminum sulfate added to the reaction tank 1 was reduced from 2 Omg / 1 as aluminum concentration. By reducing the concentration to 9 mg / l, the concentration of fluorine in the treated water could be reduced to 13 mg / l or less.
なお、 処理を一過性の従来法で行った場合、 基本的に反応槽への硫 酸アルミニウム添加量はアルミニウム濃度として 9 mg/lとすれば 処理水中フヅ素濃度を 1 3 m g/1とすることができるが、 何らかの 原因で硫酸アルミニゥム添加量が一時的にわずかに低下し 8mg/l を下回った場合、 フッ化カルシウムの凝集性が急激に劣化し、 処理水 が白濁するとともにフッ素濃度も 1 5mg/lを越えてしまう。 また、 原廃水中のフッ素濃度の変動が大きく、 一時的に 3 00 mg/ 1を越 えた場合にも同様の現象が発生するため、 硫酸アルミニゥム添加量の 設定値は余裕をもって 2 Omg/1以上に設定する必要がある。 この実施の形態では、 原廃水中のフッ素濃度の一時的な変動やアル ミニゥム塩添加量の揺らぎなどによるフッ化カルシウムの凝集性およ びフッ素処理性の悪化といった問題は起きず、 最小限の水酸化アルミ ニゥム使用量で安定した処理が可能になるという利点がある。 産業上の利用可能性 When the treatment is carried out by the conventional conventional method, if the amount of aluminum sulfate added to the reaction tank is basically 9 mg / l, the concentration of fluorine in the treated water is 13 mg / 1. However, if for some reason the amount of aluminum sulfate added temporarily drops slightly and drops below 8 mg / l, the cohesiveness of calcium fluoride deteriorates rapidly, the treated water becomes cloudy and the fluorine concentration increases. Also exceeds 15 mg / l. In addition, the fluctuation of the fluorine concentration in the raw wastewater is large, and the same phenomenon occurs when the concentration temporarily exceeds 300 mg / 1.Therefore, the set value of the amount of added aluminum sulfate is 2 Omg / 1 or more with a margin. Must be set to In this embodiment, problems such as a temporary change in the fluorine concentration in the raw wastewater and fluctuations in the calcium fluoride coagulation property and fluoridation property due to fluctuations in the amount of aluminum salt added do not occur. There is an advantage that stable processing can be achieved with the amount of aluminum hydroxide used. Industrial applicability
本発明の第 1の効果は、 高濃度のフッ素含有廃水に対し、 従来の一 次処理に要する設備および薬剤を利用し、 高度処理を必要とせずに、 継続的かつ安定に十分低濃度までフッ素を処理できることである。 こ のため高度処理に要していた、 巨大な沈降槽を含む設備や薬剤が不要 になると同時に、 高度処理に伴い発生していた膨大な汚泥が発生しな い。  The first effect of the present invention is to continuously and stably reduce the concentration of fluorine to a sufficiently low level using high-concentration fluorine-containing wastewater by using equipment and chemicals required for conventional primary treatment without requiring advanced treatment. Can be processed. This eliminates the need for equipment and chemicals, including huge sedimentation tanks, required for advanced treatment, and at the same time eliminates the huge sludge generated by advanced treatment.
その理由は、 一次処理において生成するフ ッ化カルシウムの凝集助 剤として少量使用する水酸化アルミニウムを、 常に再生しながら、 系 内で高濃度になるように循環させて、 系内におけるフッ化カルシウム の凝集に必要な量を維持すると共にフッ素吸着に寄与する部分を増加 させているためである。  The reason is that a small amount of aluminum hydroxide, which is used as a coagulation aid for calcium fluoride generated in the primary treatment, is circulated to a high concentration in the system while constantly regenerating, so that calcium fluoride in the system This is because the amount required for the coagulation of the particles is maintained and the portion contributing to fluorine adsorption is increased.
本発明の第 2の効果は、 強酸性あるいは弱アル力 リ性のフッ素含有 廃水に対して、 p H調整剤の使用量を最適化できることである。 この ため、 p H調整剤として使用する硫酸や水酸化ナ ト リウム等の薬剤使 用量を低減できる。  A second effect of the present invention is that the use amount of the pH adjuster can be optimized for a strongly acidic or weakly alkaline fluorine-containing wastewater. For this reason, the use of chemicals such as sulfuric acid and sodium hydroxide used as pH adjusters can be reduced.
その理由は、 フッ化カルシウム生成のために添加する強アルカ リ性 の消石灰あるいは弱酸性の塩化カルシウム等の一部を、 反応槽におけ る酸あるいは塩基の中和に使用できるからである。  The reason is that a part of the strong alkaline slaked lime or the weakly acidic calcium chloride added to generate calcium fluoride can be used for neutralizing the acid or base in the reaction tank.
本発明の第 3の効果は、 フッ素の他にリ ン酸を含有する廃水に対し て、 フッ素、 リ ン酸ともに十分処理することができ、 特にフッ素を高 い効率で処理できることである。 このため、 フ ッ素吸着剤としても作 用する水酸化アルミニウムの使用量を低減することができる。  A third effect of the present invention is that wastewater containing phosphoric acid in addition to fluorine can be sufficiently treated with both fluorine and phosphoric acid, and in particular, fluorine can be treated with high efficiency. Therefore, the amount of aluminum hydroxide used also as a fluorine adsorbent can be reduced.
その理由は、 系内ではフッ化カルシウムおよび水酸化アルミニウム  The reason is that in the system calcium fluoride and aluminum hydroxide
17 とともに、 フッ素吸着性が強いリン酸カルシウムが高濃度で循環され るからである。 17 At the same time, calcium phosphate, which has strong fluorine adsorption, is circulated at a high concentration.
本発明の第 4の効果は、 もともと排水基準が高度処理を必要としな い程度である場合において、 原廃水中のフッ素濃度の一時的な変動や アルミニゥム塩添加量の揺らぎなどによるフッ化カルシウムの凝集性 およびフッ素処理性の悪化といつた問題を発生させることなく、 最小 限の水酸化アルミニゥム使用量で安定した処理が可能になることであ る。 このため、 従来安全を見て多めに設定されていた硫酸アルミニゥ ム添加量が大幅に削減され、 その分汚泥量も削減することができる。 その理由は、 水酸化アルミニゥムを含むスラ リーを返送することに より削減対象となる水酸化アルミニゥム量の幅を十分大きくすること ができ、 この範囲内で水酸化アルミ二ゥム量を制御できるとともに、 スラ リ一は沈降槽に十分な量が蓄積された後に返送されるため、 廃水 中のフッ素濃度の一時的な変動や A1 塩の添加量に多少の揺らぎがあつ てもスラ リ一の組成比は常に平均的な値に収束するため、 水酸化アル ミニゥム量の制御に対する影響がほとんどなくなるためである。  The fourth effect of the present invention is that when the wastewater standard originally does not require advanced treatment, calcium fluoride due to temporary fluctuations of the fluorine concentration in raw wastewater and fluctuations in the amount of aluminum salt added, etc. A stable treatment can be achieved with a minimum amount of aluminum hydroxide without causing problems such as deterioration of cohesiveness and fluorination property. For this reason, the addition amount of aluminum sulfate, which was conventionally set relatively high in view of safety, is greatly reduced, and the sludge amount can be reduced accordingly. The reason is that by returning the slurry containing aluminum hydroxide, the width of the aluminum hydroxide to be reduced can be made sufficiently large, and the amount of aluminum hydroxide can be controlled within this range, and Since the slurry is returned after a sufficient amount has been accumulated in the settling tank, the composition of the slurry is not affected by temporary fluctuations in the fluorine concentration in the wastewater and slight fluctuations in the amount of A1 salt added. This is because the ratio always converges to an average value, and there is almost no effect on the control of the amount of aluminum hydroxide.

Claims

請求の範囲 ' The scope of the claims '
1. フッ素イオンを含有する廃水に対し、 カルシウムを作用させ廃 水中の大部分のフッ素をフッ化カルシウムとして固定する第 1の工程、 前記工程の処理液に前記工程で新規に生成するフッ化カルシウムより アルミニウムとして少ない量のアルミニウム塩を添加し、 生成する水 酸化アルミニウムを凝集助剤として前記フッ化カルシウムを凝集沈降 させ沈殿物スラ リ一を形成する第 2の工程、 及び該沈殿物スラ リーを 含む廃水を固液分離し、 上澄みの液相を排水すると共に固相の沈殿物 スラ リーを汚泥として排出する第 3の工程を有するフッ素含有廃水の 処理方法であって、 1. The first step in which calcium acts on wastewater containing fluorine ions to fix most of the fluorine in the wastewater as calcium fluoride. Calcium fluoride newly generated in the above process in the treatment liquid of the above step A second step of adding a smaller amount of aluminum salt as aluminum, coagulating and sedimenting the calcium fluoride using the resulting aluminum hydroxide as a coagulation aid to form a precipitate slurry, and the precipitate slurry. A solid-liquid separation of the wastewater containing the wastewater, draining the supernatant liquid phase, and discharging the solid-phase sediment slurry as sludge.
前記汚泥として排出する沈殿物スラリーの一部を引き抜き、 9以下 の p Hでカルシウムを作用させ該沈殿物スラ リーに含まれる水酸化ァ ルミ二ゥムに吸着していたフッ素をフッ化カルシウムとして固定した 後、 前記第 1の工程に該処理された沈殿物スラ リーを返送し、 前記一 連の工程を繰り返すことで、 系内における水酸化アルミニゥムをフッ 化カルシウムの凝集に少なく とも必要な量に維持するとともに、 フッ 素吸着に寄与する量を増加させることを特徴とするフッ素含有廃水の 処理方法。  A part of the sediment slurry discharged as the sludge is withdrawn, calcium is acted on at pH of 9 or less, and the fluorine adsorbed on the aluminum hydroxide contained in the sediment slurry is converted into calcium fluoride. After the fixing, the treated precipitate slurry is returned to the first step, and the series of steps is repeated to reduce the amount of aluminum hydroxide in the system to at least the amount required for the aggregation of calcium fluoride. A method for treating fluorine-containing wastewater, characterized in that the amount of fluorine-containing wastewater is increased while increasing the amount of fluorine-containing wastewater.
2. 処理すべきフッ素含有廃水中のフッ素イオンの流入量と、 沈殿 物スラ リーに含まれるフッ化カルシウムと水酸化アルミ二ゥムの返送 量とを、 前記流入量が返送量よ り多くなる一定の比率とすることを特 徴とする、 請求項 1記載のフッ素含有廃水の処理方法。  2. The inflow of fluorine ions in the wastewater containing fluorine to be treated and the return of calcium fluoride and aluminum hydroxide contained in the sediment slurry are larger than the return 2. The method for treating fluorine-containing wastewater according to claim 1, characterized in that the ratio is a fixed ratio.
3. カルシウム塩の添加により系内で新規に生成するフッ化カルシ ゥム量と、 排出される沈殿物スラ リーに含まれるフッ化カルシウムの 量、 および新規に添加するアルミニウム量と排出される沈殿物スラ リ 一に含まれるアルミニウム量がそれそれ等しくなるように沈殿物スラ リーの排出量を設定し、 かつそれそれの流量の設定によつて系内の水 酸化アルミニウム濃度を制御することを特徴とする、 請求項 1 に記載 のフッ素含有廃水の処理方法。 3. The amount of calcium fluoride newly generated in the system by the addition of calcium salt, the amount of calcium fluoride contained in the discharged slurry, the amount of newly added aluminum and the amount of precipitated The discharge amount of the precipitate slurry is set so that the amount of aluminum contained in the waste slurry is equal to each other, and the concentration of aluminum hydroxide in the system is controlled by setting the flow rate of each. The method for treating wastewater containing fluorine according to claim 1.
4. 沈殿物スラ リーの返送量を、 処理すべきフ ッ素含有廃水の流入 量より少なくなるように設定することを特徴とする、 請求項 1に記載 のフッ素含有廃水の処理方法。 4. The method for treating wastewater containing fluorine according to claim 1, wherein the return amount of the sediment slurry is set to be smaller than the inflow amount of the wastewater containing fluorine to be treated.
5. 前記第 1の工程における p H調整をカルシウム塩の添加のみに よって行う請求項 1に記載のフッ素含有廃水の処理方法。  5. The method for treating fluorine-containing wastewater according to claim 1, wherein the pH adjustment in the first step is performed only by adding a calcium salt.
6. フッ素イオンを含有する廃水に対し、 カルシウムを作用させ廃 水中の大部分のフッ素をフッ化カルシウムとして固定する第 1の工程、 前記工程の処理液に前記工程で新規に生成するフッ化カルシウムより アルミニウムとして少ない量のアルミ二ゥム塩を添加し、 生成する水 酸化アルミニウムを凝集助剤と して前記フッ化カルシウムを凝集沈降 させ沈殿物スラ リーを形成する第 2の工程、 及び該沈殿物スラリーを 含む廃水を固液分離し、 上澄みの液相を排水すると共に固相の沈殿物 スラ リーを汚泥として排出する第 3の工程を有するフッ素含有廃水の 処理方法であって、  6. The first step in which calcium acts on wastewater containing fluorine ions to fix most of the fluorine in the wastewater as calcium fluoride. Calcium fluoride newly formed in the treatment liquid in the above step in the above step A second step of adding a smaller amount of aluminum salt as aluminum, coagulating and sedimenting the calcium fluoride by using the formed aluminum hydroxide as a coagulant, and forming a precipitate slurry, and A solid-liquid separation of wastewater containing waste slurry, draining the supernatant liquid phase, and discharging the solid precipitate slurry as sludge, a method for treating fluorine-containing wastewater, comprising:
前記汚泥として排出する沈殿物スラ リ一の一部を引き抜き、 9以下 の p Hでカルシウムを作用させ該沈殿物スラ リーに含まれる水酸化ァ ルミ二ゥムに吸着していたフッ素をフッ化カルシウムとして固定した 後、 前記第 1の工程に該処理された沈殿物スラ リーを返送し、 前記一 連の工程を繰り返すことで、 系内における水酸化アルミニウムをフッ 化カルシウムの凝集に少なく とも必要な量に維持するが、 フッ素吸着 に寄与する水酸化アルミニウムの増加をアルミニゥム塩の添加量を制 御することによって制限することを特徴とするフッ素含有廃水の処理 方法。  A part of the sediment slurry discharged as the sludge is withdrawn, and calcium is acted on at a pH of 9 or less to fluorinate the fluorine adsorbed on the aluminum hydroxide contained in the sediment slurry. After fixing as calcium, the treated precipitate slurry is returned to the first step, and the series of steps is repeated, so that aluminum hydroxide in the system is at least necessary for agglomeration of calcium fluoride. A method for treating fluorine-containing wastewater, wherein the amount of aluminum hydroxide contributing to fluorine adsorption is limited by controlling the amount of aluminum salt added.
7. リン酸を含むフッ素含有廃水に対し、 弱アルカリ性の条件下で カルシウムを作用させてフッ素イオン及びリ ン酸をフッ化カルシウム 及び燐酸カルシウムとして固定する第 1の工程、 前記処理液を弱酸性 乃至中性に調整し、 前記工程で新規に生成するフッ化カルシウム及び リン酸カルシゥムの合計量よりアルミニウムとして少ない量のアルミ 二ゥム塩を添加して生成する水酸化アルミ二ゥムを凝集助剤として前 記フッ化カルシウム及び燐酸カルシウムを凝集沈降させ沈殿物スラ リ —を形成する第 2の工程、 及び該沈殿物スラリ一を含む廃水を固液分 離し、 上澄みの液相を排水すると共に固相の沈殿物スラ リ一を汚泥と して排出する第 3の工程を有するフッ素含有廃水の処理方法であって、 前記汚泥として排出する沈殿物スラリーの一部を引き抜き、 9以下 の p Hでカルシウムを作用させ該沈殿物スラリーに含まれる水酸化ァ ルミ二ゥムに吸着していたフッ素をフッ化カルシウムとして固定した 後、 前記第 1の工程に該処理された沈殿物スラ リーを返送し、 前記一 連の工程を繰り返すことを特徴とするフッ素含有廃水の処理方法。7. Fluorine-containing wastewater containing phosphoric acid is treated with calcium under weak alkaline conditions to fix fluoride ions and phosphoric acid as calcium fluoride and calcium phosphate. To neutrality, and add aluminum hydroxide salt in a smaller amount as aluminum than the total amount of calcium fluoride and calcium phosphate newly generated in the above process to coagulate aluminum hydroxide generated. Before A second step of coagulating and sedimenting the calcium fluoride and the calcium phosphate to form a precipitate slurry, and solid-liquid separation of wastewater containing the precipitate slurry, draining a supernatant liquid phase, and forming a solid phase. A method of treating a fluorine-containing wastewater having a third step of discharging a sediment slurry as sludge, wherein a part of the sediment slurry discharged as the sludge is withdrawn, and calcium is removed at a pH of 9 or less. After acting to fix the fluorine adsorbed on the aluminum hydroxide contained in the precipitate slurry as calcium fluoride, the treated precipitate slurry is returned to the first step, A method for treating fluorine-containing wastewater, comprising repeating a series of steps.
8. フッ素イオンを含有する廃水に、 カルシウムを作用させて廃水 中の大部分のフッ素をフッ化カルシウムとして固定する反応槽と、 ァ ルミニゥム塩の添加により生成する水酸化アルミニウムを凝集助剤と して該フッ化カルシウムを凝集沈殿させるための凝集槽と、 得られた 沈殿物スラ リ一を固液分離する沈降槽とを有するフ ッ素含有廃水の処 理装置において、 該処理装置は請求項 1乃至 6のいずれかの処理方法 が適用されるものであって、 P H 9以下の条件下でカルシウム塩を添 加し、 前記沈殿物スラ リーに含まれる水酸化アルミ二ゥムに吸着して いたフッ素をフッ化カルシウムとして固定して水酸化アルミニウムの 再生を行うアルミニウム再生槽を有し、 前記沈降槽で固液分離された 沈殿物スラ リーの一部を制御して取り出し、 前記アルミニウム再生槽 に返送する手段と、 該再生槽で再生された水酸化アルミニゥム及びフ ッ化カルシウムを前記反応槽に返送する手段を有することを特徴とす る処理装置。 8. Calcium acts on wastewater containing fluoride ions to fix most of the fluorine in the wastewater as calcium fluoride, and aluminum hydroxide generated by the addition of aluminum salts is used as a flocculant. And a sedimentation tank for solid-liquid separation of the obtained sediment slurry. The treatment method according to any one of 1 to 6, wherein a calcium salt is added under a condition of pH 9 or less, and the calcium salt is adsorbed on aluminum hydroxide contained in the precipitate slurry. An aluminum regeneration tank for regenerating aluminum hydroxide by fixing the fluorine as calcium fluoride, and controlling and taking out a part of the sediment slurry separated by solid-liquid separation in the sedimentation tank; A processing apparatus comprising: means for returning aluminum hydroxide and calcium fluoride regenerated in the regeneration tank to the aluminum regeneration tank; and means for returning aluminum hydroxide and calcium fluoride regenerated in the regeneration tank to the reaction tank.
9. 前記沈降槽に固液界面レベルを監視する手段を有し、 固液界面 レベルが所定の範囲になるように沈殿物スラ リーの取り出しを制御す る機構を有する請求項 8に記載の処理装置。  9. The treatment according to claim 8, wherein the settling tank has means for monitoring a solid-liquid interface level, and has a mechanism for controlling removal of the precipitate slurry so that the solid-liquid interface level is within a predetermined range. apparatus.
10. 前記再生槽が、 反応槽の 1 / 1 0以下の容量であることを特徴 とする請求項 8に記載の処理装置。  10. The processing apparatus according to claim 8, wherein the regeneration tank has a capacity of 1/10 or less of a reaction tank.
11. リ ン酸を含むフッ素含有廃水に対し、 弱アルカリ性の条件下で カルシウムを作用させてフヅ素イオン及びリ ン酸をフヅ化カルシウム 及び燐酸カルシウムとして固定する第 1の反応槽と、 前記処理液を弱 酸性乃至中性に調整し、 アルミニウム塩を添加して水酸化アルミニゥ ムを生成する第 2の反応槽と、 前記生成した水酸化アルミニゥムを凝 集助剤として前記フッ化カルシウム及び憐酸カルシウムを凝集沈降さ せ沈殿物スラ リーを形成する凝集槽と、 得られた沈殿物スラ リ一を固 液分離する沈降槽とを有するフッ素含有廃水の処理装置において、 該 処理装置は請求項 Ίに記載の処理方法が適用されるものであって、 p H 9以下の条件下でカルシウム塩を添加し、 前記沈殿物スラ リーに含 まれる水酸化アルミニウムに吸着していたフッ素をフヅ化カルシウム として固定して水酸化アルミ二ゥムの再生を行うアルミニゥム再生槽 を有し、 前記沈降槽で固液分離された沈殿物スラリーの一部を制御し て取り出し、 前記アルミニウム再生槽に返送する手段と、 該再生槽で 再生された水酸化アルミニウム及びフッ化カルシウムを前記第 1の反 応槽に返送する手段を有することを特徴とする処理装置。 11. Under weak alkaline conditions for fluorine-containing wastewater containing phosphoric acid A first reaction tank for fixing calcium ions and phosphoric acid and phosphoric acid as calcium fluoride and calcium phosphate, and adjusting the treatment solution to be weakly acidic to neutral, and adding an aluminum salt. A second reaction vessel for producing aluminum hydroxide, a flocculation vessel for flocculating and sedimenting the calcium fluoride and calcium phosphate using the produced aluminum hydroxide as a flocculating aid, and forming a precipitate slurry; A treating apparatus for treating a fluorine-containing wastewater having a sedimentation tank for solid-liquid separation of the obtained precipitate slurry, wherein the treating method according to claim 5 is applied, wherein pH 9 Under the following conditions, a calcium salt is added, and the fluorine adsorbed on the aluminum hydroxide contained in the precipitate slurry is fixed as calcium fluoride to recycle the aluminum hydroxide. Means for controlling and taking out a part of the precipitate slurry solid-liquid separated in the sedimentation tank and returning it to the aluminum regeneration tank; and aluminum hydroxide regenerated in the regeneration tank. And a means for returning calcium fluoride to the first reaction tank.
12. 前記沈降槽に固液界面レベルを監視する手段を有し、 固液界面 レベルが所定の範囲になるように沈殿物スラ リ一の取り出しを制御す る機構を有する請求項 11に記載の処理装置。  12. The sedimentation tank according to claim 11, further comprising means for monitoring a solid-liquid interface level in the settling tank, and a mechanism for controlling removal of the sediment slurry so that the solid-liquid interface level falls within a predetermined range. Processing equipment.
13. 前記再生槽が、 反応槽の 1 / 1 0以下の容量であることを特徴 とする請求項 11に記載の処理装置。  13. The processing apparatus according to claim 11, wherein the regeneration tank has a capacity of 1/10 or less of a reaction tank.
PCT/JP1999/003789 1998-07-17 1999-07-14 Method for treating a fluorine-containing waste water and treating apparatus WO2000003952A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB0101249A GB2354516A (en) 1998-07-17 1999-07-14 Method for treating a fluorine-containing waste water and treating apparatus
KR1020017000715A KR20010071946A (en) 1998-07-17 1999-07-14 Method for treating a fluorine-containing waste water and treating apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/203592 1998-07-17
JP20359298 1998-07-17

Publications (1)

Publication Number Publication Date
WO2000003952A1 true WO2000003952A1 (en) 2000-01-27

Family

ID=16476629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/003789 WO2000003952A1 (en) 1998-07-17 1999-07-14 Method for treating a fluorine-containing waste water and treating apparatus

Country Status (4)

Country Link
KR (1) KR20010071946A (en)
CN (1) CN1311759A (en)
GB (1) GB2354516A (en)
WO (1) WO2000003952A1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100588667B1 (en) * 2001-04-16 2006-06-13 동부일렉트로닉스 주식회사 Recycle method for semiconductor waste
KR100756838B1 (en) * 2001-08-20 2007-09-07 동부일렉트로닉스 주식회사 Waste-water treatment method
JP3801187B2 (en) * 2003-08-28 2006-07-26 セイコーエプソン株式会社 Chemical reprocessing method and fluorite manufacturing method
JP4368249B2 (en) * 2004-06-01 2009-11-18 三洋電機株式会社 Treatment apparatus and treatment method of water to be treated using the same
CN100351185C (en) * 2004-10-28 2007-11-28 力晶半导体股份有限公司 Method for treating fluorine-containing waste water
CN1304301C (en) * 2005-06-03 2007-03-14 天津大学 Process for micro filtering combined fluorine removing by aluminate coagulating
KR100680567B1 (en) * 2005-11-22 2007-02-08 삼창기업 주식회사 System and method for controlling work of sludge collecting apparatus
JP5700036B2 (en) * 2010-03-18 2015-04-15 栗田工業株式会社 Start-up method of high-density sludge generation type water treatment equipment
CN102001766B (en) * 2010-10-29 2012-05-23 湖州欣格膜科技有限公司 Defluorinating method of photovoltaic wastewater
CN102070267A (en) * 2010-11-30 2011-05-25 湖北大峪口化工有限责任公司 Method for treating high-concentration acidic wastewater containing phosphorus and fluorine
KR101273168B1 (en) * 2011-06-21 2013-06-17 주식회사 이코니 Treatment process for fluorine compounds containing water
CN102491555A (en) * 2011-12-01 2012-06-13 核工业北京化工冶金研究院 Method for removing fluorine in acid uranium process wastewater
JP5868153B2 (en) * 2011-12-07 2016-02-24 オルガノ株式会社 Coagulation sedimentation equipment
CN103848513B (en) * 2012-11-28 2016-03-02 苏州市环境保护有限公司 A kind of fluorine-containing wastewater treatment method based on Fenton oxidation reaction
CN103833116B (en) * 2014-03-03 2016-06-15 江苏永葆环保科技股份有限公司 A kind of production method and application that utilizes waste hydrochloric acid, aluminium-containing sludge to prepare defluorinating agent
JP6508747B2 (en) * 2015-07-30 2019-05-08 Necファシリティーズ株式会社 Method and apparatus for treating fluorine-containing wastewater
CN107555661B (en) * 2017-10-13 2020-08-25 贵州大学 Deep purification method for phosphorus and fluorine coexisting wastewater
CN108033534B (en) * 2017-11-17 2020-07-31 江苏永冠给排水设备有限公司 Preparation method of defluorination solution and process for removing fluorine ions in water
JP6982759B2 (en) * 2018-02-13 2021-12-17 三菱重工パワー環境ソリューション株式会社 Water treatment system
CN108314166A (en) * 2018-03-22 2018-07-24 昆山明宽环保节能科技有限公司 A kind of neutralization alkaline agent and neutralisation treatment technique for Removal of Phosphorus in Wastewater and fluoride waste
CN113247931A (en) * 2021-07-14 2021-08-13 赛恩斯环保股份有限公司 Resource treatment method for high-ammonia high-salt waste liquid in rare earth industry

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6097091A (en) * 1983-10-31 1985-05-30 Kurita Water Ind Ltd Treatment of fluoride ion-containing water
JPH06262170A (en) * 1993-03-11 1994-09-20 Nec Corp Treatment of fluorine-containing waste water
JPH07265869A (en) * 1994-03-30 1995-10-17 Japan Organo Co Ltd Treatment of fluorine-phosphorus-containing discharged water
JPH10479A (en) * 1996-06-12 1998-01-06 Kurita Water Ind Ltd Fluorine removing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6097091A (en) * 1983-10-31 1985-05-30 Kurita Water Ind Ltd Treatment of fluoride ion-containing water
JPH06262170A (en) * 1993-03-11 1994-09-20 Nec Corp Treatment of fluorine-containing waste water
JPH07265869A (en) * 1994-03-30 1995-10-17 Japan Organo Co Ltd Treatment of fluorine-phosphorus-containing discharged water
JPH10479A (en) * 1996-06-12 1998-01-06 Kurita Water Ind Ltd Fluorine removing device

Also Published As

Publication number Publication date
KR20010071946A (en) 2001-07-31
CN1311759A (en) 2001-09-05
GB0101249D0 (en) 2001-02-28
GB2354516A (en) 2001-03-28

Similar Documents

Publication Publication Date Title
WO2000003952A1 (en) Method for treating a fluorine-containing waste water and treating apparatus
KR100200021B1 (en) Method of treating waste water to remove harmful ion by coagulating sedimentation
JP2000084570A (en) Treatment of fluorine-containing waste water and treating apparatus
JP2005193167A (en) Drainage purification method and purification method
JP2006255499A (en) Fluorine-containing wastewater treatment method and apparatus
JP2007125510A (en) Method for treating fluorine-containing water
JP4396965B2 (en) Heavy metal removal method and apparatus
JP4543481B2 (en) Method for treating water containing boron and fluorine
JP4543478B2 (en) Method for treating boron-containing water
JP2912237B2 (en) Treatment method for fluorine-containing wastewater
JP2004000846A (en) Treatment method for fluorine-containing water
JP3709156B2 (en) Treatment method for fluorine-containing wastewater
JPH0975925A (en) Treatment of flue gas desulfurization waste water
JP3918294B2 (en) Method and apparatus for treating fluorine-containing wastewater
JPH10263558A (en) Treatment of fluorine-containing desulfurized waste water
JPH10230282A (en) Treatment of fluorine-containing waste water
JP2751874B2 (en) Treatment method for wastewater containing fluorine
JP6413772B2 (en) Chromium-containing water treatment method
JP4640149B2 (en) Fluorine-containing water treatment method
JPH09248577A (en) Treatment of fluorine-containing waste water
JP2842384B2 (en) Treatment method for wastewater containing phosphoric acid and fluorine
JP2003047972A (en) Method for treating fluorine-containing wastewater
JP2006142191A (en) Method for treating phosphoric acid-containing drainage
JP3304400B2 (en) Treatment method for acidic fluorine-containing water
JP3905588B2 (en) Wastewater treatment method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99809309.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN GB KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 200101249

Country of ref document: GB

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09743914

Country of ref document: US

Ref document number: 1020017000715

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020017000715

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1020017000715

Country of ref document: KR