JP2007125510A - Method for treating fluorine-containing water - Google Patents

Method for treating fluorine-containing water Download PDF

Info

Publication number
JP2007125510A
JP2007125510A JP2005321102A JP2005321102A JP2007125510A JP 2007125510 A JP2007125510 A JP 2007125510A JP 2005321102 A JP2005321102 A JP 2005321102A JP 2005321102 A JP2005321102 A JP 2005321102A JP 2007125510 A JP2007125510 A JP 2007125510A
Authority
JP
Japan
Prior art keywords
fluorine
sludge
water
treatment
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005321102A
Other languages
Japanese (ja)
Other versions
JP4572812B2 (en
Inventor
Isamu Kato
勇 加藤
Toru Otsuki
透 大槻
Yasushi Usami
泰 宇佐美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2005321102A priority Critical patent/JP4572812B2/en
Publication of JP2007125510A publication Critical patent/JP2007125510A/en
Application granted granted Critical
Publication of JP4572812B2 publication Critical patent/JP4572812B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain treated water sufficiently removing fluorine by treating fluorine-containing water coexisting with an aluminium salt stably and efficiently by a calcium fluoride method. <P>SOLUTION: A calcium compound is loaded into the fluorine-containing water coexisting with the aluminium salt and also a pH is adjusted at 8 to 10 (first process), then an acid is loaded to adjust the pH at 6 to 6.5 (second process), and next solid-liquid separation is carried out (third process). It is preferable to return sludge obtained in the third process to the first process. At this time, it is preferable to premix the calcium compound to be loaded into raw water with this return sludge, to load this reformed sludge into the raw water and to adjust the pH at 8 to 10. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、アルミニウム塩が共存するフッ素含有水をフッ化カルシウム法により安定かつ効率的に処理する方法に関する。   The present invention relates to a method for stably and efficiently treating fluorine-containing water in which an aluminum salt coexists with a calcium fluoride method.

半導体部品製造におけるシリコンウェハ製造工程から排出されるフッ素含有排水、ステンレス鋼板製造工程から排出される酸洗排水、アルミニウム表面処理排水、フッ酸製造排水、肥料製造排水、ゴミ焼却排水等のフッ素含有排水は、排水基準を満たすようにフッ素の除去処理を行った後排出する必要がある。フッ素含有排水については、その排水基準が平成13年度にフッ素濃度15mg/Lから8mg/Lに強化されたことに伴い、処理水のフッ素濃度をより一層低減することができる処理技術の開発が望まれている。   Fluorine-containing wastewater discharged from silicon wafer manufacturing process in semiconductor parts manufacturing, pickling wastewater discharged from stainless steel plate manufacturing process, aluminum surface treatment wastewater, hydrofluoric acid manufacturing wastewater, fertilizer manufacturing wastewater, waste incineration wastewater, etc. Needs to be discharged after fluorine removal treatment to meet the drainage standards. Regarding fluorine-containing wastewater, the development of treatment technology that can further reduce the fluorine concentration of treated water is expected as the wastewater standard was strengthened from 15 mg / L to 8 mg / L in 2001. It is rare.

従来、フッ素含有水の処理方法として、フッ化カルシウム法と、高度処理としての水酸化物共沈法とが知られており、一段目にフッ化カルシウム法で処理を行った後、二段目に水酸化物共沈法で高度処理を行う二段処理法も知られている(非特許文献1)。即ち、フッ化カルシウム法では、フッ化カルシウムの溶解度以下に処理水のフッ素濃度を低減することができず、排水基準を満たすことはできないため、このような二段処理が採用されている。   Conventionally, calcium fluoride method and hydroxide coprecipitation method as advanced treatment are known as treatment methods for fluorine-containing water. After treatment with calcium fluoride method in the first stage, the second stage In addition, a two-stage treatment method in which advanced treatment is performed by a hydroxide coprecipitation method is also known (Non-Patent Document 1). That is, in the calcium fluoride method, the fluorine concentration of the treated water cannot be reduced below the solubility of calcium fluoride, and the waste water standard cannot be satisfied, so such a two-stage treatment is adopted.

フッ化カルシウム法は、原水(フッ素含有水)にカルシウム化合物を添加した後、中和剤を添加してpH中性付近に調整し、フッ素とカルシウムとの反応によりフッ化カルシウムの不溶性塩を生成させ、高分子凝集剤を添加して凝集処理し、その後固液分離する方法である。この方法において、カルシウム化合物としては一般に消石灰が用いられており、中和剤としては、通常、安価な硫酸が用いられているが、塩酸が用いられる場合もある。   In the calcium fluoride method, after adding a calcium compound to raw water (fluorine-containing water), a neutralizing agent is added to adjust the pH to near neutral, and an insoluble salt of calcium fluoride is generated by the reaction between fluorine and calcium. In this method, a polymer flocculant is added and agglomeration treatment is performed, followed by solid-liquid separation. In this method, slaked lime is generally used as the calcium compound, and inexpensive sulfuric acid is usually used as the neutralizing agent, but hydrochloric acid may also be used.

水酸化物共沈法は、アルミニウムが水酸化アルミニウムとして沈殿する際の共沈作用を利用するものであり、一般的には、高度処理に用いられている。この方法では、原水にポリ塩化アルミニウム(PAC)や硫酸アルミニウム(硫酸バンド)を添加した後、中和剤で中和し、高分子凝集剤を添加して凝集処理し、その後固液分離する。   The hydroxide coprecipitation method uses a coprecipitation action when aluminum is precipitated as aluminum hydroxide, and is generally used for advanced treatment. In this method, polyaluminum chloride (PAC) or aluminum sulfate (sulfuric acid band) is added to raw water, then neutralized with a neutralizing agent, a polymer flocculant is added for aggregation treatment, and then solid-liquid separation is performed.

なお、フッ化カルシウム法によるフッ化カルシウムの生成pH条件として、特許文献1にはpH12が、また、特許文献2には、pH7が記載されており、フッ化カルシウム法におけるフッ化カルシウム生成のpH条件は必ずしも中性である必要はない。
特許2912237号公報 特許3349637号公報 「公害防止の技術と法規」第288頁〜第289頁
In addition, as production pH conditions of calcium fluoride by the calcium fluoride method, Patent Document 1 describes pH 12, and Patent Document 2 describes pH 7, and the pH of calcium fluoride production in the calcium fluoride method is described. The conditions do not necessarily have to be neutral.
Japanese Patent No. 2912237 Japanese Patent No. 3334937 “Pollution Prevention Technology and Regulations” pp. 288-289

上述の二段処理法を採用する場合、二段目の水酸化物共沈法で添加する硫酸バンド等のアルミニウム塩の添加量が多いと、薬剤コストのみならず発生汚泥量の増加による汚泥処理コストも高くつくことから、一段目のフッ化カルシウム法における処理水フッ素濃度を十分に低減して、二段目の水酸化物共沈法におけるアルミニウム塩の添加量を低減することが望まれる。   When adopting the above-mentioned two-stage treatment method, if the amount of aluminum salt such as sulfuric acid band added in the second-stage hydroxide coprecipitation method is large, the sludge treatment is caused not only by the chemical cost but also by the amount of generated sludge. Since the cost is high, it is desirable to sufficiently reduce the concentration of treated water fluorine in the first-stage calcium fluoride method and to reduce the amount of aluminum salt added in the second-stage hydroxide coprecipitation method.

しかしながら、従来の二段処理法では一段目の処理水のフッ素濃度が不安定であるために、二段目の水酸化物共沈法による処理においては、その最大変動値に対応できるようなアルミニウム塩の添加量が設定されていることから、アルミニウム塩添加量を低減し得なかった。   However, since the fluorine concentration in the first-stage treated water is unstable in the conventional two-stage treatment method, the treatment by the second-stage hydroxide coprecipitation method is an aluminum that can cope with the maximum fluctuation value. Since the addition amount of the salt was set, the addition amount of the aluminum salt could not be reduced.

本発明者らは、この1段目処理水のフッ素濃度の変動の原因について検討した結果、その主な原因は、原水中のアルミニウム塩にあることを見出した。   As a result of examining the cause of the variation in the fluorine concentration of the first-stage treated water, the present inventors have found that the main cause is the aluminum salt in the raw water.

即ち、フッ素含有水の二段処理の後段の処理工程では、通常、沈殿工程の後段には濾過工程が設けられているが、その濾過工程の逆洗で排出される排水は原水槽に送給されて原水と共に処理される。また、ここで発生する汚泥の脱水濾液も原水槽に送給されて原水と共に処理される。これら逆洗排水や汚泥の脱水濾液には当然、この工程で添加された硫酸バンド等に由来するアルミニウム塩が含まれている。そして、これらが原水槽に送給されることにより、フッ化カルシウム法による処理に供される原水中に数〜数十mg/L程度のアルミニウム塩が共存するものとなる。   That is, in the treatment process after the two-stage treatment of fluorine-containing water, a filtration process is usually provided after the precipitation process, but the wastewater discharged by backwashing of the filtration process is sent to the raw water tank. And treated with raw water. The sludge dehydrated filtrate generated here is also fed to the raw water tank and treated together with the raw water. These backwash wastewater and sludge dehydrated filtrate naturally contain an aluminum salt derived from the sulfate band added in this step. And by supplying these to a raw | natural water tank, about several to several dozen mg / L of aluminum salt will coexist in the raw | natural water used for the process by a calcium fluoride method.

アルミニウム塩は、フッ素の吸着能を有するものであるが、原水中に数〜数十mg/L程度の低濃度に混入したアルミニウム塩は、フッ化カルシウム法によるフッ素処理においては処理効率を悪化させる要因となり、この結果、一段目のフッ化カルシウム法による処理で得られる処理水のフッ素濃度が不安定なものとなっていた。   The aluminum salt has an ability to adsorb fluorine, but an aluminum salt mixed at a low concentration of several to several tens mg / L in raw water deteriorates the treatment efficiency in the fluorine treatment by the calcium fluoride method. As a result, the fluorine concentration of the treated water obtained by the treatment by the first-stage calcium fluoride method was unstable.

例えば、HF200mg/L、H2SO4250mg/L、CaCl2300mg/L(Caとして)の合成排水1と、HF50mg/L、H2SO4250mg/L、CaCl2300mg/L(Caとして)の合成排水2について、各々Ca(OH)2を添加して様々なpH値にpH調整して処理した結果を示す図2より明らかなように、アルミニウム塩を含まない原水であれば、処理水フッ素濃度は処理pHに影響されない。このため、従来のフッ化カルシウム法では、一般に排水基準を考慮してpH6〜8の中性領域での処理が行われているが、前述の特許文献1に記載されるように、pHアルカリ性での処理が行われる場合もある。 For example, HF200mg / L, H 2 SO 4 250mg / L, the synthetic wastewater 1 of CaCl 2 300mg / L (as Ca), HF50mg / L, H 2 SO 4 250mg / L, ( as Ca) CaCl 2 300mg / L As shown in FIG. 2 which shows the result of adjusting the pH to various pH values by adding Ca (OH) 2 to the synthetic waste water 2 in FIG. The fluorine concentration is not affected by the treatment pH. For this reason, in the conventional calcium fluoride method, treatment in a neutral region of pH 6 to 8 is generally performed in consideration of drainage standards. However, as described in Patent Document 1, the pH is alkaline. May be performed.

これに対して、HF50mg/L、H2SO4200mg/L、CaCl2250mg/L(Caとして)の合成排水Aと、HF100mg/L、H2SO4200mg/L、CaCl2250mg/L(Caとして)の合成排水Bと、HF200mg/L、H2SO4200mg/L、CaCl2250mg/L(Caとして)の合成排水Cとについて、各々市販の液体硫酸バンドを0〜6000mg/L添加し、その後、Ca(OH)2を添加してpH6.1〜6.3にpH調整して処理した結果を示す図3より明らかなように、アルミニウム塩を含む原水においては、フッ素の処理特性は著しく悪化する。ただし、硫酸バンドの添加量を多くしてゆき、硫酸バンド/フッ素比が大きくなると、硫酸バンドがフッ素の吸着剤として機能するようになり、処理特性は回復する。なお、ここで用いた液体硫酸バンドはAl23含有量8重量%のものであるので、液体硫酸バンド100mg/Lの添加で8×2Al/Al23=4.2mg/LのAl含有量に相当する。 On the other hand, synthetic waste water A of HF 50 mg / L, H 2 SO 4 200 mg / L, CaCl 2 250 mg / L (as Ca), HF 100 mg / L, H 2 SO 4 200 mg / L, CaCl 2 250 mg / L ( 0 to 6000 mg / L of commercially available liquid sulfuric acid band for synthetic waste water B (as Ca) and synthetic waste water C of HF 200 mg / L, H 2 SO 4 200 mg / L, CaCl 2 250 mg / L (as Ca) Then, as is clear from FIG. 3 showing the result of adjusting the pH to 6.1 to 6.3 by adding Ca (OH) 2 , in the raw water containing the aluminum salt, the fluorine treatment characteristics Is significantly worse. However, as the amount of sulfuric acid band added is increased and the sulfuric acid band / fluorine ratio increases, the sulfuric acid band functions as a fluorine adsorbent, and the processing characteristics are restored. Since the liquid sulfuric acid band used here has an Al 2 O 3 content of 8% by weight, 8 × 2 Al / Al 2 O 3 = 4.2 mg / L of Al by adding 100 mg / L of the liquid sulfuric acid band. Corresponds to the content.

従って、本発明は、アルミニウム塩が共存するフッ素含有水をフッ化カルシウム法により処理する場合の処理特性の不安定さの問題を解決し、このようなフッ素含有水を安定かつ効率的に処理して、フッ素が十分に除去された処理水を得る方法を提供することを目的とする。   Therefore, the present invention solves the problem of instability of processing characteristics when treating fluorine-containing water in which an aluminum salt coexists by the calcium fluoride method, and treats such fluorine-containing water stably and efficiently. An object of the present invention is to provide a method for obtaining treated water from which fluorine has been sufficiently removed.

なお、本発明において、フッ素含有水に共存するアルミニウム塩の発生源としては、二段処理法においては、前述のように二段処理の後の濾過工程で発生する逆洗排水や発生する汚泥の脱水濾液などが挙げられる。また、一段式のフッ化カルシウム法の場合にも、他系統で発生したアルミニウム塩含有排水(硫酸バンドを使用した汚泥脱水の結果発生した脱水濾液など)が本発明の原水槽に供給される結果、アルミニウム塩が共存するフッ素含有水となり、本発明の対象となる。   In the present invention, as a source of aluminum salt coexisting in fluorine-containing water, in the two-stage treatment method, as described above, the backwash wastewater generated in the filtration step after the two-stage treatment and the generated sludge Examples include dehydrated filtrate. In addition, even in the case of the one-stage calcium fluoride method, wastewater containing aluminum salt generated in other systems (such as dehydrated filtrate generated as a result of sludge dewatering using sulfuric acid bands) is supplied to the raw water tank of the present invention. Fluorine-containing water in which an aluminum salt coexists is a subject of the present invention.

本発明(請求項1)のフッ素含有水の処理方法は、アルミニウム塩が共存するフッ素含有水を処理する方法において、該フッ素含有水にカルシウム化合物を添加すると共にpHを8〜10に調整する第1工程と、該第1工程流出液に酸を添加してpHを6〜6.5に調整する第2工程と、該第2工程流出液を固液分離する第3工程とを含むことを特徴とする。   The method for treating fluorine-containing water of the present invention (Claim 1) is a method for treating fluorine-containing water in which an aluminum salt coexists, wherein a calcium compound is added to the fluorine-containing water and the pH is adjusted to 8-10. Including a first step, a second step of adjusting the pH to 6 to 6.5 by adding an acid to the first step effluent, and a third step of solid-liquid separation of the second step effluent. Features.

請求項2のフッ素含有水の処理方法は、請求項1において、前記第3工程で固液分離された汚泥を前記第1工程に返送する方法であって、前記カルシウム化合物を該返送汚泥と混合して前記フッ素含有水に添加することを特徴とする。   The method for treating fluorine-containing water according to claim 2 is the method according to claim 1, wherein the sludge solid-liquid separated in the third step is returned to the first step, and the calcium compound is mixed with the return sludge. And added to the fluorine-containing water.

本発明によれば、原水にカルシウム化合物を添加してpH8〜10で処理した後pH6〜6.5の放流基準域に戻す2段中和法により、アルミニウム塩が共存するフッ素含有水を安定かつ効率的に処理することができる。   According to the present invention, fluorine-containing water in which an aluminum salt coexists can be stably and stably obtained by adding a calcium compound to raw water and treating it at a pH of 8 to 10 and then returning it to a discharge reference region of a pH of 6 to 6.5. It can be processed efficiently.

本発明の2段中和による反応機構は次のように推定される。なお、以下においてx>3とする。   The reaction mechanism by the two-stage neutralization of the present invention is estimated as follows. In the following, x> 3.

即ち、フッ素とアルミニウム塩が共存する原水にカルシウム化合物を添加した場合、pH酸性条件では、アルミニウムとフッ素との反応でフッ化アルミニウムの錯体(AlFx (3-x)が生成されるためにフッ素をCaF2として除去し得ない(下記反応式(1))。 That is, when a calcium compound is added to raw water in which fluorine and an aluminum salt coexist, an aluminum fluoride complex (AlF x (3-x) is generated by the reaction between aluminum and fluorine under acidic pH conditions. Cannot be removed as CaF 2 (the following reaction formula (1)).

pH中性条件では、フッ化カルシウム(CaF2)の沈殿とフッ化アルミニウムとが反応してCaF2の一部がコロイド化して分解することによりフッ素をCaF2として十分に除去し得ない(下記反応式(2))。 Under pH-neutral conditions, calcium fluoride (CaF 2 ) precipitates react with aluminum fluoride to cause a part of CaF 2 to colloid and decompose, so that fluorine cannot be sufficiently removed as CaF 2 (see below). Reaction formula (2)).

これに対して、pHアルカリ性条件であれば、フッ化アルミニウムが加水分解して水酸化アルミニウムとなるため、CaF2の分散作用がなくなり、フッ素をCaF2として除去することができるようになる(下記反応式(3))。
[酸性]
Al3++xF-→AlFx (3-x) …(1)
[中性]
nCaF2(沈殿)+AlFx (3-x)→(CaF2)nAlFx (3-x)(分散〜溶解) …(2)
[アルカリ性]
(CaF2)nAlFx (3-x)+Ca(OH)2→CaF2(沈殿)+Al(OH)3(沈殿) …(3)
On the other hand, if the pH is alkaline, the aluminum fluoride is hydrolyzed to aluminum hydroxide, so that the CaF 2 dispersing action is lost and fluorine can be removed as CaF 2 (see below). Reaction formula (3)).
[Acid]
Al 3+ + xF → AlF x (3-x) (1)
[neutral]
nCaF 2 (precipitation) + AlF x (3-x) → (CaF 2 ) n AlF x (3-x) (dispersion to dissolution) (2)
[alkalinity]
(CaF 2 ) n AlF x (3-x) + Ca (OH) 2 → CaF 2 (precipitation) + Al (OH) 3 (precipitation) (3)

なお、pHが10を超えると、Al(OH)3がAl(OH)4 -となって再溶解し、これがCaF2に吸着されて分散を起こすため、フッ素の処理特性は悪化する。 When the pH exceeds 10, Al (OH) 3 becomes Al (OH) 4 and redissolves, and this is adsorbed by CaF 2 to cause dispersion, so that the fluorine treatment characteristics deteriorate.

従って、本発明では、第1工程において、原水にカルシウム化合物を添加すると共にpH8〜10に調整する。   Therefore, in the present invention, in the first step, the calcium compound is added to the raw water and adjusted to pH 8-10.

そして、第1工程のpH8〜10の弱アルカリ条件で析出したAl(OH)3は、その後pHを放流基準の6〜6.5としても再び可溶性のフッ化アルミニウムとはならず、むしろ析出したAl(OH)3がCaF2の凝集剤として作用することにより、CaF2の沈殿を促進して処理水の水質をより一層良好なものとすることができる。 And the Al (OH) 3 deposited under the weak alkaline condition of pH 8 to 10 in the first step does not become soluble aluminum fluoride again, even if the pH is adjusted to 6 to 6.5 on the basis of the discharge, and rather precipitated. by Al is (OH) 3 acts as a flocculant CaF 2, it can be the quality of treated water to facilitate precipitation of CaF 2 and more made more favorable.

従って、本発明では、第2工程において、pH6〜6.5に調整する。   Therefore, in this invention, it adjusts to pH 6-6.5 in a 2nd process.

本発明では更に、第3工程で得られた汚泥を第1工程に返送することが好ましく、その際に、原水に添加するカルシウム化合物を、この返送汚泥と予め混合し(以下、カルシウム化合物を混合した汚泥を「改質汚泥」と称す場合がある。)、この改質汚泥を原水に添加してpH8〜10に調整することが好ましく、これにより、改質汚泥の晶析効果で処理水水質をより一層改善すると共に、汚泥発生量の低減、発生汚泥の脱水性の向上を図ることができる。   In the present invention, it is further preferable to return the sludge obtained in the third step to the first step. At this time, the calcium compound added to the raw water is mixed with the return sludge in advance (hereinafter, the calcium compound is mixed). The modified sludge is sometimes referred to as “modified sludge.”), It is preferable to add this modified sludge to the raw water to adjust the pH to 8 to 10, and thereby the quality of the treated water by the crystallization effect of the modified sludge. In addition, the amount of sludge generated can be reduced and the dewaterability of the generated sludge can be improved.

以下に図面を参照して本発明のフッ素含有水の処理方法の実施の形態を詳細に説明する。   Embodiments of a method for treating fluorine-containing water according to the present invention will be described below in detail with reference to the drawings.

図1(a),(b)は本発明のフッ素含有水の処理方法の実施の形態を示す系統図である。   1 (a) and 1 (b) are system diagrams showing an embodiment of the method for treating fluorine-containing water according to the present invention.

図1(a)においては、原水槽1からの原水(アルミニウム塩が共存するフッ素含有水)を反応槽2に導入して、この反応槽2でカルシウム化合物を添加してpH8〜10に調整することによりフッ素とカルシウムとの反応でフッ化カルシウムの不溶性塩を生成させた後(第1工程)、固液分離することなくpH調整槽3に導入して酸を添加して放流基準のpH6〜6.5(第2工程)に調整する。pH調整槽3の流出液は凝集槽4に導入して高分子凝集剤を添加して凝集処理し、その後沈殿槽5で固液分離する(第3工程)。   In FIG. 1 (a), raw water from the raw water tank 1 (fluorine-containing water in which aluminum salt coexists) is introduced into the reaction tank 2, and the calcium compound is added in the reaction tank 2 to adjust the pH to 8-10. Thus, after the insoluble salt of calcium fluoride is generated by the reaction of fluorine and calcium (first step), it is introduced into the pH adjusting tank 3 without solid-liquid separation, and an acid is added to the pH 6 ~ Adjust to 6.5 (second step). The effluent from the pH adjusting tank 3 is introduced into a coagulating tank 4 and a polymer coagulant is added for coagulation treatment, followed by solid-liquid separation in a precipitation tank 5 (third step).

反応槽2において、原水に添加するカルシウム化合物としては特に制限はないが、通常、消石灰(Ca(OH)2)が用いられる。ただし、何ら消石灰に制限されるものではなく、塩化カルシウム、炭酸カルシウム等を用いても良い。ただし、これらのカルシウム化合物を用いる場合には、別途pH調整のためのアルカリを併用することとなる。これらのカルシウム化合物は1種を単独で用いても良く、2種以上を併用しても良い。 Although there is no restriction | limiting in particular as a calcium compound added to raw | natural water in the reaction tank 2, Usually, slaked lime (Ca (OH) 2 ) is used. However, it is not limited to slaked lime at all, and calcium chloride, calcium carbonate, or the like may be used. However, when these calcium compounds are used, an alkali for pH adjustment is additionally used. These calcium compounds may be used individually by 1 type, and may use 2 or more types together.

反応槽2における調整pH値が8未満であると、前述の如くフッ化アルミニウム錯体の生成により十分なフッ素の不溶化処理を行えず、調整pH値が10を超えても水酸化アルミニウムの再溶解でやはり処理特性が悪化する。この反応槽2における調整pH値は特に8.5〜9.5であることが好ましい。   When the adjusted pH value in the reaction tank 2 is less than 8, sufficient fluorine insolubilization treatment cannot be performed due to the formation of the aluminum fluoride complex as described above, and even if the adjusted pH value exceeds 10, the aluminum hydroxide can be redissolved. The processing characteristics are also deteriorated. The adjusted pH value in the reaction tank 2 is particularly preferably 8.5 to 9.5.

pH調整槽3で添加する酸としては、硫酸、塩酸等の鉱酸、好ましくは硫酸が用いられる。このpH調整槽3における調整pH値は放流に好適なpH6〜6.5とする。   As the acid added in the pH adjusting tank 3, a mineral acid such as sulfuric acid or hydrochloric acid, preferably sulfuric acid is used. The adjusted pH value in the pH adjusting tank 3 is set to pH 6 to 6.5 suitable for discharge.

凝集槽4で調整する高分子凝集剤としては、ポリアクリルアミド部分加水分解物、ポリアクリル酸ナトリウム、ポリビニルアミジン等の1種又は2種以上を用いることができ、その添加量は、処理対象原水の水質や用いる高分子凝集剤によっても異なるが、通常0.1〜5mg/L程度である。   As the polymer flocculant to be adjusted in the flocculation tank 4, one or more of polyacrylamide partial hydrolyzate, sodium polyacrylate, polyvinylamidine and the like can be used. Although it varies depending on the water quality and the polymer flocculant used, it is usually about 0.1 to 5 mg / L.

凝集処理液の固液分離には、沈殿槽5の他、膜分離装置等を用いることができる。   For the solid-liquid separation of the aggregating treatment liquid, a membrane separation device or the like can be used in addition to the precipitation tank 5.

図1(b)においては、図1(a)の装置に更に汚泥改質槽6を設け、沈殿槽5で固液分離された汚泥の一部を返送汚泥としてこの汚泥改質槽6に導入し、この汚泥改質槽6において原水に添加すべきカルシウム化合物を返送汚泥に添加混合して汚泥を改質し、この改質汚泥を反応槽2に添加して原水をpH8〜10、好ましくは8.5〜9.5に添加するようにしたものである。   In FIG. 1B, a sludge reforming tank 6 is further provided in the apparatus of FIG. 1A, and a part of the sludge separated into solid and liquid in the sedimentation tank 5 is introduced into the sludge reforming tank 6 as a return sludge. In this sludge reforming tank 6, the calcium compound to be added to the raw water is added to and mixed with the returned sludge to reform the sludge, and this modified sludge is added to the reaction tank 2 to adjust the raw water to a pH of 8 to 10, preferably It is added to 8.5 to 9.5.

このように、分離汚泥の一部を原水側に返送することにより、返送汚泥の種晶効果で汚泥の結晶性の向上、含水率の低下、沈降性の向上を図ることができ、この場合において、図1(b)のように、返送汚泥を消石灰等のカルシウム化合物と混合し、混合物を原水に添加することにより、より一層の処理水質の向上と汚泥発生量の低減を図ることができる。   In this way, by returning a part of the separated sludge to the raw water side, the seed crystal effect of the returned sludge can improve the sludge crystallinity, lower the water content, and improve the sedimentation. As shown in FIG. 1B, the return sludge is mixed with a calcium compound such as slaked lime, and the mixture is added to the raw water, thereby further improving the quality of the treated water and reducing the amount of sludge generated.

なお、この場合の返送汚泥量は、少な過ぎると汚泥返送を行うことによる上記効果を十分に得ることができず、多過ぎると沈殿槽の負荷が増大するため、返送汚泥量は新たに発生する汚泥量に対して30〜50倍程度とするのが好ましい。ここで新たに発生する汚泥とは、反応槽2において発生する汚泥量であり、例えば反応槽2で生成するCaF2量が100mg/Lであれば、この反応槽2のSSが約3000〜5000mg/Lとなるように汚泥返送を行うことが好ましい。 In addition, if the amount of returned sludge in this case is too small, the above-mentioned effect by performing sludge return cannot be sufficiently obtained, and if it is too large, the load on the settling tank increases, so that the amount of returned sludge is newly generated. It is preferably about 30 to 50 times the amount of sludge. Here, the newly generated sludge is the amount of sludge generated in the reaction tank 2. For example, if the amount of CaF 2 generated in the reaction tank 2 is 100 mg / L, the SS of the reaction tank 2 is about 3000 to 5000 mg. It is preferable to return the sludge so as to be / L.

このような2段中和法によるフッ化カルシウム法処理で得られた処理水は、好ましくは更に水酸化物共沈法による処理に供され、フッ素濃度が更に低減された後放流される。   The treated water obtained by the calcium fluoride method treatment by such a two-stage neutralization method is preferably further subjected to a treatment by a hydroxide coprecipitation method and discharged after the fluorine concentration is further reduced.

以下に実験例、実施例及び比較例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described in more detail with reference to experimental examples, examples and comparative examples.

[実験例]
実験例1
まず、アルミニウム塩が共存するフッ素含有水の処理におけるpHの影響を検討した。
[Experimental example]
Experimental example 1
First, the influence of pH in the treatment of fluorine-containing water in which an aluminum salt coexists was examined.

下記表1に示す水質の合成排水I,IIにCa(OH)2を添加してpHを5.5〜10.5の各pH値にpH調整した後固液分離し、得られた処理水のフッ素濃度を調べ、結果を表2に示した。 The treated water obtained by adding Ca (OH) 2 to the water quality synthetic waste water I and II shown in Table 1 and adjusting the pH to 5.5 to 10.5, followed by solid-liquid separation. The fluorine concentration of each was examined and the results are shown in Table 2.

Figure 2007125510
Figure 2007125510

Figure 2007125510
Figure 2007125510

表2より、pHの効果は特異的であり、従来は適正pHと考えられているpH7前後はフッ素の処理特性が悪く、最適pHは8〜10、好ましくは8.5〜9.5の狭い範囲であることが明らかとなった。しかし、pH8.6以上の処理水はそのまま放流できないため、放流基準を満足するpHに調整する必要がある。   According to Table 2, the effect of pH is specific, and the treatment property of fluorine is poor around pH 7, which is conventionally considered to be appropriate pH, and the optimum pH is narrow, 8 to 10, preferably 8.5 to 9.5. It became clear that it was in range. However, since treated water having a pH of 8.6 or more cannot be discharged as it is, it is necessary to adjust the pH to satisfy the discharge standard.

そこで、従来の経験値であるフッ化カルシウム法最適pH値の6〜6.5になるように、上記の合成排水Iの各処理水を固液分離することなくH2SO4又はNaOHでpH6.1〜6.3とする二段中和法を実施した。 Therefore, the pH of the synthetic waste water I is adjusted to 6 with H 2 SO 4 or NaOH without solid-liquid separation so that the calcium fluoride method optimum pH value of 6 to 6.5, which is a conventional experience value, is obtained. A two-stage neutralization method of 1 to 6.3 was performed.

即ち、合成排水IにCa(OH)2を添加して表3に示すpHにpH調整する第1工程の後に、H2SO4又はNaOHを添加してpH6.1〜6.3とする第2工程を行った後固液分離し、得られた処理水のフッ素濃度を表3に示した。 That is, after the first step of adding Ca (OH) 2 to the synthetic waste water I to adjust the pH to the pH shown in Table 3, H 2 SO 4 or NaOH is added to adjust the pH to 6.1 to 6.3. After performing the two steps, solid-liquid separation was performed, and the fluorine concentration of the obtained treated water is shown in Table 3.

Figure 2007125510
Figure 2007125510

上記結果より最適pH8〜10で処理した処理水をそのままpH6.1〜6.3に中和しても、処理水質は悪化せず、むしろ改善され、本発明に係る二段中和法が有効であることが確認された。即ち、前述の如く、第1工程の弱アルカリ条件で析出したAl(OH)3は、その後pHを放流基準の6.1〜6.3としても再び可溶性のフッ化アルミニウムとはならず、むしろ析出したAl(OH)3がCaF2の凝集剤として作用することにより、CaF2の沈殿を促進して処理水の水質をより一層良好なものとすることができる。 From the above results, even if the treated water treated at the optimum pH of 8 to 10 is neutralized to pH 6.1 to 6.3 as it is, the quality of the treated water is not deteriorated but rather improved, and the two-stage neutralization method according to the present invention is effective. It was confirmed that. That is, as described above, the Al (OH) 3 deposited under the weak alkaline conditions in the first step does not become soluble aluminum fluoride again even if the pH is adjusted to 6.1 to 6.3 on the basis of the discharge. by precipitated Al (OH) 3 acts as a flocculant CaF 2, it can be the quality of treated water to facilitate precipitation of CaF 2 and more made more favorable.

[実施例及び比較例]
以下の実施例及び比較例では、図1(a),(b)に示す装置を用いた。この装置の各槽の容量は次の通りであり、原水処理量は2L/hrとした。
原水槽:100L
反応槽:0.8L
pH調整槽:0.8L
凝集槽:0.8L
沈殿槽:10L
汚泥改質槽:0.4L
[Examples and Comparative Examples]
In the following examples and comparative examples, the apparatus shown in FIGS. 1A and 1B was used. The capacity of each tank of this apparatus was as follows, and the raw water treatment amount was 2 L / hr.
Raw water tank: 100L
Reaction tank: 0.8L
pH adjustment tank: 0.8L
Coagulation tank: 0.8L
Settling tank: 10L
Sludge reforming tank: 0.4L

実施例1〜5
pH:2.2、フッ素:280mg/L、アルミニウムイオン:6.5mg/L、アンモニア性窒素:57mg/L、硫酸イオン:29mg/L、硝酸性窒素:58mg/Lの半導体排水に硫酸を300mg/L添加した水を原水とし、図1(a)に示す方法に従って、この原水に反応槽2でCa(OH)2を添加して表4に示すpHに調整し、その後pH調整槽3でH2SO4を添加してpH6.0〜6.5とし、その後、凝集槽4にてアニオン系高分子凝集剤(栗田工業(株)製「PA331」)を2mg/L添加した後、沈殿槽5で固液分離した。
Examples 1-5
pH: 2.2, fluorine: 280 mg / L, aluminum ion: 6.5 mg / L, ammoniacal nitrogen: 57 mg / L, sulfate ion: 29 mg / L, nitrate nitrogen: 58 mg / L / L added water is used as raw water, and according to the method shown in FIG. 1A, Ca (OH) 2 is added to the raw water in the reaction tank 2 to adjust to the pH shown in Table 4, and then in the pH adjusting tank 3 H 2 SO 4 was added to adjust the pH to 6.0 to 6.5, and then 2 mg / L of an anionic polymer flocculant (“PA331” manufactured by Kurita Kogyo Co., Ltd.) was added in the agglomeration tank 4 and then precipitated. Solid-liquid separation was performed in the tank 5.

この処理における反応槽2の流出液中のフッ素濃度とpH調整槽3の流出液中のフッ素濃度を、各々の流出液を濾紙No.5Aで濾過してSSを除去した後分析することにより調べ、結果を表4に示した。   In this treatment, the fluorine concentration in the effluent of the reaction tank 2 and the fluorine concentration in the effluent of the pH adjustment tank 3 were measured. After removing SS by filtering with 5A, it investigated by analyzing and the result was shown in Table 4.

実施例6〜10
実施例3のpH条件において、図1(b)に示す如く、表4に示す汚泥返送比(R)となるように沈殿槽5の汚泥を汚泥改質槽6に200〜1000ml/hr送給し、Ca(OH)2を混合した改質汚泥を反応槽2に添加したこと以外は同様にして処理を行い、同様に各部のフッ素濃度を調べ、結果を表4に示した。
Examples 6-10
Under the pH conditions of Example 3, 200 to 1000 ml / hr of sludge in the sedimentation tank 5 is fed to the sludge reforming tank 6 so that the sludge return ratio (R) shown in Table 4 is obtained as shown in FIG. Then, the treatment was performed in the same manner except that the modified sludge mixed with Ca (OH) 2 was added to the reaction tank 2, and the fluorine concentration of each part was similarly examined. The results are shown in Table 4.

なお、いずれの場合も反応槽2における発生SS量は600mg/Lであり、汚泥返送比はこの発生SS600mg/Lに対する返送汚泥量の割合を示す。なお、表中の返送比(R)は下記のように表される。   In any case, the generated SS amount in the reaction tank 2 is 600 mg / L, and the sludge return ratio indicates the ratio of the returned sludge amount to the generated SS 600 mg / L. The return ratio (R) in the table is expressed as follows.

Figure 2007125510
Figure 2007125510

比較例1〜4
実施例1において、反応槽2における調整pH値を表1に示す値とし、またpH調整槽3ではpH調整を行わない1段中和処理としたこと以外は同様に処理を行ってpH調整槽3の流出液のフッ素濃度を調べ、結果を表4に示した。
Comparative Examples 1-4
In Example 1, the adjusted pH value in the reaction tank 2 was set to the value shown in Table 1, and the pH adjustment tank 3 was treated in the same manner except that the pH adjustment tank 3 was not subjected to pH adjustment, and thus the pH adjustment tank. The effluent concentration of No. 3 was examined, and the results are shown in Table 4.

Figure 2007125510
Figure 2007125510

表4より、次のことが明らかである。
従来のpH5.8〜7.5の1段中和処理では、比較例1〜4の結果に示されるように、処理水フッ素濃度は30mg/L以上であるのに対して、実施例1〜5の結果に示されるように、pH8〜10、特に8.5〜9.5で処理を行うことにより、フッ素濃度を約12mg/Lに低減することができ、次いでpH6〜6.5とすることにより処理水フッ素濃度を約9mg/Lと著しく低減することができる。
From Table 4, the following is clear.
In the conventional one-step neutralization treatment at pH 5.8 to 7.5, as shown in the results of Comparative Examples 1 to 4, the treated water fluorine concentration is 30 mg / L or more, whereas Examples 1 to As shown in the results of 5, the treatment at pH 8 to 10, particularly 8.5 to 9.5 can reduce the fluorine concentration to about 12 mg / L, and then to pH 6 to 6.5. As a result, the fluorine concentration of the treated water can be remarkably reduced to about 9 mg / L.

また、実施例3と実施例6〜10の結果に示されるように、汚泥を返送することにより、処理水フッ素濃度は更に改善される。   In addition, as shown in the results of Example 3 and Examples 6 to 10, the treated water fluorine concentration is further improved by returning the sludge.

この場合の汚泥濃度は100g/Lであり、汚泥返送を行わない場合の汚泥濃度20〜40g/Lであったことにより、これに比べて汚泥濃度は格段に高く、汚泥発生量が大幅に低減されることが確認された。   In this case, the sludge concentration is 100 g / L, and when the sludge is not returned, the sludge concentration is 20 to 40 g / L. Compared with this, the sludge concentration is much higher, and the amount of sludge generated is greatly reduced. It was confirmed that

このような本発明のフッ素含有水の処理方法は、半導体部品製造におけるシリコンウェハ製造工程から排出されるフッ素含有排水、ステンレス鋼板製造工程から排出される酸洗排水、アルミニウム表面処理排水、フッ酸製造排水、肥料製造排水、ゴミ焼却排水等の各種フッ素含有水の処理に有効である。特に、フッ化カルシウム法の後段に高度処理としての水酸化物共沈法による処理を行う二段処理法による処理において、後段の水酸化物共沈法による処理に必要とされるアルミニウム塩の使用量の大幅削減で処理コストの低減、汚泥発生量の低減を図ることができ、工業的に極めて有利である。   Such a method for treating fluorine-containing water of the present invention includes fluorine-containing wastewater discharged from a silicon wafer manufacturing process in semiconductor component manufacturing, pickling wastewater discharged from a stainless steel plate manufacturing process, aluminum surface treatment wastewater, and hydrofluoric acid manufacturing. It is effective for the treatment of various fluorine-containing water such as wastewater, fertilizer manufacturing wastewater, and waste incineration wastewater. In particular, in the treatment by the two-stage treatment method in which the treatment by the hydroxide co-precipitation method as the advanced treatment is performed after the calcium fluoride method, use of an aluminum salt required for the treatment by the latter-stage hydroxide co-precipitation method The drastic reduction of the amount can reduce the processing cost and the amount of sludge generation, which is extremely advantageous industrially.

本発明のフッ素含有水の処理方法の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the processing method of the fluorine-containing water of this invention. アルミニウム塩を含まないフッ素含有水の処理pH値と処理水フッ素濃度との関係を示すグラフである。It is a graph which shows the relationship between the process pH value of fluorine-containing water which does not contain aluminum salt, and a process water fluorine concentration. 硫酸バンドを添加したフッ素含有水の硫酸バンド添加量と処理水フッ素濃度との関係を示すグラフである。It is a graph which shows the relationship between the sulfuric acid band addition amount of the fluorine-containing water which added the sulfuric acid band, and the treated water fluorine concentration.

符号の説明Explanation of symbols

1 原水槽
2 反応槽
3 pH調整槽
4 凝集槽
5 沈殿槽
6 汚泥改質槽
DESCRIPTION OF SYMBOLS 1 Raw water tank 2 Reaction tank 3 pH adjustment tank 4 Coagulation tank 5 Precipitation tank 6 Sludge reforming tank

Claims (2)

アルミニウム塩が共存するフッ素含有水を処理する方法において、
該フッ素含有水にカルシウム化合物を添加すると共にpHを8〜10に調整する第1工程と、
該第1工程流出液に酸を添加してpHを6〜6.5に調整する第2工程と、
該第2工程流出液を固液分離する第3工程とを含むことを特徴とするフッ素含有水の処理方法。
In a method for treating fluorine-containing water in which an aluminum salt coexists,
A first step of adding a calcium compound to the fluorine-containing water and adjusting the pH to 8 to 10;
A second step of adjusting the pH to 6 to 6.5 by adding an acid to the first step effluent;
And a third step of solid-liquid separation of the second step effluent.
請求項1において、前記第3工程で固液分離された汚泥を前記第1工程に返送する方法であって、前記カルシウム化合物を該返送汚泥と混合して前記フッ素含有水に添加することを特徴とするフッ素含有水の処理方法。   The method of returning the sludge solid-liquid separated in the third step to the first step according to claim 1, wherein the calcium compound is mixed with the return sludge and added to the fluorine-containing water. And a method for treating fluorine-containing water.
JP2005321102A 2005-11-04 2005-11-04 Fluorine-containing water treatment method Expired - Fee Related JP4572812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005321102A JP4572812B2 (en) 2005-11-04 2005-11-04 Fluorine-containing water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005321102A JP4572812B2 (en) 2005-11-04 2005-11-04 Fluorine-containing water treatment method

Publications (2)

Publication Number Publication Date
JP2007125510A true JP2007125510A (en) 2007-05-24
JP4572812B2 JP4572812B2 (en) 2010-11-04

Family

ID=38148618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005321102A Expired - Fee Related JP4572812B2 (en) 2005-11-04 2005-11-04 Fluorine-containing water treatment method

Country Status (1)

Country Link
JP (1) JP4572812B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008264626A (en) * 2007-04-17 2008-11-06 Taiheiyo Cement Corp Method for treating soil-washed waste water
JP2010099552A (en) * 2008-10-21 2010-05-06 Mitsubishi Materials Techno Corp Wastewater treatment method
CN103880203A (en) * 2012-12-19 2014-06-25 江苏飞亚化学工业有限责任公司 Fluorine-containing wastewater treating device
CN104803522A (en) * 2015-05-14 2015-07-29 湖南有色氟化学科技发展有限公司 Treatment method for high-sodium-content fluoride-containing waste water
CN105314777A (en) * 2014-09-28 2016-02-10 苏州市白云环保工程设备有限公司 Device and process for treating hydrofluoric acid purification wastewater
CN111752206A (en) * 2019-03-29 2020-10-09 深圳市源清环境技术服务有限公司 Automatic monitoring and early warning method and device for sewage discharge and computer equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5132060A (en) * 1974-09-13 1976-03-18 Showa Koji Kk FUTSUSOGANJUHAISUINOSHORIHOHO
JPS51131160A (en) * 1975-05-08 1976-11-15 Nippon Light Metal Co Ltd Method of treating waste water
JPH08197070A (en) * 1995-01-24 1996-08-06 Kurita Water Ind Ltd Treatment of fluorine-containing water
JPH10151456A (en) * 1996-11-26 1998-06-09 Kurita Water Ind Ltd Wastewater treatment method
JP2005296838A (en) * 2004-04-13 2005-10-27 Japan Organo Co Ltd Method for treating water containing fluorine and phosphorus, and apparatus therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5132060A (en) * 1974-09-13 1976-03-18 Showa Koji Kk FUTSUSOGANJUHAISUINOSHORIHOHO
JPS51131160A (en) * 1975-05-08 1976-11-15 Nippon Light Metal Co Ltd Method of treating waste water
JPH08197070A (en) * 1995-01-24 1996-08-06 Kurita Water Ind Ltd Treatment of fluorine-containing water
JPH10151456A (en) * 1996-11-26 1998-06-09 Kurita Water Ind Ltd Wastewater treatment method
JP2005296838A (en) * 2004-04-13 2005-10-27 Japan Organo Co Ltd Method for treating water containing fluorine and phosphorus, and apparatus therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008264626A (en) * 2007-04-17 2008-11-06 Taiheiyo Cement Corp Method for treating soil-washed waste water
JP2010099552A (en) * 2008-10-21 2010-05-06 Mitsubishi Materials Techno Corp Wastewater treatment method
CN103880203A (en) * 2012-12-19 2014-06-25 江苏飞亚化学工业有限责任公司 Fluorine-containing wastewater treating device
CN105314777A (en) * 2014-09-28 2016-02-10 苏州市白云环保工程设备有限公司 Device and process for treating hydrofluoric acid purification wastewater
CN104803522A (en) * 2015-05-14 2015-07-29 湖南有色氟化学科技发展有限公司 Treatment method for high-sodium-content fluoride-containing waste water
CN111752206A (en) * 2019-03-29 2020-10-09 深圳市源清环境技术服务有限公司 Automatic monitoring and early warning method and device for sewage discharge and computer equipment

Also Published As

Publication number Publication date
JP4572812B2 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
JP4572812B2 (en) Fluorine-containing water treatment method
WO2018092396A1 (en) Treatment method and treatment apparatus for waste water containing sulfuric acid, fluorine and heavy metal ions
JP3112613B2 (en) Treatment of wastewater containing fluorine and phosphorus
KR101990179B1 (en) Method and apparatus for treating borofluoride-containing water
JP2005296838A (en) Method for treating water containing fluorine and phosphorus, and apparatus therefor
JP4631425B2 (en) Method and apparatus for treating fluorine-containing wastewater containing phosphoric acid
JP4689186B2 (en) Fluorine-containing water treatment method
JP4525601B2 (en) Treatment method for fluorine-containing wastewater
JP4350078B2 (en) Treatment method for fluorine-containing wastewater
JP3399276B2 (en) Treatment method for fluorine-containing wastewater
JP3918294B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP4640149B2 (en) Fluorine-containing water treatment method
JP2598456B2 (en) Treatment method for phosphate-containing water
JP4583786B2 (en) Treatment method for boron-containing wastewater
JP4631420B2 (en) Fluorine-containing water treatment method
JP3349637B2 (en) Fluorine-containing wastewater treatment apparatus and method
JP6508747B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP4525602B2 (en) Treatment method for fluorine-containing wastewater
JP2003047972A (en) Method for treating fluorine-containing wastewater
JPH11267662A (en) Method of removing fluorine in waste water of flue gas desulfurization
JP2003266083A (en) Treatment method for fluorine-containing wastewater and apparatus therefor
JP4752351B2 (en) Method and apparatus for treating fluorine-containing water
JP2003275772A (en) Method and device for treating fluorine-containing water
JP4894139B2 (en) Method and apparatus for treating phosphoric acid-containing liquid
JP2000334470A (en) Treatment of fluorine containing waste water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100802

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140827

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees