JP4752351B2 - Method and apparatus for treating fluorine-containing water - Google Patents
Method and apparatus for treating fluorine-containing water Download PDFInfo
- Publication number
- JP4752351B2 JP4752351B2 JP2005183680A JP2005183680A JP4752351B2 JP 4752351 B2 JP4752351 B2 JP 4752351B2 JP 2005183680 A JP2005183680 A JP 2005183680A JP 2005183680 A JP2005183680 A JP 2005183680A JP 4752351 B2 JP4752351 B2 JP 4752351B2
- Authority
- JP
- Japan
- Prior art keywords
- fluorine
- added
- containing water
- flocculant
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Removal Of Specific Substances (AREA)
Description
本発明はフッ素含有水の処理方法及び装置に係り、特に、フッ化カルシウム法と水酸化物共沈法とによるフッ素含有水の二段処理において、少ない薬品使用量で効率的な処理を行って高水質の処理水を得る方法及び装置に関する。 The present invention relates to a method and apparatus for treating fluorine-containing water, and in particular, in two-stage treatment of fluorine-containing water by a calcium fluoride method and a hydroxide coprecipitation method, an efficient treatment is performed with a small amount of chemical use. The present invention relates to a method and apparatus for obtaining high-quality treated water.
半導体部品製造におけるシリコンウェハ製造工程から排出されるフッ素含有排水、ステンレス鋼板製造工程から排出される酸洗排水、アルミニウム表面処理排水、フッ酸製造排水、肥料製造排水、ゴミ焼却排水等のフッ素含有排水は、排水基準を満たすようにフッ素の除去処理を行った後排出する必要がある。フッ素含有排水については、その排水基準が平成13年度にフッ素濃度15mg/Lから8mg/Lに強化されたことに伴い、処理水のフッ素濃度をより一層低減することができる処理技術の開発が望まれている。 Fluorine-containing wastewater discharged from silicon wafer manufacturing process in semiconductor parts manufacturing, pickling wastewater discharged from stainless steel plate manufacturing process, aluminum surface treatment wastewater, hydrofluoric acid manufacturing wastewater, fertilizer manufacturing wastewater, waste incineration wastewater, etc. Needs to be discharged after fluorine removal treatment to meet the drainage standards. Regarding fluorine-containing wastewater, the development of treatment technology that can further reduce the fluorine concentration of treated water is expected as the wastewater standard was strengthened from 15 mg / L to 8 mg / L in 2001. It is rare.
従来、フッ素含有水の処理方法として、フッ化カルシウム法と高度処理としての水酸化物共沈法とが知られており、図3に示す如く、一段目にフッ化カルシウム法で処理を行った後、二段目に水酸化物共沈法で高度処理を行う二段処理法も知られている(非特許文献1)。即ち、フッ化カルシウム法では、フッ化カルシウムの溶解度以下に処理水のフッ素濃度を低減することができず、排水基準を満たすことはできないため、このような二段処理が採用されている。 Conventionally, a calcium fluoride method and a hydroxide coprecipitation method as advanced treatments are known as methods for treating fluorine-containing water. As shown in FIG. Thereafter, a two-stage treatment method is also known in which advanced treatment is performed by the hydroxide coprecipitation method in the second stage (Non-Patent Document 1). That is, in the calcium fluoride method, the fluorine concentration of the treated water cannot be reduced below the solubility of calcium fluoride, and the waste water standard cannot be satisfied, so such a two-stage treatment is adopted.
フッ化カルシウム法は、原水槽11からの原水(フッ素含有水)にカルシウム化合物を添加した後(第1反応槽12)、中和剤を添加してpH中性付近に調整し(第2反応槽13)、フッ素とカルシウムとの反応によりフッ化カルシウムの不溶性塩を生成させ、高分子凝集剤を添加して凝集処理し(凝集槽14)、その後固液分離する(沈殿槽15)方法である。この方法において、カルシウム化合物としては一般に消石灰が用いられており、中和剤としては、通常、安価な硫酸が用いられているが、塩酸が用いられる場合もある。 In the calcium fluoride method, after adding a calcium compound to the raw water (fluorine-containing water) from the raw water tank 11 (first reaction tank 12), a neutralizer is added to adjust the pH to around neutral (second reaction) In the tank 13), an insoluble salt of calcium fluoride is produced by the reaction between fluorine and calcium, and a polymer flocculant is added to perform a coagulation treatment (coagulation tank 14), followed by solid-liquid separation (precipitation tank 15). is there. In this method, slaked lime is generally used as the calcium compound, and inexpensive sulfuric acid is usually used as the neutralizing agent, but hydrochloric acid may also be used.
水酸化物共沈法は、アルミニウムが水酸化アルミニウムとして沈殿する際の共沈作用を利用するものであり、一般的には、高度処理に用いられている。この方法では、原水(図3では一段目の処理水)にポリ塩化アルミニウム(PAC)や硫酸アルミニウム(硫酸バンド)を添加した後(第1反応槽16)、中和剤で中和し(第2反応槽17)、高分子凝集剤を添加して凝集処理し(凝集槽18)、その後固液分離する(沈殿槽19)。この方法では、PAC等のアルミニウム化合物を添加することによって処理水pHは酸性になるが、中性付近での処理が最も効率良く行えるため、中和のためのアルカリ剤として水酸化ナトリウムなどを添加している。
フッ素含有水に消石灰を添加した後、硫酸、塩酸などの中和剤を用いてpHを中性に調整するフッ化カルシウム法では、フッ素の除去性を高めて処理水質を向上させるために、消石灰を多量に添加すると、中和に必要な中和剤量も多くなり、薬品コストが高くつく。また、中和剤として特に硫酸を用いた場合には、消石灰と硫酸との反応で石膏を生成し、フッ素含有水に添加された消石灰がフッ素除去に有効に使用されなくなり、また、石膏の生成で発生汚泥量が増大するといった問題もあった。そして、フッ化カルシウム法による処理水を更に水酸化物共沈法で処理する場合には、PAC等のアルミニウム化合物を添加することにより、低下したpHを中和付近に調整するために、水酸化ナトリウムなどの中和剤を用いる必要があり、一段目、二段目、それぞれに使用される中和剤の量が多い結果、中和剤の総使用量も多いという問題があった。 After adding slaked lime to fluorine-containing water, the calcium fluoride method, in which the pH is adjusted to neutral using a neutralizing agent such as sulfuric acid or hydrochloric acid, improves slaked lime in order to improve the treatment water quality by improving the removal of fluorine. When a large amount of is added, the amount of neutralizing agent necessary for neutralization increases, and the chemical cost increases. In addition, when sulfuric acid is used as the neutralizing agent, gypsum is produced by the reaction of slaked lime and sulfuric acid, and the slaked lime added to the fluorine-containing water is not effectively used for fluorine removal. There was also a problem that the amount of generated sludge increased. When the treated water by the calcium fluoride method is further treated by the hydroxide coprecipitation method, by adding an aluminum compound such as PAC, in order to adjust the lowered pH to near neutralization, It is necessary to use a neutralizing agent such as sodium, and there is a problem that the total amount of neutralizing agent used is large as a result of the large amount of neutralizing agent used in the first and second stages.
本発明は上記従来の問題点を解決し、フッ化カルシウム法と水酸化物共沈法とを用いたフッ素含有水の二段処理において、中和剤使用量の低減を図るフッ素含有水の処理方法及び装置を提供することを目的とする。 The present invention solves the above-mentioned conventional problems, and in the two-stage treatment of fluorine-containing water using the calcium fluoride method and the hydroxide coprecipitation method, the treatment of fluorine-containing water for reducing the amount of neutralizing agent used It is an object to provide a method and apparatus.
本発明(請求項1)のフッ素含有水の処理方法は、フッ素含有水にカルシウム化合物系凝集剤を添加して凝集処理した後固液分離する第一のフッ素除去工程と、該第一のフッ素除去工程で得られた処理水(以下「第一処理水」と称す。)にアルミニウム化合物系凝集剤を添加して凝集処理した後固液分離する第二のフッ素除去工程とを有するフッ素含有水の処理方法において、該第一のフッ素除去工程において、該フッ素含有水にカルシウム化合物系凝集剤を添加してpH10.0〜13.0とし、次いで中和剤として硫酸を添加して該第一処理水のpHが8〜10となるように処理を行うと共に、該第二のフッ素除去工程において、アルミニウム化合物系凝集剤としてLACを該第一処理水に対して100〜500mg/L添加し、更に酸を添加してpH6〜7に調整することを特徴とする。 The method for treating fluorine-containing water according to the present invention (Claim 1) includes a first fluorine removal step in which a calcium compound flocculant is added to fluorine-containing water and subjected to agglomeration treatment, followed by solid-liquid separation, and the first fluorine Fluorine-containing water having a second fluorine removal step of solid-liquid separation after adding an aluminum compound flocculant to the treated water obtained in the removing step (hereinafter referred to as “first treated water”) In the first fluorine removal step, a calcium compound flocculant is added to the fluorine-containing water to adjust the pH to 10.0 to 13.0, and then sulfuric acid is added as a neutralizing agent . pH of the treated water performs a process such that 8-10, in said second fluorine removal process, 100 to 500 mg / L was added to said first treated water LAC as a aluminum compound-based flocculant And more acid And adjusting the pH6~7 added.
請求項2のフッ素含有水の処理方法は、請求項1において、前記カルシウム化合物系凝集剤が消石灰であることを特徴とする。 The method for treating fluorine-containing water according to claim 2 is characterized in that, in claim 1, the calcium compound flocculant is slaked lime .
請求項3のフッ素含有水の処理方法は、請求項1又は2において、前記第一のフッ素除去工程で得られた分離汚泥を前記カルシウム化合物系凝集剤と混合して前記フッ素含有水に添加することを特徴とする。 The method for treating fluorine-containing water according to claim 3 is the method according to claim 1 or 2, wherein the separated sludge obtained in the first fluorine removal step is mixed with the calcium compound flocculant and added to the fluorine-containing water. It is characterized by that.
本発明(請求項4)のフッ素含有水の処理装置は、フッ素含有水にカルシウム化合物系凝集剤を添加して凝集処理した後固液分離する第一のフッ素除去手段と、該第一のフッ素除去手段で得られた処理水(以下「第一処理水」と称す。)にアルミニウム化合物系凝集剤を添加して凝集処理した後固液分離する第二のフッ素除去手段とを有するフッ素含有水の処理装置において、該第一のフッ素除去手段において、該フッ素含有水にカルシウム化合物系凝集剤を添加してpH10.0〜13.0とし、次いで中和剤として硫酸を添加してpH8〜10の第一処理水を得、該第二のフッ素除去手段においてアルミニウム化合物系凝集剤としてLACを該第一処理水に対して100〜500mg/L添加し、更に酸を添加してpH6〜7に調整することを特徴とする。 The apparatus for treating fluorine-containing water according to the present invention (Claim 4) includes a first fluorine removing means for solid-liquid separation after adding a calcium compound flocculant to the fluorine-containing water and subjecting it to aggregation treatment, and the first fluorine Fluorine-containing water having a second fluorine removing means for solid-liquid separation after adding an aluminum compound flocculant to the treated water obtained by the removing means (hereinafter referred to as “first treated water”) in the processing apparatus, in said first fluorine removal means, adding calcium compound-based flocculant to the fluorine containing water and pH10.0~13.0 with, then p H8 ~ by addition of sulfuric acid as a neutralizing agent give 10 first treated water, the added 100 to 500 mg / L the LAC as aluminum compound flocculating agent to said first treated water in the second fluorine removal means, the addition of further acid pH6~7 Adjust to It is characterized in.
請求項5のフッ素含有水の処理装置は、請求項4において、前記カルシウム化合物系凝集剤が消石灰であることを特徴とする。 The fluorine-containing water treatment apparatus according to claim 5 is characterized in that, in claim 4, the calcium compound flocculant is slaked lime .
請求項6のフッ素含有水の処理装置は、請求項4又は5において、前記第一のフッ素除去手段で得られた分離汚泥を前記カルシウム化合物系凝集剤と混合して前記フッ素含有水に添加する手段を有することを特徴とする。 The apparatus for treating fluorine-containing water according to claim 6 is the treatment apparatus according to claim 4 or 5, wherein the separated sludge obtained by the first fluorine removing means is mixed with the calcium compound flocculant and added to the fluorine-containing water. It has the means.
本発明では、カルシウム化合物系凝集剤による一段目のフッ素除去処理において、処理水のpHが8〜10となるような条件で処理を行うため、カルシウム化合物系凝集剤の添加により上昇したpHをpH7の中性に戻す従来法に比べて、中和剤(酸)使用量は少なくて足りる。 In the present invention, in the first-stage fluorine removal treatment with the calcium compound-based flocculant, the treatment is performed under conditions such that the pH of the treated water is 8 to 10. Therefore, the pH increased by the addition of the calcium compound-based flocculant is adjusted to pH 7 Compared to the conventional method of returning to neutrality, the amount of neutralizing agent (acid) used is sufficient.
また、この一段目のフッ素除去処理で得られる処理水にアルミニウム化合物系凝集剤を添加して凝集、固液分離を行う二段目のフッ素除去処理においては、アルミニウム化合物系凝集剤として、LACを用いることにより、このアルミニウム化合物系凝集剤自体でpHアルカリ性の第一処理水のpH調整を行うことができる。即ち、本発明では二段目のフッ素除去処理において、LACをアルミニウム化合物系凝集剤としてのみならず、中和剤として機能させることができる。このため、二段目のフッ素除去処理の処理水をpH中性にするための中和剤としての酸使用量を更に低減することができる。 In addition, in the second-stage fluorine removal treatment in which the aluminum compound-based flocculant is added to the treated water obtained by the first-stage fluorine removal treatment to perform aggregation and solid-liquid separation, LAC is used as the aluminum compound-based flocculant. By using this, pH adjustment of the pH-alkaline first treated water can be performed with the aluminum compound-based flocculant itself. That is, in the present invention, LAC can function not only as an aluminum compound-based flocculant but also as a neutralizing agent in the second-stage fluorine removal treatment. For this reason, it is possible to further reduce the amount of acid used as a neutralizing agent for making the treated water of the second stage fluorine removal treatment neutral in pH.
従来、水酸化物共沈法で使用されているアルミニウム化合物系凝集剤としては、PAC、硫酸バンドが挙げられるが、これらの薬品はpHが高く、添加量が同じであれば処理水のpHを下げる効果が低い。本発明によれば、LACを用いることにより、PAC等を用いる場合に比べて中和剤の量を減らすことができる。 Conventionally, examples of the aluminum compound-based flocculant used in the hydroxide coprecipitation method include PAC and sulfuric acid band, but these chemicals have a high pH, and if the addition amount is the same, the pH of the treated water is adjusted. Lowering effect is low. According to the present invention, the amount of neutralizing agent can be reduced by using LAC as compared to the case of using PAC or the like.
従って、本発明によれば、一段目及び二段目の双方で中和剤使用量を低減して薬剤コストの低減を図ることができる。 Therefore, according to the present invention, it is possible to reduce the drug cost by reducing the amount of neutralizing agent used in both the first stage and the second stage.
なお、一段目のフッ素除去処理においては、処理水のpHが8.5〜10となるように処理を行うことにより、第一処理水のフッ素濃度は、pH7の中性で行う従来法に比べて高くなる可能性があるが、以下の理由により、従来法以上のフッ素除去効率を得ることができる。 In the first stage fluorine removal treatment, the treatment water is treated so that the pH of the treated water is 8.5 to 10, so that the fluorine concentration of the first treated water is compared with the conventional method performed at a neutral pH of 7. However, the fluorine removal efficiency higher than that of the conventional method can be obtained for the following reasons.
即ち、この第一段目のフッ素除去処理において、中和剤として硫酸を用いた場合には、前述の如く、石膏の生成や、溶解度以下でも不活性な中間体が生成することによる有効カルシウムの減少や汚泥量の増大の問題があったが、本発明では中和剤使用量を低減できることから、このような問題を起こすことのない硫酸添加量で、pH調整することが可能となり、消石灰の消費や汚泥量の増大の問題が防止される。この結果、添加した消石灰がフッ素の除去に有効に使用されるようになり、第一処理水の水質も良好なものとなる。また、この結果、最終処理水の水質も良好なものとなる。 That is, in this first stage fluorine removal treatment, when sulfuric acid is used as a neutralizing agent, as described above, the formation of gypsum and the production of effective calcium due to the formation of an inactive intermediate even below the solubility. Although there was a problem of reduction and increase in the amount of sludge, in the present invention, the amount of neutralizing agent used can be reduced, so it is possible to adjust the pH with the amount of sulfuric acid added without causing such a problem, Problems of consumption and increased sludge are prevented. As a result, the added slaked lime is effectively used for removing fluorine, and the quality of the first treated water is also good. As a result, the quality of the final treated water is also good.
本発明において、アルミニウム化合物系凝集剤は、電解アルミニウムの廃棄物から生産されるLAC:Liquid Aluminium Chlorideを用いる。 In the present invention, as the aluminum compound-based flocculant, LAC: Liquid Aluminum Chloride produced from electrolytic aluminum waste is used .
また、第一段目のフッ素除去処理で得られた分離汚泥の一部をカルシウム化合物系凝集剤と混合してフッ素含有水に添加しても良く、この場合には、汚泥の結晶性の向上、沈降性の向上、含水率の低下を図ることができ、より一層処理水質を良好なものとすると共に、発生汚泥量を低減することができる(請求項3,6)。 In addition, a part of the separated sludge obtained by the first stage fluorine removal treatment may be mixed with the calcium compound flocculant and added to the fluorine-containing water. In this case, the crystallinity of the sludge is improved. In addition, it is possible to improve the sedimentation property and decrease the water content, to further improve the quality of the treated water and to reduce the amount of generated sludge (claims 3 and 6).
以下に、図面を参照して本発明のフッ素含有水の処理方法及び装置の実施の形態を詳細に説明する。 Hereinafter, embodiments of a method and apparatus for treating fluorine-containing water according to the present invention will be described in detail with reference to the drawings.
図1,2は本発明のフッ素含有水の処理方法及び装置の実施の形態を示す系統図である。図1,2において、図3に示す部材と同一機能を奏する部材には同一符号を付してある。 1 and 2 are system diagrams showing an embodiment of a method and apparatus for treating fluorine-containing water according to the present invention. 1 and 2, members having the same functions as those shown in FIG.
図1においては、原水槽11からの原水(フッ素含有水)を第1反応槽12に導入して、この第1反応槽12でカルシウム化合物系凝集剤を添加した後、第2反応槽13に導入して中和剤を添加してpH調整し、フッ素とカルシウムとの反応によりフッ化カルシウムの不活性塩を生成させる。第2反応槽13の反応液は凝集槽14に導入して高分子凝集剤を添加して凝集処理し、その後沈殿槽15で固液分離する。
In FIG. 1, raw water (fluorine-containing water) from the raw water tank 11 is introduced into the
この第一のフッ素除去処理において、原水に添加するカルシウム化合物系凝集剤としては特に制限はないが、通常、消石灰が用いられる。ただし、何ら消石灰に制限されるものではなく、塩化カルシウム、炭酸カルシウム等を用いても良い。これらのカルシウム化合物系凝集剤は1種を単独で用いても良く、2種以上を併用しても良い。 In the first fluorine removal treatment, the calcium compound flocculant added to the raw water is not particularly limited, but slaked lime is usually used. However, it is not limited to slaked lime at all, and calcium chloride, calcium carbonate, or the like may be used. These calcium compound type flocculants may be used individually by 1 type, and may use 2 or more types together.
消石灰等のカルシウム化合物系凝集剤の添加量は、原水中のフッ素濃度によって決定され、原水のフッ素濃度に対して反応当量の1〜10倍、特に2〜5倍程度とすることが好ましい。消石灰の添加量が少な過ぎると原水中のフッ素を十分に除去し得ず、多過ぎると消石灰のみならず、その後の中和のための酸添加量も増大し、好ましくない。本発明では、処理水のpHを8〜10とするため、中和剤としての酸の添加量を低減することができる。このため、中和剤として硫酸を用いる場合の石膏生成等による消石灰の無駄な消費の問題がないため、消石灰の添加量を反応当量よりも大過剰に添加することなく、フッ素含有水中のフッ素を効率的に除去することができる。 The addition amount of the calcium compound-based flocculant such as slaked lime is determined by the fluorine concentration in the raw water, and is preferably about 1 to 10 times, particularly about 2 to 5 times the reaction equivalent with respect to the fluorine concentration of the raw water. If the amount of slaked lime added is too small, the fluorine in the raw water cannot be removed sufficiently, and if it is too large, not only slaked lime but also the amount of acid added for subsequent neutralization will increase. In the present invention, since the pH of the treated water is 8 to 10, the amount of acid added as a neutralizing agent can be reduced. For this reason, since there is no problem of wasteful consumption of slaked lime due to gypsum generation or the like when sulfuric acid is used as a neutralizing agent, the fluorine in fluorine-containing water can be added without adding an excessive amount of slaked lime more than the reaction equivalent. It can be removed efficiently.
原水に消石灰を添加した後の液はpH10.0〜13.0のアルカリ性となるため、次いで、第2反応槽13において、この液に中和剤としての酸を添加してpH調整する。このpH調整は、沈殿槽15で得られる処理水(上澄水)のpHが8〜10、好ましくは8.5〜9.5となるように行う。一般的には、第一処理水のpHは第2反応槽13の調整pHと同等であるため、この第2反応槽13において、pHが8〜10となるように酸を添加すれば良い。また、第一処理水のpHは、最終処理水のpH値(pH約7)から、原水量と二段目のフッ素除去処理におけるアルミニウム化合物系凝集剤のpH及びその添加量と、中和剤の種類と添加量から計算により求めることもできる。
The solution after adding slaked lime to raw water has a pH of 10.0 to 13. Since it becomes 0 alkaline, then in the
第一処理水のpHが8より低いと本発明による中和剤使用量の低減効果を十分に得ることができず、10よりも高いと後段の第二のフッ素除去処理において、中和剤(酸)を多量に必要とし、好ましくない。 If the pH of the first treated water is lower than 8, the effect of reducing the amount of neutralizing agent used according to the present invention cannot be sufficiently obtained. If the pH of the first treated water is higher than 10, the neutralizing agent ( A large amount of acid) is required, which is not preferable.
中和剤としての酸としては、硫酸が用いられる。酸添加後は、所定時間、例えば5〜20分程度攪拌して凝集処理することが好ましい。 The acid as a neutralizing agent, is sulfuric acid used. After the acid addition, it is preferable to stir the mixture for a predetermined time, for example, about 5 to 20 minutes.
第2反応槽13において、酸を添加してpH調整し、所定時間凝集処理した後は、好ましくは、凝集槽14で更に高分子凝集剤を添加して凝集処理する。この高分子凝集剤としては、ポリアクリルアミド部分加水分解物、ポリアクリル酸ナトリウム、ポリビニルアミジン等の1種又は2種以上を用いることができ、その添加量は、処理対象原水の水質や用いる高分子凝集剤によっても異なるが、通常0.1〜5mg/L程度である。
In the
凝集処理液は次いで固液分離して処理水を得る。この固液分離には沈殿槽15の他、膜分離装置等を用いることができる。 The coagulation treatment liquid is then subjected to solid-liquid separation to obtain treated water. For this solid-liquid separation, a membrane separator or the like can be used in addition to the precipitation tank 15.
このような第一段目のフッ素除去処理の処理水(沈殿槽15の上澄水)は、次いで、第1反応槽16でアルミニウム化合物系凝集剤が添加され、更に第2反応槽17で中和剤が添加されてpH中性で更に残留するフッ素が水酸化アルミニウムの共沈作用により不溶化された後、凝集槽18で高分子凝集剤が添加されて凝集処理され、その後沈殿槽19で固液分離される。
The treated water of the first stage fluorine removal treatment (the supernatant water of the precipitation tank 15) is then added with an aluminum compound flocculant in the
この第二のフッ素除去処理において、第一のフッ素除去処理で得られた処理水(第一処理水:沈殿槽15の上澄水)に添加するアルミニウム化合物系凝集剤としては、pH3以下、特にpH2.5以下、とりわけpH1.5以下、好ましくはアルミニウム濃度が6重量%以下の条件において、pH3以下、特にpH2.5以下、とりわけpH1.5以下の強酸性の塩化アルミニウム系凝集剤である。このpH値が3を超えるものであると、これを添加することによる中和作用を十分に得ることができず、第二のフッ素除去処理における中和剤としての酸添加量の低減効果を十分に得ることができない。また、pHが3を超えるときは、アルミニウムイオンが高分子様の形態をとるのに対し、pHが3以下のときにはアルミニウムイオンが分散するようになる。分散状のアルミニウムイオンは添加時に網目状に凝集するため、処理効率が向上する。ここでアルミニウム化合物系凝集剤のpHとは、アルミニウム化合物系凝集剤を使用する直前において測定した値であり、本発明では、このときにおいて、アルミニウム濃度6重量%以下でpH3以下を示すものであることが好ましい。なお、本発明において「塩化アルミニウム系」とは、水以外の成分中の塩化アルミニウムの割合が50重量%以上であるものをさす。 In the second fluorine removal treatment, the aluminum compound-based flocculant added to the treated water (first treated water: the supernatant water of the precipitation tank 15) obtained by the first fluorine removal treatment has a pH of 3 or less, particularly pH 2. .5 or less, especially pH1.5 or less, preferably in an aluminum concentration of 6 wt% or less of conditions, pH 3 or less, in particular pH2.5 or less, especially pH1.5 Ru following strongly acidic aluminum-based coagulant der chloride. If this pH value exceeds 3, the neutralization effect due to the addition of this cannot be sufficiently obtained, and the effect of reducing the amount of acid added as a neutralizing agent in the second fluorine removal treatment is sufficient. Can't get to. Also, when the pH exceeds 3, the aluminum ions take a polymer-like form, whereas when the pH is 3 or less, the aluminum ions are dispersed. Dispersed aluminum ions aggregate in a network at the time of addition, so that processing efficiency is improved. Here, the pH of the aluminum compound-based flocculant is a value measured immediately before using the aluminum compound-based flocculant, and in the present invention, at this time, an aluminum concentration of 6% by weight or less indicates pH of 3 or less. It is preferable. In the present invention, “aluminum chloride-based” means that the proportion of aluminum chloride in components other than water is 50% by weight or more.
本発明で用いるアルミニウム化合物系凝集剤は、LACである。 Aluminum compound flocculating agent used in the present invention are L AC.
なお、アルミニウム化合物系凝集剤として一般に用いられているPACは、アルミニウム濃度5.3重量%の条件でpH4〜5を示す。これに対して、LACは、PACよりも水酸化アルミニウムの割合が少なく、ほぼ100%が塩化アルミニウムであり、水等で希釈してアルミニウム濃度5.3重量%としたときのpHは約0.5と強酸性であるため、本発明に有効である。ただし、PACであっても、塩酸、硫酸等の鉱酸を加えてアルミニウム濃度が6重量%以下の条件においてpH3以下、特にpH2.5以下、とりわけpH1.5以下となるように調整することにより、本発明に好適に用いることができるようになる。また、LACとPACとを混合してアルミニウム化合物系凝集剤としても良い。 In addition, PAC generally used as an aluminum compound-based flocculant exhibits a pH of 4 to 5 under the condition of an aluminum concentration of 5.3% by weight. On the other hand, LAC has a lower proportion of aluminum hydroxide than PAC, almost 100% is aluminum chloride, and the pH when diluted with water to an aluminum concentration of 5.3% by weight is about 0.00. Since it is strongly acidic with 5, it is effective in the present invention. However, even in the case of PAC, by adding mineral acids such as hydrochloric acid and sulfuric acid and adjusting the aluminum concentration to 6% by weight or less, the pH is 3 or less, particularly 2.5 or less, especially 1.5 or less. Thus, it can be suitably used in the present invention. Alternatively, LAC and PAC may be mixed to form an aluminum compound-based flocculant.
このようなアルミニウム化合物系凝集剤は、その取り扱い上、希釈して添加しても良い。ここで水溶液の調製に用いる水は、市水、工水、或いは本発明による処理で得られる処理水のいずれであっても良く、後述の如く、他の排水であっても良いが、pH3以下の水溶液として添加することが、高い中和作用を得る上で重要である。 Such an aluminum compound-based flocculant may be diluted and added for handling. Here, the water used for the preparation of the aqueous solution may be city water, industrial water, or treated water obtained by the treatment according to the present invention, and may be other waste water as described later. It is important to add as an aqueous solution in order to obtain a high neutralizing action.
アルミニウム化合物系凝集剤の添加量は、少な過ぎると二段フッ素除去処理を行うことによるフッ素の高度処理を十分に行うことができず、多過ぎると汚泥量が増大し、また処理系内のpHが下がりすぎることから、アルミニウム化合物系凝集剤の添加量は、例えばpH9の第一処理水に対して100〜500mg/L、特に200〜400mg/L、一般的には、原水に対して50〜500mg/L程度とすることが好ましい。 If the amount of the aluminum compound-based flocculant is too small, the advanced treatment of fluorine by performing the two-stage fluorine removal treatment cannot be sufficiently performed, and if it is too large, the amount of sludge increases and the pH in the treatment system is increased. Therefore, the addition amount of the aluminum compound-based flocculant is, for example, 100 to 500 mg / L, particularly 200 to 400 mg / L for the first treated water having a pH of 9, for example, generally 50 to It is preferable to be about 500 mg / L.
第一処理水にアルミニウム化合物系凝集剤を添加した後のpHは、第一処理水のpHにもよるが、通常5〜8程度であるため、この水に必要に応じて更に中和剤を添加してpH中性(pH6〜7)にpH調整する。 The pH after adding the aluminum compound-based flocculant to the first treated water is usually about 5 to 8, although it depends on the pH of the first treated water. Add to adjust pH to pH neutral (pH 6-7).
中和剤としての酸としては、塩酸、硫酸等の鉱酸、好ましくは硫酸が用いられる。ただし、第一処理水のpH、アルミニウム化合物系凝集剤のpH及び添加量によっては、中和剤として水酸化ナトリウム等のアルカリを添加する必要がある場合もある。 As the acid as the neutralizing agent, mineral acids such as hydrochloric acid and sulfuric acid, preferably sulfuric acid is used. However, depending on the pH of the first treated water, the pH of the aluminum compound-based flocculant, and the amount added, it may be necessary to add an alkali such as sodium hydroxide as a neutralizing agent.
また、本発明では、用いるアルミニウム化合物系凝集剤のpHと添加量を調整することにより、この中和剤添加を不要とすることもできる。即ち、アルミニウム化合物系凝集剤を、処理水のpHが中性となるような量で添加することにより、中和剤を不要とすることができる。 Moreover, in this invention, this neutralizing agent addition can also be made unnecessary by adjusting the pH and addition amount of the aluminum compound type coagulant to be used. That is, the neutralizing agent can be made unnecessary by adding the aluminum compound-based flocculant in such an amount that the pH of the treated water becomes neutral.
中和剤添加後は、所定時間、例えば5〜20分程度攪拌して凝集処理することが好ましい。 After the addition of the neutralizing agent, it is preferable to agglomerate by stirring for a predetermined time, for example, about 5 to 20 minutes.
第2反応槽17において、中和剤を添加してpH調整し、所定時間凝集処理した後は、好ましくは、凝集槽18で更に高分子凝集剤を添加して凝集処理する。この高分子凝集剤としては、ポリアクリルアミド部分加水分解物、ポリアクリル酸ナトリウム、ポリビニルアミジン等の1種又は2種以上を用いることができ、その添加量は、処理対象原水の水質や用いる高分子凝集剤によっても異なるが、通常0.1〜5mg/L程度である。
In the
凝集処理液は次いで固液分離して処理水を得る。この固液分離には沈殿槽19の他、膜分離装置等を用いることができる。 The coagulation treatment liquid is then subjected to solid-liquid separation to obtain treated water. For this solid-liquid separation, a membrane separator or the like can be used in addition to the precipitation tank 19.
本発明においては、一段目のフッ素除去処理において得られた分離汚泥の一部(沈殿槽15の沈降汚泥の一部)を原水側に返送し、返送汚泥の種晶効果で汚泥の結晶性の向上、含水率の低下、沈降性の向上を図ることもできる。この場合、返送汚泥を消石灰等のカルシウム化合物系凝集剤と混合し、混合物(以下「改質汚泥」と称す場合がある。)を原水に添加するようにすることもでき、これにより、より一層の処理水質の向上と汚泥発生量の低減を図ることができる。 In the present invention, a part of the separated sludge (a part of the settled sludge in the settling tank 15) obtained in the first-stage fluorine removal treatment is returned to the raw water side, and the crystallinity of the sludge is improved by the seed crystal effect of the returned sludge. Improvement, reduction of moisture content, and improvement of sedimentation can also be achieved. In this case, the return sludge can be mixed with a calcium compound-based flocculant such as slaked lime, and the mixture (hereinafter sometimes referred to as “modified sludge”) can be added to the raw water. The quality of treated water can be improved and the amount of sludge generated can be reduced.
図2はこのような汚泥返送を行う場合を示す系統図であり、沈殿槽15の分離汚泥の一部は調整槽20に導入され、消石灰等のカルシウム化合物系凝集剤はこの調整槽20に添加され、汚泥と混合された後、第1反応槽12に返送されること以外は図1と同様の処理が行われる。
FIG. 2 is a system diagram showing the case where such sludge is returned. A part of the separated sludge in the sedimentation tank 15 is introduced into the adjustment tank 20, and a calcium compound-based flocculant such as slaked lime is added to the adjustment tank 20. Then, after being mixed with the sludge, the same processing as in FIG. 1 is performed except that it is returned to the
なお、この場合の返送汚泥量は、少な過ぎると汚泥返送を行うことによる上記効果を十分に得ることができず、多過ぎると沈殿槽の負荷が増大するため、新たに発生する汚泥量に対して10〜40倍程度とし、特に消石灰と返送汚泥とを混合する場合、改質汚泥のpHが11以上であるような量とすることが好ましい。 In this case, if the amount of returned sludge is too small, the above effect due to sludge return cannot be obtained sufficiently, and if too much, the load on the settling tank increases, so the amount of newly generated sludge When the slaked lime and the return sludge are mixed, it is preferable that the pH of the modified sludge is 11 or more.
図1,2に示す方法は、本発明の実施の形態の一例であって、本発明はその要旨を超えない限り、何ら図示の方法に限定されるものではない。例えば、図1,2において、第1反応槽16にアルミニウム化合物系凝集剤が添加され、第2反応槽17に中和剤が添加されるが、アルミニウム化合物系凝集剤と中和剤は同一の反応槽に添加することもできる。この場合には第2反応槽17は不要となる。また、第1反応槽16にアルミニウム化合物系凝集剤と中和剤を添加し、第2反応槽17で更に中和剤を添加しても良い。そして、前述の如く、中和剤の添加を不要とすることもでき、その場合には、第2反応槽17が不要となる。また、第1反応槽12や、原水槽11と第1反応槽12の間の配管に、あらかじめ硫酸や塩酸などの酸を添加する手段を設けておき、第1反応槽12に添加する消石灰量をpHでコントロールすることもできる。なお、図1,2において、沈殿槽15,19は図示しない配管により、その分離汚泥の必要量が系外へ排出される。
The method shown in FIGS. 1 and 2 is an example of an embodiment of the present invention, and the present invention is not limited to the illustrated method unless it exceeds the gist. For example, in FIGS. 1 and 2, an aluminum compound-based flocculant is added to the
本発明によれば、一段目のフッ素除去処理及び二段目のフッ素除去処理の双方において、中和剤使用量を大幅に低減することができ、また、一段目のフッ素除去処理において、硫酸による消石灰の消費が防止されると共に、二段目のフッ素除去処理においてpH3以下のアルミニウム化合物系凝集剤、好ましくはLACによる良好な共沈効果により、高水質の処理水を得ることができる。更に、薬剤使用量の低減で汚泥発生量の低減を図ることも可能である。 According to the present invention, it is possible to greatly reduce the amount of neutralizing agent used in both the first-stage fluorine removal treatment and the second-stage fluorine removal treatment, and in the first-stage fluorine removal treatment, The consumption of slaked lime is prevented, and high-quality treated water can be obtained by a good coprecipitation effect by an aluminum compound flocculant having a pH of 3 or less, preferably LAC, in the second-stage fluorine removal treatment. Furthermore, the amount of sludge generated can be reduced by reducing the amount of chemical used.
以下に実施例及び比較例を挙げて本発明をより具体的に説明する。なお、以下において、フッ素濃度の測定はJIS K0102 34.1に従って行った。また、高分子凝集剤としてはポリアクリルアミド部分加水分解物を用いた。 Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. In the following, the measurement of the fluorine concentration was performed according to JIS K0102 34.1. A polyacrylamide partial hydrolyzate was used as the polymer flocculant.
以下の実施例及び比較例では、フッ素130mg/Lを含有する電子産業排水を原水として処理を行った。 In the following Examples and Comparative Examples, processing was performed using electronic industrial wastewater containing 130 mg / L of fluorine as raw water.
実施例1
図1に示す方法に準じて原水の処理を行った。
原水に、890mg/Lの消石灰を添加した後、硫酸を用いてpHを8.5に調整した。30min攪拌して凝集処理した後、高分子凝集剤1mg/Lを添加し、静置して沈殿させた。その後、上澄水にLAC200mg/Lを添加し、硫酸を用いてpHを7とした。30min攪拌して凝集処理した後、高分子凝集剤1mg/Lを添加し、静置して沈殿させた。
得られた処理水(上澄水)中のフッ素濃度と硫酸濃度を測定すると共に、発生汚泥量を調べ、結果を表1に示した。なお、表1には、高分子凝集剤以外の薬品使用量を併記した。
Example 1
Raw water was treated according to the method shown in FIG.
After adding 890 mg / L of slaked lime to the raw water, the pH was adjusted to 8.5 using sulfuric acid. After stirring for 30 minutes for aggregation treatment, 1 mg / L of a polymer flocculant was added and allowed to stand for precipitation. Thereafter, 200 mg / L of LAC was added to the supernatant water, and the pH was adjusted to 7 using sulfuric acid. After stirring for 30 minutes for aggregation treatment, 1 mg / L of a polymer flocculant was added and allowed to stand for precipitation.
While measuring the fluorine concentration and sulfuric acid concentration in the obtained treated water (supernatant water), the amount of generated sludge was examined, and the results are shown in Table 1. In Table 1, the amount of chemicals other than the polymer flocculant is also shown.
実施例2
図2に示す方法に準じて原水の処理を行った。
原水に対して890mg/Lの消石灰に対して、実施例1で生成した汚泥を新たに生成する汚泥量に対して20倍となるような量で混合してpH12.8の改質汚泥とし、この改質汚泥を原水に添加した後、硫酸を用いてpHを8.5に調整した。30min攪拌して凝集処理した後、高分子凝集剤1mg/Lを添加し、静置して沈殿させた。その後、上澄水にLAC200mg/Lを添加し、硫酸を用いてpHを7とした。30min攪拌して凝集処理した後、高分子凝集剤1mg/Lを添加し、静置して沈殿させた。
処理水のフッ素及び硫酸濃度と汚泥発生量を調べ、その結果を薬品使用量と共に表1に示した。
Example 2
Raw water was treated according to the method shown in FIG.
For the slaked lime of 890 mg / L with respect to the raw water, the sludge produced in Example 1 is mixed in an amount that is 20 times the amount of sludge to be newly produced to obtain a modified sludge with a pH of 12.8, After this modified sludge was added to the raw water, the pH was adjusted to 8.5 using sulfuric acid. After stirring for 30 minutes for aggregation treatment, 1 mg / L of a polymer flocculant was added and allowed to stand for precipitation. Thereafter, 200 mg / L of LAC was added to the supernatant water, and the pH was adjusted to 7 using sulfuric acid. After stirring for 30 minutes for aggregation treatment, 1 mg / L of a polymer flocculant was added and allowed to stand for precipitation.
The fluorine and sulfuric acid concentrations of the treated water and the amount of sludge generated were examined, and the results are shown in Table 1 together with the amount of chemical used.
比較例1
図3に示す従来法に準じて原水の処理を行った。
原水に、890mg/Lの消石灰を添加した後、硫酸を用いてpHを7に調整した。30min攪拌して凝集処理した後、高分子凝集剤を1mg/L添加し、静置して沈殿させた。その後、上澄水にPAC300mg/Lを添加し、水酸化ナトリウムを用いてpHを7とした。30min攪拌して凝集処理した後、高分子凝集剤を1mg/L添加し、静置して沈殿させた。
処理水のフッ素及び硫酸濃度と汚泥発生量を調べ、その結果を薬品使用量と共に表1に示した。
Comparative Example 1
Raw water was treated according to the conventional method shown in FIG.
After adding 890 mg / L of slaked lime to raw water, the pH was adjusted to 7 using sulfuric acid. After stirring for 30 minutes for aggregation treatment, 1 mg / L of a polymer flocculant was added and allowed to stand to precipitate. Thereafter, PAC 300 mg / L was added to the supernatant water, and the pH was adjusted to 7 using sodium hydroxide. After stirring for 30 minutes for aggregation treatment, 1 mg / L of a polymer flocculant was added and allowed to stand to precipitate.
The fluorine and sulfuric acid concentrations of the treated water and the amount of sludge generated were examined, and the results are shown in Table 1 together with the amount of chemical used.
比較例2
実施例1において、LACの代りにPACを用いたこと以外は同様にして処理を行った。
原水に、890mg/Lの消石灰を添加した後、硫酸を用いてpHを8.5に調整した。30min攪拌して凝集処理した後、高分子凝集剤を1mg/L添加し、静置して沈殿させた。その後、上澄水にPAC200mg/Lを添加し、硫酸を用いてpHを7とした。30min攪拌して凝集処理した後、高分子凝集剤を1mg/L添加し、静置して沈殿させた。
処理水のフッ素及び硫酸濃度と汚泥発生量を調べ、その結果を薬品使用量と共に表1に示した。
Comparative Example 2
In Example 1, the treatment was performed in the same manner except that PAC was used instead of LAC.
After adding 890 mg / L of slaked lime to the raw water, the pH was adjusted to 8.5 using sulfuric acid. After stirring for 30 minutes for aggregation treatment, 1 mg / L of a polymer flocculant was added and allowed to stand to precipitate. Thereafter, PAC 200 mg / L was added to the supernatant water, and the pH was adjusted to 7 using sulfuric acid. After stirring for 30 minutes for aggregation treatment, 1 mg / L of a polymer flocculant was added and allowed to stand to precipitate.
The fluorine and sulfuric acid concentrations of the treated water and the amount of sludge generated were examined, and the results are shown in Table 1 together with the amount of chemical used.
比較例3
比較例2において、PACの添加量を300mg/Lにしたこと以外は同様にして処理を行った。
原水に、890mg/Lの消石灰を添加した後、硫酸を用いてpHを8.5に調整した。30min攪拌して凝集処理した後、高分子凝集剤を1mg/L添加し、静置して沈殿させた。その後、上澄水にPAC300mg/Lを添加し、硫酸を用いてpHを7とした。30min攪拌して凝集処理した後、高分子凝集剤を1mg/L添加し、静置して沈殿させた。
処理水のフッ素及び硫酸濃度と汚泥発生量を調べ、その結果を薬品使用量と共に表1に示した。
Comparative Example 3
In Comparative Example 2, the treatment was performed in the same manner except that the amount of PAC added was 300 mg / L.
After adding 890 mg / L of slaked lime to the raw water, the pH was adjusted to 8.5 using sulfuric acid. After stirring for 30 minutes for aggregation treatment, 1 mg / L of a polymer flocculant was added and allowed to stand to precipitate. Thereafter, PAC 300 mg / L was added to the supernatant water, and the pH was adjusted to 7 using sulfuric acid. After stirring for 30 minutes for aggregation treatment, 1 mg / L of a polymer flocculant was added and allowed to stand to precipitate.
The fluorine and sulfuric acid concentrations of the treated water and the amount of sludge generated were examined, and the results are shown in Table 1 together with the amount of chemical used.
表1より、本発明によれば、同等の水質(6mg−F/L)を得るための薬品使用量の低減ができ、硫酸では約50%、アルミニウム化合物では約30%の削減効果が見られ、発生汚泥量は10%以上低減できたことが分かる。特に第一段目のフッ素除去処理における分離汚泥を返送して原水に添加することにより、処理水質フッ素濃度で5mg/L以下に、汚泥発生量を30%以上削減することが可能である。 From Table 1, according to the present invention, it is possible to reduce the amount of chemicals used to obtain an equivalent water quality (6 mg-F / L), with a reduction effect of about 50% for sulfuric acid and about 30% for aluminum compounds. It can be seen that the amount of generated sludge was reduced by 10% or more. In particular, by returning the separated sludge in the first stage fluorine removal treatment and adding it to the raw water, it is possible to reduce the amount of sludge generation by 30% or more to a treated water quality fluorine concentration of 5 mg / L or less.
このような本発明のフッ素含有水の処理方法及び装置は、半導体部品製造におけるシリコンウェハ製造工程から排出されるフッ素含有排水、ステンレス鋼板製造工程から排出される酸洗排水、アルミニウム表面処理排水、フッ酸製造排水、肥料製造排水、ゴミ焼却排水等の各種フッ素含有水の処理に有効である。 Such a method and apparatus for treating fluorine-containing water according to the present invention includes fluorine-containing wastewater discharged from a silicon wafer manufacturing process in semiconductor component manufacturing, pickling wastewater discharged from a stainless steel plate manufacturing process, aluminum surface treatment wastewater, It is effective for the treatment of various fluorine-containing waters such as acid production wastewater, fertilizer production wastewater, and waste incineration wastewater.
11 原水槽
12,16 第1反応槽
13,17 第2反応槽
14,18 凝集槽
15,19 沈殿槽
20 調整槽
11
Claims (6)
該第一のフッ素除去工程において、該フッ素含有水にカルシウム化合物系凝集剤を添加してpH10.0〜13.0とし、次いで中和剤として硫酸を添加して該第一処理水のpHが8〜10となるように処理を行うと共に、該第二のフッ素除去工程において、アルミニウム化合物系凝集剤としてLACを該第一処理水に対して100〜500mg/L添加し、更に酸を添加してpH6〜7に調整することを特徴とするフッ素含有水の処理方法。 A first fluorine removal step in which a calcium compound flocculant is added to fluorine-containing water and subjected to agglomeration treatment, followed by solid-liquid separation, and treated water obtained in the first fluorine removal step (hereinafter referred to as “first treated water”) In a method for treating fluorine-containing water having a second fluorine removal step in which an aluminum compound-based flocculant is added to and agglomerated and then solid-liquid separated,
In the first fluorine removal step, a calcium compound flocculant is added to the fluorine-containing water to obtain a pH of 10.0 to 13.0, and then sulfuric acid is added as a neutralizing agent to adjust the pH of the first treated water. 8-10 processing performs such that, in said second fluorine removal process is added 100 to 500 mg / L the LAC as a aluminum compound flocculating agent to said first processing water, further adding an acid And adjusting the pH to 6 to 7, a method for treating fluorine-containing water.
該第一のフッ素除去手段において、該フッ素含有水にカルシウム化合物系凝集剤を添加してpH10.0〜13.0とし、次いで中和剤として硫酸を添加してpH8〜10の第一処理水を得、該第二のフッ素除去手段においてアルミニウム化合物系凝集剤としてLACを該第一処理水に対して100〜500mg/L添加し、更に酸を添加してpH6〜7に調整することを特徴とするフッ素含有水の処理装置。 A first fluorine removing means for solid-liquid separation after adding a calcium compound-based flocculant to fluorine-containing water, and treated water obtained by the first fluorine removing means (hereinafter referred to as “first treated water”) In a treatment apparatus for fluorine-containing water having a second fluorine removing means for solid-liquid separation after adding an aluminum compound-based flocculant and aggregating treatment to
In said first fluorine removal means, adding calcium compound-based flocculant to the fluorine containing water and pH10.0~13.0 with, then the first processing of p H8 to 10 by addition of sulfuric acid as a neutralizing agent to obtain an aqueous, that said the LAC as an aluminum compound-based flocculant is added 100 to 500 mg / L with respect to said first treated water in the second fluorine removal means is adjusted to pH6~7 by adding further acid A fluorine-containing water treatment apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005183680A JP4752351B2 (en) | 2005-06-23 | 2005-06-23 | Method and apparatus for treating fluorine-containing water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005183680A JP4752351B2 (en) | 2005-06-23 | 2005-06-23 | Method and apparatus for treating fluorine-containing water |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007000768A JP2007000768A (en) | 2007-01-11 |
JP4752351B2 true JP4752351B2 (en) | 2011-08-17 |
Family
ID=37686846
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005183680A Expired - Fee Related JP4752351B2 (en) | 2005-06-23 | 2005-06-23 | Method and apparatus for treating fluorine-containing water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4752351B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105948313A (en) * | 2016-05-25 | 2016-09-21 | 秦华达 | Mixed treatment process for stainless steel pickling wastewater and washing wastewater |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5132060A (en) * | 1974-09-13 | 1976-03-18 | Showa Koji Kk | FUTSUSOGANJUHAISUINOSHORIHOHO |
JPS5843282A (en) * | 1981-09-10 | 1983-03-12 | Hitachi Plant Eng & Constr Co Ltd | Treatment of waste water containing fluorine |
JPS5969112A (en) * | 1982-10-15 | 1984-04-19 | Nippon Carbide Ind Co Ltd | Composition for flocculating agent |
JPS59193190A (en) * | 1983-04-15 | 1984-11-01 | Chiyoda Chem Eng & Constr Co Ltd | Removal of fluorine from waste water of stack gas desulfurization in thermal power of coal |
JPS61185375A (en) * | 1985-02-12 | 1986-08-19 | Shinko Fuaudoraa Kk | Treatment of arsenic and fluorine-containing waste water |
JPS63141613A (en) * | 1986-12-03 | 1988-06-14 | Asada Kagaku Kogyo Kk | Treatment of water |
JPH01143608A (en) * | 1987-11-20 | 1989-06-06 | Mack Stewart Claude | Water treatment composition and method |
JP3334142B2 (en) * | 1991-10-01 | 2002-10-15 | 栗田工業株式会社 | Treatment method for fluorine-containing water |
JP2596908B2 (en) * | 1995-01-09 | 1997-04-02 | 千代田化工建設株式会社 | Treatment method for fluorine-containing wastewater |
JPH08197070A (en) * | 1995-01-24 | 1996-08-06 | Kurita Water Ind Ltd | Treatment of fluorine-containing water |
JPH10258202A (en) * | 1997-03-19 | 1998-09-29 | Neos Co Ltd | Flocculation treatment agent for aqueous coating and its usage |
JP3903591B2 (en) * | 1998-05-26 | 2007-04-11 | 栗田工業株式会社 | Treatment method for fluorine and phosphorus containing wastewater |
JP4508600B2 (en) * | 2003-10-21 | 2010-07-21 | 栗田工業株式会社 | Method and apparatus for treating fluorine-containing wastewater |
-
2005
- 2005-06-23 JP JP2005183680A patent/JP4752351B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007000768A (en) | 2007-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4661132B2 (en) | Method and apparatus for treating fluorine-containing wastewater | |
JP4572812B2 (en) | Fluorine-containing water treatment method | |
JP2005296838A (en) | Method for treating water containing fluorine and phosphorus, and apparatus therefor | |
JP2006218354A (en) | Method for treating fluorine-containing waste water | |
JP4752351B2 (en) | Method and apparatus for treating fluorine-containing water | |
JP4508600B2 (en) | Method and apparatus for treating fluorine-containing wastewater | |
JP4631420B2 (en) | Fluorine-containing water treatment method | |
KR20150120971A (en) | Method and apparatus for treating borofluoride-containing water | |
JP2007038163A (en) | Method for treating fluorine-containing waste water and treatment apparatus | |
JP4689186B2 (en) | Fluorine-containing water treatment method | |
JP6045964B2 (en) | Borofluoride ion-containing wastewater treatment method and borofluoride ion-containing wastewater treatment apparatus | |
JP2006167631A (en) | Treatment method and treatment equipment for fluorine-containing waste water including phosphoric acid | |
JP5848119B2 (en) | Treatment method for fluorine-containing wastewater | |
JP2007260556A (en) | Phosphoric acid-containing wastewater treatment method and apparatus | |
JP2010075928A (en) | Treatment method and treatment device for fluorine-containing waste water | |
JP4035347B2 (en) | Method for treating selenate-containing wastewater and treating agent used therefor | |
JP4232019B2 (en) | Treatment method for fluorine-containing wastewater | |
JP2008149222A (en) | Removal method of fluorine ions in hot spring water | |
JP4555330B2 (en) | Rice sharpening treatment method | |
JP5057955B2 (en) | Sludge concentration method and sludge concentration apparatus | |
JPH06114382A (en) | Treatment of fluorine-containing waste water | |
KR101270211B1 (en) | Composition for treatment of wastewater containing fluorine | |
JP4524796B2 (en) | Method and apparatus for treating fluorine-containing wastewater | |
JP2010099552A (en) | Wastewater treatment method | |
JP2006305457A (en) | Wastewater treatment method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080425 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100402 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110208 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110407 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110426 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110509 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140603 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4752351 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |