JP5250486B2 - Purification process for steel manufacturing wastewater - Google Patents

Purification process for steel manufacturing wastewater Download PDF

Info

Publication number
JP5250486B2
JP5250486B2 JP2009132086A JP2009132086A JP5250486B2 JP 5250486 B2 JP5250486 B2 JP 5250486B2 JP 2009132086 A JP2009132086 A JP 2009132086A JP 2009132086 A JP2009132086 A JP 2009132086A JP 5250486 B2 JP5250486 B2 JP 5250486B2
Authority
JP
Japan
Prior art keywords
wastewater
water
raw water
waste water
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009132086A
Other languages
Japanese (ja)
Other versions
JP2010274244A (en
Inventor
宏樹 佐藤
輝真 大澤
渉 辻本
力 志岐
辰夫 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Eco Tech Corp
Original Assignee
Nippon Steel Corp
Nippon Steel and Sumikin Eco Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel and Sumikin Eco Tech Corp filed Critical Nippon Steel Corp
Priority to JP2009132086A priority Critical patent/JP5250486B2/en
Publication of JP2010274244A publication Critical patent/JP2010274244A/en
Application granted granted Critical
Publication of JP5250486B2 publication Critical patent/JP5250486B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

本発明は、鉄鋼製造排水の浄化処理方法に関し、更に詳しくは、特に、鉄鋼製造業におけるリンス洗浄排水中の油分及び有機物をより効率よく処理できる浄化処理方法に関する。   The present invention relates to a purification method for steel manufacturing wastewater, and more particularly to a purification method that can more efficiently treat oil and organic matter in rinse washing wastewater in the steel manufacturing industry.

鉄鋼製造業の生産工程では、冷却や、脱脂或いは錆・スケール取り等を目的とした洗浄などに大量の水が使われており、種々の成分を含む排水が生じている。例えば、圧延油を使用する圧延工程におけるアルカリ脱脂工程において使用されるアルカリ液には、油分や、界面活性剤等に起因する有機性物質が多く含まれている。このアルカリ液は、一般的に循環利用されるが、繰り返し使用されることにより、鉄分等のSS(浮遊性物質)が含有され品質が劣化する。このため、定期的に交換されており、その全量をアルカリダンプ排水として廃棄することが行われている。一方、アルカリ脱脂工程の後に行われるリンス洗浄工程で生じる大量のリンス洗浄排水にも、アルカリ液に起因する油分や有機性物質が含まれる。通常、排水中の油分濃度(以下、油分と呼ぶ)は、n−Hex(ノルマルヘキサン)抽出物量で示され、一方、有機物濃度はCOD値(化学的酸素供給量)で示される。上記した鉄鋼製造業におけるアルカリダンプ排水では、油分が600〜4,500mg/L程度、CODが1,500〜4,500mg/L程度の値を示し、リンス洗浄排水でも、油分が10〜50mg/L、CODが15〜40mg/L程度の値を示す。   In the production process of the steel manufacturing industry, a large amount of water is used for cooling, degreasing, cleaning for the purpose of removing rust and scale, etc., and wastewater containing various components is generated. For example, an alkaline liquid used in an alkaline degreasing process in a rolling process using rolling oil contains a large amount of organic substances due to oil, surfactants, and the like. This alkaline solution is generally circulated and reused, but when repeatedly used, SS (floating substance) such as iron is contained and the quality deteriorates. For this reason, it is regularly replaced, and the entire amount is discarded as alkaline dump drainage. On the other hand, a large amount of rinse cleaning wastewater generated in the rinse cleaning process performed after the alkaline degreasing process also includes oil and organic substances resulting from the alkaline liquid. Usually, the oil concentration in wastewater (hereinafter referred to as oil) is indicated by the amount of n-Hex (normal hexane) extract, while the organic matter concentration is indicated by the COD value (chemical oxygen supply amount). In the above-described alkaline dump drainage in the steel manufacturing industry, the oil content is about 600 to 4,500 mg / L, and the COD is about 1,500 to 4,500 mg / L. Even in the rinse cleaning wastewater, the oil content is 10 to 50 mg / L. L and COD show values of about 15 to 40 mg / L.

一方、環境保護の立場から、環境汚染物質が含有されている排水をそのまま公共用水域に放流することを規制しており、環境汚染物質毎に排出規制値が設けられている。上記した各種のアルカリ洗浄排水中の油分やCOD値も規制の対象となっているが、近年、従来にもまして環境保護の重視性が認識されるようになり、排出規制もより強化されたものとなっている。例えば、閉鎖性の海域における現在の処理水放流基準値は、COD<10ppm、油分も3ppm以下と、非常に厳しい処理水放流基準値が設定されている。このため、鉄鋼製造業における上記したようなアルカリ洗浄排水は、油分やCOD値が、この排出規制値以下になるように浄化処理をされた後、処理水を公共用水域へと放流されている。   On the other hand, from the standpoint of environmental protection, it regulates the discharge of wastewater containing environmental pollutants into public water areas as they are, and there are emission control values for each environmental pollutant. Although the oil content and COD value in the various alkaline cleaning wastewaters described above are also subject to regulation, in recent years the importance of environmental protection has been recognized more than ever, and emission regulations have been further strengthened. It has become. For example, the current treated water discharge reference value in a closed sea area is set to a very strict treated water discharge reference value with COD <10 ppm and the oil content of 3 ppm or less. For this reason, the alkaline cleaning wastewater as described above in the steel manufacturing industry is subjected to purification treatment so that the oil content and the COD value are less than or equal to this emission regulation value, and then the treated water is discharged into public water bodies. .

従来の処理水放流基準値に対して行われている鉄鋼製造におけるアルカリ洗浄排水の浄化処理方法の一つとして、2段凝集処理があるが、この方法では、凝集処理設備を2系列、直列に繋ぐことで排水の浄化処理を行っている。具体的には、先ず、無機凝集剤(例えば、Al系や鉄系のもの)及び有機系凝集剤との組み合わせによる凝集処理を行い、更に、この凝集処理水を、再び無機凝集剤及び有機系凝集剤によって凝集処理することで、アルカリ洗浄排水中の油分や有機物を良好な状態に凝集させ、更に、この凝集物を主に加圧浮上させて固液分離して除去している。   As one of the purification methods for alkaline washing wastewater in steel production that has been performed with respect to the conventional treated water discharge reference value, there is a two-stage agglomeration treatment. Purifying wastewater by connecting. Specifically, first, an aggregating treatment is performed by a combination of an inorganic flocculant (for example, Al-based or iron-based one) and an organic flocculant, and the agglomerated water is again supplied to the inorganic flocculant and the organic flocculant. By aggregating with an aggregating agent, the oil and organic matter in the alkaline washing wastewater are aggregated in a good state, and the agglomerates are mainly floated under pressure and separated by solid-liquid separation to be removed.

上記した従来の2段凝集処理方法は、例えば、アルカリ洗浄排水を処理した処理水の油分を10mg/L以下、CODを20mg/L以下にすることは可能であるので、一般海域に位置する事業所では、放流水基準値を遵守可能である。しかしながら、例えば、閉鎖性海域に面する事業所など、より厳しい放流水基準を適用される場合においては、処理水の油分やCOD値を安定して処理水放流基準値以下にすることが難しいという課題があった。これに対し、本出願人らは、鉄鋼製造で排出されるアルカリ洗浄排水を浄化処理した場合に、処理水中の油分やCOD値を、確実に且つ経済的に排出規制値以下にすることができる鉄鋼製造排水の浄化処理方法を提案している(特許文献1参照)。   The above-mentioned conventional two-stage agglomeration treatment method can reduce the oil content of treated water treated with alkaline washing wastewater to 10 mg / L or less and COD to 20 mg / L or less. The effluent standard value can be observed at the station. However, for example, when stricter effluent standards are applied, such as establishments facing closed waters, it is difficult to stabilize the oil content and COD value of treated water below the treated water discharge standard value. There was a problem. In contrast, the present applicants can reliably and economically reduce the oil content and COD value in the treated water below the emission regulation value when the alkaline cleaning wastewater discharged in the steel production is purified. A method for purifying steel manufacturing wastewater has been proposed (see Patent Document 1).

特開2007−252969号公報JP 2007-252969 A

上記の方法によって、アルカリ脱脂工程の後に行われるリンス洗浄工程で生じる大量のリンス洗浄排水を浄化した場合、水質基準が比較的緩やかな一般海域に位置する事業所においては、良好な状態での処理が行え、処理水は放流基準値以下に維持できる。しかし、閉鎖性海域に位置する事業所においては、前記した、より厳しい処理水放流基準値を満足することが必要になるので、大量のリンス洗浄排水を浄化した場合、上記した方法でも良好な処理を常に安定して行うことは難しく、放流するには更なる処理が必要となる場合もある。上記した方法の場合も、基本的には凝集剤による凝集及び凝集物の除去によって浄化処理を行うが、その際に、効率のよい浄化処理を行うことができる最適な条件を見出し、特に、処理水の油分が2ppmよりも少ない、例えば、1ppm以下の極めて清浄なものとできることが望まれる。更に、リンス洗浄排水は大量であるため、より経済的で簡便な効率のよい処理技術の開発が要望される。   When a large amount of rinse washing wastewater generated in the rinse washing process performed after the alkaline degreasing process is purified by the above method, in establishments located in general sea areas where the water quality standards are relatively mild, the treatment is performed in good condition. The treated water can be maintained below the discharge standard value. However, in establishments located in closed waters, it is necessary to satisfy the stricter treatment water discharge standard values described above. It is difficult to always carry out the process stably, and further processing may be required to release it. In the case of the above method as well, the purification treatment is basically performed by agglomeration by the aggregating agent and removal of the agglomerates. At that time, the optimum conditions for efficient purification treatment are found, and in particular, the treatment It is desirable that the oil content of water is less than 2 ppm, for example, 1 ppm or less, and can be made extremely clean. Further, since the rinse washing wastewater is large, development of more economical, simple and efficient treatment technology is demanded.

従って、本発明の目的は、鉄鋼製造工程から排出されるリンス洗浄排水を、より効率よく浄化処理でき、より簡便に、かつ確実に、油分やCOD値が常に安定して極めて清浄な処理水となる鉄鋼製造排水の浄化処理方法を提供することにある。   Therefore, the object of the present invention is to allow the rinse washing wastewater discharged from the steel manufacturing process to be purified more efficiently, more easily and reliably, the oil content and the COD value are always stable, It is providing the purification processing method of the steel manufacture waste water which becomes.

上記目的は、以下の本発明によって達成される。すなわち、本発明は、鉄鋼製造業におけるアルカリ脱脂工程からのリンス洗浄排水を浄化処理する方法であって、処理する原水が、上記リンス洗浄排水に対して、該リンス洗浄排水とは別の、少なくとも酸化マグネシウムを含有する排水を添加混合して、原水中におけるマグネシウム濃度が、モル濃度基準で、0.05×10-3〜0.4×10-3mol/Lの範囲内になるように調整されたものであり、かつ、該原水に凝集剤を加えて撹拌後、凝集物を加圧浮上処理によって固液分離することを特徴とする鉄鋼製造排水の浄化処理方法を提供する。 The above object is achieved by the present invention described below. That is, the present invention is a method for purifying rinse washing wastewater from an alkaline degreasing process in the steel manufacturing industry, wherein the raw water to be treated is at least separate from the rinse washing wastewater, relative to the rinse washing wastewater. was added to and mixed with waste water containing magnesium oxide, magnesium concentration in the raw water, on a molar basis, to be in the range of 0.05 × 10 -3 ~0.4 × 10-3mol / L Provided is a method for purifying steelmaking wastewater, which is prepared and characterized by adding a flocculant to the raw water and stirring, and then solid-liquid separation of the agglomerates by pressure flotation.

また、本発明の好ましい形態としては、下記のものが挙げられる。前記撹拌を、急速な撹拌後に、G−t=30,000〜120,000の緩慢な速度で行う上記の鉄鋼製造排水の浄化処理方法。前記凝集物を加圧浮上処理する際に、処理した処理水の20〜40%を処理槽の入口に戻しながら行う上記の鉄鋼製造排水の浄化処理方法。前記酸化マグネシウムを含有する排水が、鉄鋼の製造工程から排出される表面処理排水、洗浄酸性排水、又は、洗浄酸性排水を中和処理することにより排出される中和排水の少なくともいずれかを含む上記の鉄鋼製造排水の浄化処理方法。 Moreover, the following are mentioned as a preferable form of this invention. The said steel manufacture waste water purification processing method which performs the said stirring at a slow speed | rate of Gt = 30,000-120,000 after rapid stirring. The above steel production wastewater purification method, wherein 20-40% of the treated water is returned to the inlet of the treatment tank when the agglomerate is subjected to pressure levitation treatment. Wastewater containing the magnesium oxide comprises a surface treatment waste water discharged from the iron and steel manufacturing process, cleaning acid waste water, or, at least one of neutralizing wastewater discharged by neutralizing the washing acid waste water A method for purifying the steel manufacturing wastewater described above.

本発明によれば、鉄鋼の製造工程から排出されるリンス洗浄排水を、より効率よく安定して浄化処理でき、より簡便に、かつ、安定して確実に処理水中の油分及びCOD値を排出規制値以下の清浄なものにすることができる鉄鋼製造排水の浄化処理方法が提供される。本発明によれば、リンス洗浄排水に他の排水を添加混合するという極めて単純な手段によって上記の優れた効果が得られるものであり、その実用価値は極めて高い。   According to the present invention, it is possible to more efficiently and stably purify the rinse cleaning wastewater discharged from the steel manufacturing process, and to control the oil content and COD value in the treated water more easily and stably. Provided is a method for purifying steel production wastewater that can be made clean at a value below the value. According to the present invention, the above-described excellent effect can be obtained by a very simple means of adding and mixing other waste water into the rinse washing waste water, and its practical value is extremely high.

混合原水中のマグネシウム濃度と処理水中の油分濃度との関係。Relationship between magnesium concentration in raw mixed water and oil concentration in treated water. 混合原水の緩速攪拌条件と処理水中のCOD濃度との関係。The relationship between the slow stirring conditions of raw mixed water and the COD concentration in treated water.

以下、好ましい実施の形態を挙げて、本発明を更に詳細に説明する。本発明者らは、上記した従来技術の課題を解決すべく鋭意検討の結果、リンス洗浄排水に他の排水、例えば、鉄鋼の製造工程から排出される表面処理排水等の排水を特定の割合で添加混合させ、該混合物を原水として浄化処理を行うことで、リンス洗浄排水を原水として単独で処理した場合に比べて、格段に処理効率が向上することを見出して本発明に至った。より具体的には、表面処理排水等のリンス洗浄排水とは別の排水を添加することで、原水中におけるマグネシウム濃度又はカルシウム濃度が特定の範囲内となるように構成した場合に、その処理効率が格段に向上することを見出して本発明に至った。後述するが、本発明によれば、リンス洗浄排水を処理した場合に、油分が1ppm以下、CODが10ppm以下の極めて清浄な処理水を安定して得ることができるのに対し、原水中におけるマグネシウム濃度又はカルシウム濃度を調整しない場合には、同様の条件で処理したとしても、油分が5ppm程度、CODが20ppm程度となり、処理効率に明らかな有意差が生じる。   Hereinafter, the present invention will be described in more detail with reference to preferred embodiments. As a result of intensive investigations to solve the above-described problems of the prior art, the present inventors have determined that other wastewater such as rinse-washed wastewater, for example, surface treatment wastewater discharged from the steel manufacturing process, at a specific rate. As a result of adding and mixing and performing purification treatment using the mixture as raw water, it was found that the treatment efficiency was remarkably improved as compared with the case where the rinse-washed wastewater was treated alone as raw water. More specifically, when drainage other than rinse washing wastewater such as surface treatment wastewater is added so that the magnesium concentration or calcium concentration in the raw water is within a specific range, the treatment efficiency Has been found to be significantly improved, leading to the present invention. As will be described later, according to the present invention, when the rinse washing wastewater is treated, it is possible to stably obtain an extremely clean treated water having an oil content of 1 ppm or less and a COD of 10 ppm or less, whereas magnesium in raw water When the concentration or the calcium concentration is not adjusted, even if the treatment is performed under the same conditions, the oil content is about 5 ppm and the COD is about 20 ppm, and there is a clear significant difference in the treatment efficiency.

本発明では、モル濃度基準で、リンス洗浄排水100に対して、該リンス洗浄排水とは別の、マグネシウム成分又はカルシウム成分を含有する排水を、そのマグネシウム濃度又はカルシウム濃度が、0.05×10-3〜0.4×10-3mol/L、より好ましくは、0.1×10-3〜0.3×10-3mol/Lの範囲となるように添加混合し、得られた混合排水を原水として浄化処理する。本発明者らの検討によれば、原水中におけるマグネシウム又はカルシウムの濃度が、0.05×10-3よりも少ないと、上記添加による効果が少なく、更に、その効果が安定して得られない場合がある。また、原水中におけるマグネシウム又はカルシウムの濃度が0.4×10-3mol/Lよりも高いと、凝集性が悪化する傾向があることから、凝集剤注入率の増加を招く。また、混合原水中におけるリンス洗浄排水とは別の排水の量が多くなることから、マグネシウム又はカルシウムの濃度以外の性状が原水に影響を与えるおそれがあり、処理条件の設定を変更する必要が生じるといった実用上の問題もある。 In the present invention, the waste water containing magnesium component or calcium component, which is different from the rinse washing waste water, with respect to the rinse washing waste water 100 on a molar concentration basis, the magnesium concentration or calcium concentration is 0.05 × 10 5. -3 to 0.4 × 10 −3 mol / L, more preferably 0.1 × 10 −3 to 0.3 × 10 −3 mol / L. Purify wastewater as raw water. According to the study by the present inventors, when the concentration of magnesium or calcium in the raw water is less than 0.05 × 10 −3 , the effect of the addition is small, and the effect cannot be obtained stably. There is a case. On the other hand, if the concentration of magnesium or calcium in the raw water is higher than 0.4 × 10 −3 mol / L, the coagulability tends to be deteriorated, leading to an increase in the coagulant injection rate. In addition, since the amount of waste water other than the rinse water in the mixed raw water increases, properties other than the concentration of magnesium or calcium may affect the raw water, and it is necessary to change the treatment condition settings. There are also practical problems.

本発明者らは、リンス洗浄排水を処理する場合に、原水中のマグネシウム濃度又はカルシウム濃度を上記した範囲とすることで処理効率が向上する理由を下記のように考えている。原水を本発明のように構成することで、リンス洗浄排水に添加させた排水中の酸化マグネシウム等と、リンス洗浄排水中の油滴等の粒子が荷電中和し、荷電反発がなくなることにより、ファンデルワールス力による分子間引力が荷電反発力を卓越し、分子の集合形成、すなわち凝集が容易になったものと考えている。   The present inventors consider the reason why the treatment efficiency is improved by setting the magnesium concentration or the calcium concentration in the raw water in the above-described range when treating the rinse washing waste water. By constituting the raw water as in the present invention, magnesium oxide and the like in the wastewater added to the rinse washing wastewater, and particles such as oil droplets in the rinse washing wastewater are neutralized by charge, and there is no charge repulsion, It is thought that intermolecular attraction due to Van der Waals force is superior to charge repulsion, and molecular assembly, that is, aggregation is facilitated.

本発明で使用する、リンス洗浄排水に添加混合させるリンス洗浄排水とは別の、マグネシウム成分又はカルシウム成分を含有する他の排水としては、下記のものが挙げられる。例えば、亜鉛鋼板にクロムフリーの表面処理を行う際や、電磁鋼板の表面絶縁被覆処理を行う際に生じる、鉄鋼の製造工程から排出される表面処理排水、鋼板の圧延工程における酸洗浄処理を行う際に排出される酸性洗浄排水、又は、この酸性洗浄排水をpHの安定化のため石灰等のアルカリ剤にて中和した中和処理排水等が挙げられる。これらの排水は、1種類を添加しても、2種類以上を添加してもよい。本発明で重要なことは、これらの排水の添加によって原水中におけるマグネシウム濃度或いはカルシウム濃度を、本発明で規定する特定の範囲内に調整することにある。上記に挙げた中でも、油分が少なく、かつ、適度な量の酸化マグネシウム成分又はカルシウム成分が含有されている上記に挙げた表面処理排水が好適である。すなわち、その濃度にもよるが、原水中におけるマグネシウム濃度等を本発明で規定する範囲にするには、例えば、容積基準で、リンス洗浄排水100に対して、3〜8程度、より好ましくは5〜6程度の割合で、上記表面処理排水を添加混合すれば所望の原水を得ることができる。このように、本発明は、基本的な浄化処理工程を何ら変更することなく、原水であるリンス洗浄排水に、若干量の他の排水を添加混合するという簡単な操作を追加するだけで浄化効率を向上させることができる、極めて経済的な方法である。また、処理水への影響を考慮すると、特に、マグネシウムやカルシウム成分は、固形物である炭酸カルシウムや酸化マグネシウムとして含有されていることが好ましい。   The following are mentioned as another waste_water | drain containing a magnesium component or a calcium component different from the rinse washing | cleaning waste_water | drain used and mixed with the rinse washing | cleaning waste_water | drain used by this invention. For example, surface treatment wastewater discharged from a steel manufacturing process and acid cleaning treatment in a steel sheet rolling process, which occurs when a zinc steel sheet is subjected to chromium-free surface treatment or surface insulation coating treatment of a magnetic steel sheet Acid cleaning waste water discharged at the time, or neutralized waste water neutralized with an alkaline agent such as lime for stabilizing the pH. One type of these waste waters may be added, or two or more types may be added. What is important in the present invention is to adjust the magnesium concentration or calcium concentration in the raw water within the specific range defined in the present invention by adding these waste waters. Among the above-mentioned, the surface treatment waste water mentioned above containing a small amount of oil and containing an appropriate amount of magnesium oxide component or calcium component is preferable. That is, depending on the concentration, in order to make the magnesium concentration in the raw water within the range defined in the present invention, for example, about 3 to 8 with respect to the rinse washing wastewater 100 on a volume basis, more preferably 5 The desired raw water can be obtained by adding and mixing the surface treatment wastewater at a ratio of about ˜6. As described above, the present invention can be achieved by simply adding a simple operation of adding and mixing a small amount of other wastewater to the rinse water that is the raw water without changing the basic purification process. It is a very economical method that can improve. Considering the influence on the treated water, it is particularly preferable that the magnesium and calcium components are contained as solid calcium carbonate and magnesium oxide.

更に、本発明者らは、原水を上記混合液とした場合における最適な凝集条件及び手順について詳細な検討を行った。その結果、使用する凝集剤として、無機凝集剤と高分子凝集剤とを併用することが好ましいことがわかった。無機凝集剤としては、アルミニウム系や鉄系の凝集剤を使用することができる。より具体的には、ポリ塩化アルミニウム(以下、PACと略す)や塩化第二鉄を使用することができる。また、高分子凝集剤としては、ノニオン系の高分子凝集剤よりも強アニオン系の高分子凝集剤を使用することが好ましい。市販されているものとしては、例えば、ノニオン系のものとしてはKEA−455(日鉄環境エンジニアリング製、イオン強度=2〜3CEQ)や、強アニオン系のものとしてはKEA−545(日鉄環境エンジニアリング製、イオン強度=38〜42CEQ)等が挙げられる。これらの使用量としては、例えば、PAC使用量は、原水1リットルあたり100〜200mg程度、高分子凝集剤使用量は、原水1リットルあたり1〜2mg程度とすればよい。   Furthermore, the present inventors have conducted a detailed study on the optimum flocculation conditions and procedure when raw water is used as the above mixed solution. As a result, it was found that it is preferable to use an inorganic flocculant and a polymer flocculant in combination as the flocculant to be used. As the inorganic flocculant, an aluminum-based or iron-based flocculant can be used. More specifically, polyaluminum chloride (hereinafter abbreviated as PAC) or ferric chloride can be used. As the polymer flocculant, it is preferable to use a strong anionic polymer flocculant rather than a nonionic polymer flocculant. Examples of commercially available products include KEA-455 (manufactured by Nippon Steel Environmental Engineering Co., Ltd., ionic strength = 2 to 3 CEQ) for nonionic products, and KEA-545 (Nittetsu Environmental Engineering Co., Ltd.) for strong anionic products. Manufactured, ionic strength = 38-42CEQ) and the like. For example, the amount of PAC used may be about 100 to 200 mg per liter of raw water, and the amount of the polymer flocculant used may be about 1 to 2 mg per liter of raw water.

更に、本発明では、原水にこれらの凝集剤を添加した後、原水中の油分や有機物を十分に凝集させ、その後、加圧浮上処理して凝集物を分離することで浄化処理を行うが、その際、下記のような条件で処理すると、より凝集効率及び分離効率を向上させることができるので好ましい。原水に凝集剤を添加後、先ず、パドル式攪拌機においては80〜150rpm、より好ましくは、フラッシュミキサにおいてで数分間、急速撹拌する。そして、その後に、G−t=30,000〜120,000、より好ましくは、G−t=30,000〜90,000程度での条件で数分間、緩速撹拌するとよい。更に、撹拌を停止し、数時間静置して、凝集物を加圧浮上処理によって分離すれば、より清浄な処理水が得られる。このようにすることで、油分が1ppm以下、CODが10ppm以下、の処理水を安定して得ることができる。   Furthermore, in the present invention, after these flocculants are added to the raw water, the oil and organic matter in the raw water are sufficiently agglomerated, and then a purification treatment is performed by separating the agglomerates by pressure floating treatment. At that time, it is preferable to perform the treatment under the following conditions because the aggregation efficiency and the separation efficiency can be further improved. After adding the flocculant to the raw water, first, it is rapidly stirred in a paddle type stirrer at 80 to 150 rpm, more preferably in a flash mixer for several minutes. And after that, it is good to stir slowly for several minutes under the condition of Gt = 30,000 to 120,000, more preferably Gt = 30,000 to 90,000. Furthermore, if the stirring is stopped and the mixture is allowed to stand for several hours and the aggregate is separated by the pressure levitation treatment, cleaner treated water can be obtained. By doing in this way, the treated water whose oil content is 1 ppm or less and COD is 10 ppm or less can be obtained stably.

本発明においては、凝集物を加圧浮上処理によって固液分離するが、その場合に、原水加圧方式より処理水加圧方式が好ましい。具体的には、得られた処理水の20〜40%、好ましくは30%程度を処理槽に戻して加圧処理するように構成することが好ましい。本発明者らの検討によれば、このようにすることで、処理水を戻すことなく処理する原水加圧方式で加圧浮上処理した場合と比較して、処理水の油分濃度を格段に低減させることができる。   In the present invention, the agglomerates are subjected to solid-liquid separation by pressure levitation treatment. In that case, the treated water pressurization method is preferable to the raw water pressurization method. Specifically, it is preferable that 20 to 40%, preferably about 30% of the obtained treated water is returned to the treatment tank and pressurized. According to the study by the present inventors, in this way, the oil concentration of the treated water is significantly reduced compared to the case where the pressurized water flotation treatment is performed with the raw water pressurizing method that treats the treated water without returning it. Can be made.

以下、実施例及び比較例を挙げて本発明をより詳細に説明する。
<原水の調整>
冷間圧延工程から排出されたリンス洗浄排水に、酸化マグネシウムを含む被覆処理工程における表面処理排液を添加し、マグネシウム濃度が異なる9種類の排液を原水として調整した。この際、リンス洗浄排水には、pHが9.2、SSが28mg/L、油分が23mg/L、T−CODが18mg/Lの性状を有するものを使用した。表面処理排液には、pHが10.6、SSが260mg/L、油分が<0.5mg/L、T−CODが40mg/Lの性状を有するものを使用した。原水の調整は、容積基準の混合比率が、リンス洗浄排水100に対して添加する排水が5程度の割合となるように、上記の表面処理排液及びその希釈液を使用して行った。そして、得られた混合原水のマグネシウム濃度(×10-3mol/L)が、0、0.05、0.1、0.15、0.2、0.3、0.4、0.5及び0.6と9段階に異なる原水を調整した。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
<Raw water adjustment>
The surface treatment wastewater in the coating treatment step containing magnesium oxide was added to the rinse washing wastewater discharged from the cold rolling step, and nine types of wastewaters having different magnesium concentrations were prepared as raw water. At this time, the rinse washing waste water having a pH of 9.2, SS of 28 mg / L, oil of 23 mg / L, and T-COD of 18 mg / L was used. As the surface treatment waste liquid, one having properties of pH 10.6, SS 260 mg / L, oil content <0.5 mg / L, and T-COD 40 mg / L was used. The raw water was adjusted using the above-mentioned surface treatment waste liquid and its diluted solution so that the volume-based mixing ratio was about 5 for the waste water to be added to the rinse washing waste water 100. And the magnesium density | concentration (x10 < -3 > mol / L) of obtained mixed raw water is 0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5. And different raw water was adjusted in 0.6 and 9 stages.

<凝集試験>
上記で調整した各原水を使用して、ジャーテストを実施した。具体的には、ジャーテストには1Lのビーカーを使用し、それぞれの原水を820cm3ずつ入れ、アルミ系凝集剤であるPACを150mg/L、強アニオン系高分子凝集剤であるKEA−545を2mg/Lを注入し、凝集処理を行った。凝集処理は、100rpmで5分間の急速攪拌を行った後、50rpmで5分間の緩速攪拌をする条件で行った。処理後に、各処理水の油分を測定した。表1及び図1に、混合原水中のマグネシウム濃度と、処理水中の油分の測定結果の相関を示した。表1及び図1からわかるように、混合原水中におけるマグネシウム濃度が、0.05×10-3〜0.4×10-3mol/L、より好ましくは、0.1×10-3〜0.3×10-3mol/Lの範囲となるようにすることが、処理効率向上に有効であることを確認できた。なお、混合原水中におけるカルシウム濃度についても検討した結果、マグネシウムの場合と同様の効果があることを確認した。
<Aggregation test>
A jar test was performed using each raw water adjusted as described above. Specifically, a 1 L beaker is used for the jar test, 820 cm 3 of each raw water is added, 150 mg / L of PAC as an aluminum flocculant, and KEA-545 as a strong anionic polymer flocculant. 2 mg / L was injected and agglomeration was performed. The agglomeration treatment was carried out under conditions of rapid stirring at 100 rpm for 5 minutes and then slow stirring at 50 rpm for 5 minutes. After the treatment, the oil content of each treated water was measured. Table 1 and FIG. 1 show the correlation between the magnesium concentration in the mixed raw water and the measurement result of the oil content in the treated water. As can be seen from Table 1 and FIG. 1, the magnesium concentration in the mixed raw water is 0.05 × 10 −3 to 0.4 × 10 −3 mol / L, more preferably 0.1 × 10 −3 to 0. It was confirmed that the range of 3 × 10 −3 mol / L was effective in improving the processing efficiency. In addition, as a result of examining the calcium concentration in the mixed raw water, it was confirmed that there was the same effect as magnesium.

Figure 0005250486
Figure 0005250486

<凝集条件に関する試験>
次に、凝集試験で好ましい結果が得られたマグネシウム濃度が0.2×10-3mol/Lである混合原水を用い、凝集処理条件についての検討を行った。具体的には、撹拌機の回転数を変更して緩速撹拌の条件を変更した以外は先に述べたと同様にしてジャーテストを行った。テスト後、得られた処理水のCODを測定した結果、緩速撹拌の条件によって、処理水のCOD値が異なり、処理効率に有意差があることがわかった。すなわち、表2及び図2に示したように、G−t=30,000〜120,000、より好ましくは、G−t=30,000〜90,000の条件で数分間、緩速撹拌することが、凝集除去効率の向上に有効であることを確認した。
<Test on aggregation conditions>
Next, the mixed raw water having a magnesium concentration of 0.2 × 10 −3 mol / L, which gave a preferable result in the coagulation test, was examined for coagulation treatment conditions. Specifically, the jar test was performed in the same manner as described above except that the conditions of the slow stirring were changed by changing the number of revolutions of the stirrer. As a result of measuring the COD of the treated water obtained after the test, it was found that the COD value of the treated water was different depending on the conditions of slow stirring, and the treatment efficiency was significantly different. That is, as shown in Table 2 and FIG. 2, Gt = 30,000 to 120,000, and more preferably, the mixture is gently stirred for several minutes under the condition of Gt = 30,000 to 90,000. Has been confirmed to be effective in improving the aggregation removal efficiency.

Figure 0005250486
Figure 0005250486

<固液分離条件に関する試験>
凝集物を加圧浮上処理して固液分離する工程の条件について検討を行った。凝集剤を添加して撹拌処理した原水中の凝集物を加圧浮上処理する場合に、処理水の一部を再度処理槽に戻しながら固液分離した場合の効果について検証した。具体的には、処理水を戻すことなく原水中の凝集物を加圧浮上させる従来の方式(原水加圧方式)と、得られた処理水の30%を処理槽に戻しながら凝集物の加圧浮上処理を行う処理水加圧方式とを比較した。その際、加圧圧力を従来行われていると同様の5kg/cm2とした。この結果、処理性能においては、原水加圧方式による処理水中の油分濃度が3mg/Lであったのに対し、処理水加圧方式においては1mg/Lであり、その有効性が確認できた。
<Test on solid-liquid separation conditions>
The conditions of the step of subjecting the agglomerates to pressure-flotation and solid-liquid separation were examined. When agglomerates in raw water that had been agitated by adding a flocculant were subjected to pressure levitation treatment, the effect of solid-liquid separation while returning a part of the treated water to the treatment tank again was verified. Specifically, the conventional method (raw water pressurization method) in which the aggregate in the raw water is pressurized and floated without returning the treated water and the addition of the aggregate while returning 30% of the treated water to the treatment tank. A comparison was made with the treated water pressurization system that performs pressure levitation treatment. At that time, the pressurizing pressure was set to 5 kg / cm 2 , which is the same as conventionally performed. As a result, in the treatment performance, the oil concentration in the treated water by the raw water pressurization method was 3 mg / L, whereas in the treated water pressurization method, it was 1 mg / L, and its effectiveness could be confirmed.

<実排水についての確認試験>
(原水の調整)
容積基準で、冷間圧延工程から排出されたリンス洗浄排水100に、酸化マグネシウムを含む表面処理排液5を添加したものを混合原水とし、先に述べたと同様のビーカー試験を行った。日を変えて3回、各排水をサンプリングし、これらを混合して原水を調整し、得られた混合原水について試験を行った。これらの混合原水のマグネシウム濃度は、確実に、0.1×10-3〜0.3×10-3mol/Lの範囲内になる。
<Confirmation test for actual drainage>
(Raw water adjustment)
On the basis of volume, a beaker test similar to that described above was performed using the rinse-washed wastewater 100 discharged from the cold rolling process and the surface treatment wastewater 5 containing magnesium oxide as mixed raw water. The wastewater was sampled three times on different days, mixed to prepare raw water, and the obtained mixed raw water was tested. The magnesium concentration of these mixed raw waters is surely within the range of 0.1 × 10 −3 to 0.3 × 10 −3 mol / L.

(試験結果)
試験のつど排水の性状を調べたところ、リンス洗浄排水は、pHが8.8〜9.4、SSが13〜50mg/L、油分が15〜30mg/L、T−CODが15〜31mg/Lであった。また、表面処理排液は、pHが10.5〜10.8、SSが160〜410mg/L、油分はいずれも<0.5mg/L、T−CODが29〜67mg/Lであった。得られた処理水は、pHはいずれの回も7.0、SSはいずれの回も<1.5mg/Lであり、油分は、それぞれ、1回目が<0.5mg/L、2回目が0.6mg/L、3回目が0.5mg/Lであった。また、T−CODは、1回目が10mg/L、2回目が7.9mg/L、3回目が7.9mg/Lであった。比較のため、リンス洗浄排水のみを原水として同様の試験を行ったところ、pHは7.0、油分は、5.0mg/L、T−CODは、16.0mg/Lであった。これらのことは、排水の性状が変動する実排水においても、本発明の方法でリンス洗浄排水を処理すれば、リンス洗浄排水を原水としてそのまま処理した場合と比較して、明らかに処理水中の油分及びT−CODを低減でき、しかもその効果が安定して得られることを示している。
(Test results)
When the properties of the drainage water were examined each time, the rinse washing wastewater had a pH of 8.8 to 9.4, an SS of 13 to 50 mg / L, an oil content of 15 to 30 mg / L, and a T-COD of 15 to 31 mg / L. L. Further, the surface treatment drainage liquid had pH of 10.5 to 10.8, SS of 160 to 410 mg / L, oil content <0.5 mg / L, and T-COD of 29 to 67 mg / L. The resulting treated water has a pH of 7.0 at any time, SS is <1.5 mg / L at all times, and the oil content is <0.5 mg / L at the first time and at the second time, respectively. 0.6 mg / L and the third time were 0.5 mg / L. The T-COD was 10 mg / L for the first time, 7.9 mg / L for the second time, and 7.9 mg / L for the third time. For comparison, when the same test was performed using only rinse washing wastewater as raw water, the pH was 7.0, the oil content was 5.0 mg / L, and the T-COD was 16.0 mg / L. These facts indicate that even in actual wastewater whose drainage characteristics fluctuate, if the rinse-washed wastewater is treated by the method of the present invention, the oil content in the treated water is clearly compared with the case where the rinse-washed wastewater is treated as raw water. And T-COD can be reduced, and the effect can be obtained stably.

Claims (4)

鉄鋼製造業におけるアルカリ脱脂工程からのリンス洗浄排水を浄化処理する方法であって、処理する原水が、上記リンス洗浄排水に対して、該リンス洗浄排水とは別の、少なくとも酸化マグネシウムを含有する排水を添加混合して、原水中におけるマグネシウム濃度が、モル濃度基準で、0.05×10-3〜0.4×10-3mol/Lの範囲内になるように調整されたものであり、かつ、該原水に凝集剤を加えて撹拌後、凝集物を加圧浮上処理によって固液分離することを特徴とする鉄鋼製造排水の浄化処理方法。 A method for purifying process the rinsing waste water from the alkaline degreasing step in the steel manufacturing industry, raw water to be processed, with respect to the rinsing waste water, separate from the said rinsing waste water, containing at least magnesium oxide drainage was added and mixed, those magnesium concentration in the raw water, on a molar basis, was adjusted to 0.05 × 10 -3 ~0.4 × range of 10 -3 mol / L A method for purifying steelmaking wastewater, comprising: adding a flocculant to the raw water and stirring the mixture, followed by solid-liquid separation of the agglomerates by pressure flotation. 前記撹拌を、急速な撹拌後に、G−t=30,000〜120,000の緩慢な速度で行う請求項1に記載の鉄鋼製造排水の浄化処理方法。   The method for purifying steelmaking wastewater according to claim 1, wherein the stirring is performed at a slow speed of Gt = 30,000 to 120,000 after rapid stirring. 前記凝集物を加圧浮上処理する際に、処理した処理水の20〜40%を処理槽の入口に戻しながら行う請求項1又は2に記載の鉄鋼製造排水の浄化処理方法。   The method for purifying steelmaking wastewater according to claim 1 or 2, wherein when the agglomerates are subjected to pressure levitation treatment, 20 to 40% of the treated water is returned to the inlet of the treatment tank. 酸化マグネシウムを含有する排水が、鉄鋼の製造工程から排出される表面処理排水、洗浄酸性排水、又は、洗浄酸性排水を中和処理することにより排出される中和排水の少なくともいずれかを含む請求項1〜3のいずれか1項に記載の鉄鋼製造排水の浄化処理方法。 Wastewater containing magnesium oxide is surface treated waste water discharged from the iron and steel manufacturing process, cleaning acid waste water, or, according to at least one of neutralizing wastewater discharged by neutralizing the washing acid waste water Item 4. A method for purifying steel manufacturing wastewater according to any one of Items 1 to 3.
JP2009132086A 2009-06-01 2009-06-01 Purification process for steel manufacturing wastewater Active JP5250486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009132086A JP5250486B2 (en) 2009-06-01 2009-06-01 Purification process for steel manufacturing wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009132086A JP5250486B2 (en) 2009-06-01 2009-06-01 Purification process for steel manufacturing wastewater

Publications (2)

Publication Number Publication Date
JP2010274244A JP2010274244A (en) 2010-12-09
JP5250486B2 true JP5250486B2 (en) 2013-07-31

Family

ID=43421694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009132086A Active JP5250486B2 (en) 2009-06-01 2009-06-01 Purification process for steel manufacturing wastewater

Country Status (1)

Country Link
JP (1) JP5250486B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5644490B2 (en) * 2010-12-28 2014-12-24 Jfeスチール株式会社 Water treatment method for steel rolling wastewater
JP5644491B2 (en) * 2010-12-28 2014-12-24 Jfeスチール株式会社 Water treatment system for steel rolling wastewater
CN102786124A (en) * 2011-05-20 2012-11-21 上海丰信环保科技有限公司 Method for treating machine oil substance in waste water

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52131983A (en) * 1976-04-28 1977-11-05 Souichi Nagahara Utilization of aciddrinsing waste lye as aggregating agent
JPS57194010A (en) * 1981-05-27 1982-11-29 Agency Of Ind Science & Technol Regenerating method and material for waste liquid of alkali degreasing
JPS60106982A (en) * 1983-11-12 1985-06-12 Kawasaki Steel Corp Treatment of waste solution after pickling iron and steel
JPS6171883A (en) * 1984-09-13 1986-04-12 Kawasaki Steel Corp Treatment of alkaline waste solution
JP3303332B2 (en) * 1992-06-08 2002-07-22 栗田工業株式会社 Treatment method for wastewater containing heavy metals
JPH0780209A (en) * 1993-09-13 1995-03-28 Kawasaki Steel Corp Treatment of plural lots of waste water
JPH10192871A (en) * 1997-01-13 1998-07-28 Tetsugen:Kk Method for treating heavy metal-containing wastewater
JPH10277564A (en) * 1997-04-04 1998-10-20 Tetsugen:Kk Method for treating waste liquid
JP2000263086A (en) * 1999-03-18 2000-09-26 Kawasaki Steel Corp Waste water treatment apparatus
JP2000301160A (en) * 1999-04-16 2000-10-31 Tetsugen Corp Method for treating oil-containing wastewater containing surfactant
JP2001170653A (en) * 1999-12-14 2001-06-26 Kawasaki Steel Corp Treating method of alkali degreasing waste water
JP2002081000A (en) * 2000-09-11 2002-03-22 Suirei:Kk Method of utilizing water in surface treatment, such as plating treatment
JP2002129398A (en) * 2000-10-23 2002-05-09 Suirei:Kk Recycling system of waste water from surface treatment process such as plating
JP4337787B2 (en) * 2005-08-04 2009-09-30 栗田工業株式会社 Wastewater treatment method and treatment apparatus
JP4662059B2 (en) * 2006-03-20 2011-03-30 新日本製鐵株式会社 Purification process for steel manufacturing wastewater
JP2008183526A (en) * 2007-01-31 2008-08-14 Jfe Steel Kk Method for treating acid waste liquid and alkali waste liquid
JP4947640B2 (en) * 2007-01-31 2012-06-06 日新製鋼株式会社 Waste acid solution treatment method
JP4632372B2 (en) * 2007-03-23 2011-02-16 新日本製鐵株式会社 Treatment method of waste water from hot-dip galvanized steel sheet manufacturing equipment

Also Published As

Publication number Publication date
JP2010274244A (en) 2010-12-09

Similar Documents

Publication Publication Date Title
JP7166795B2 (en) Method for treating wastewater containing COD components
JP4981726B2 (en) Aggregation-membrane filtration method
JP4662059B2 (en) Purification process for steel manufacturing wastewater
JP2007209886A (en) Fluorine removing agent, and method and apparatus for treating drain containing fluorine using the agent
JP2011131166A (en) Method for flocculating waste water
JP5250486B2 (en) Purification process for steel manufacturing wastewater
JP2845495B2 (en) Treatment method for low concentration turbid water
JP2002001356A (en) Method and apparatus for treating service water
KR101088148B1 (en) Electrical neutralization of colloidal particles with speed control how water
JP2017159194A (en) Treatment equipment and treatment method for heavy metal-containing water
CN115259573A (en) Treatment method of high-sulfate organic wastewater in petroleum refining industry
JP5218082B2 (en) Method and apparatus for coagulating sedimentation of low organic matter concentration wastewater
JP5951984B2 (en) Biological treatment method of organic wastewater
JP5693992B2 (en) Method for recovering dissolved iron from wastewater containing various metal ions
JP2007260556A (en) Phosphoric acid-containing wastewater treatment method and apparatus
EP3447030B1 (en) Process of treatment of agroindustrial waste water by reaction of acidification with addition of strong acids
JP2010279877A (en) Method for treating emulsion type wastewater
JP4631420B2 (en) Fluorine-containing water treatment method
WO2007029967A1 (en) Method of purifying water comprising coagulation using excess poly aluminum hydroxy chloro sulfate
JP4828152B2 (en) Sewage treatment method
CN114573088B (en) Method for treating wastewater by using iron-tannic acid through synchronous oxidation/coagulation and application
CN111087081B (en) Wastewater treatment method and application thereof
JPS6257400B2 (en)
JP3225266B2 (en) Algae-containing water treatment method
JP4752351B2 (en) Method and apparatus for treating fluorine-containing water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

R150 Certificate of patent or registration of utility model

Ref document number: 5250486

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250