JP7166795B2 - Method for treating wastewater containing COD components - Google Patents

Method for treating wastewater containing COD components Download PDF

Info

Publication number
JP7166795B2
JP7166795B2 JP2018112626A JP2018112626A JP7166795B2 JP 7166795 B2 JP7166795 B2 JP 7166795B2 JP 2018112626 A JP2018112626 A JP 2018112626A JP 2018112626 A JP2018112626 A JP 2018112626A JP 7166795 B2 JP7166795 B2 JP 7166795B2
Authority
JP
Japan
Prior art keywords
treatment
activated carbon
amount
water
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018112626A
Other languages
Japanese (ja)
Other versions
JP2019214020A (en
Inventor
宏拓 竹内
さゆり 豊田
大樹 原田
吉博 岡本
慎吾 盛一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Eco Tech Corp
Original Assignee
Nippon Steel Eco Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Eco Tech Corp filed Critical Nippon Steel Eco Tech Corp
Priority to JP2018112626A priority Critical patent/JP7166795B2/en
Publication of JP2019214020A publication Critical patent/JP2019214020A/en
Application granted granted Critical
Publication of JP7166795B2 publication Critical patent/JP7166795B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明は、COD値(化学的酸素要求量)で示されるCOD成分を含む廃水の処理方法に関し、詳しくは、従来技術で処理水中のCOD値低減のために必要とされてきた、活性炭による吸着工程を不要にすることができる簡便な方法で、処理に使用する活性炭の量を大きく低減できるにもかかわらず、最終的な処理水のCOD値の低減が達成できるCOD成分を含む廃水の処理方法に関する。 The present invention relates to a method for treating wastewater containing COD components indicated by a COD value (chemical oxygen demand), and more specifically, adsorption by activated carbon, which has been required in the prior art to reduce the COD value in treated water. A method for treating wastewater containing COD components that can achieve a reduction in the COD value of the final treated water in spite of the fact that the amount of activated carbon used in the treatment can be greatly reduced by a simple method that can eliminate processes. Regarding.

例えば、鉄鋼製造業では、圧延油を用いる圧延工程等から、油分及び難分解性有機物を含有する廃水が大量に発生しており、その浄化処理を行う必要がある。難分解性有機物などの汚濁物質を含むCOD成分を含む廃水を処理する際に、一般的に行われている従来の手法としては、被処理水に対し、最初に、凝集剤によるSS(懸濁物質)処理を行った後、酸化分解工程で、難分解性有機物の酸化分解を行い、さらに、最終工程で、活性炭吸着(活性炭吸着塔を使用)処理することが挙げられる。そして、難分解性有機物の分解効率を高める方法として、例えば、過酸化水素のような酸素系酸化剤と、鉄イオン等を生じる金属触媒とを用いて化学酸化処理を行う方法や(例えば、特許文献1参照)や、強力な酸化力をもつオゾンを利用する方法(例えば、特許文献2等参照)、といった促進酸化が行われており、有用な方法として広く行われている。 For example, in the steel manufacturing industry, a large amount of wastewater containing oil and persistent organic matter is generated from rolling processes using rolling oil, and it is necessary to purify the wastewater. When treating wastewater containing COD components that contain contaminants such as persistent organic matter, the conventional method generally used is to first coagulate the water to be treated with SS (suspended Substances) treatment, followed by oxidative decomposition of persistent organic matter in the oxidative decomposition step, and then activated carbon adsorption (using an activated carbon adsorption tower) in the final step. As a method for increasing the decomposition efficiency of persistent organic matter, for example, a method of chemical oxidation treatment using an oxygen-based oxidant such as hydrogen peroxide and a metal catalyst that produces iron ions, etc. (for example, patent Accelerated oxidation, such as a method using ozone having a strong oxidizing power (see, for example, Patent Document 2), is widely used as a useful method.

上記したような従来の処理手法では、酸化分解処理後に、さらに活性炭吸着を行うことが一般的である。その理由は、凝集処理と、その後の酸化分解だけでは、処理水中のCOD値を目的とする値まで下げることができないことによる。近年、従来にもまして環境保護の重視性が認識されるようになり、排出規制もより強化されたものとなっており、現在の処理水放流基準値は、従来のCOD<20~30mg/Lから、COD<10mg/Lと変更されて非常に厳しい値が要求されており、活性炭吸着による最終処理は重要性を増している。 In the conventional treatment method as described above, it is common to further perform activated carbon adsorption after the oxidative decomposition treatment. The reason for this is that the COD value in the treated water cannot be lowered to the target value only by the flocculation treatment and the subsequent oxidative decomposition. In recent years, the importance of environmental protection has been recognized more than ever before, and emission regulations have become more stringent. Therefore, COD < 10 mg/L is required, and a very strict value is required, and the importance of final treatment by activated carbon adsorption is increasing.

特許文献3には、上記した汎用されているCOD成分を含む廃水処理とは構成が異なる、油分、COD成分及び窒素成分を含有するCOD排水中の懸濁質を凝集沈殿させる際に、凝集沈殿槽内において、排水に粉末活性炭を0.1%~10%(対排水)添加して吸着処理した後、活性二酸化ケイ素及びアルミナを主成分とする無機粉粒体からなる無機系粉末凝集剤を50ppm~10,000ppm(対排水)添加して、油分、COD成分及び窒素成分を一括同時に処理する方法が提案されている。この技術では、上記凝集処理後の上澄水に、高分子凝集剤による凝集処理や、膜による透水処理を施す必要がないとしている。 In Patent Document 3, when coagulating and sedimenting suspended solids in COD wastewater containing oil, COD components, and nitrogen components, which has a different configuration from the widely used wastewater treatment containing COD components, coagulation sedimentation is performed. In the tank, 0.1% to 10% (relative to the wastewater) of powdered activated carbon is added to the wastewater for adsorption treatment, and then an inorganic powder flocculant composed of inorganic granules mainly composed of activated silicon dioxide and alumina is added. A method has been proposed in which 50 ppm to 10,000 ppm (relative to waste water) is added to simultaneously treat oil, COD components and nitrogen components. According to this technique, it is not necessary to subject the supernatant water after the flocculation treatment to a flocculation treatment using a polymer flocculant or a water permeation treatment using a membrane.

特許第4662059号公報Japanese Patent No. 4662059 特開2001-321787号公報Japanese Patent Application Laid-Open No. 2001-321787 特許第4169614号公報Japanese Patent No. 4169614

本発明者らは、COD成分を含む廃水の処理に対する上記した技術状況に対し、より経済的な処理を可能にすることを目的として、簡便に、より処理効率を高めることについて鋭意検討を行った。ここで、上記した、COD成分を含む廃水の従来の処理技術で汎用されている凝集処理→促進酸化処理→活性炭による吸着処理の順で処理を行う方法では、活性炭によるCOD処理率が低いことから、その前段で行う酸化処理工程で除去すべきCODが大きくなる(負荷が高い)という課題があり、より効率のよい酸化処理が求められている。この点に対し、例えば、過酸化水素と鉄とを用いて、強力な酸化作用を持つOHラジカルを発生させる方法(フェントン法)や、強力な酸化力をもつオゾンを利用するオゾン酸化方法などの促進酸化方法が提案されている。しかし、いずれの方法の場合も、処理水中のCOD値を、厳しい放流基準を満足したものになるようにするためには、活性炭吸着による最終処理が必要になっている。発明者らは、検討する過程で、上記した、凝集処理→促進酸化処理→活性炭による吸着処理の順で処理を行う方法では、活性炭による吸着効率が悪いため、活性炭の使用量が多く、この点を改善できなければ、ランニングコストを縮小し、より効率のよい経済的な処理方法の確立は難しいとの認識をもった。 The inventors of the present invention have made intensive studies on improving the efficiency of treatment in a simple manner with the aim of enabling more economical treatment in view of the above-described technical state of the treatment of wastewater containing COD components. . Here, in the method of performing treatment in the order of coagulation treatment → accelerated oxidation treatment → adsorption treatment with activated carbon, which is widely used in the conventional treatment technology of wastewater containing COD components, the COD treatment rate with activated carbon is low. However, there is a problem that the amount of COD to be removed in the preceding oxidation treatment step increases (the load is high), and a more efficient oxidation treatment is required. In this respect, for example, hydrogen peroxide and iron are used to generate OH radicals with a strong oxidizing action (Fenton method), and ozone oxidation methods using ozone with a strong oxidizing power. An accelerated oxidation method has been proposed. However, in any method, final treatment by activated carbon adsorption is required in order to make the COD value in the treated water satisfy the strict discharge standards. In the course of the study, the inventors found that in the above-described method in which the processes are performed in the order of coagulation treatment → accelerated oxidation treatment → adsorption treatment with activated carbon, the adsorption efficiency with activated carbon is poor, so the amount of activated carbon used is large. We realized that if we could not improve this, it would be difficult to reduce running costs and establish a more efficient and economical treatment method.

また、先に挙げた特許文献3の、凝集沈殿槽内の排水に、粉末活性炭を添加して吸着処理後、特有の無機凝集剤で処理する構成としたことで、油分、COD成分及び窒素成分が吸着された粉末活性炭が、特有の無機凝集剤と凝集沈殿して凝集沈殿汚泥となり、一括同時に処理できるとした従来技術では、処理の初期段階で、吸着効率が悪い活性炭を吸着剤として使用する技術であるため、当然に大量の活性炭が必要となる。このことは、活性炭は、比較的高価であるため、上澄水に対して高分子凝集剤による処理を不要にできるとした点を考慮したとしても、廃水処理の実用化において重要な問題であるランニングコストの低減を達成できるものになっていない。さらに、その後に特有の無機凝集剤と凝集沈殿した際における凝集沈殿汚泥に含まれる大量の活性炭は、油分、COD成分及び窒素成分が吸着したものであるため、その再利用が望めないものになる。 In addition, in Patent Document 3 mentioned above, powdered activated carbon is added to the waste water in the coagulation sedimentation tank, and after adsorption treatment, it is treated with a unique inorganic coagulant, so that oil, COD components, and nitrogen components The powdered activated carbon that has been adsorbed coagulates and sediments with a unique inorganic coagulant to form coagulated sedimentation sludge, which can be treated all at once. Since it is a technology, it naturally requires a large amount of activated carbon. Since activated carbon is relatively expensive, even if it is possible to eliminate the need to treat the supernatant water with a polymer flocculant, this is an important problem in the practical use of wastewater treatment. It is not possible to achieve cost reduction. Furthermore, a large amount of activated carbon contained in the coagulated sedimentation sludge after coagulation and sedimentation with a unique inorganic coagulant adsorbs oil, COD components, and nitrogen components, so it cannot be reused. .

したがって、本発明の目的は、鉄鋼製造業等における大量のCOD成分を含む工業廃水の浄化処理技術として汎用されている、凝集処理→促進酸化処理→活性炭による吸着処理の工程を順次行う、COD成分を含む廃水の一般的な処理方法の改良に関し、促進酸化による酸化工程で、より効率的にCODを分解することが可能になり、浄化処理後の処理水に求められているCOD<20~30mg/L、さらにはCOD<10mg/Lとすることが容易にでき、しかも、最終的な活性炭による吸着処理を不要にすることが可能な、処理に要する活性炭の使用量を大幅に削減できる経済性にも優れるCOD成分を含む廃水の処理方法を実現することにある。 Therefore, the object of the present invention is to sequentially perform the processes of coagulation treatment → accelerated oxidation treatment → adsorption treatment with activated carbon, which is widely used as a purification treatment technology for industrial wastewater containing a large amount of COD components in the steel manufacturing industry. Regarding the improvement of the general treatment method of wastewater containing /L, and even COD < 10 mg/L, and furthermore, it is possible to eliminate the need for the final adsorption treatment with activated carbon. Another object of the present invention is to realize a method for treating waste water containing COD components, which is excellent in terms of

上記の目的は、下記の本発明によって達成される。すなわち、本発明は、下記のCOD成分を含む廃水の処理方法を提供する。
[1]酸化処理工程後の活性炭による吸着工程を不要にできるCOD成分を含む廃水の処理方法であって、酸化処理工程に先立って行う凝集剤による凝集処理工程で、被処理水に無機凝集剤を添加して処理した後に、さらに被処理水に有機凝集剤を添加して処理し、かつ、前記無機凝集剤を添加する際に活性炭を添加して無機凝集剤と活性炭とを共存させて処理することを特徴とするCOD成分を含む廃水の処理方法。
The above objects are achieved by the present invention described below. That is, the present invention provides the following method for treating wastewater containing COD components.
[1] A method for treating wastewater containing COD components that can eliminate the need for an adsorption step with activated carbon after an oxidation treatment step, wherein in the coagulation treatment step with a coagulant performed prior to the oxidation treatment step, an inorganic coagulant is added to the water to be treated After adding and treating, the water to be treated is further treated by adding an organic flocculant, and when adding the inorganic flocculant, activated carbon is added to allow the inorganic flocculant and activated carbon to coexist. A method of treating wastewater containing COD components, characterized by:

上記した本発明のCOD成分を含む廃水の処理方法の好ましい形態としては、下記の発明が挙げられる。
[2]前記無機凝集剤が、硫酸アルミニウム、ポリ塩化アルミニウム及び塩化アルミニウムを含むアルミ系凝集剤、及び/又は、硫酸第二鉄、塩化第二鉄及びポリ硫酸鉄を含む鉄系凝集剤からなる群から選択される少なくともいずれかであること;
[3]前記活性炭が、平均粒径が200μm以下で、比表面積が800~2000m2/gの粉末であり、該粉末を水に分散させて添加すること;
[4]前記酸化処理工程での処理が、酸素系酸化剤と金属触媒とで生じるヒドロキシラジカルを利用した酸化促進処理であって、かつ、前記酸素系酸化剤の使用量に対する前記活性炭添加量の比が、0.5~20であること;
[5]前記酸化処理工程での処理が、オゾンを利用した酸化促進処理であること;
[6]前記酸化処理工程での処理の後、さらに、被処理水に有機凝集剤を添加して凝集処理すること;
[7]前記活性炭の添加量が、COD成分に対して、1~10倍であること;が挙げられる。
Preferred embodiments of the method for treating wastewater containing COD components according to the present invention include the following inventions.
[2] The inorganic flocculant is an aluminum flocculant containing aluminum sulfate, polyaluminum chloride and aluminum chloride, and/or an iron flocculant containing ferric sulfate, ferric chloride and polyferric sulfate. being at least one selected from the group;
[3] The activated carbon is a powder having an average particle size of 200 μm or less and a specific surface area of 800 to 2000 m 2 /g, and the powder is dispersed in water and added;
[4] The treatment in the oxidation treatment step is an oxidation promotion treatment using hydroxyl radicals generated by an oxygen-based oxidant and a metal catalyst, and the amount of the activated carbon added to the amount of the oxygen-based oxidant used is the ratio is between 0.5 and 20;
[5] The treatment in the oxidation treatment step is oxidation promotion treatment using ozone;
[6] After the treatment in the oxidation treatment step, adding an organic flocculant to the water to be treated for flocculation;
[7] The amount of the activated carbon to be added is 1 to 10 times the COD component.

本発明によれば、最終的な活性炭による吸着処理を不要にすることができ、活性炭の使用量を大幅に削減でき、しかも、促進酸化による酸化工程で、より効率的にCODを除去することが可能になる、経済性に優れる工業上有用な、COD成分を含む廃水の処理方法が実現できる。また、本発明の好ましい形態によれば、より効果的な酸化処理と、処理によって発生する凝集沈殿物の量の低減を両立した、工業上有用な、COD成分を含む廃水の処理方法が実現できる。 According to the present invention, the final adsorption treatment with activated carbon can be made unnecessary, the amount of activated carbon used can be greatly reduced, and COD can be removed more efficiently in the oxidation step by accelerated oxidation. Thus, an economical and industrially useful method for treating wastewater containing COD components can be realized. In addition, according to a preferred embodiment of the present invention, it is possible to realize an industrially useful method for treating wastewater containing COD components that achieves both a more effective oxidation treatment and a reduction in the amount of flocculated sediment generated by the treatment. .

本発明の、COD成分を含む廃水の処理方法の一例を説明するための処理フローの概略図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of a treatment flow for explaining an example of a method for treating wastewater containing COD components according to the present invention; 本発明の実施例2~8と、比較例3、4の処理方法で発生したスラッジ(SS)量と、使用した酸化剤の使用量に対する活性炭の添加量の比の関係を示すグラフである。4 is a graph showing the relationship between the amount of sludge (SS) generated in the treatment methods of Examples 2 to 8 of the present invention and Comparative Examples 3 and 4, and the ratio of the amount of activated carbon added to the amount of oxidizing agent used. 図2の横軸の値を対数で表示した、スラッジ(SS)の発生量と、使用した酸化剤の使用量に対する活性炭の添加量の比の関係を示すグラフである。FIG. 3 is a graph showing the relationship between the amount of sludge (SS) generated and the ratio of the amount of activated carbon added to the amount of oxidizing agent used, in which the value on the horizontal axis of FIG. 2 is expressed in logarithm. 従来技術の、COD成分を含む廃水の処理方法の一例を説明するための処理フローの概略図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of a treatment flow for explaining an example of a conventional method for treating wastewater containing COD components.

以下、本発明の好ましい実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではない。
本発明のCOD成分を含む廃水の処理方法は、図1に示したように、その基本フローは、図4に示した従来技術と同様に、凝集剤による凝集処理工程後に、促進酸化処理等の酸化処理を行ってCOD成分を分解するが、図4に示した従来の処理フローで必須としていた最終の活性炭吸着工程を不要にできるという顕著な効果を奏する。
Preferred embodiments of the present invention will be described below, but the present invention is not limited to the following embodiments.
As shown in FIG. 1, the method for treating wastewater containing COD components according to the present invention has a basic flow similar to that of the prior art shown in FIG. The oxidation treatment is performed to decompose the COD components, and there is a remarkable effect that the final activated carbon adsorption step, which is essential in the conventional treatment flow shown in FIG. 4, can be eliminated.

本発明者らは、先述したように、COD成分を含む廃水の処理に対し、より経済的な処理を可能にすることを目的として、より処理効率を高めることができる簡便な方法を見出すべく鋭意検討を行った。その過程で、酸化処理工程に先立って行う、無機凝集剤による処理の後に続けて、有機凝集剤による処理を行う凝集処理工程で、被処理水であるCOD成分を含む廃水に、最初に無機凝集剤を添加して処理する際に、活性炭を添加して無機凝集剤と活性炭とを共存させて処理する、という極めて簡便な構成としたことで、驚くことに、その後の酸化処理の効率が従来法に比べて格段に向上し、その結果、従来の方法で最終工程として設けていた活性剤による吸着工程が不要になるという、工業上、極めて有用な効果の実現が可能になり、より経済的で効率のよい処理が達成できることを見出した。 As described above, the present inventors are keen to find a simple method that can increase the treatment efficiency for the purpose of enabling more economical treatment of wastewater containing COD components. Study was carried out. In the process, in the coagulation treatment step in which the treatment with the inorganic coagulant is performed prior to the oxidation treatment step, followed by the treatment with the organic coagulant, the wastewater containing the COD component, which is the water to be treated, is first subjected to inorganic coagulation. When the agent is added and treated, activated carbon is added and the inorganic flocculant and activated carbon are allowed to coexist for treatment. As a result, it is possible to realize an extremely useful effect from an industrial point of view, which eliminates the need for an adsorption step with an activator, which was provided as the final step in the conventional method, and is more economical. It was found that efficient treatment can be achieved by

先に従来技術として挙げた特許文献3にあるように、活性炭は、廃水中の油分、COD成分及び窒素成分を吸着する。特許文献3に記載の技術では、まず、活性炭に、廃水中の油分、COD成分及び窒素成分を吸着させた後、この油分やCOD成分等を吸着させた活性炭を、特定の無機凝集剤で凝集させている。すなわち、特許文献3の技術は、活性炭のもつ、油分、COD成分及び窒素成分に対する吸着能を十分に発揮させた後に、特定の無機凝集剤を添加することで、排水中の、スラッジ等の油分と、COD成分と、窒素成分とを同時に処理でき、活性炭の凝集性、凝集した活性炭の沈降性が非常に良好になるとしている。これに対し、本発明者らは、凝集工程で、最初に無機凝集剤を添加して処理する際に、活性炭を添加して無機凝集剤と活性炭とを共存させて処理すると、驚くべきことに、次に行う酸化分解処理の効率が格段に向上することを見出して本発明を達成した。 As described in Patent Document 3 cited above as prior art, activated carbon adsorbs oil, COD components and nitrogen components in wastewater. In the technique described in Patent Document 3, first, activated carbon adsorbs oil, COD components, and nitrogen components in wastewater, and then the activated carbon adsorbed with the oil and COD components is aggregated with a specific inorganic flocculant. I am letting That is, the technique of Patent Document 3 is to fully exhibit the adsorption ability of activated carbon for oil, COD components, and nitrogen components, and then add a specific inorganic flocculant to remove oil such as sludge in wastewater. With this, the COD component and the nitrogen component can be treated at the same time, and the flocculation property of the activated carbon and the sedimentation property of the flocculated activated carbon are very good. On the other hand, the present inventors found that when the inorganic flocculant is first added and treated in the flocculation step, activated carbon is added to allow the inorganic flocculant and activated carbon to coexist. The present invention has been achieved by discovering that the efficiency of the subsequent oxidative decomposition treatment is remarkably improved.

本発明者らは、上記した顕著な効果が得られた理由について下記のように考えている。例えば、鉄鋼製造業において大量に生じる、圧延油を用いる圧延工程等からの廃水は、油分及び難分解性有機物(COD)などの種々の汚濁物質を含有する。廃水中のこれらの汚濁物質には、様々な分子量の有機物等の成分が併存していると考えられる。一般に、活性炭への吸着性能は、その分子量に依存し、分子量が大きい有機物ほど吸着しやすい。逆に言えば、分子量が小さい有機物は、分子量が大きい有機物に比べ活性炭への吸着性に劣る。これらのことから、本発明者らは、本発明の処理方法で、前記した顕著な効果が得られた理由について、以下のように推論している。 The inventors of the present invention consider the reason why the above-described remarkable effects are obtained as follows. For example, waste water from rolling processes using rolling oil, which is produced in large amounts in the steel manufacturing industry, contains various contaminants such as oil and persistent organic matter (COD). These contaminants in the wastewater are considered to coexist with components such as organic matter having various molecular weights. In general, the adsorption performance to activated carbon depends on its molecular weight, and the larger the molecular weight of an organic substance, the easier it is to adsorb. Conversely, an organic substance with a small molecular weight is less adsorbable to activated carbon than an organic substance with a large molecular weight. From these facts, the present inventors speculate as follows about the reason why the above-described remarkable effects are obtained in the processing method of the present invention.

酸化分解工程の後に活性炭による吸着工程が設けられた既存のCOD処理方式では、酸化工程によって分子量の大きな有機物が分解されて小さな分子量の成分となるので、活性炭への吸着性能が下がる。このため、活性炭吸着工程における活性炭の必要量が大きくなり、また、活性炭吸着工程でのCOD負荷を下げるためには、酸化工程での酸化剤使用量が多くなる。これに対し、本発明の処理方法では、酸化工程での酸化によってCOD成分の吸着性能が下がる前に活性炭での吸着が行われるため、活性炭による吸着効率が高くなり、活性炭の量を削減することができる。また、活性炭による吸着除去量の向上に伴い、酸化工程における酸化剤の使用量を低減することができる。本発明の処理方法で、既存のCOD処理方式で必須としている酸化工程後の活性炭吸着工程が不要とできた理由は、上記効果が奏合して実現できたものと考えられる。すなわち、酸化工程の前段の凝集工程で活性炭を添加して活性炭吸着を行うことにより、難分解性CODが効率よく吸着除去されるため、その後に行う酸化工程での酸化剤による酸化効率も向上し、上記優れた効果が実現できたものと考えられる。 In the existing COD treatment method in which an adsorption step with activated carbon is provided after the oxidative decomposition step, the oxidation step decomposes organic substances with large molecular weights into components with small molecular weights, so the adsorption performance to activated carbon is lowered. Therefore, the amount of activated carbon required in the activated carbon adsorption step increases, and the amount of oxidizing agent used in the oxidation step increases in order to reduce the COD load in the activated carbon adsorption step. On the other hand, in the treatment method of the present invention, adsorption by activated carbon is performed before the adsorption performance of the COD components is lowered by oxidation in the oxidation step, so the adsorption efficiency by activated carbon is increased, and the amount of activated carbon can be reduced. can be done. In addition, the amount of oxidizing agent used in the oxidation step can be reduced as the amount of adsorption and removal by activated carbon is improved. The reason why the treatment method of the present invention does not require the activated carbon adsorption step after the oxidation step, which is essential in the existing COD treatment method, is considered to be realized by the combination of the above effects. That is, by adding activated carbon in the coagulation step preceding the oxidation step and performing activated carbon adsorption, persistent COD is efficiently adsorbed and removed, so that the oxidation efficiency by the oxidizing agent in the subsequent oxidation step is also improved. , it is considered that the above excellent effects could be realized.

次に、本発明のCOD成分を含む廃水の処理方法を構成する処理対象や、使用する薬剤や、処理条件などについて説明する。本発明の方法は、先に従来技術として提示した特許文献1に記載の発明と同様に、例えば、鉄鋼製造業の圧延工程におけるアルカリ排水中の油分及びCODを良好な状態に処理する方法に適用でき、より効果的な処理を可能とするものである。すなわち、本発明の処理方法は、特許文献1に記載の発明と同様に、浄化処理後の処理水に求められている、COD<20~30mg/L、さらには、COD<10mg/Lを達成することが可能であり、特許文献1に記載の発明と比較して、特に、活性炭吸着による最終的な処理を不要にできるので、浄化処理に用いる活性炭の使用量を格段に低減でき、また、酸化分解処理の効率を向上させることができるので、酸化分解に用いる薬剤の使用量を低減できるという効果も得られ、より経済的で効率のよい処理が可能になる。 Next, the objects to be treated, chemicals to be used, treatment conditions, etc., which constitute the method for treating wastewater containing COD components of the present invention, will be described. The method of the present invention is applied, for example, to a method of treating oil and COD in alkaline wastewater in the rolling process of the steel manufacturing industry in a good state, similar to the invention described in Patent Document 1 presented as prior art. This allows for more effective processing. That is, the treatment method of the present invention, like the invention described in Patent Document 1, achieves COD < 20 to 30 mg / L, and further COD < 10 mg / L, which is required for treated water after purification treatment. Compared to the invention described in Patent Document 1, in particular, the final treatment by activated carbon adsorption can be eliminated, so the amount of activated carbon used for purification treatment can be significantly reduced. Since the efficiency of the oxidative decomposition treatment can be improved, the effect of reducing the amount of chemicals used for oxidative decomposition can be obtained, and more economical and efficient treatment can be achieved.

〔被処理水〕
本発明の処理方法は、COD成分を含む各種の廃水にいずれも適用できる。例えば、全CODとして20~1500mg/L、溶解性CODとして20~1000mg/Lである廃水の浄化処理に適用した場合に、より大きな効果が得られる。このような性状を示す被処理水としては、下記に挙げるような各種の廃水等が挙げられる。具体的には、例えば、埋立場浸出汚水、天然ガス精製廃水、し尿生物処理水、家畜糞尿含有水、屠殺場排水、パルプ製造廃水、コーヒー・お茶等飲料製造廃水、製糖廃水、醤油・味噌製造等醸造廃水、廃糖蜜(グルタミン酸製造、イースト製造、その他発酵微生物産生品製造等)廃水、石油精製廃水、石炭化学廃水、コークス炉ガス凝縮水(安水)、石油化学廃水、熱分解工程廃水、塩析廃液、蒸留釜残廃液、無電解メッキ廃水、水溶性研磨・圧延油廃水、金属表面処理脱脂廃水(精密機械加工から鉄鋼・自動車製造まで)、写真現像排水、フォトレジスト排水、油脂化学・界面活性剤製造廃水等が挙げられる。
[Water to be treated]
The treatment method of the present invention can be applied to any of various wastewaters containing COD components. For example, a greater effect can be obtained when applied to purification treatment of wastewater with a total COD of 20 to 1500 mg/L and a soluble COD of 20 to 1000 mg/L. Examples of the water to be treated exhibiting such properties include various types of wastewater, such as those listed below. Specifically, for example, landfill wastewater, natural gas processing wastewater, night soil biologically treated water, livestock manure-containing water, slaughterhouse wastewater, pulp manufacturing wastewater, beverage manufacturing wastewater such as coffee and tea, sugar manufacturing wastewater, soy sauce and miso manufacturing Brewery wastewater, waste molasses (glutamic acid production, yeast production, production of other fermented microbial products, etc.) wastewater, petroleum refining wastewater, coal chemical wastewater, coke oven gas condensate (ammonia water), petrochemical wastewater, pyrolysis process wastewater, Salting-out waste, distillation still residue, electroless plating waste, water-soluble polishing/rolling oil waste, metal surface treatment degreasing waste (from precision machining to steel and automobile manufacturing), photo development waste, photoresist waste, oleochemistry/ Surfactant production wastewater and the like can be mentioned.

〔凝集処理工程〕
本発明の処理方法では、酸化処理工程に先立って行う凝集剤による凝集処理工程で、まず、廃水に無機凝集剤を添加して処理した後に、さらに廃水に有機凝集剤を添加して処理を行う。そして、無機凝集剤を添加する際に活性炭を添加して、無機凝集剤と活性炭とを共存させて処理することを特徴とする。まず、凝集処理工程で用いる薬剤について説明する。
[Aggregation treatment step]
In the treatment method of the present invention, in the flocculation treatment step using a flocculant performed prior to the oxidation treatment step, first, an inorganic flocculant is added to the wastewater for treatment, and then an organic flocculant is added to the wastewater for treatment. . The method is characterized in that activated carbon is added when adding the inorganic flocculant, and the inorganic flocculant and activated carbon coexist in the treatment. First, the chemicals used in the aggregation treatment process will be described.

<無機凝集剤>
本発明で使用する無機凝集剤としては、廃水中の懸濁物質(SS)の処理に用いられている従来公知のものをいずれも使用することができる。具体的には、アルミ系凝集剤や鉄系凝集剤等を用いることができる。アルミ系凝集剤としては、例えば、硫酸アルミニウム、ポリ塩化アルミニウム及び塩化アルミニウム等が挙げられる。また、鉄系凝集剤としては、硫酸第二鉄、塩化第二鉄及びポリ硫酸鉄等が挙げられる。これらの中から1種以上を適宜に選択して使用することができる。添加量は、廃水中の汚濁物質の濃度に応じて適宜に決定すればよいが、例えば、50~1000mg/Lの範囲で添加すればよい。
<Inorganic flocculant>
As the inorganic flocculant used in the present invention, any conventionally known one used for treating suspended solids (SS) in wastewater can be used. Specifically, an aluminum-based coagulant, an iron-based coagulant, or the like can be used. Examples of aluminum-based flocculants include aluminum sulfate, polyaluminum chloride, and aluminum chloride. Examples of iron-based coagulants include ferric sulfate, ferric chloride and polyferric sulfate. One or more of these can be appropriately selected and used. The amount to be added may be appropriately determined according to the concentration of contaminants in the wastewater, and may be added in the range of 50 to 1000 mg/L, for example.

<活性炭>
本発明の処理方法では、上記した無機凝集剤を添加する際に活性炭を添加して、無機凝集剤と活性炭とを共存させて凝集処理を行う。ここで、「無機凝集剤を添加する際に活性炭を添加」との規定は、無機凝集剤を添加すると同時に活性炭を添加して処理しても、無機凝集剤を添加するよりも前に活性炭を添加して処理しても、無機凝集剤を添加後に活性炭を添加してもよいことを意味しており、いずれにしても、無機凝集剤と活性炭とを共存させて凝集処理を行う状態にすればよいことを意味する。特に、無機凝集剤を添加すると同時に活性炭を添加するか、無機凝集剤を添加するよりも前に活性炭を添加する構成として凝集処理することが好ましい。使用する活性炭としては、廃水・排水処理用として従来より使用されている活性炭をいずれも使用できる。例えば、木質、石炭、やし殻を原料として得られた、平均粒径が200μm以下の粉末活性炭を使用することが好ましい。より好ましくは、平均粒径が1~150μm、さらに好ましくは、平均粒径が1~100μm程度の粉体を用いるとよい。例えば、150μm pass≧90%、75μm pass≧90%として市販されている製品をいずれも使用できる。比表面積が800~2000m2/gの粉末状の活性炭を使用することが好ましい。
<Activated carbon>
In the processing method of the present invention, activated carbon is added when adding the above-described inorganic flocculant, and the coexistence of the inorganic flocculant and activated carbon is carried out. Here, the provision that "activated carbon is added when adding the inorganic flocculant" means that even if the inorganic flocculant is added and the activated carbon is added at the same time, the activated carbon is added before the inorganic flocculant is added. It means that it may be added and treated, or the activated carbon may be added after the addition of the inorganic flocculant. means good. In particular, it is preferable to add the activated carbon simultaneously with the addition of the inorganic flocculant, or to add the activated carbon before adding the inorganic flocculant. As the activated carbon to be used, any activated carbon that has been conventionally used for treating waste water and wastewater can be used. For example, it is preferable to use powdered activated carbon having an average particle size of 200 μm or less, which is obtained using wood, coal, and coconut shells as raw materials. More preferably, a powder having an average particle size of about 1 to 150 μm, more preferably about 1 to 100 μm is used. For example, any commercially available product with 150 μm pass≧90% and 75 μm pass≧90% can be used. It is preferred to use powdered activated carbon with a specific surface area of 800-2000 m 2 /g.

また、無機凝集剤を添加する際に行う活性炭の添加量は、COD成分に対して1~10倍程度であれば、安定して良好な効果を得ることができる。また、本発明者らの検討によれば、その後の酸化処理工程で用いる方法が、酸素系酸化剤と金属触媒とで生じるヒドロキシラジカルを利用した酸化促進処理である場合は、活性炭の添加量に対する酸素系酸化剤の使用量の比が、0.5~20、より好ましくは、1.0~12、であるように構成することが好ましい。後述するが、このように構成することで、処理後に生じるスラッジ(SS)の量を低減することが可能になり、その後のスラッジに対する2次処理の問題を低減することができる。 Also, if the amount of activated carbon added when adding the inorganic flocculant is about 1 to 10 times the COD component, a good effect can be stably obtained. In addition, according to the studies of the present inventors, when the method used in the subsequent oxidation treatment step is oxidation promotion treatment using hydroxyl radicals generated by an oxygen-based oxidant and a metal catalyst, It is preferable that the ratio of the amount of the oxygen-based oxidant used is 0.5 to 20, more preferably 1.0 to 12. As will be described later, by configuring in this way, it is possible to reduce the amount of sludge (SS) generated after treatment, and to reduce the problem of subsequent secondary treatment of the sludge.

<有機凝集剤>
本発明で使用する有機凝集剤としては、廃水中の懸濁物質(SS)の処理に用いられている従来公知の高分子凝集剤をいずれも使用することができる。アニオン系、カチオン系、両性のいずれであってもよい。アニオン系高分子凝集剤としては、例えば、ポリアクリルアミド系、アニオン性ポリアクリルアミド系、ポリアクリルアミドの部分加水分解物等が挙げられる。カチオン系高分子凝集剤としては、例えば、アクリレート系、メタクリレート系、アミド基、ニトリル基、アミン塩酸塩、ホルムアルデヒド基などを含むポリビニルアミジン等が挙げられる。両性の高分子凝集剤としては、例えば、ジメチルアミノメチルアクリレートの四級化物とアクリルアミドとアクリル酸との共重合物、ジメチルアミノメチルメタクリレートの四級化物とアクリルアミドとアクリル酸との共重合物等が挙げられる。
<Organic flocculant>
As the organic flocculant used in the present invention, any conventionally known polymer flocculant used for treating suspended solids (SS) in wastewater can be used. It may be anionic, cationic, or amphoteric. Examples of anionic polymer flocculants include polyacrylamide-based agents, anionic polyacrylamide-based agents, and partial hydrolysates of polyacrylamide. Examples of cationic polymer flocculants include polyvinylamidine containing acrylate, methacrylate, amide group, nitrile group, amine hydrochloride, formaldehyde group, and the like. Amphoteric polymer flocculants include, for example, a copolymer of dimethylaminomethyl acrylate quaternary, acrylamide and acrylic acid, and a copolymer of dimethylaminomethyl methacrylate quaternary, acrylamide and acrylic acid. mentioned.

上記に挙げたような高分子凝集剤の使用量は、廃水中の汚濁物質の濃度に応じて適宜に決定すればよいが、原水(被処理水)1リットルあたり1~5mgの範囲、さらには、1リットルあたり1~2mgの範囲で添加すればよい。本発明の処理方法では、凝集処理工程の有機凝集剤での処理後に行う、後述する酸化処理工程での処理を、前記した酸素系酸化剤と金属触媒とで生じるヒドロキシラジカルを利用した酸化促進処理で行うような場合には、懸濁物質が生じるので、酸化処理後の被処理水に上記に挙げたような高分子凝集剤を使用して凝集処理を行う必要が生じる。その場合の高分子凝集剤の使用量は、被処理水1リットルあたり1~5mgの範囲、さらには、1リットルあたり1~2mgの範囲で添加すればよい。 The amount of the polymer flocculant used as mentioned above may be appropriately determined according to the concentration of pollutants in the wastewater, but it is in the range of 1 to 5 mg per liter of raw water (water to be treated). , in the range of 1 to 2 mg per liter. In the treatment method of the present invention, the treatment in the oxidation treatment step described later, which is performed after the treatment with the organic flocculant in the flocculation treatment step, is performed as an oxidation promotion treatment using hydroxyl radicals generated by the oxygen-based oxidant and the metal catalyst. In the case of , suspended solids are generated, so it becomes necessary to perform a flocculation treatment using a polymer flocculant such as those listed above for the water to be treated after the oxidation treatment. In that case, the amount of the polymer flocculant used may be in the range of 1 to 5 mg per liter of water to be treated, and further in the range of 1 to 2 mg per liter.

〔凝集処理の手順〕
本発明のCOD成分を含む廃水の処理方法では、図1に示した概略のフロー図のように処理を行う。図1に示したように、まず、被処理水である原水に、無機凝集剤と活性炭粉末とを添加し、撹拌しながら凝集処理を行う。この結果、汚濁物質の一部が吸着した活性炭と、無機凝集剤とを含む凝集物が沈降する。次に、被処理水に高分子凝集剤である有機凝集剤を添加し、凝集処理を行う。この結果、被処理水中の汚濁物質が凝集・沈降して沈殿物として除去される。そして、固液分離して得られた上澄水は、次の酸化分解工程における被処理水となる。
[Procedure for aggregation treatment]
In the method of treating wastewater containing COD components according to the present invention, the treatment is performed as shown in the schematic flow diagram of FIG. As shown in FIG. 1, first, an inorganic coagulant and activated carbon powder are added to raw water, which is water to be treated, and coagulation treatment is performed while stirring. As a result, agglomerates containing activated carbon, to which a part of the contaminants are adsorbed, and the inorganic flocculant settle. Next, an organic flocculant, which is a polymer flocculant, is added to the water to be treated for flocculation treatment. As a result, contaminants in the water to be treated are aggregated and sedimented to be removed as sediments. Then, the supernatant water obtained by the solid-liquid separation becomes the water to be treated in the next oxidative decomposition step.

〔酸化処理工程〕
本発明の処理方法は、上記した活性炭を利用した凝集剤による凝集処理を、酸化処理工程に先立って行うことを特徴とする。次に行う酸化処理工程での処理は、従来公知の方法でよく、例えば、酸素系酸化剤と金属触媒とで生じるヒドロキシ(OH)ラジカルを利用した化学酸化促進処理や、オゾンを利用したオゾン酸化促進処理などの従来公知の方法がいずれも使用できる。以下、化学酸化促進処理を代表例として説明する。上記した化学酸化促進処理で使用する酸素系酸化剤としては、金属触媒と反応してOHラジカルを生成するものであればその種類を問わない。具体的には、過酸化水素、オゾン等が挙げられるが、中でも過酸化水素を使用することが好ましい。その使用量としては、被処理水中の有機物の量や酸素系酸化剤の種類にもよるが、例えば、被処理水1リットルに対して、100~550mg程度とすることが好ましい。金属触媒としては、被処理水中で鉄イオン、ニッケルイオン、コバルトイオン及び銅イオンの少なくともいずれかを生じるものが好ましく使用できる。これらは、過酸化水素等の酸素系酸化剤と反応してOHラジカルを生成する。具体的なものとしては、塩化第一鉄、硫酸第一鉄、塩化ニッケル、塩化コバルト等が使用できる。これらの中でも鉄系の触媒が好ましい。その使用量としては、酸素系酸化剤の種類や量にもよるが、酸素系酸化剤と金属触媒との質量比が、1:2~7となるようにして処理を行うことが好ましい。
[Oxidation treatment step]
The treatment method of the present invention is characterized in that the flocculation treatment using the above-described flocculating agent using activated carbon is performed prior to the oxidation treatment step. The treatment in the subsequent oxidation treatment step may be a conventionally known method, for example, chemical oxidation promotion treatment using hydroxy (OH) radicals generated by an oxygen-based oxidant and a metal catalyst, or ozone oxidation using ozone. Any conventionally known method such as accelerated treatment can be used. Chemical oxidation promotion treatment will be described below as a typical example. Any type of oxygen-based oxidizing agent may be used in the chemical oxidation promotion treatment as long as it reacts with a metal catalyst to generate OH radicals. Specifically, hydrogen peroxide, ozone and the like can be mentioned, and hydrogen peroxide is preferably used. The amount used depends on the amount of organic matter in the water to be treated and the type of oxygen-based oxidizing agent, but is preferably about 100 to 550 mg per liter of water to be treated, for example. As the metal catalyst, those that generate at least one of iron ions, nickel ions, cobalt ions and copper ions in the water to be treated are preferably used. These react with an oxygen-based oxidant such as hydrogen peroxide to generate OH radicals. Specific examples include ferrous chloride, ferrous sulfate, nickel chloride and cobalt chloride. Among these, iron-based catalysts are preferred. The amount of the oxygen-based oxidizing agent to be used depends on the type and amount of the oxygen-based oxidizing agent.

化学酸化処理の際に行う酸素系酸化剤と金属触媒との反応は、pH2~4の酸性域で行うことが好ましい。この場合、反応pHが2未満であると、反応終了後のpH調整工程で中和のためのアルカリ剤の使用量が多くなり経済的でない。また、反応pHが4超であると金属触媒が水酸化物として析出し、金属触媒として有効に利用されなくなるため酸化反応が効率的に進まない。また、上記反応において、酸素系酸化剤と金属触媒との反応モル比は2~7の範囲で行うことが好ましい。このような条件で化学酸化処理を行えば、被処理水中のCOD成分を効率的に分解除去することができる。 The reaction between the oxygen-based oxidizing agent and the metal catalyst during the chemical oxidation treatment is preferably carried out in an acidic range of pH 2-4. In this case, if the reaction pH is less than 2, the amount of alkaline agent used for neutralization in the pH adjustment step after the completion of the reaction increases, which is not economical. On the other hand, if the reaction pH is more than 4, the metal catalyst will precipitate as a hydroxide and will not be effectively used as a metal catalyst, so that the oxidation reaction will not proceed efficiently. Further, in the above reaction, the reaction molar ratio between the oxygen-based oxidizing agent and the metal catalyst is preferably in the range of 2-7. By performing the chemical oxidation treatment under such conditions, the COD components in the water to be treated can be efficiently decomposed and removed.

酸化処理工程での酸化を、上記の化学酸化処理で行った場合、得られる処理水は酸性となるので、放流する場合にはアルカリで中和する必要がある。また、上記の化学酸化処理では、金属触媒を用いているので、中和後の被処理水中に金属触媒に起因した懸濁物質が残存することになる。したがって、この場合には、さらに有機凝集剤による凝集処理をして、金属触媒に起因する懸濁物を除去処理する必要が生じる。本発明の処理方法では、酸化処理工程における効率化が図られ、酸化処理の際に使用する酸素系酸化剤及び金属触媒の使用量を低減することができるので、この際に生じる凝集・沈降物(スラッジ)の量を低減することができるという利点がある。このため、スラッジに対する二次処理にかかる負荷が軽減され、この点でも、従来の方法に比べて、より優れた効果が得られる。 When the oxidation in the oxidation treatment step is carried out by the chemical oxidation treatment described above, the treated water obtained is acidic, and therefore needs to be neutralized with an alkali when discharged. In addition, since a metal catalyst is used in the above chemical oxidation treatment, suspended solids caused by the metal catalyst remain in the water to be treated after neutralization. Therefore, in this case, it is necessary to perform a flocculation treatment with an organic flocculant to remove suspended solids caused by the metal catalyst. In the treatment method of the present invention, the efficiency of the oxidation treatment process is improved, and the amount of the oxygen-based oxidizing agent and metal catalyst used in the oxidation treatment can be reduced. There is an advantage that the amount of (sludge) can be reduced. Therefore, the load on the secondary treatment of the sludge is reduced, and in this respect as well, a superior effect can be obtained as compared with the conventional method.

以下、実施例及び比較例を挙げて、本発明をさらに具体的に説明するが、本発明は以下の実施例によって限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited by the following examples.

[実施例1]
廃水200mLをビーカーに分取した。この廃水は、製鉄所の圧延工程からでた、溶解性COD濃度が37mg/Lのものである。この廃水を処理対象の原水とし、酸化処理工程に先立って行う凝集剤による凝集処理工程で、以下の処理を行った。分取した上記廃水中に、活性炭粉末(平均粒径が13μm)が50mg/L、ポリ塩化アルミニウム(PAC)が148mg/Lとなるようにそれぞれ添加し、硫酸によってpH7に調整しながら15分間撹拌した。上記において、活性炭粉末とPACは、ほぼ同時に添加した。続いて、この被処理水中に、2mg/Lとなるようにポリアクリルアミド高分子凝集剤KEA-735(商品名、日鉄住金環境社製)を加えて1分間撹拌して、廃水中の汚濁物質を、処理に使用した活性炭及び凝集剤とともに凝集させた。次に、生成した凝集・沈殿物を固液分離工程で除去し、上澄水を得た。
[Example 1]
200 mL of waste water was collected in a beaker. This wastewater is from the rolling process of a steel mill and has a soluble COD concentration of 37 mg/L. Using this wastewater as raw water to be treated, the following treatment was performed in the flocculation treatment step using a flocculant performed prior to the oxidation treatment step. 50 mg/L of activated carbon powder (average particle size: 13 μm) and 148 mg/L of polyaluminum chloride (PAC) were added to the collected wastewater, and stirred for 15 minutes while adjusting the pH to 7 with sulfuric acid. did. In the above, the activated carbon powder and PAC were added almost simultaneously. Subsequently, a polyacrylamide polymer flocculant KEA-735 (trade name, manufactured by Nippon Steel & Sumikin Kankyo Co., Ltd.) was added to the water to be treated so as to have a concentration of 2 mg/L, and the mixture was stirred for 1 minute to remove contaminants in the wastewater. was flocculated with the activated carbon and flocculant used in the treatment. Next, the generated aggregates/precipitates were removed in a solid-liquid separation step to obtain supernatant water.

上記で得た上澄水を被処理水として、次の酸化処理工程で、被処理水に、過酸化水素が126mg/L、塩化第二鉄が750mg/Lとなるように添加し、硫酸によってpH3に調整しながら7.5分間撹拌し、促進酸化処理を行った。処理後、被処理液のpHを、苛性ソーダでpH7に調整し、その状態で7.5分間撹拌した。次に、先の凝集処理工程で使用したものと同様の高分子凝集剤を、2mg/Lとなる量で加えて1分間撹拌し、懸濁物質を凝集させた。最後に、生成した凝集物を、固液分離によって除去し、上澄水を得た。最終的に得られたこの上澄水中の溶解性COD濃度は、10mg/Lであった。処理及び結果の概要を表1にまとめて示した。上記において、活性炭粉末を添加した後、PACを添加して試験したところ、上記と同様の効果が得られた。 Using the supernatant water obtained above as the water to be treated, in the next oxidation treatment step, hydrogen peroxide is added to the water to be treated so that 126 mg / L and ferric chloride is 750 mg / L, and the pH is 3 with sulfuric acid. Accelerated oxidation treatment was performed by stirring for 7.5 minutes while adjusting to . After the treatment, the pH of the liquid to be treated was adjusted to pH 7 with caustic soda, and stirred for 7.5 minutes in that state. Next, the same polymer flocculant as used in the previous flocculation treatment step was added in an amount of 2 mg/L and stirred for 1 minute to flocculate the suspended solids. Finally, the produced aggregate was removed by solid-liquid separation to obtain supernatant water. The finally obtained soluble COD concentration in this supernatant water was 10 mg/L. A summary of the treatments and results is summarized in Table 1. In the above, when the activated carbon powder was added and then the PAC was added and tested, the same effect as the above was obtained.

[比較例1]
実施例1で使用したと同様の廃水200mLをビーカーに分取した。その中に、ポリ塩化アルミニウムを148mg/L添加し、硫酸によってpH7に調整しながら15分間撹拌した。次に、実施例で使用したと同様の高分子凝集剤を2mg/Lとなるように加えて1分間撹拌し、懸濁物質を凝集させた。次に、生成した凝集・沈殿物を固液分離工程で除去し、上澄水を得た。
[Comparative Example 1]
200 mL of waste water similar to that used in Example 1 was collected in a beaker. 148 mg/L of polyaluminum chloride was added thereinto and stirred for 15 minutes while adjusting the pH to 7 with sulfuric acid. Next, the same polymer flocculant as used in Examples was added to 2 mg/L and stirred for 1 minute to flocculate the suspended solids. Next, the generated aggregates/precipitates were removed in a solid-liquid separation step to obtain supernatant water.

上記で得た上澄水を被処理水として、次の酸化処理工程で、被処理水に、過酸化水素が256mg/L、塩化第二鉄が1500mg/Lとなるように添加し、硫酸によってpH3に調整しながら7.5分間撹拌した。処理後、苛性ソーダによってpH7に調整し、その状態で、7.5分間撹拌した。最後に、先の凝集処理工程で使用したと同様の高分子凝集剤を2mg/Lとなる量で加えて1分間撹拌し、懸濁物質を凝集させた。生成した凝集物を、固液分離によって除去し、上澄水を得た。そして、本比較例では、上記で分離した上澄水に、活性炭を300mg/L添加し、7.5分撹拌して吸着処理した。最終的に得られたこの上澄水(処理水)中の溶解性COD濃度は、10mg/Lであった。処理及び結果の概要を表1にまとめて示した。 Using the supernatant water obtained above as the water to be treated, in the next oxidation treatment step, hydrogen peroxide is added to the water to be treated so that 256 mg / L and ferric chloride is 1500 mg / L, and the pH is 3 with sulfuric acid. It was stirred for 7.5 minutes while adjusting to . After treatment, the pH was adjusted to 7 with caustic soda and stirred for 7.5 minutes. Finally, the same polymer flocculant as used in the previous flocculating step was added in an amount of 2 mg/L and stirred for 1 minute to flocculate the suspended solids. The produced aggregate was removed by solid-liquid separation to obtain supernatant water. In this comparative example, 300 mg/L of activated carbon was added to the supernatant water separated above and stirred for 7.5 minutes for adsorption treatment. The final supernatant water (treated water) had a soluble COD concentration of 10 mg/L. A summary of the treatments and results is summarized in Table 1.

[比較例2]
実施例1で使用したと同様の廃水200mLをビーカーに分取した。その中に、活性炭粉末(平均粒径が13μm)を900mg/L添加し、7.5分間撹拌した。その後、ポリ塩化アルミニウムを148mg/L添加し、硫酸によってpH7に調整しながら7.5分間撹拌し、懸濁物質を凝集させた。次に、生成した凝集・沈殿物を固液分離工程で除去し、上澄水を得た。
[Comparative Example 2]
200 mL of waste water similar to that used in Example 1 was collected in a beaker. 900 mg/L of activated carbon powder (average particle size: 13 μm) was added thereinto and stirred for 7.5 minutes. Then, 148 mg/L of polyaluminum chloride was added, and the mixture was stirred for 7.5 minutes while adjusting the pH to 7 with sulfuric acid to flocculate suspended matter. Next, the generated aggregates/precipitates were removed in a solid-liquid separation step to obtain supernatant water.

Figure 0007166795000001
Figure 0007166795000001

[実施例2~8、比較例3、4]
実施例2~8では、実施例1で使用したと同様の廃水200mLに対して、実施例1の凝集処理工程で使用した活性炭及び酸化処理に使用する薬剤の量をそれぞれ表2のように変えた以外は同様にして、処理を行った。酸化処理に使用する薬剤の量は、酸化剤である過酸化水素の量で示した。過酸化水素の使用量に応じて金属触媒としての塩化第二鉄の使用量を決定した。また、比較例3では、無機凝集剤の添加の際に活性炭を添加することなく処理を行った。比較例4では、活性炭を大量に使用して凝集処理を行い、酸化処理をせずに処理をした。処理の際に、すべて、最終的に得られる処理水(上澄水)の溶解性COD濃度が11mg/Lとなるように、薬剤の添加量を調整した。表2に、使用した酸化剤の使用量に対する活性炭の使用量の比と、それぞれの処理で発生したスラッジ(SS)の量を示した。そして、図2及び図3に、発生したスラッジ(SS)量と、使用した酸化剤の使用量に対する活性炭の使用量の比の関係を示した。
[Examples 2 to 8, Comparative Examples 3 and 4]
In Examples 2 to 8, the amount of activated carbon used in the flocculation treatment step of Example 1 and the amount of chemicals used in the oxidation treatment were changed as shown in Table 2 for 200 mL of the same wastewater used in Example 1. Treatment was carried out in the same manner except for The amount of chemicals used for the oxidation treatment is indicated by the amount of hydrogen peroxide as an oxidizing agent. The amount of ferric chloride used as a metal catalyst was determined according to the amount of hydrogen peroxide used. In Comparative Example 3, the treatment was performed without adding activated carbon when adding the inorganic flocculant. In Comparative Example 4, a large amount of activated carbon was used to perform flocculation treatment, and the treatment was performed without oxidation treatment. During the treatment, the amount of the chemical added was adjusted so that the finally obtained treated water (supernatant water) had a soluble COD concentration of 11 mg/L. Table 2 shows the ratio of the amount of activated carbon used to the amount of oxidizing agent used and the amount of sludge (SS) generated in each treatment. 2 and 3 show the relationship between the amount of generated sludge (SS) and the ratio of the amount of activated carbon used to the amount of oxidizing agent used.

Figure 0007166795000002
Figure 0007166795000002

表2、図2及び図3に示したように、活性炭の添加を行わなかった比較例3では、スラッジの発生量が極めて多いのに対し、酸素系酸化剤の使用量に対する活性炭使用量の比が、0.5~12である実施例3~6では、酸化剤である過酸化水素の量を低減でき、スラッジの発生量を低減できるという顕著な効果が得られることが確認された。 As shown in Table 2, Figures 2 and 3, in Comparative Example 3 in which no activated carbon was added, the amount of sludge generated was extremely large, whereas the ratio of the amount of activated carbon used to the amount of oxygen-based oxidant used However, it was confirmed that in Examples 3 to 6 where the ratio was 0.5 to 12, the amount of hydrogen peroxide as an oxidizing agent could be reduced, and a remarkable effect could be obtained that the amount of sludge generated could be reduced.

Claims (7)

酸化処理工程後の活性炭による吸着工程を不要にできるCOD成分を含む廃水の処理方法であって、酸化処理工程に先立って行う凝集剤による凝集処理工程において、被処理水に無機凝集剤と活性炭を添加して無機凝集剤と活性炭とを共存させて凝集処理した後に、さらに被処理水に有機凝集剤を添加して凝集処理を行い、該凝集処理工程後に固液分離して得られた上澄水を前記酸化処理工程における被処理水とし、該酸化処理工程での処理が、酸素系酸化剤と金属触媒とで生じるヒドロキシラジカルを利用した酸化処理であって、かつ、前記酸素系酸化剤の使用量に対する前記活性炭の添加量の比が、0.01~20であることを特徴とするCOD成分を含む廃水の処理方法。 A method for treating wastewater containing COD components that can eliminate the need for an adsorption step with activated carbon after an oxidation treatment step, wherein in the coagulation treatment step with a coagulant performed prior to the oxidation treatment step, an inorganic coagulant and activated carbon are added to the water to be treated. Supernatant water obtained by adding an inorganic flocculant and activated carbon to coexist for flocculation treatment, then adding an organic flocculant to the water to be treated for flocculation treatment, and performing solid-liquid separation after the flocculation treatment step. is the water to be treated in the oxidation treatment step, the treatment in the oxidation treatment step is an oxidation treatment using hydroxyl radicals generated by an oxygen-based oxidant and a metal catalyst , and the oxygen-based oxidant is used A method for treating wastewater containing COD components, wherein the ratio of the added amount of the activated carbon to the amount is 0.01-20. 前記無機凝集剤が、硫酸アルミニウム、ポリ塩化アルミニウム及び塩化アルミニウムを含むアルミ系凝集剤、及び/又は、硫酸第二鉄、塩化第二鉄及びポリ硫酸鉄を含む鉄系凝集剤からなる群から選択される少なくともいずれかである請求項1に記載のCOD成分を含む廃水の処理方法。 The inorganic flocculant is selected from the group consisting of aluminum-based flocculants containing aluminum sulfate, polyaluminum chloride and aluminum chloride, and/or iron-based flocculants containing ferric sulfate, ferric chloride and polyferric sulfate. The method for treating wastewater containing COD components according to claim 1, wherein at least one of 前記活性炭が、平均粒径が200μm以下で、比表面積が800~2000m/gの粉末であり、該粉末を水に分散させて添加する請求項1又は2に記載のCOD成分を含む廃水の処理方法。 The waste water containing COD components according to claim 1 or 2, wherein the activated carbon is a powder having an average particle size of 200 μm or less and a specific surface area of 800 to 2000 m 2 /g, and the powder is dispersed in water and added. Processing method. 前記酸化処理工程での処理が、酸素系酸化剤と金属触媒とで生じるヒドロキシラジカルを利用した酸化促進処理であって、かつ、前記酸素系酸化剤の使用量に対する前記活性炭添加量の比が、0.5~20である請求項1~3のいずれか1項に記載のCOD成分を含む廃水の処理方法。 The treatment in the oxidation treatment step is oxidation promotion treatment using hydroxyl radicals generated by an oxygen-based oxidant and a metal catalyst, and the ratio of the amount of activated carbon added to the amount of the oxygen-based oxidant used is The method for treating wastewater containing COD components according to any one of claims 1 to 3, wherein the COD component is 0.5 to 20. 前記酸素系酸化剤が、過酸化水素である請求項1~3のいずれか1項に記載のCOD成分を含む廃水の処理方法。 The method for treating wastewater containing COD components according to any one of claims 1 to 3, wherein the oxygen-based oxidant is hydrogen peroxide. 前記酸化処理工程での処理の後、さらに、被処理水に有機凝集剤を添加して凝集処理する請求項1~5のいずれか1項に記載のCOD成分を含む廃水の処理方法。 The method for treating wastewater containing COD components according to any one of claims 1 to 5, wherein after the treatment in the oxidation treatment step, an organic coagulant is added to the water to be treated for coagulation treatment. 前記活性炭の添加量が、COD成分に対して、1~10倍である請求項1~6のいずれか1項に記載のCOD成分を含む廃水の処理方法。 The method for treating wastewater containing COD components according to any one of claims 1 to 6, wherein the amount of activated carbon to be added is 1 to 10 times the amount of COD components.
JP2018112626A 2018-06-13 2018-06-13 Method for treating wastewater containing COD components Active JP7166795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018112626A JP7166795B2 (en) 2018-06-13 2018-06-13 Method for treating wastewater containing COD components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018112626A JP7166795B2 (en) 2018-06-13 2018-06-13 Method for treating wastewater containing COD components

Publications (2)

Publication Number Publication Date
JP2019214020A JP2019214020A (en) 2019-12-19
JP7166795B2 true JP7166795B2 (en) 2022-11-08

Family

ID=68919341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018112626A Active JP7166795B2 (en) 2018-06-13 2018-06-13 Method for treating wastewater containing COD components

Country Status (1)

Country Link
JP (1) JP7166795B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112850946A (en) * 2020-12-27 2021-05-28 中冶焦耐(大连)工程技术有限公司 Method for treating coking wastewater by enhanced Fenton oxidation process
CN113480082A (en) * 2021-04-25 2021-10-08 内蒙古东华能源有限责任公司 Environment-friendly process for treating coal chemical industry sewage
JP7494790B2 (en) 2021-05-18 2024-06-04 トヨタ自動車株式会社 Waste liquid treatment method and waste liquid treatment device
CN115925161B (en) * 2022-11-29 2023-12-19 山东中移能节能环保科技股份有限公司 Deep treatment method of coking wastewater
CN115872517A (en) * 2022-12-26 2023-03-31 南京环保产业创新中心有限公司 Semi-coke wastewater treatment method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003088877A (en) 2001-09-20 2003-03-25 Mitsubishi Heavy Ind Ltd Method for treating organic waste water
JP2004081939A (en) 2002-08-23 2004-03-18 Japan Organo Co Ltd Treatment method for concentrated blow water
JP2007252969A (en) 2006-03-20 2007-10-04 Nippon Steel Corp Purification method of steel production drainage

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003088877A (en) 2001-09-20 2003-03-25 Mitsubishi Heavy Ind Ltd Method for treating organic waste water
JP2004081939A (en) 2002-08-23 2004-03-18 Japan Organo Co Ltd Treatment method for concentrated blow water
JP2007252969A (en) 2006-03-20 2007-10-04 Nippon Steel Corp Purification method of steel production drainage

Also Published As

Publication number Publication date
JP2019214020A (en) 2019-12-19

Similar Documents

Publication Publication Date Title
JP7166795B2 (en) Method for treating wastewater containing COD components
WO2014083903A1 (en) System for treating coal gasification wastewater, and method for treating coal gasification wastewater
JP4662059B2 (en) Purification process for steel manufacturing wastewater
CN111498960A (en) Defluorination medicament and application thereof
CN111018169B (en) Advanced treatment method for cyanogen-fluorine combined pollution wastewater
KR20170032630A (en) Wastewater treatment method and composition for removing soluble COD
CN104230122A (en) Gold mine cyaniding waste residue leaching solution treating method
JP2014198288A (en) Method for treating poorly biodegradable organic matter-containing water and treatment apparatus thereof
KR0136166B1 (en) Treatment of waste water containing cyanide compound and oil
JP5250486B2 (en) Purification process for steel manufacturing wastewater
CN101723497B (en) Method for processing oily waste water by utilizing ferric hydroxide waste residue
Yasar et al. Comparative performance evaluation of ozone oxidation and coagulation for the treatment of electroplating wastewater
CN111439819A (en) Flocculating agent for quickly and efficiently purifying strong-acid mine wastewater
CN112299588A (en) Method for treating industrial wastewater with high content of organic matters and arsenic
CN110577269A (en) Composite reagent for removing manganese and ammonia nitrogen in wastewater and application method thereof
CN114573088B (en) Method for treating wastewater by using iron-tannic acid through synchronous oxidation/coagulation and application
JP4598415B2 (en) Organic arsenic compound processing method
CN114149100B (en) Coking wastewater advanced treatment composite medicament and application thereof
KR100358033B1 (en) The manufacturing method of composition for treating waste-water
CN107935141A (en) A kind of water process compound coagulant
CN111087081B (en) Wastewater treatment method and application thereof
JPH091162A (en) High degree treating method for waste water and catalyst for oxidation treatment of waste water
CN115583763A (en) Treatment method of indirect thermal desorption wastewater of petroleum-polluted soil
JPH09314182A (en) Treatment process for selenium containing drain
EP1081097A1 (en) Utilization of a coagulant/flocculant organic agent of vegetable origin to remove colloidal material from water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221026

R150 Certificate of patent or registration of utility model

Ref document number: 7166795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150