JP6982759B2 - Water treatment system - Google Patents

Water treatment system Download PDF

Info

Publication number
JP6982759B2
JP6982759B2 JP2018023116A JP2018023116A JP6982759B2 JP 6982759 B2 JP6982759 B2 JP 6982759B2 JP 2018023116 A JP2018023116 A JP 2018023116A JP 2018023116 A JP2018023116 A JP 2018023116A JP 6982759 B2 JP6982759 B2 JP 6982759B2
Authority
JP
Japan
Prior art keywords
fluorine
fluorine concentration
injection rate
treated water
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018023116A
Other languages
Japanese (ja)
Other versions
JP2019136665A (en
Inventor
一秀 上村
茂 吉岡
良介 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MITSUBISHI HEAVY INDUSTRIES POWER ENVIRONMENTAL SOLUTIONS, LTD.
Original Assignee
MITSUBISHI HEAVY INDUSTRIES POWER ENVIRONMENTAL SOLUTIONS, LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MITSUBISHI HEAVY INDUSTRIES POWER ENVIRONMENTAL SOLUTIONS, LTD. filed Critical MITSUBISHI HEAVY INDUSTRIES POWER ENVIRONMENTAL SOLUTIONS, LTD.
Priority to JP2018023116A priority Critical patent/JP6982759B2/en
Priority to PCT/JP2019/002634 priority patent/WO2019159661A1/en
Priority to KR1020207023080A priority patent/KR102362930B1/en
Priority to TW108104576A priority patent/TWI690495B/en
Publication of JP2019136665A publication Critical patent/JP2019136665A/en
Application granted granted Critical
Publication of JP6982759B2 publication Critical patent/JP6982759B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/583Treatment of water, waste water, or sewage by removing specified dissolved compounds by removing fluoride or fluorine compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/30Control equipment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment

Description

本発明は、水処理システムに関する。特に、プラントからの排水に含まれるフッ素を処理する水処理システムに関する。 The present invention relates to a water treatment system. In particular, it relates to a water treatment system for treating fluorine contained in wastewater from a plant.

世界的な環境意識の高まりに伴い、各国、地域でプラントから排出される排ガス、排水、廃棄物等について様々な環境規制が定められている。このため、プラントには排ガス、排水、廃棄物等に含まれる規制物質を所定値以下に除去するための環境保全装置が設けられている。発電プラントの環境保全装置の場合、排ガスの流路に脱硝装置、電気集塵装置、脱硫装置が順に配置され、それぞれ、排ガスに含まれる窒素酸化物(NO)、煤塵、硫黄酸化物(SO)を除去する。脱硫装置の代表的な方式の一つである湿式石灰石膏法は排ガスと石灰石スラリを気液接触させ、カルシウム(Ca)と亜硫酸ガス(SO)とを反応させることにより、SOを吸収するとともに副生品として石膏を回収する。本方式により排出される脱硫排水には、フッ素、窒素、重金属といったような規制物質が含まれ、これらの排水基準に適合する排水処理を行い、環境に放流する。 With the growing global awareness of the environment, various environmental regulations have been established for exhaust gas, wastewater, waste, etc. emitted from plants in each country and region. For this reason, the plant is equipped with an environmental protection device for removing regulated substances contained in exhaust gas, wastewater, waste, etc. to a predetermined value or less. In the case of environmental protection equipment for power plants, denitration equipment, electrostatic precipitators, and desulfurization equipment are arranged in order in the flow path of exhaust gas, and nitrogen oxides (NO x ), soot dust, and sulfur oxides (SO) contained in the exhaust gas, respectively. x ) is removed. The wet limestone gypsum method, which is one of the typical methods of desulfurization equipment, absorbs SO 2 by bringing exhaust gas into gas-liquid contact with limestone slurry and reacting calcium (Ca) with sulfurous acid gas (SO 2). At the same time, gypsum is collected as a by-product. The desulfurized wastewater discharged by this method contains regulated substances such as fluorine, nitrogen, and heavy metals, and the wastewater is treated to meet these wastewater standards and discharged to the environment.

排水処理を行うため、一般に規制物質ごとの処理槽を設け、規制物質に対応する処理薬剤を注入することにより排水から規制物質を除去する。排水に含まれる規制物質の濃度が変動したり、排水の性状によって処理薬剤の効果が変動したりすることから、処理槽に投入する処理薬剤の適正量は変動する。このため、従来から処理薬剤の注入量の自動制御に関する提案が存在する。 In order to treat wastewater, generally, a treatment tank for each regulated substance is provided, and the regulated substance is removed from the wastewater by injecting a treatment agent corresponding to the regulated substance. Since the concentration of the regulated substance contained in the wastewater fluctuates and the effect of the treatment chemical fluctuates depending on the properties of the wastewater, the appropriate amount of the treatment chemical to be charged into the treatment tank fluctuates. For this reason, there have been conventionally proposed proposals for automatic control of the injection amount of the processing agent.

特許文献1はフッ素含有廃水の処理装置に関するものである。フッ素処理に用いるアルミニウム塩、中和剤の添加量を原水の流量、フッ素濃度、反応槽中のpHに応じて制御することを開示する。薬液投入量の制御はフィードバック制御によるが、フィードフォワード制御、フィードフォワード制御及びフィードバック制御の併用についても言及されている。 Patent Document 1 relates to a fluorine-containing wastewater treatment apparatus. It is disclosed that the amount of the aluminum salt and the neutralizing agent added for the fluorine treatment is controlled according to the flow rate of the raw water, the fluorine concentration, and the pH in the reaction vessel. The control of the amount of the drug solution is controlled by the feedback control, but the combined use of the feedforward control, the feedforward control and the feedback control is also mentioned.

特許文献2は原水に凝集剤を注入し、原水中の濁質分を凝集させフロックを形成し、フロックを沈殿池で沈降分離する凝集沈殿処理において、設定された濁度以下の上水を得るための凝集剤注入制御につき開示する。フィードフォワード制御に対してフィードバック制御による補正を行うにあたり、改良した濁度の計測方法を適用することにより、フィードバック制御の課題である補正の時間遅れを短縮することを開示する。 In Patent Document 2, a coagulant is injected into raw water to agglutinate turbidity in the raw water to form flocs, and the flocs are settled and separated in a sedimentation basin. Disclosed for agglutinating agent injection control. It is disclosed that the time delay of correction, which is a problem of feedback control, is shortened by applying an improved turbidity measurement method in performing correction by feedback control for feedforward control.

特許文献3はプラントの運転情報を用いて排水の水質を予測する水質予測部を設け、予測された水質に基づき、水処理の運転条件をフィードフォワード制御することを開示する。 Patent Document 3 discloses that a water quality prediction unit that predicts the water quality of wastewater using plant operation information is provided, and feedforward control of water treatment operation conditions is performed based on the predicted water quality.

特開昭60−197293号公報Japanese Unexamined Patent Publication No. 60-197293 特開2011−5463号公報Japanese Unexamined Patent Publication No. 2011-5436 国際公開第2017/022113号International Publication No. 2017/022113

火力発電所における炭種変更時や発電負荷変更時には、脱硫排水中の成分濃度が大きく変動する。排水中のフッ素処理を適正に行うため、発電所の排水(脱硫排水、その他排水)中のフッ素濃度を手分析で分析し、その結果を用いて薬剤の注入量を変更することが一般に行われている。排水のフッ素濃度は、フッ素計によりモニタされているが、フッ素計の測定値はフッ素濃度以外に計測値を変動させる妨害物質の影響等が大きく、脱硫排水中の成分濃度の変動を定量的に測定し、薬品の注入量を決定できる程の精度は現状のところもっていない。このため、成分濃度変動時の水質分析、運転調整が運転員の負荷となっている。加えて、凝集剤等の処理薬品の注入量は排水性状によりその効果が変動する。このため、注入不足を生じないように理論注入量より薬品を過剰に注入すると、凝集剤由来の汚泥量がこれに付随して大きくなる。 When the coal type is changed or the power generation load is changed in a thermal power plant, the concentration of components in the desulfurized wastewater fluctuates greatly. In order to properly treat fluorine in wastewater, it is common practice to analyze the fluorine concentration in power plant wastewater (desulfurized wastewater, other wastewater) by hand analysis and use the results to change the amount of chemicals injected. ing. The fluorine concentration in the wastewater is monitored by a fluorine meter, but the measured value of the fluorine meter is greatly affected by interfering substances that fluctuate the measured value in addition to the fluorine concentration, and the fluctuation of the component concentration in the desalted wastewater is quantitative. At present, it is not accurate enough to measure and determine the injection amount of chemicals. For this reason, water quality analysis and operation adjustment when the component concentration fluctuates is a burden on the operator. In addition, the effect of the injection amount of the treatment chemical such as the flocculant varies depending on the wastewater properties. Therefore, if the chemical is injected in excess of the theoretical injection amount so as not to cause insufficient injection, the amount of sludge derived from the flocculant increases accordingly.

特許文献1はフッ素処理を対象とするものであるが、計測値からどのように薬液投入量を算出、制御するのかについての具体的な記載がなされていない。 Patent Document 1 is intended for fluorine treatment, but does not specifically describe how to calculate and control the amount of chemical solution added from the measured values.

特許文献2、特許文献3はいずれもフッ素処理の具体的な処理については開示されていない。なお、特許文献2ではフィードバック制御を併用することにより、水質変動に起因するフィードフォワード制御の不適正を補正するが、薬品を注入してから実際の変化がセンサの計測に現れるまでには時間遅れは避けられず、応答遅れが大きいほど制御の振れ幅が大きくなるおそれが残る。 Neither Patent Document 2 nor Patent Document 3 discloses a specific treatment for fluorine treatment. In Patent Document 2, feedback control is also used to correct improper feedforward control due to water quality fluctuations, but there is a time lag between the injection of the chemical and the actual change appearing in the sensor measurement. Is unavoidable, and the larger the response delay, the larger the control fluctuation range may remain.

本発明では、フッ素処理の薬剤(アルミニウム塩)の投入量をフィードフォワード制御またはフィードバック制御により、排水または処理水の濃度の変化に応じて適正化させるともに、凝集剤由来の汚泥量を減らすよう制御値を調整することを課題とする。 In the present invention, the input amount of the fluorine-treated chemical (aluminum salt) is optimized according to the change in the concentration of wastewater or treated water by feedforward control or feedback control, and the amount of sludge derived from the flocculant is controlled to be reduced. The task is to adjust the value.

本発明の一実施態様である水処理システムは、フッ素を含む排水を処理する水処理システムであって、排水にアルミニウム塩を投入することにより、排水に含まれるフッ素が低減された処理水とフッ素を吸着した水酸化アルミニウムを含む汚泥とに分離するフッ素処理槽と、排水に投入するアルミニウム塩の投入量を制御する制御部とを有し、制御部は、プロセッサとメモリとを有し、プロセッサはメモリに読み込まれた制御プログラムを実行し、制御プログラムは、アルミ注入率演算部とアルミ注入率補正部と薬剤投入量算出部とを有し、アルミ注入率演算部は、あらかじめ定めたフッ素処理槽における吸着等温式と排水のフッ素濃度とに基づきアルミ注入率を算出し、アルミ注入率補正部は、アルミ注入率演算部が算出したアルミ注入率を処理水のフッ素濃度の履歴に基づく補正係数により補正した補正アルミ注入率を算出し、薬剤投入量算出部は、補正アルミ注入率に基づき、排水に投入するアルミニウム塩の投入量を算出する。 The water treatment system according to the embodiment of the present invention is a water treatment system for treating wastewater containing fluorine, and the treated water and fluorine in which the fluorine contained in the wastewater is reduced by adding an aluminum salt to the wastewater. It has a fluorine treatment tank that separates the sludge containing aluminum hydroxide that has adsorbed aluminum, and a control unit that controls the amount of aluminum salt to be charged into the wastewater. The control unit has a processor and a memory, and has a processor. Executes a control program read into the memory, the control program has an aluminum injection rate calculation unit, an aluminum injection rate correction unit, and a drug input amount calculation unit, and the aluminum injection rate calculation unit has a predetermined fluorine treatment. The aluminum injection rate is calculated based on the adsorption isothermal formula in the tank and the fluorine concentration of the wastewater, and the aluminum injection rate correction unit corrects the aluminum injection rate calculated by the aluminum injection rate calculation unit based on the history of the fluorine concentration of the treated water. The corrected aluminum injection rate corrected by

その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかにされる。 Other issues and novel features will be apparent from the description and accompanying drawings herein.

排水のフッ素処理において、排水基準に適合する排水処理を行いつつ、薬剤の過剰投入を抑制し、これに伴う凝集剤由来の汚泥量を減少させる。 In the fluorine treatment of wastewater, while performing wastewater treatment that meets the wastewater standards, it suppresses the excessive input of chemicals and reduces the amount of sludge derived from the coagulant.

フッ素処理槽の構成例である。This is a configuration example of a fluorine treatment tank. フッ素処理モデルを説明する図である。It is a figure explaining the fluorine treatment model. 実測値に適合するように求めたFreundlichの吸着等温線である。It is the adsorption isotherm of Freundlich obtained so as to match the measured value. 実測値に適合するように求めたLangmuirの吸着等温線である。It is the adsorption isotherm of Langmuir obtained so as to match the measured value. 実プラントの排水フッ素濃度C0のシミュレーションである。This is a simulation of the wastewater fluorine concentration C 0 of an actual plant. 制御モデルの補正方法を説明する図である。It is a figure explaining the correction method of a control model. 実施例1による制御結果(シミュレーション)を示す図である。It is a figure which shows the control result (simulation) by Example 1. FIG. 実プラントでのアルミ注入率と除去されるフッ素量との相関を示すグラフである。It is a graph which shows the correlation between the aluminum injection rate in an actual plant, and the amount of fluorine removed. 実プラントでのアルミ注入率と除去されるフッ素量との相関を示すグラフである。It is a graph which shows the correlation between the aluminum injection rate in an actual plant, and the amount of fluorine removed. 実施例2による制御結果(シミュレーション)を示す図である。It is a figure which shows the control result (simulation) by Example 2. FIG. 実施例2による制御結果(シミュレーション)を示す図である。It is a figure which shows the control result (simulation) by Example 2. FIG. 実施例2による制御結果(シミュレーション)のまとめである。It is a summary of the control result (simulation) by Example 2.

図1にフッ素処理槽100の構成例を示す。フッ素処理槽100は反応槽101、凝集槽102、沈殿槽103を有し、排水は順次これらの槽を通過することで、含有フッ素が低減された処理水とフッ素を吸着して沈殿した水酸化アルミニウム(Al(OH)2)を含む汚泥とに分離される。反応槽101にはフッ素を処理するための薬剤111と中和剤112とが投入される。薬剤111としては、PAC(ポリ塩化アルミニウム)または硫酸バンド等のアルミニウム塩が用いられる。アルミニウム塩を加えた後、凝集に最適なpHに調整するため、中和剤112を投入して反応槽101のpHを調整する。中和剤112としては例えば、塩酸や硫酸、苛性ソーダ等が用いられる。凝集槽102では、薬剤を投入することに生じた水酸化アルミニウムを沈殿しやすくするための凝集助剤113が投入され、沈殿槽103にて固液分離がなされる。なお、フッ素処理を2段に分けて行うことも一般的である。この場合、フッ素処理槽100からの処理水を次段のフッ素処理槽(図示せず)を通過させることで、排水中のフッ素濃度を目標値まで低下させる。 FIG. 1 shows a configuration example of the fluorine treatment tank 100. The fluorine treatment tank 100 has a reaction tank 101, a coagulation tank 102, and a settling tank 103, and the wastewater passes through these tanks in sequence to adsorb and precipitate the treated water containing reduced fluorine and fluorine. Separated from sludge containing aluminum (Al (OH) 2). The agent 111 for treating fluorine and the neutralizing agent 112 are charged into the reaction tank 101. As the drug 111, an aluminum salt such as PAC (polyaluminum chloride) or a sulfate band is used. After adding the aluminum salt, the neutralizing agent 112 is added to adjust the pH of the reaction vessel 101 in order to adjust the pH to the optimum pH for agglutination. As the neutralizing agent 112, for example, hydrochloric acid, sulfuric acid, caustic soda or the like is used. In the coagulation tank 102, the coagulation aid 113 for facilitating the precipitation of aluminum hydroxide generated by the addition of the chemical is charged, and solid-liquid separation is performed in the settling tank 103. It is also common to perform the fluorine treatment in two stages. In this case, the treated water from the fluorine treatment tank 100 is passed through the next stage fluorine treatment tank (not shown) to reduce the fluorine concentration in the wastewater to a target value.

フッ素処理槽100に対して、薬剤等の投入量を制御するために制御部200が設けられている。なお、制御部200は薬剤111、中和剤112、凝集助剤113それぞれの投入量を制御する機能を有するが、ここでは薬剤(アルミニウム塩)111の投入量の制御について説明する。他の投入量もそれぞれ制御され、例えば、中和剤112は反応槽101のpHに基づき投入量を制御し、凝集助剤113はアルミニウム塩の投入量に応じて投入量を制御すればよい。 A control unit 200 is provided for controlling the amount of chemicals and the like added to the fluorine treatment tank 100. The control unit 200 has a function of controlling the input amount of each of the drug 111, the neutralizing agent 112, and the coagulation aid 113, and here, the control of the input amount of the drug (aluminum salt) 111 will be described. The other input amounts are also controlled, for example, the neutralizing agent 112 may control the input amount based on the pH of the reaction tank 101, and the coagulation aid 113 may control the input amount according to the input amount of the aluminum salt.

制御部200は、プロセッサ201、メモリ202、水質データベース203、プロセスデータベース204、インタフェース205、これらを接続するバス206を有する。プロセッサ201はメモリ202にロードされた制御プログラムを実行し、薬剤111の投入量を算出する機能を実現する。制御プログラムは、データ収集部207、アルミ注入率演算部208、アルミ注入率補正部209、薬剤投入量算出部210を含み、制御部200が果たす機能はメモリ202にロードされた制御プログラムにより実現される。データ収集部207はインタフェース205を介して、フッ素濃度センサ104により排水のフッ素濃度C0を、フッ素濃度センサ105により処理水のフッ素濃度C1を収集する。収集したフッ素濃度は水質データベース203に格納され、適宜メモリ202に呼び出されてアルミ注入率の算出に使用される。なお、水質データベース203にはフッ素濃度のみならず、排水、処理水の水量やその他水質データが収集されるものとする。アルミ注入率演算部208は水質データベース203に格納された排水のフッ素濃度C0(実施例1)または処理水のフッ素濃度C1(実施例2)に基づきアルミ注入率を演算する。アルミ注入率補正部209は、アルミ注入率演算部208で演算したアルミ注入率に対して必要に応じて所定の補正を行い、決定したアルミ注入率をプロセスデータベース204に保存する。なお、アルミ注入率演算部208及びアルミ注入率補正部209での処理の内容については後述する。薬剤投入量算出部210は、プロセスデータベース204に格納されたアルミ注入率、水質データベース203に保存されている排水量の情報に基づき薬剤111の投入量を算出する。制御部200は、薬剤111の投入量が算出された投入量となるよう、インタフェース205を介して発行する制御命令S1により薬剤111の投入量を制御する。 The control unit 200 includes a processor 201, a memory 202, a water quality database 203, a process database 204, an interface 205, and a bus 206 connecting them. The processor 201 executes a control program loaded in the memory 202 and realizes a function of calculating the input amount of the drug 111. The control program includes a data acquisition unit 207, an aluminum injection rate calculation unit 208, an aluminum injection rate correction unit 209, and a drug input amount calculation unit 210, and the functions performed by the control unit 200 are realized by the control program loaded in the memory 202. To. The data collection unit 207 collects the fluorine concentration C 0 of the wastewater by the fluorine concentration sensor 104 and the fluorine concentration C 1 of the treated water by the fluorine concentration sensor 105 via the interface 205. The collected fluorine concentration is stored in the water quality database 203, and is appropriately called to the memory 202 to be used for calculating the aluminum injection rate. It is assumed that not only the fluorine concentration but also the amount of wastewater and treated water and other water quality data are collected in the water quality database 203. The aluminum injection rate calculation unit 208 calculates the aluminum injection rate based on the fluorine concentration C 0 (Example 1) of the wastewater stored in the water quality database 203 or the fluorine concentration C 1 (Example 2) of the treated water. The aluminum injection rate correction unit 209 makes a predetermined correction to the aluminum injection rate calculated by the aluminum injection rate calculation unit 208 as necessary, and stores the determined aluminum injection rate in the process database 204. The details of the processing by the aluminum injection rate calculation unit 208 and the aluminum injection rate correction unit 209 will be described later. The chemical input amount calculation unit 210 calculates the charge amount of the chemical 111 based on the information of the aluminum injection rate stored in the process database 204 and the wastewater amount stored in the water quality database 203. Control unit 200, so that the input amount of the amount charged is calculated agents 111 to control the charging amount of the drug 111 by the control instruction S 1 to be issued via the interface 205.

実施例1ではフッ素処理槽へのアルミニウム塩の投入量をフィードフォワード制御することにより、アルミニウム塩の投入量の適正化を図る。実施例1におけるフッ素処理モデルについて説明する。図2Aはフッ素処理槽100におけるフッ素処理モデル(吸着等温式)を説明するための図である。排水のフッ素濃度C0[mg/l]、処理水のフッ素濃度C1[mg/l]、薬剤(アルミニウム塩)により除去されるフッ素量F[mg/l]とすると、(数1)の関係が成り立つ。 In Example 1, the amount of aluminum salt charged to the fluorine treatment tank is feedforward controlled to optimize the amount of aluminum salt charged. The fluorine treatment model in Example 1 will be described. FIG. 2A is a diagram for explaining a fluorine treatment model (adsorption isotherm type) in the fluorine treatment tank 100. Assuming that the fluorine concentration of wastewater is C 0 [mg / l], the fluorine concentration of treated water is C 1 [mg / l], and the amount of fluorine removed by a chemical (aluminum salt) is F [mg / l], (Equation 1) The relationship holds.

Figure 0006982759
Figure 0006982759

フッ素処理槽100は水酸化アルミニウムへのフッ素の吸着現象を利用するものであり、沈殿槽において、水酸化アルミニウムに吸着したフッ素とその上澄みである処理水に溶け込んでいるフッ素とは平衡状態にあるといえる。溶液中の溶質がある一定温度下で固体に吸着される際の濃度と吸収量の相関関係を示す吸着等温式はいくつかの式が知られているが、ここでは(1)Freundlichの吸着等温式と(2)Langmuirの吸着等温式を適用する例を示す。Freundlichの吸着等温式は工業分野における実際の吸着等温線に経験的に合致することで知られており、アルミ注入率(処理水中のアルミニウム濃度と等価)A[mg/l]とすると、吸着量Vは(数2)により表される。なお、a及びnは定数である。 The fluorine treatment tank 100 utilizes the phenomenon of adsorption of fluorine to aluminum hydroxide, and in the settling tank, the fluorine adsorbed on the aluminum hydroxide and the fluorine dissolved in the treated water which is the supernatant thereof are in an equilibrium state. It can be said that. There are several known adsorption isotherms that show the correlation between the concentration and absorption of solutes in a solution when they are adsorbed on a solid at a certain temperature. Here, (1) Freundlich's adsorption isotherm is known. An example of applying the equation and (2) Langmuir's adsorption isotherm is shown. Freundlich's adsorption isotherm is known to empirically match the actual adsorption isotherm in the industrial field. If the aluminum injection rate (equivalent to the aluminum concentration in the treated water) A [mg / l], the adsorption amount V is represented by (Equation 2). Note that a and n are constants.

Figure 0006982759
Figure 0006982759

(数2)を(数1)に代入することで、(数3)が得られる。 By substituting (Equation 2) for (Equation 1), (Equation 3) can be obtained.

Figure 0006982759
Figure 0006982759

Freundlichの吸着等温式は非飽和型の吸着等温式であるが、実際には処理水のフッ素濃度が高くなると吸着量も飽和するものと考えられる。このため、飽和型の吸着等温線に適合するLangmuirの吸着等温式を用いてもよい。この場合、吸着量Vは(数4)により表される。ここで、aはLangmuir定数、bは飽和吸着量である。 Freundlich's adsorption isotherm is an unsaturated type adsorption isotherm, but it is considered that the adsorption amount actually saturates as the fluorine concentration in the treated water increases. Therefore, Langmuir's adsorption isotherm, which is compatible with saturated type adsorption isotherms, may be used. In this case, the adsorption amount V is represented by (Equation 4). Here, a is the Langmuir constant and b is the saturated adsorption amount.

Figure 0006982759
Figure 0006982759

(数4)を(数1)に代入することで、(数5)が得られる。 By substituting (Equation 4) into (Equation 1), (Equation 5) can be obtained.

Figure 0006982759
Figure 0006982759

フッ素処理槽100における処理水のフッ素濃度Cと吸着量Vとの関係を実測し、実測値に適合するように、(数2)の係数a、nあるいは(数4)の係数a、bを定める。図2Bは実測値に適合するように係数a、nを求めたFreundlichの吸着等温線であり、図2Cは同じ実測値に適合するように係数a、bを求めたLangmuirの吸着等温線である。実測値と吸着等温線による期待値はよく合致しており、いずれの場合も誤差は2割以内に抑えることができている(実測値における異常値は除く)。なお、いずれの吸着等温式を用いるかは、実プラントの実測により適合するものを選択すればよい。 The relationship between the fluorine concentration C 1 of the treated water in the fluorine treatment tank 100 and the adsorption amount V is actually measured, and the coefficient a, n of (Equation 2) or the coefficient a, b of (Equation 4) is matched so as to match the measured value. To determine. FIG. 2B is an adsorption isotherm of Freundlich for which the coefficients a and n are obtained so as to match the measured values, and FIG. 2C is an adsorption isotherm of Langmuir for which the coefficients a and b are obtained so as to match the same measured values. .. The measured value and the expected value by the adsorption isotherm are in good agreement, and the error can be suppressed to within 20% in both cases (excluding the abnormal value in the measured value). It should be noted that which adsorption isotherm method should be used may be selected according to the actual measurement of the actual plant.

このように、被制御対象とする実プラントの実測値より係数を算出して吸着等温線を求め、処理水フッ素濃度C1はフッ素処理槽100の目標とするフッ素濃度(固定値)とおく。例えば、日本の場合、フッ素に関し、海域での排水基準は15[mg/l]、河川、湖沼などの海域以外では8[mg/l]と定められているため、処理水のフッ素濃度C1はこれらの規制値に基づき定めればよい。算出された係数をもつ吸着等温線及び排水のフッ素濃度C0に基づき、(数3)あるいは(数5)を適用することにより、必要なアルミニウム濃度、これに基づき必要なアルミニウム塩の投入量を算出することができる。 In this way, the coefficient is calculated from the measured value of the actual plant to be controlled to obtain the adsorption isotherm, and the treated water fluorine concentration C 1 is set as the target fluorine concentration (fixed value) of the fluorine treatment tank 100. For example, in Japan, relates fluorine, effluent standards in waters 15 [mg / l], rivers, because it is defined as 8 [mg / l] except in waters, such as lakes, the treated water fluorine concentration C 1 May be determined based on these regulation values. By applying (Equation 3) or (Equation 5) based on the adsorption isotherm with the calculated coefficient and the fluorine concentration C 0 of the wastewater, the required aluminum concentration and the required amount of aluminum salt input based on this can be obtained. Can be calculated.

しかしながら、このようなフィードフォワード制御の場合、吸着等温式の係数を求めたときの排水の性状と実稼働時の排水の性状とのずれが大きくなると、制御目標とのずれが生じることになる。排水性状にずれを与える要因としては例えば炭種の切換え等がある。石炭燃焼ボイラの場合、石炭に含まれるフッ素量は産地等により大きく異なることからボイラが使用する炭種を切り換えることにより、排水に含まれるフッ素量は大きく変動する。その他にも、排水には様々な物質が溶け込んでおり、物質によってはフッ素の吸着を阻害するものもあるため、用水の変化もフィードフォワード制御の効果に影響を及ぼす。 However, in the case of such feedforward control, if the deviation between the wastewater property when the coefficient of the adsorption isotherm is obtained and the wastewater property during actual operation becomes large, the deviation from the control target will occur. Factors that cause deviation in drainage properties include, for example, switching of coal types. In the case of a coal-burning boiler, the amount of fluorine contained in coal varies greatly depending on the production area, etc., so the amount of fluorine contained in wastewater fluctuates greatly by switching the coal type used by the boiler. In addition, various substances are dissolved in the wastewater, and some substances inhibit the adsorption of fluorine, so changes in the irrigation water also affect the effect of feedforward control.

図3は実プラントにおける実測値に基づき、実プラントで生じうる排水フッ素濃度C0の変動を模擬したものである。このように、排水フッ素濃度C0は、炭種の変更や様々な要因によって変動が生じ、あらかじめ定めたモデルに基づく投入ではアルミニウム塩が不足または過剰となるおそれがある。そこで、本実施例では、吸着等温式により求められるアルミ注入率A[mg/l]に補正係数αを乗じた補正アルミ注入率A’(=αA)によりアルミニウム塩の投入量を定める。図4を用いて補正係数αの決め方の一例を説明する。この例では補正係数αの値を処理水フッ素濃度C1に基づき制御する。 FIG. 3 simulates the fluctuation of the wastewater fluorine concentration C 0 that may occur in the actual plant based on the measured value in the actual plant. As described above, the wastewater fluorine concentration C 0 fluctuates due to changes in the coal type and various factors, and there is a possibility that the aluminum salt will be insufficient or excessive when input based on a predetermined model. Therefore, in this embodiment, the input amount of the aluminum salt is determined by the corrected aluminum injection rate A'(= αA) obtained by multiplying the aluminum injection rate A [mg / l] obtained by the adsorption isotherm by the correction coefficient α. An example of how to determine the correction coefficient α will be described with reference to FIG. In this example, the value of the correction coefficient α is controlled based on the treated water fluorine concentration C 1.

処理水フッ素濃度の目標値をC1Tとし、C1L〜C1H(C1L<C1T<C1H)を不感帯として定める。例えば、目標値C1Tの±20%として定めてもよい。この不感帯を低濃度側に超えた場合にはフッ素除去が過剰に行われていると判断してαを減少させ、不感帯を高濃度側に超えた場合にはフッ素除去が不足していると判断してαを増加させる。図4の例では、時点401において処理水フッ素濃度C1がC1Lを下回ったことにより、αを1.0から0.9に減少させ、時点402、403において処理水フッ素濃度C1がC1Hを上回ったことにより、それぞれαを0.9から1.0に、αを1.0から1.1に増加させる。 The target value of the fluorine concentration in the treated water is set to C 1T, and C 1L to C 1H (C 1L <C 1T <C 1H ) is set as a dead zone. For example, it may be set as ± 20% of the target value C 1T. If this dead zone is exceeded to the low concentration side, it is judged that fluorine removal is excessive and α is reduced, and if it exceeds the dead zone to the high concentration side, it is judged that fluorine removal is insufficient. And increase α. In the example of FIG. 4, the treated water fluorine concentration C 1 was lower than C 1L at the time point 401, so that α was reduced from 1.0 to 0.9, and the treated water fluorine concentration C 1 was higher than C 1H at the time points 402 and 403. This increases α from 0.9 to 1.0 and α from 1.0 to 1.1, respectively.

図5に、図3のように排水フッ素濃度C0が変動した場合に処理水フッ素濃度C1がどのように変動するかについてのシミュレーション結果を示す。実線が図4の補正係数αによりアルミニウム塩の投入量を補正した場合の結果であり、点線が補正を行わなかった場合の結果である。このように、処理水フッ素濃度C1の履歴に基づき補正を行うことにより薬剤の投入量が過大のまま長期間継続したり、過少のまま長時間継続したりすることが抑制され、処理水フッ素濃度C1の変動幅をより小さく抑えることができる。すなわち、アルミニウム塩の投入量の適正化を図ることができる。 FIG. 5 shows a simulation result of how the treated water fluorine concentration C 1 fluctuates when the wastewater fluorine concentration C 0 fluctuates as shown in FIG. The solid line is the result when the input amount of the aluminum salt is corrected by the correction coefficient α in FIG. 4, and the dotted line is the result when the correction is not performed. In this way, by making corrections based on the history of the treated water fluorine concentration C 1 , it is possible to suppress that the amount of the drug input is excessive and continues for a long period of time, or that the amount of the drug is too small and continues for a long time. The fluctuation range of the concentration C 1 can be suppressed to be smaller. That is, it is possible to optimize the input amount of the aluminum salt.

図1に示した制御プログラムと実施例1での処理との対応関係について説明する。アルミ注入率演算部208は、フッ素処理槽における吸着等温式と排水のフッ素濃度C0とに基づきアルミ注入率Aを算出する。アルミ注入率補正部209は、算出したアルミ注入率Aを処理水のフッ素濃度の履歴に基づく補正係数αにより補正した補正アルミ注入率A’を算出する。処理水のフッ素濃度の履歴を、不感帯を用いて反映させる方法について説明したが、この方法に限定されるわけではない。例えば、排水水質の変動の仕方によっては、あらかじめ定めた一定の基準で補正係数を変更するのではなく、適宜基準を柔軟に調整できるようにすることが望ましい場合がある。具体的には、処理水のフッ素濃度の履歴に応じて不感帯とするフッ素濃度範囲や1回の補正係数の変更量を調整し、調整した基準によりアルミ注入率を補正してもよい。薬剤投入量算出部210は、補正アルミ注入率A’に基づき、排水に投入するアルミニウム塩の投入量を算出する。 The correspondence between the control program shown in FIG. 1 and the processing in the first embodiment will be described. The aluminum injection rate calculation unit 208 calculates the aluminum injection rate A based on the adsorption isotherm formula in the fluorine treatment tank and the fluorine concentration C 0 of the wastewater. The aluminum injection rate correction unit 209 calculates the corrected aluminum injection rate A', in which the calculated aluminum injection rate A is corrected by the correction coefficient α based on the history of the fluorine concentration of the treated water. Although the method of reflecting the history of the fluorine concentration of the treated water using the dead zone has been described, the method is not limited to this method. For example, depending on how the wastewater quality fluctuates, it may be desirable to be able to flexibly adjust the standard as appropriate, instead of changing the correction coefficient based on a predetermined standard. Specifically, the fluorine concentration range to be a dead zone and the amount of change of the correction coefficient once may be adjusted according to the history of the fluorine concentration of the treated water, and the aluminum injection rate may be corrected according to the adjusted standard. The chemical charge calculation unit 210 calculates the amount of aluminum salt to be charged into the wastewater based on the corrected aluminum injection rate A'.

また、本実施例のフィードフォワード制御の場合、排水側フッ素濃度センサ104(図1参照)は排水を継続して比較的高頻度でモニタしてアルミ注入率を演算することが望ましい一方、処理水側フッ素濃度センサ105は、処理水のフッ素濃度としてあらわれるには数時間を要するため、フッ素濃度センサ104よりも低頻度でモニタするので十分である。このため、図1においては濃度センサを制御部200にオンラインで接続して制御する例を示したが、処理水のフッ素濃度の計測をより高精度に行い、これをオフラインで制御部200に伝達するようにしてもよい。 Further, in the case of the feed-forward control of this embodiment, it is desirable that the drainage side fluorine concentration sensor 104 (see FIG. 1) continuously monitors the drainage and calculates the aluminum injection rate, while the treated water is treated. Since it takes several hours for the side fluorine concentration sensor 105 to appear as the fluorine concentration of the treated water, it is sufficient to monitor the side fluorine concentration sensor 105 at a lower frequency than the fluorine concentration sensor 104. Therefore, in FIG. 1, an example in which the concentration sensor is connected to the control unit 200 online for control is shown, but the fluorine concentration of the treated water is measured with higher accuracy and transmitted to the control unit 200 offline. You may try to do it.

実施例2ではフッ素処理槽へのアルミニウム塩の投入量をフィードバック制御により制御する。このための初期投入量の算出に当たっては、以下の経験式(数6)を利用する。 In the second embodiment, the amount of the aluminum salt charged into the fluorine treatment tank is controlled by feedback control. In calculating the initial input amount for this purpose, the following empirical formula (Equation 6) is used.

Figure 0006982759
Figure 0006982759

本経験式は、実プラントでの運用データから導出されるものである。図6に示すように、実プラントの運用データからはアルミ注入率A[mg/l]と薬剤(アルミニウム塩)により除去されるフッ素量F[mg/l](排水のフッ素濃度C0[mg/l]と処理水のフッ素濃度C1[mg/l]との差に等しい、(数1)を参照)とは正の相関がある。図6のデータから処理水のフッ素濃度C1[mg/l]を所定の範囲に限定して対数表示したものが図7であり、この例では(数6)の相関式は、a=7.8、n=1.3で与えられる。 This empirical formula is derived from the operational data in the actual plant. As shown in FIG. 6, from the operation data of the actual plant, the aluminum injection rate A [mg / l] and the amount of fluorine removed by the chemical (aluminum salt) F [mg / l] (fluorine concentration C 0 [mg of wastewater). Equal to the difference between / l] and the fluorine concentration C 1 [mg / l] in the treated water, see (Equation 1)) has a positive correlation. FIG. 7 is a logarithmic display of the fluorine concentration C 1 [mg / l] of the treated water limited to a predetermined range from the data of FIG. 6, and in this example, the correlation equation of (Equation 6) is a = 7.8. , N = 1.3.

実施例2において、図3に示した排水フッ素濃度C0[mg/l]の変動が生じた場合の処理水フッ素濃度C1[mg/l]の変動のシミュレーション結果を図8に示す。実施例2では(数6)に基づき初期制御値を定め、以後は目標処理水濃度とのずれからアルミ注入率Aを修正する。図8では、目標処理水濃度を5[mg/l]とし、制御方法も単純なP制御としたものである。この例では平均処理水濃度は5.2[mg/l]、最大値は13.9[mg/l]となっている。フィードバック制御の場合、排水フッ素濃度の変動に対する制御遅延を抑制するため、制御遅延量を短くすることにより、変動幅を小さくすることが期待できる。また、今回はP制御を適用したが、PI制御、PID制御を適用したフィードバック制御を行ってもよい。ただし、排水フッ素濃度C0[mg/l]の変動が処理水フッ素濃度C1[mg/l]に反映されるまでの遅延時間は避けられないため、制御遅延に起因する処理水フッ素濃度C1[mg/l]の変動はフィードバック制御において本質的なものである。 In Example 2, FIG. 8 shows a simulation result of the fluctuation of the treated water fluorine concentration C 1 [mg / l] when the fluctuation of the waste fluorine fluorine concentration C 0 [mg / l] shown in FIG. 3 occurs. In the second embodiment, the initial control value is determined based on (Equation 6), and thereafter, the aluminum injection rate A is corrected from the deviation from the target treated water concentration. In FIG. 8, the target treated water concentration is set to 5 [mg / l], and the control method is also a simple P control. In this example, the average treated water concentration is 5.2 [mg / l] and the maximum value is 13.9 [mg / l]. In the case of feedback control, in order to suppress the control delay due to the fluctuation of the wastewater fluorine concentration, it can be expected that the fluctuation range is reduced by shortening the control delay amount. Further, although P control is applied this time, feedback control to which PI control and PID control are applied may be performed. However, since the delay time until the fluctuation of the wastewater fluorine concentration C 0 [mg / l] is reflected in the treated water fluorine concentration C 1 [mg / l] is unavoidable, the treated water fluorine concentration C due to the control delay is unavoidable. Fluctuations of 1 [mg / l] are essential in feedback control.

そこで、本実施例では処理水フッ素濃度C1の履歴に応じて処理水フッ素濃度の目標値を変化させる。さらに、ずれ幅に対する出力感度を高める(すなわち、所定のずれ幅に対して増加または減少させるアルミニウム塩の量を大きくする)ようにしてもよい。図9の例では、処理水フッ素濃度の目標値を8[mg/l]とし、処理水フッ素濃度C1が50%〜200%(4〜16[mg/l])の範囲(不感帯)を超えた場合には、目標値および出力感度を変更したものである。このとき、平均処理水濃度は5.9[mg/l]、最大値は14.8[mg/l]となった。 Therefore, in this embodiment, the target value of the treated water fluorine concentration is changed according to the history of the treated water fluorine concentration C 1. Further, the output sensitivity to the deviation width may be increased (that is, the amount of aluminum salt to be increased or decreased with respect to the predetermined deviation width may be increased). In the example of FIG. 9, the target value of the treated water fluorine concentration is 8 [mg / l], and the treated water fluorine concentration C 1 is in the range of 50% to 200% (4 to 16 [mg / l]) (dead zone). If it exceeds, the target value and output sensitivity are changed. At this time, the average treated water concentration was 5.9 [mg / l], and the maximum value was 14.8 [mg / l].

図10はシミュレーション結果をまとめたものである。Case1、2は補正なしのものであり、目標値の設定のみが異なる。目標値を6[mg/l]に設定した場合は、最大値が日本の海域への排水基準15[mg/l]を超えている。このように、フィードバック制御を行うにあたり、処理水フッ素濃度の履歴に応じて、目標値及び出力感度の補正を行うことにより、最大値の上昇を抑制しながら、平均処理水濃度を上昇させることが可能になっている。これにより、処理水基準を満足させるために過剰に投入されるアルミ量が低減されていることが分かる。 FIG. 10 summarizes the simulation results. Cases 1 and 2 have no correction, and only the setting of the target value is different. When the target value is set to 6 [mg / l], the maximum value exceeds the drainage standard for Japanese waters of 15 [mg / l]. In this way, when performing feedback control, it is possible to increase the average treated water concentration while suppressing the increase in the maximum value by correcting the target value and output sensitivity according to the history of the treated water fluorine concentration. It is possible. As a result, it can be seen that the amount of aluminum that is excessively charged in order to satisfy the treated water standard is reduced.

図1に示した制御プログラムと実施例2での処理との対応関係について説明する。アルミ注入率演算部208は、フッ素処理槽の初期投入量算出式(数6)によりアルミニウム塩の初期投入量を算出するとともに、以降は処理水のフッ素濃度と目標フッ素濃度とのずれ量に基づきアルミ注入率を算出する。フィードバック制御方式としては、P制御、PI制御、PID制御のいずれであってもよい。薬剤投入量算出部210は、算出したアルミ注入率Aに基づき、排水に投入するアルミニウム塩の投入量を算出する。アルミ注入率補正部209は、処理水のフッ素濃度の履歴に基づき処理水の目標フッ素濃度の値を変化させる。さらに、処理水のフッ素濃度の履歴に基づき、処理水のフッ素濃度と目標フッ素濃度とのずれ量に対する出力感度を高めるようにしてもよい。 The correspondence between the control program shown in FIG. 1 and the processing in the second embodiment will be described. The aluminum injection rate calculation unit 208 calculates the initial charge amount of the aluminum salt by the initial charge amount calculation formula (Equation 6) of the fluorine treatment tank, and thereafter, based on the deviation amount between the fluorine concentration of the treated water and the target fluorine concentration. Calculate the aluminum injection rate. The feedback control method may be any of P control, PI control, and PID control. The chemical charge calculation unit 210 calculates the amount of aluminum salt to be charged into the wastewater based on the calculated aluminum injection rate A. The aluminum injection rate correction unit 209 changes the value of the target fluorine concentration of the treated water based on the history of the fluorine concentration of the treated water. Further, the output sensitivity to the amount of deviation between the fluorine concentration of the treated water and the target fluorine concentration may be increased based on the history of the fluorine concentration of the treated water.

100:フッ素処理槽、101:反応槽、102:凝集槽、103:沈殿槽、104,105:フッ素濃度センサ、111:薬剤、112:中和剤、113:凝集助剤、200:制御部、201:プロセッサ、202:メモリ、203:水質データベース、204:プロセスデータベース、205:インタフェース、206:バス。 100: Fluorine treatment tank, 101: Reaction tank, 102: Coagulation tank, 103: Sedimentation tank, 104, 105: Fluorine concentration sensor, 111: Chemical, 112: Neutralizer, 113: Aggregation aid, 200: Control unit, 201: Processor, 202: Memory, 203: Water quality database, 204: Process database, 205: Interface, 206: Bus.

Claims (9)

フッ素を含む排水を処理する水処理システムであって、
前記排水にアルミニウム塩を投入することにより、前記排水に含まれるフッ素が低減された処理水とフッ素を吸着した水酸化アルミニウムを含む汚泥とに分離するフッ素処理槽と、
前記排水に投入する前記アルミニウム塩の投入量を制御する制御部とを有し、
前記制御部は、プロセッサとメモリとを有し、前記プロセッサは前記メモリに読み込まれた制御プログラムを実行し、
前記制御プログラムは、アルミ注入率演算部とアルミ注入率補正部と薬剤投入量算出部とを有し、
前記アルミ注入率演算部は、あらかじめ定めた前記フッ素処理槽における吸着等温式と前記排水のフッ素濃度とに基づきアルミ注入率を算出し、
前記アルミ注入率補正部は、前記アルミ注入率演算部が算出したアルミ注入率を前記処理水のフッ素濃度の履歴に基づく補正係数により補正した補正アルミ注入率を算出し、
前記薬剤投入量算出部は、前記補正アルミ注入率に基づき、前記排水に投入するアルミニウム塩の投入量を算出する水処理システム。
A water treatment system that treats wastewater containing fluorine.
A fluorine treatment tank that separates treated water containing reduced fluorine contained in the wastewater and sludge containing aluminum hydroxide adsorbing fluorine by adding an aluminum salt to the wastewater.
It has a control unit that controls the amount of the aluminum salt to be charged into the wastewater.
The control unit has a processor and a memory, and the processor executes a control program read into the memory.
The control program has an aluminum injection rate calculation unit, an aluminum injection rate correction unit, and a drug input amount calculation unit.
The aluminum injection rate calculation unit calculates the aluminum injection rate based on the adsorption isotherm formula in the fluorine treatment tank and the fluorine concentration of the wastewater, which are predetermined.
The aluminum injection rate correction unit calculates a corrected aluminum injection rate obtained by correcting the aluminum injection rate calculated by the aluminum injection rate calculation unit with a correction coefficient based on the history of the fluorine concentration of the treated water.
The chemical charge calculation unit is a water treatment system that calculates the amount of aluminum salt to be charged into the wastewater based on the corrected aluminum injection rate.
請求項1において、
前記吸着等温式は、Freundlichの吸着等温式またはLangmuirの吸着等温式である水処理システム。
In claim 1,
The adsorption isotherm is a water treatment system that is a Freundlich adsorption isotherm or a Langmuir adsorption isotherm.
請求項1において、
前記アルミ注入率補正部は、前記処理水の目標フッ素濃度に対して不感帯とするフッ素濃度範囲を定め、前記処理水のフッ素濃度が前記不感帯とするフッ素濃度範囲であれば前記補正係数の値を維持し、前記処理水のフッ素濃度が前記不感帯とするフッ素濃度範囲を超える場合には前記補正係数の値を変更する水処理システム。
In claim 1,
The aluminum injection rate correction unit determines a fluorine concentration range that is insensitive to the target fluorine concentration of the treated water, and if the fluorine concentration of the treated water is in the fluorine concentration range that is insensitive, the value of the correction coefficient is set. A water treatment system that maintains and changes the value of the correction coefficient when the fluorine concentration of the treated water exceeds the fluorine concentration range set as the dead zone.
請求項3において、
前記不感帯とするフッ素濃度範囲、または前記処理水のフッ素濃度が前記不感帯とするフッ素濃度範囲を超える場合の前記補正係数の値の変更量が調整可能な水処理システム。
In claim 3,
A water treatment system in which the amount of change in the value of the correction coefficient when the fluorine concentration range of the dead zone or the fluorine concentration of the treated water exceeds the fluorine concentration range of the dead zone can be adjusted.
請求項3において、
前記処理水のフッ素濃度の測定頻度は、前記排水のフッ素濃度の測定頻度よりも低い水処理システム。
In claim 3,
A water treatment system in which the frequency of measuring the fluorine concentration of the treated water is lower than the frequency of measuring the fluorine concentration of the waste water.
フッ素を含む排水を処理する水処理システムであって、
前記排水にアルミニウム塩を投入することにより、前記排水に含まれるフッ素が低減された処理水とフッ素を吸着した水酸化アルミニウムを含む汚泥とに分離するフッ素処理槽と、
前記排水に投入する前記アルミニウム塩の投入量を制御する制御部とを有し、
前記制御部は、プロセッサとメモリとを有し、前記プロセッサは前記メモリに読み込まれた制御プログラムを実行し、
前記制御プログラムは、アルミ注入率演算部とアルミ注入率補正部と薬剤投入量算出部とを有し、
前記アルミ注入率演算部は、あらかじめ定めた前記フッ素処理槽の初期投入量算出式により前記アルミニウム塩の初期投入量を算出するとともに、以降は前記処理水のフッ素濃度と前記処理水の目標フッ素濃度とのずれ量に基づきアルミ注入率を算出し、
前記薬剤投入量算出部は、前記アルミ注入率演算部が算出したアルミ注入率に基づき、前記排水に投入するアルミニウム塩の投入量を算出し、
前記アルミ注入率補正部は、前記処理水のフッ素濃度の履歴に基づき前記処理水の目標フッ素濃度の値を変化させる水処理システム。
A water treatment system that treats wastewater containing fluorine.
A fluorine treatment tank that separates treated water containing reduced fluorine contained in the wastewater and sludge containing aluminum hydroxide adsorbing fluorine by adding an aluminum salt to the wastewater.
It has a control unit that controls the amount of the aluminum salt to be charged into the wastewater.
The control unit has a processor and a memory, and the processor executes a control program read into the memory.
The control program has an aluminum injection rate calculation unit, an aluminum injection rate correction unit, and a drug input amount calculation unit.
The aluminum injection rate calculation unit calculates the initial charge amount of the aluminum salt by the predetermined initial charge amount calculation formula of the fluorine treatment tank, and thereafter, the fluorine concentration of the treated water and the target fluorine concentration of the treated water. Calculate the aluminum injection rate based on the amount of deviation from
The chemical input amount calculation unit calculates the input amount of the aluminum salt to be charged into the wastewater based on the aluminum injection rate calculated by the aluminum injection rate calculation unit.
The aluminum injection rate correction unit is a water treatment system that changes the value of the target fluorine concentration of the treated water based on the history of the fluorine concentration of the treated water.
請求項6において、
前記アルミ注入率補正部は、さらに、前記処理水のフッ素濃度の履歴に基づき、前記処理水のフッ素濃度と前記処理水の目標フッ素濃度とのずれ量に対する出力感度を高める水処理システム。
In claim 6,
The aluminum injection rate correction unit is a water treatment system that further enhances the output sensitivity with respect to the amount of deviation between the fluorine concentration of the treated water and the target fluorine concentration of the treated water based on the history of the fluorine concentration of the treated water.
請求項6において、
前記アルミ注入率演算部は、前記アルミ注入率をP制御、PI制御、またはPID制御する水処理システム。
In claim 6,
The aluminum injection rate calculation unit is a water treatment system that controls the aluminum injection rate by P control, PI control, or PID control.
請求項6において、
前記アルミ注入率補正部は、前記処理水の目標フッ素濃度に対して不感帯とするフッ素濃度範囲を定め、前記処理水のフッ素濃度が前記不感帯とするフッ素濃度範囲であれば前記処理水の目標フッ素濃度の値を維持し、前記処理水のフッ素濃度が前記不感帯とするフッ素濃度範囲を超える場合には前記処理水の目標フッ素濃度の値を変更する水処理システム。
In claim 6,
The aluminum injection rate correction unit determines a fluorine concentration range that is insensitive to the target fluorine concentration of the treated water, and if the fluorine concentration of the treated water is in the fluorine concentration range of the insensitive zone, the target fluorine of the treated water. A water treatment system that maintains a concentration value and changes the target fluorine concentration value of the treated water when the fluorine concentration of the treated water exceeds the fluorine concentration range set as the dead zone.
JP2018023116A 2018-02-13 2018-02-13 Water treatment system Active JP6982759B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018023116A JP6982759B2 (en) 2018-02-13 2018-02-13 Water treatment system
PCT/JP2019/002634 WO2019159661A1 (en) 2018-02-13 2019-01-28 Water treatment system
KR1020207023080A KR102362930B1 (en) 2018-02-13 2019-01-28 water treatment system
TW108104576A TWI690495B (en) 2018-02-13 2019-02-12 Water treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018023116A JP6982759B2 (en) 2018-02-13 2018-02-13 Water treatment system

Publications (2)

Publication Number Publication Date
JP2019136665A JP2019136665A (en) 2019-08-22
JP6982759B2 true JP6982759B2 (en) 2021-12-17

Family

ID=67620102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018023116A Active JP6982759B2 (en) 2018-02-13 2018-02-13 Water treatment system

Country Status (4)

Country Link
JP (1) JP6982759B2 (en)
KR (1) KR102362930B1 (en)
TW (1) TWI690495B (en)
WO (1) WO2019159661A1 (en)

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60197293A (en) * 1984-03-21 1985-10-05 Kurita Water Ind Ltd Apparatus for treating fluorine-containing waste water
JPS60202789A (en) * 1984-03-23 1985-10-14 Kurita Water Ind Ltd Treating apparatus for fluorine-containing waste water
JPS61157387A (en) * 1984-12-28 1986-07-17 Toshiba Corp Chemical injection apparatus
JPS61293590A (en) * 1985-06-21 1986-12-24 Deguchi Kohei Method for removing chlorine in raw water for city water
JP3053482B2 (en) * 1991-11-21 2000-06-19 中部電力株式会社 Method for controlling injection amount of aluminum compound in treatment of wastewater containing fluorine and aluminum and fluorine removing device
JP2737691B2 (en) * 1995-04-14 1998-04-08 日本電気株式会社 Method and apparatus for treating fluorine-containing wastewater
KR20010071946A (en) * 1998-07-17 2001-07-31 가네코 히사시 Method for treating a fluorine-containing waste water and treating apparatus
JP3941595B2 (en) * 2002-06-05 2007-07-04 栗田工業株式会社 Drug injection control device
JP4661132B2 (en) * 2004-08-19 2011-03-30 パナソニック株式会社 Method and apparatus for treating fluorine-containing wastewater
JP2009241011A (en) * 2008-03-31 2009-10-22 Daikin Ind Ltd Treatment method of fluorine-containing waste water
JP2010069395A (en) * 2008-09-17 2010-04-02 Toshiba Corp System for recovering valuables
JP5208061B2 (en) 2009-06-29 2013-06-12 株式会社日立製作所 Flocculant injection control system
JP5532017B2 (en) * 2011-06-07 2014-06-25 富士電機株式会社 Industrial wastewater treatment method and treatment equipment
JP5840456B2 (en) * 2011-10-28 2016-01-06 株式会社明電舎 Chemical injection control method and chemical injection control device
JP2014008477A (en) * 2012-06-29 2014-01-20 Saga Univ Method for removing fluoride ion
US20180194642A1 (en) 2015-08-05 2018-07-12 Mitsubishi Heavy Industries, Ltd. Water treatment system, power generation plant, and method for controlling water treatment system

Also Published As

Publication number Publication date
JP2019136665A (en) 2019-08-22
WO2019159661A1 (en) 2019-08-22
TW201936517A (en) 2019-09-16
KR102362930B1 (en) 2022-02-14
TWI690495B (en) 2020-04-11
KR20200103838A (en) 2020-09-02

Similar Documents

Publication Publication Date Title
US20180194642A1 (en) Water treatment system, power generation plant, and method for controlling water treatment system
US6645385B2 (en) System and method for removal of fluoride from wastewater using single fluoride sensing electrode
JP4746385B2 (en) Flocculant injection control device applied to water treatment plant
GB2354516A (en) Method for treating a fluorine-containing waste water and treating apparatus
JP6982759B2 (en) Water treatment system
US9255018B2 (en) Cost-efficient treatment of fluoride waste
JP2008194559A (en) Apparatus for controlling injection of flocculant
US7005073B2 (en) Residual wastewater chlorine concentration control using a dynamic weir
JPH0615278A (en) Control of injection amount of slaked lime in treatment of fluorine-containing waste water and fluorine component removing apparatus
JP2000301165A (en) Treatment of fluorine-containing waste water
JP3150182B2 (en) Method for controlling injection amount of sodium carbonate in softening treatment of calcium-containing treated water of fluorine-containing wastewater and fluorine removing device
WO2022009481A1 (en) Apparatus and method for controlling injection of coagulant in water treatment plant
JP2007260556A (en) Phosphoric acid-containing wastewater treatment method and apparatus
JPH10263558A (en) Treatment of fluorine-containing desulfurized waste water
JP2822453B2 (en) Method of removing fluorine from flue gas desulfurization wastewater
JP2021037449A (en) Method for treating fluorine-containing waste water
JP2004216232A (en) AUTOMATIC INJECTION DEVICE FOR pH ADJUSTING AGENT
JPH06312190A (en) Treatment of waste water containing fluorine compound
JP2020000962A (en) Treatment method of ns compound affecting cod of desulfurized wastewater
JP6984684B2 (en) Exhaust gas treatment system and exhaust gas treatment method
JPH0125675Y2 (en)
WO2023026661A1 (en) Method for treating fluorine-containing water
WO2016113946A1 (en) Chromium-containing water treatment method
JP2004283759A (en) Method for treating fluorine-containing wastewater
JP3256606B2 (en) High-density sludge treatment method and apparatus

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20201020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211101

R150 Certificate of patent or registration of utility model

Ref document number: 6982759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150