JP2020000962A - Treatment method of ns compound affecting cod of desulfurized wastewater - Google Patents

Treatment method of ns compound affecting cod of desulfurized wastewater Download PDF

Info

Publication number
JP2020000962A
JP2020000962A JP2018120359A JP2018120359A JP2020000962A JP 2020000962 A JP2020000962 A JP 2020000962A JP 2018120359 A JP2018120359 A JP 2018120359A JP 2018120359 A JP2018120359 A JP 2018120359A JP 2020000962 A JP2020000962 A JP 2020000962A
Authority
JP
Japan
Prior art keywords
activated carbon
treatment
wastewater
compounds
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018120359A
Other languages
Japanese (ja)
Other versions
JP7162975B2 (en
Inventor
渡邉 淳
Atsushi Watanabe
淳 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2018120359A priority Critical patent/JP7162975B2/en
Publication of JP2020000962A publication Critical patent/JP2020000962A/en
Application granted granted Critical
Publication of JP7162975B2 publication Critical patent/JP7162975B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

To enable removal of all of five NS compounds affecting a COD value by utilizing a part of an existing facility, more particularly, active carbon.SOLUTION: There is provided a desulfurized wastewater treatment method in which desulfurized wastewater, to which powdered active carbon is added and an acid is added so as to adjust a pH to 2 or lower, is subjected to stirring treatment in an acid and active carbon treatment tank. Then, a flocculant and an alkaline solution are added to the desulfurized wastewater after the stirring treatment, thereby causing flocculation in a flocculation tank. Then, a flocculated substance is separated from the desulfurized wastewater in a separation tank, through which wastewater alone is allowed to pass.SELECTED DRAWING: Figure 1

Description

本発明は、火力発電所の脱硫排水処理設備から排出される脱硫排水の化学的酸素要求量(chemical oxygen demand:以下、CODと呼ぶ)に影響する窒素−硫黄化合物(以下、単にNS化合物と称す)の処理方法に関する。さらに詳述すると、本発明は、主に活性炭を活用したCODに影響するNS化合物の処理手法に関するものである。   The present invention relates to a nitrogen-sulfur compound (hereinafter simply referred to as an NS compound) which affects the chemical oxygen demand (hereinafter referred to as COD) of desulfurization wastewater discharged from a desulfurization wastewater treatment facility of a thermal power plant. ). More specifically, the present invention relates to a method for treating NS compounds that affect COD mainly by using activated carbon.

火力発電所の脱硫排水処理系統では、有機物系COD成分の処理には活性炭充填塔が、ジチオン酸の処理にはイオン交換樹脂が導入されるが、発電所によってはしばしば既存の排水処理設備では処理しきれない原因不明のCOD上昇事象が発生しており、有効な対策を講じることができない場合があることが問題となっている。この問題は、使用炭種の多様化や運転条件の変更、規制強化などに伴って、状況が深刻化することが危惧されており、対策が求められている。   In a thermal power plant desulfurization wastewater treatment system, an activated carbon packed tower is used for the treatment of organic COD components, and an ion exchange resin is introduced for the treatment of dithionic acid. An unexplained COD increase event of unknown cause has occurred, and there is a problem that effective measures may not be taken in some cases. It is feared that this problem will be exacerbated by the diversification of coal types used, changes in operating conditions, and stricter regulations, and measures are required.

そこで、有機物やジチオン酸に起因しない脱硫排水の原因不明のCOD上昇について種々研究・実験を行ったところ、排煙脱硫設備にて反応生成したNS化合物が原因であることを見出した(非特許文献1,2参照)。脱硫装置内で生成する可能性のあるNS化合物は8種であり(表1、図13参照)、5種のヒドロキシルアミン系NS化合物と3種のスルファミン系NS化合物に大別されるが、その内のヒドロキシルアミン系NS化合物がCODに影響を与えるため、5種類のNS化合物の全てが除去対象とされることが望まれる。   Therefore, when various studies and experiments were conducted on the unknown COD increase of desulfurization effluent not caused by organic substances or dithionic acid, it was found that NS compounds generated by reaction in flue gas desulfurization equipment were the cause (Non-patent document) 1, 2). There are eight types of NS compounds that may be generated in the desulfurization apparatus (see Table 1 and FIG. 13). They are roughly classified into five types of hydroxylamine NS compounds and three types of sulfamine NS compounds. Since the hydroxylamine-based NS compounds in the inside affect COD, it is desired that all of the five types of NS compounds are to be removed.

.
しかしながら、活性炭吸着による既存の排水処理設備の場合、脱硫排水中のNS化合物の除去の有無については判明していないし、イオン交換樹脂を活用した一般的な排水処理技術に対しても、各種のNS化合物への適用性の情報は少なく、5種のNS化合物のうちの1種(HATS)の除去を確認したのみ(非特許文献4)であり、それ以外の4種のNS化合物を吸着できるか否かさえ予測できないものである。そこで、脱硫排水中の5種類のNS化合物の全てが除去できる排水処理方法・設備の開発が求められている。
.
However, in the case of existing wastewater treatment equipment using activated carbon adsorption, it is not known whether NS compounds in desulfurization wastewater are removed or not. There is little information on the applicability to the compounds, and it was only confirmed that one of the five NS compounds (HATS) was removed (Non-patent Document 4). Can the other four NS compounds be adsorbed? It is not even predictable. Therefore, development of a wastewater treatment method and equipment capable of removing all five types of NS compounds in desulfurized wastewater is required.

従来のNS化合物の処理方法としては、酸性条件下での亜硝酸添加によりNS化合物の加水分解物を処理する亜硝酸ナトリウム添加法(非特許文献3)や、次亜塩素酸ナトリウムを添加してNS化合物の加水分解物を処理する次亜塩素酸ナトリウム添加法並びに硫酸などの酸性下でNS化合物を加水分解物する酸加水分解法が知られており、これらを排煙脱硫設備に適用することが提案されている(特許文献1)。   As a conventional NS compound treatment method, a sodium nitrite addition method of treating a hydrolyzate of an NS compound by addition of nitrous acid under acidic conditions (Non-Patent Document 3) or a method of adding sodium hypochlorite There are known a sodium hypochlorite addition method for treating a hydrolyzate of an NS compound and an acid hydrolysis method for hydrolyzing an NS compound under acidity such as sulfuric acid, and these are applied to flue gas desulfurization equipment. Has been proposed (Patent Document 1).

特開平05−31483号公報JP 05-31483 A

青田新, 正木浩幸, 大山聖一. 脱硫排水中難処理性COD成分としてのNS化合物に関する文献調査−生成機構および処理技術、測定技術−. 電力中央研究所 調査報告 V13301. 2013.Shin Aota, Hiroyuki Masaki, Seiichi Oyama. Literature Survey on NS Compounds as Refractory COD Components in Desulfurization Wastewater-Generation Mechanism, Treatment Technology, and Measurement Technology-Central Research Institute of Electric Power Industry V13301. 2013. 青田新, 大山聖一. 難処理性COD成分としてのNS化合物の管理技術−NS化合物の合成および分析条件検討、脱硫排水中NS化合物の特定−. 電力中央研究所 研究報告 V14002. 平成27年4月発行Arata Aota, Seiichi Oyama. Management technology of NS compounds as difficult-to-process COD components-Synthesis of NS compounds, analysis of analysis conditions, identification of NS compounds in desulfurization effluent-. Central Research Institute of Electric Power Industry Research Report V14002. Monthly issue 田中隆, 横山隆寿, 小泉道夫, 石原義巳. 排煙脱硝湿式還元法(第5報)−亜硝酸塩と亜硫酸塩の反応速度および反応性生物−. 電力中央研究所 研究報告 278019. 1978.Takashi Tanaka, Takahisa Yokoyama, Michio Koizumi, Yoshimi Ishihara. Flue Gas Denitrification Wet Reduction Method (Part 5)-Reaction Rate and Reactive Organism of Nitrite and Sulfite-Central Research Institute of Electric Power Industry 278019. 平賀由紀, 他. 排水中のヒドロキシルアミントリスルホン酸(HATS)の定量分析および除去方法. 四国電力, 四国総合研究所 研究期報. 2015, 102, p.1-5.Hiraga Yuki, et al. Quantitative analysis and removal of hydroxylamine trisulfonic acid (HATS) in wastewater. Shikoku Electric Power, Shikoku Research Institute, 2015. 102, p.1-5.

しかしながら、亜硝酸ナトリウム添加法の場合、過剰量の亜硝酸ナトリウムの添加が必要であり、排水中に残留する亜硝酸ナトリウム自体もCODに影響を与えるものであることから、後段に残留する亜硝酸の処理工程・設備(所謂、酸化処理工程・設備)をさらに必要とする問題を伴う。また、次亜塩素酸添加法の場合も同様であり、過剰量の次亜塩素酸ナトリウムの添加が必要であり、後段に残留する次亜塩素酸を処理する工程・設備(所謂、還元剤処理工程・設備)を必要とする。このことから、これら処理法は、不定期に発生するNS化合物の処理法としては課題が多く、好ましいものとは言えない。   However, in the case of the sodium nitrite addition method, it is necessary to add an excessive amount of sodium nitrite, and sodium nitrite remaining in the wastewater itself also affects COD. With the need for additional processing steps and equipment (so-called oxidation processing steps and equipment). The same applies to the hypochlorous acid addition method, in which it is necessary to add an excessive amount of sodium hypochlorite, and a process / equipment (a so-called reducing agent treatment) for treating hypochlorous acid remaining in the latter stage Process / equipment). For this reason, these treatment methods have many problems as a treatment method of NS compounds generated irregularly, and cannot be said to be preferable.

また、加水分解法の場合、5種のNS化合物のうち、HAODS,HAMS,HAOMSは酸に比較的安定であるため、それだけでは処理できない。加えて、残りの2種類のNS化合物、即ちHATS、HADSも加水分解後にHAODS,HAMSを生成する。このため、酸加水分解法単独での処理は全く不可能である。   In the case of the hydrolysis method, among the five NS compounds, HAODS, HAMS, and HAOMS cannot be treated by themselves because they are relatively stable to acids. In addition, the remaining two NS compounds, HATS and HADS, also produce HAODS and HAMS after hydrolysis. For this reason, the treatment by the acid hydrolysis method alone is completely impossible.

本発明は、火力発電所において有機物系COD成分の処理やジチオン酸の処理のために導入されている既存の排水処理技術に着目し、既設設備の一部を活用することでCOD値に影響する5種のNS化合物の全てを除去可能とする処理方法を提供することを目的とする。より具体的には、本発明は、活性炭を活用したCODに影響する5種のNS化合物の処理手法を提供することを目的とする。   The present invention focuses on existing wastewater treatment technologies introduced for the treatment of organic COD components and dithionic acid in thermal power plants, and affects COD values by utilizing some of the existing facilities. It is an object of the present invention to provide a treatment method capable of removing all five NS compounds. More specifically, an object of the present invention is to provide a method for treating five types of NS compounds that affect COD using activated carbon.

かかる目的を達成するため、本発明者等が種々研究・実験した結果、温度やpHを調整せずに(即ち、常温のままpH7付近で)、単に活性炭を通過させるだけの通常の活性炭充填塔ではNS化合物は普通除去されないとするのが常識であったが、pHを調整したり、温度を変化させることで、活性炭にNS化合物を吸着させ得ることを知見した。   As a result of various studies and experiments conducted by the present inventors in order to achieve the object, a normal activated carbon packed column that simply allows activated carbon to pass without adjusting the temperature or pH (that is, at around pH 7 at room temperature). It was common knowledge that the NS compound was not usually removed, but it was found that the NS compound could be adsorbed on activated carbon by adjusting the pH or changing the temperature.

即ち、通常の活性炭充填塔は、HADS,HATSがすり抜けるので、NS化合物は処理できないと従来は考えられていた。これは、CODに影響する5種のNS化合物のうち、なかでも、HATSが排煙脱硫装置の脱硫吸収液中に最も蓄積され、濃度が高くなることに大きな影響が与えられたものと思われる。ヒドロキシルアミン態化合物の一つであるHATSは、図13の生成経路に示したように、脱硫吸収液内で亜硫酸水素イオン(HSO )と亜硝酸イオン(NO )の反応生成物であるHADSを経由した後に生成し、脱硫吸収液および脱硫排水が中性からアルカリ性である場合、HATSの加水分解は抑制されるため、他のヒドロキシルアミン態化合物に変化せず、HATSの形態を維持すると考えられている。このことから、HATSがCOD上昇の主要因と推測される(非特許文献1)。 That is, conventionally, it has been considered that an ordinary activated carbon packed tower cannot process NS compounds because HADS and HATS pass through. This seems to be due to the fact that, among the five NS compounds that affect COD, HATS is most accumulated in the desulfurization absorbing solution of the flue gas desulfurization unit and the concentration thereof is greatly affected by the increase in concentration. . HATS, which is one of the hydroxylamine compounds, is a reaction product of bisulfite ion (HSO 3 ) and nitrite ion (NO 2 ) in the desulfurization absorption solution as shown in the production route of FIG. When produced after passing through a certain HADS and the desulfurization absorption liquid and desulfurization effluent are neutral to alkaline, the hydrolysis of HATS is suppressed, so that the form of HATS is maintained without being changed to other hydroxylamine compounds. It is believed that. From this, HATS is presumed to be the main cause of COD increase (Non-Patent Document 1).

このNS化合物の出発物質となるHADSと最も濃度が高くなるHATSとが活性炭充填塔をすり抜けるので、CODが下がらないという問題がもともとあって、活性炭では普通NS化合物を除去できないと考えられていたが、本発明者等のよる研究の結果、温度やpHを未調整のまま(即ち、常温のままpH7付近)で単に通過させるだけでも、一部のNS化合物の除去を可能にすること、並びに温度やpHを調整することにより全てのNS化合物の除去を可能にすることを知見するに至った。   Since HADS as a starting material of the NS compound and HATS having the highest concentration pass through the activated carbon packed column, there was originally a problem that COD did not decrease, and it was thought that activated carbon cannot usually remove NS compounds. As a result of research conducted by the present inventors, it has been found that the removal of some NS compounds can be achieved by simply passing the temperature and pH unadjusted (that is, at room temperature around pH 7), and It has been found that adjusting the pH and pH enables removal of all NS compounds.

また、イオン交換樹脂を活用した一般的な排水処理技術に対しても、NS化合物を吸着できるか否かさえ予測できないものであったが、本発明者等の研究・実験の結果、処理できるものと、処理できないものとが存在することの知見を得た。   In addition, it was impossible to predict whether or not NS compounds could be adsorbed even with general wastewater treatment technology utilizing ion exchange resins. However, as a result of research and experiments by the present inventors, those that can be treated And the fact that there are some that cannot be processed.

即ち、脱硫排水には、脱硫イオンが非常に多く含まれているので、硫酸イオンと陰イオン交換樹脂とが競合関係となってしまうため、硫酸イオンよりもイオン交換樹脂に付き易いものは除去できるが、イオン交換樹脂に付き難いものは排水中に残ることとなる。このため、HADS, HAODS, HATSの3種は除去できるが、HAMS, HAOMSの2種は除去されないという知見を得た。   That is, since the desulfurization effluent contains a very large amount of desulfurization ions, the sulfate ions and the anion exchange resin are in a competitive relationship. Therefore, those that are more easily attached to the ion exchange resin than the sulfate ions can be removed. However, those that do not easily adhere to the ion exchange resin will remain in the wastewater. For this reason, it was found that three types of HADS, HAODS and HATS can be removed, but two types of HAMS and HAOMS are not removed.

しかして、活性炭による一般的な排水処理と陰イオン交換樹脂による排水処理とでは、除去できるNS化合物と、除去できないNS化合物とがあり、尚且つそれらが相補的な関係にあるとの知見から、これらを組み合わせることで全てのNS化合物を除去し得る可能性を見出した。   Thus, in the general wastewater treatment using activated carbon and the wastewater treatment using an anion exchange resin, there are NS compounds that can be removed and NS compounds that cannot be removed, and from the knowledge that they have a complementary relationship, By combining these, it was found that all NS compounds could be removed.

本発明の脱硫排水処理方法はかかる知見に基づくものであって、脱硫排水に粉末活性炭を添加すると共に酸を添加してpH2以下に調整して酸活性炭処理槽で攪拌処理し、攪拌処理後の前記脱硫排水に凝集剤とアルカリ溶液を添加して凝集槽で凝集させた後、前記脱硫排水と前記凝集物とを分離槽で分離して排水のみを通過させるようにしている。     The desulfurization wastewater treatment method of the present invention is based on such a finding, and powdery activated carbon is added to desulfurization wastewater and an acid is added to adjust the pH to 2 or less, and the mixture is stirred in an acid activated carbon treatment tank. After adding a flocculant and an alkaline solution to the desulfurization wastewater and coagulating in a coagulation tank, the desulfurization wastewater and the aggregate are separated in a separation tank so that only the wastewater passes.

また、請求項2記載の発明にかかる脱硫排水処理方法は、酸処理槽内で脱硫排水に酸を添加して攪拌してpH2以下に調整した後、pH調整後の脱硫排水を活性炭充填塔を通過させ、NS化合物を前記活性炭充填塔に付着させて除去した後の排水のみを通過させるようにしている。   Further, the desulfurization wastewater treatment method according to the second aspect of the present invention is characterized in that after adding an acid to the desulfurization wastewater in an acid treatment tank and stirring to adjust the pH to 2 or less, the desulfurization wastewater after the pH adjustment is passed through an activated carbon packed tower. The wastewater is allowed to pass through, and only the wastewater after the NS compound is attached to and removed from the activated carbon packed tower is allowed to pass.

また、本発明にかかる脱硫排水処理方法は、活性炭に接触させる前のpH調整時に少なくとも40℃、好ましくは50℃に加温するようにしている。   In the desulfurization wastewater treatment method according to the present invention, the pH is adjusted to at least 40 ° C., preferably 50 ° C., at the time of pH adjustment before contacting with activated carbon.

さらに、本発明にかかる脱硫排水処理方法は、脱硫排水経路にイオン交換樹脂充填塔と活性炭充填塔とを直列に連結し、イオン交換と活性炭吸着とを連続的に実施することを特徴とする。   Furthermore, the desulfurization wastewater treatment method according to the present invention is characterized in that an ion exchange resin packed tower and an activated carbon packed tower are connected in series to a desulfurization wastewater path, and ion exchange and activated carbon adsorption are performed continuously.

本発明の脱硫排水処理方法によれば、既設設備の一部を活用することでCOD値に影響する全てのNS化合物の除去を可能とすることができる。より具体的には、本発明は、火力発電所において一般的な既設の排水処理設備である活性炭を活用して、CODに影響する全てのNS化合物の処理を実施することができる。   According to the desulfurization wastewater treatment method of the present invention, it is possible to remove all NS compounds that affect the COD value by utilizing a part of the existing facilities. More specifically, the present invention can carry out the treatment of all NS compounds that affect COD by utilizing activated carbon, which is a general existing wastewater treatment facility in a thermal power plant.

本発明の脱硫排水のCODに影響するNS化合物の処理方法の一実施形態を示す概略図であり、(A)は活性炭を活用したバッチ式処理システム、(B)は活性炭を活用した連続式処理システム、(C)はイオン交換樹脂と活性炭とを活用した連続式処理システムである。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic which shows one Embodiment of the processing method of the NS compound which affects COD of the desulfurization wastewater of this invention, (A) is a batch type processing system using activated carbon, (B) is a continuous type processing using activated carbon. (C) is a continuous processing system utilizing an ion exchange resin and activated carbon. 本発明の脱硫排水のCODに影響するNS化合物の処理方法の実験装置の一例を示す概略図であり、(A)は活性炭を活用した連続式処理、(B)はイオン交換樹脂と活性炭とを活用した連続式処理を実施するためのものである。It is the schematic which shows an example of the experimental apparatus of the processing method of the NS compound which affects COD of the desulfurization waste water of this invention, (A) is a continuous process using activated carbon, (B) is an ion exchange resin and activated carbon. This is for implementing continuous processing that has been utilized. NS化合物の加水分解におけるpH、温度の影響を示すグラフであり、(A)はHAMS、(B)はHAOMS、(C)はHADS、(D)はHAODS、(E)はHATSをそれぞれ示す。It is a graph which shows the influence of pH and temperature in the hydrolysis of NS compound, (A) shows HAMS, (B) shows HAOMS, (C) shows HADS, (D) shows HAODS, and (E) shows HATS. イオン交換樹脂(WBA)カラムによる吸着試験における5種のNS化合物の除去率の変化を示すグラフである。It is a graph which shows the change of the removal rate of 5 types of NS compounds in the adsorption test by an ion exchange resin (WBA) column. 活性炭処理におけるpH、温度の影響を示すグラフであり、(A)はHAMS、(B)はHAOMS、(C)はHADS、(D)はHAODS、(E)はHATSをそれぞれ示す。It is a graph which shows the influence of pH and temperature in activated carbon treatment, (A) shows HAMS, (B) shows HAOMS, (C) shows HADS, (D) shows HAODS, and (E) shows HATS. HAMS及びHAOMSの活性炭処理における除去率と生成物を示すグラフである。It is a graph which shows the removal rate and product in activated carbon treatment of HAMS and HAOMS. HAMS及びHAOMSの活性炭カラム試験における除去率を示すグラフである。It is a graph which shows the removal rate in the activated carbon column test of HAMS and HAOMS. NS化合物を添加した脱硫排水のイオン交換樹脂による処理結果を示すグラフである。It is a graph which shows the processing result of the desulfurization waste water which added the NS compound by the ion exchange resin. NS化合物を添加した脱硫排水の活性炭による処理結果を示すグラフである。It is a graph which shows the processing result of the desulfurization wastewater which added the NS compound by the activated carbon. 酸性活性炭処理によるHATSの処理結果を示すグラフである。It is a graph which shows the processing result of HATS by acidic activated carbon processing. 酸性活性炭処理によるHADSの処理結果を示すグラフである。It is a graph which shows the processing result of HADS by acidic activated carbon processing. イオン交換樹脂・活性炭処理によるNS化合物の処理結果を示すグラフである。It is a graph which shows the treatment result of NS compound by ion exchange resin and activated carbon treatment. NS化合物の生成機構図である。FIG. 3 is a diagram showing the mechanism of formation of an NS compound.

以下、本発明の構成を図面に示す実施形態に基づいて詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail based on an embodiment shown in the drawings.

本発明の脱硫排水処理方法は、火力発電所において有機物系COD成分の処理やジチオン酸の処理のために導入されている既存の排水処理技術に着目し、既設設備の一部を活用することでCOD値に影響する5種のNS化合物の全てを除去可能とするものである。例えば、火力発電所等において排水処理技術として一般的な活性炭充填塔(あるいはバッチ式の活性炭処理設備を含む)やイオン交換樹脂充填塔などを活用し、特に活性炭を用いた排水処理技術を活用してCODに影響する5種のNS化合物の全てを処理使用とするものである。   The desulfurization wastewater treatment method of the present invention focuses on existing wastewater treatment technologies introduced for treating organic COD components and dithionic acid in a thermal power plant, and utilizes a part of existing facilities. This makes it possible to remove all of the five NS compounds that affect the COD value. For example, in a thermal power plant or the like, a general activated carbon packed tower (or including a batch type activated carbon treatment facility) or an ion-exchange resin packed tower is used as a wastewater treatment technology, and in particular, a wastewater treatment technology using activated carbon is utilized. Of the five NS compounds that affect COD.

既設の排水処理技術として一般的な活性炭充填塔(あるいはバッチ式の活性炭処理設備を含む)は、普通の活性炭処理を施す場合、即ちpHや温度の調整をせずにそのまま常温・pH7で脱硫排水を処理する場合でも、HAMS、HAOMSは除去できることが本発明等によって明らかにされた。また、その他のHADS、HAODS及びHATSの3種のNS化合物についても、酸性下で加温して運用することにより、例えばpH2で少なくとも40℃に加温することで、活性炭処理で除去できることが明らかにされた。さらに、一部のNS化合物においては、pH4程度の酸性下でも少なくとも40℃、好ましくは50℃程度に加温するだけで、HADSは除去率1.0程度に除去できるし、HAODSはほぼ除去できることを知見するに至った。   Existing activated carbon packing towers (or batch type activated carbon treatment equipment) that are commonly used as existing wastewater treatment technology are desulfurized wastewater at ordinary temperature and pH 7 as they are when ordinary activated carbon treatment is performed, that is, without adjusting pH or temperature. It has been clarified by the present invention that HAMS and HAOMS can be removed even when treating. It is also clear that the other three NS compounds, HADS, HAODS and HATS, can be removed by activated carbon treatment, for example, by heating to at least 40 ° C. at pH 2 by operating under acidic conditions. Was. Further, in some NS compounds, HADS can be removed to a removal rate of about 1.0 and HAODS can be removed almost only by heating to at least 40 ° C., preferably about 50 ° C. even under acidic conditions of about pH 4. Was found.

他方、イオン交換樹脂による排水処理の場合には、HADS,HAODS,HATSの3種のNS化合物は除去できるが、HAMS,HAOMSの2種は除去されないという知見を得た。そして、活性炭による普通の排水処理と陰イオン交換樹脂による排水処理とでは、除去できるNS化合物と、除去できないNS化合物とがあり、尚且つそれらが相補的な関係にあるとの知見を得た。   On the other hand, in the case of wastewater treatment using an ion exchange resin, it was found that three NS compounds of HADS, HAODS and HATS can be removed, but two of HAMS and HAOMS are not removed. In addition, it has been found that in the ordinary wastewater treatment using activated carbon and the wastewater treatment using an anion exchange resin, there are NS compounds that can be removed and NS compounds that cannot be removed, and that they have a complementary relationship.

このことから、5種のNS化合物全てを除去処理するためには、活性炭充填塔(あるいはバッチ式の活性炭処理設備を含む)のみを利用する場合には、pHを調整したり、温度を変化させることが必要であり、イオン交換樹脂処理と活性炭処理とを組み合わせる場合には脱硫排水へのpH調整も温度調整も必要としないことを見い出した。   From this, when only the activated carbon packed tower (or the batch type activated carbon treatment equipment is included) is used to remove all five NS compounds, the pH is adjusted or the temperature is changed. It has been found that when the ion exchange resin treatment and the activated carbon treatment are combined, neither pH adjustment nor temperature adjustment to the desulfurization effluent is required.

図1(A)に本発明にかかる脱硫排水処理方法の一実施形態を示す。この脱硫排水処理システムは、回分処理(バッチ処理)システムであり、酸活性炭処理槽1と、凝集槽2と、分離槽3とで構成され、脱硫排水4に粉末活性炭5を添加すると共に酸6を添加して酸性下例えばpH2以下に調整して酸活性炭処理槽1で所定時間例えば2時間攪拌処理し、攪拌処理後の脱硫排水4に凝集剤7とアルカリ溶液8を添加して凝集槽2で凝集させると共に中和した後、脱硫排水4と凝集物(図示省略)とを分離槽3で分離して排水9のみを通過させるようにしている。尚、酸としては例えば塩酸、凝集剤としては硫酸バンドやポリ塩化アルミニウム(PAC)、またアルカリ溶液としては水酸化ナトリウムなどの使用が好ましい。   FIG. 1A shows one embodiment of a desulfurization wastewater treatment method according to the present invention. This desulfurization wastewater treatment system is a batch treatment (batch treatment) system, which is composed of an acid activated carbon treatment tank 1, a coagulation tank 2, and a separation tank 3. Is added under acidic conditions, for example, to a pH of 2 or less, and the mixture is stirred in the acid activated carbon treatment tank 1 for a predetermined period of time, for example, 2 hours. The coagulant 7 and the alkali solution 8 are added to the desulfurization wastewater 4 after the stirring treatment. After the coagulation and neutralization, the desulfurization wastewater 4 and the aggregate (not shown) are separated in the separation tank 3 so that only the wastewater 9 passes. It is preferable to use, for example, hydrochloric acid as the acid, a sulfate band or polyaluminum chloride (PAC) as the coagulant, and sodium hydroxide or the like as the alkaline solution.

ここで、酸活性炭処理槽1における攪拌処理は、酸性下望ましくはpH2以下に調整して、常温から少なくとも40℃、望ましくは50℃に加温して行われる。粉末活性炭の濃度は例えば1w/v%(1回分当たり)としたが、この量は実験的に目的が達成されるに十分な量として採用されたものであり、この量に限定される特定の理由はなく、また最適化された量でもない。適宜必要に応じて添加されることとなる。また、攪拌時間は、バッチ処理の場合容器・カラムの容量などによって異なるが、実験においては例えば2時間(1回分当たり)程度で目的が達成された。尚、本システムにおいて、上述の攪拌時間や粉末活性炭の添加濃度などは、最適値を示すものではなく、この量に特に限られるものではない。また、酸活性炭処理槽1での脱硫排水4の温度は、加水分解を促進する上で加温した方が好ましいが、例えば50℃程度に高く設定する方がNS化合物の除去が進行するし反応槽を小さくする上で望ましいが、必ずしも50℃としなくとも良く、実験からは40℃でも十分な効果が得られた。   Here, the stirring treatment in the acid activated carbon treatment tank 1 is performed by adjusting the pH to 2 or less under acidic conditions, and heating the mixture from room temperature to at least 40 ° C, preferably 50 ° C. The concentration of the powdered activated carbon was, for example, 1 w / v% (per dose), but this amount was experimentally adopted as an amount sufficient to achieve the purpose, and is limited to this amount. There is no reason, nor is it an optimized amount. It will be appropriately added as needed. Further, the stirring time varies depending on the capacity of the vessel / column in the case of batch processing, but in the experiment, the purpose was achieved in about 2 hours (per one batch), for example. In the present system, the above-described stirring time, the concentration of the powdered activated carbon, and the like do not show optimum values, and are not particularly limited to these amounts. The temperature of the desulfurization effluent 4 in the acid activated carbon treatment tank 1 is preferably heated in order to promote hydrolysis. However, if the temperature is set as high as, for example, about 50 ° C., removal of NS compounds proceeds, and the reaction proceeds. Although desirable for reducing the size of the tank, it is not always necessary to set the temperature to 50 ° C. From experiments, a sufficient effect was obtained even at 40 ° C.

NS化合物の除去は、より好ましくは加温して加水分解を促進させることであるが、場合によっては常温であっても実施可能である。本実施形態の場合、pH2で処理するようにしているがこれに特に限られるものではなく、例えばpH4程度でも十分な効果が得られた。実験結果からも明らかなように、加温温度を高めに設定すれば、例えば50℃に設定すれば、pH4でも十分にNS化合物の除去効果が得られる。その反面、勿論、加水分解であるから、50℃よりも高い温度まで加温すれば、さらに除去効果は上がるが、熱経済的に必要以上の高温に加温することは好ましくないことと、充填塔のカラムの大きさ・容量や処理時間の関係で、50℃程度とすることが望ましい。   The removal of the NS compound is more preferably to promote the hydrolysis by heating, but in some cases, it can be carried out even at room temperature. In the case of the present embodiment, the treatment is performed at pH 2, but the treatment is not particularly limited thereto. For example, a sufficient effect was obtained even at about pH 4. As is clear from the experimental results, if the heating temperature is set higher, for example, if it is set to 50 ° C., a sufficient effect of removing the NS compound can be obtained even at pH 4. On the other hand, of course, since it is hydrolysis, if the temperature is raised to a temperature higher than 50 ° C., the removal effect is further improved, but it is not preferable to heat to a temperature higher than necessary from a thermoeconomic point of view. It is desirable to be about 50 ° C. in relation to the size and capacity of the column of the tower and the processing time.

図1(B)に本発明にかかる脱硫排水処理方法の他の実施形態を示す。この脱硫排水処理システムは、連続処理システムであり、酸処理槽11と、活性炭充填塔12とで構成され、脱硫排水4に酸13を添加してpH2以下に調整して酸処理槽11で攪拌処理し、攪拌処理後の脱硫排水を活性炭充填塔12に供給して通過させ、活性炭と接触させてNS化合物を除去して排水9のみを通過させるようにしている。   FIG. 1B shows another embodiment of the desulfurization wastewater treatment method according to the present invention. This desulfurization wastewater treatment system is a continuous treatment system, and is composed of an acid treatment tank 11 and an activated carbon packed tower 12. The acid 13 is added to the desulfurization wastewater 4 to adjust the pH to 2 or less, and the acid treatment tank 11 is stirred. The desulfurized effluent after the treatment and the stirring treatment is supplied to and passed through the activated carbon packed tower 12, and is brought into contact with activated carbon to remove NS compounds and pass only the effluent 9.

ここで、酸処理槽11における攪拌処理は、塩酸または硫酸などの酸を添加して例えばpH2に調整し、常温から50℃の温度範囲で加温されてから行われることが好ましい。加温温度は、より高く設定する方が加水分解を促進させ反応槽を小さくできるので好ましいが、必ずしも50℃程度としなくとも良く、実験では40℃でも十分な効果が得られた。尚、活性炭充填塔を通過した排水は酸性のままであるので、必要に応じて下流において中和処理を施してから排水することが好ましい。   Here, the stirring treatment in the acid treatment tank 11 is preferably performed after adding an acid such as hydrochloric acid or sulfuric acid to adjust the pH to, for example, 2 and heating the mixture in a temperature range from normal temperature to 50 ° C. It is preferable that the heating temperature be set higher, because hydrolysis can be promoted and the size of the reaction vessel can be reduced. However, it is not always necessary to set the heating temperature to about 50 ° C. In experiments, a sufficient effect was obtained even at 40 ° C. Since the wastewater that has passed through the activated carbon packed tower remains acidic, it is preferable that the wastewater be subjected to a neutralization treatment downstream if necessary.

図1(C)に本発明にかかる脱硫排水処理方法のさらに他の実施形態を示す。この脱硫排水処理システムは、連続処理を可能とするものであり、イオン交換樹脂充填塔21と、活性炭充填塔22とで構成され、イオン交換樹脂充填塔21でNS化合物の一部即ちHADS、HAODS及びHATSを除去した後、活性炭充填塔22でNS化合物の残りの一部即ちHAMS及びHAOMSを除去して、排水9のみを通過させるようにしている。したがって、5種のNS化合物の全ての除去が可能となる。   FIG. 1C shows still another embodiment of the desulfurization wastewater treatment method according to the present invention. This desulfurization wastewater treatment system enables continuous treatment, and is constituted by an ion-exchange resin packed tower 21 and an activated carbon packed tower 22. In the ion-exchange resin packed tower 21, a part of NS compounds, namely, HADS, HAODS After the removal of HATS and HATS, the activated carbon packed tower 22 removes the remaining part of the NS compound, that is, HAMS and HAOMS, so that only the wastewater 9 passes. Therefore, all five NS compounds can be removed.

以上の実施形態において用いられる活性炭充填塔あるいはイオン交換樹脂充填塔は、火力発電所の脱硫排水処理設備から排出される脱硫排水の排水処理のための既設設備として一般に備えられているものであることからり、その一部を活用することで、設置スペース並びに設備コストなどを抑えることができる。同時に、他の処理対象物即ち有機物系COD成分並びにジチオン酸の処理と平行して処理することできる。   The activated carbon packed tower or the ion-exchange resin packed tower used in the above embodiment is generally provided as existing equipment for wastewater treatment of desulfurization wastewater discharged from the desulfurization wastewater treatment equipment of a thermal power plant. By utilizing a part of the structure, installation space and equipment costs can be reduced. At the same time, the treatment can be carried out in parallel with the treatment of another treatment object, that is, an organic COD component and dithionic acid.

なお、上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。   The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the spirit of the present invention.

脱硫排水に生成する可能性のある5種のNS化合物について、イオン交換樹脂および活性炭による処理の可能性を、模擬的な排水を用いた回分試験、カラム試験および実排水を用いたカラム試験を実施して調べた。   Conducted batch tests using simulated wastewater, column tests, and column tests using actual wastewater to examine the possibility of treatment with ion exchange resin and activated carbon for the five NS compounds that may be generated in desulfurization wastewater. I checked.

[試薬等]
NS化合物として、COD上昇に影響する5種(HAMS、HAOMS、HADS、HAODS、HATS)を供試した(表1)。これらのうち、HAOMSは和光純薬工業より入手した。HAOMS以外の4種は市販されていないため、合成した。各NS化合物は純度を100%と仮定して、水酸化カリウム溶液(pH10〜12)または緩衝液(pH2〜7)を用いて50mMの濃縮液を調製し、適宜希釈して使用した。
[Reagents, etc.]
As NS compounds, five types (HAMS, HAOMS, HADS, HAODS, HATS) which influence the COD increase were tested (Table 1). Of these, HAOMS was obtained from Wako Pure Chemical Industries. Since four types other than HAOMS were not commercially available, they were synthesized. Assuming that each NS compound has a purity of 100%, a 50 mM concentrated solution was prepared using a potassium hydroxide solution (pH 10 to 12) or a buffer solution (pH 2 to 7), and was appropriately diluted before use.

イオン交換樹脂は、NS化合物が陰イオンであることを踏まえ、脱硫排水のCOD成分であるジチオン酸(S 2-)の除去にも用いられる弱塩基性陰イオン交換樹脂および強塩基性陰イオン交換樹脂II型を用いた。弱塩基性陰イオン交換樹脂と強塩基性陰イオン交換樹脂II型は、試薬として入手可能なダウ・ケミカルDOWEX Marathon WBA(以降、WBA)およびDOWEX Marathon A2(以降、A2)を用いた。イオン交換樹脂は、いずれも使用前に超純水、4%水酸化ナトリウム溶液、1 mol/L塩酸および超純水で洗浄し、コンディショニングを行った。 Based on the fact that the NS compound is an anion, the ion exchange resin is a weakly basic anion exchange resin which is also used for removing dithionic acid (S 2 O 6 2− ) which is a COD component of desulfurization effluent. An anion exchange resin type II was used. As the weakly basic anion exchange resin and the strongly basic anion exchange resin type II, Dow Chemical DOWEX Marathon WBA (hereinafter, WBA) and DOWEX Marathon A2 (hereinafter, A2) available as reagents were used. Each ion exchange resin was washed with ultrapure water, a 4% sodium hydroxide solution, 1 mol / L hydrochloric acid and ultrapure water before use, and conditioned.

活性炭は、粉末活性炭素(中性、和光純薬工業;以降粉末活性炭)および破砕状活性炭素(粒径2〜5mm、和光純薬工業;以降、破砕状活性炭)を用いた。粉末活性炭はそのまま使用し、破砕状活性炭は超純水で洗浄後に使用した。   As the activated carbon, powdered activated carbon (neutral, Wako Pure Chemical Industries; hereinafter, powdered activated carbon) and crushed activated carbon (particle size: 2 to 5 mm, Wako Pure Chemical Industries, hereinafter, crushed activated carbon) were used. The powdered activated carbon was used as it was, and the crushed activated carbon was used after washing with ultrapure water.

[加水分解と亜硝酸添加法によるNS化合物の分解特性]
5種のNS化合物に対して、加水分解および亜硝酸添加法による分解特性を把握するために、pH、温度条件を変えたビーカーレベルの回分試験を行った。
1)加水分解
5種のNS化合物に対して、pHを2,4,7、温度を室温(約25℃)、40℃、50℃の条件でNS化合物の加水分解を行った。pH2および7の条件では10 mMリン酸緩衝液、pH4では10mM酢酸/酢酸ナトリウム緩衝液を用い、緩衝液に初期濃度0.5mMになるように各NS化合物の濃縮液を添加した。室温または40℃、50℃の恒温水槽中で静置し、1時間後にNS化合物の濃度を測定した。処理前後のNS化合物濃度から式(1)を用いて分解率(R)を算出した。
[Degradation characteristics of NS compounds by hydrolysis and nitrous acid addition method]
In order to grasp the degradation characteristics of the five NS compounds by the hydrolysis and nitrite addition methods, batch tests were conducted at the beaker level with different pH and temperature conditions.
1) Hydrolysis NS compounds were hydrolyzed with respect to the five NS compounds under the conditions of pH 2, 4, 7 and room temperature (about 25 ° C.), 40 ° C. and 50 ° C. A 10 mM phosphate buffer was used under the conditions of pH 2 and 7, and a 10 mM acetic acid / sodium acetate buffer was used at pH 4, and a concentrated solution of each NS compound was added to the buffer so that the initial concentration was 0.5 mM. The mixture was allowed to stand at room temperature or in a constant temperature water bath at 40 ° C. and 50 ° C., and the concentration of the NS compound was measured after 1 hour. From the NS compound concentrations before and after the treatment, the decomposition rate (R) was calculated using equation (1).

ここで、[A]と[A]は処理前後のNS化合物濃度[mmol/L]を示す。
2)亜硝酸添加法
酸加水分解の回分試験と同様に、pH 2,4,7、温度を室温(約25℃)、40℃、50℃の条件で実施した。各pHの緩衝液で0.5mMに調製したNS化合物溶液に亜硝酸ナトリウムを5 mMになるように添加し、各温度で処理を行った。酸加水分解と同様に処理前後のNS化合物濃度から分解率(R)を算出した。
Here, [A] 0 and [A] indicate the NS compound concentration [mmol / L] before and after the treatment.
2) Addition method of nitrous acid As in the batch test of acid hydrolysis, pH 2,4,7 were carried out at room temperature (about 25 ° C), 40 ° C and 50 ° C. Sodium nitrite was added to an NS compound solution adjusted to 0.5 mM with a buffer at each pH to a concentration of 5 mM, and the treatment was performed at each temperature. The decomposition rate (R) was calculated from the NS compound concentrations before and after the treatment in the same manner as in the acid hydrolysis.

[イオン交換樹脂によるNS化合物の除去特性]
NS化合物に対するイオン交換樹脂への吸着試験は、ビーカーレベルの回分試験とカラム試験を実施した。
[Removal characteristics of NS compound by ion exchange resin]
For the adsorption test of the NS compound on the ion exchange resin, a batch test at a beaker level and a column test were performed.

1)回分試験
各NS化合物の処理液は、NS化合物濃度を0.5mMとした50mM塩化ナトリウム溶液を用い、1mol/L塩酸でpH5に調製した。50mLの処理液にコンディショニング済みイオン交換樹脂(WBAおよびA2)1gを添加し、回転板で1時間、室温で撹拌した後、処理液中のNS化合物の濃度を分析した。NS化合物の濃度から、式(1)及び式(2)を用いて除去率(R)と分配係数(KdA)を算出した。分配係数は、値が大きいほどイオン交換樹脂で吸着(イオン交換)しやすいことを示し、イオン交換樹脂との親和性の指標となる。
1) Batch test The treatment solution of each NS compound was adjusted to pH 5 with 1 mol / L hydrochloric acid using a 50 mM sodium chloride solution having an NS compound concentration of 0.5 mM. 1 g of the conditioned ion exchange resin (WBA and A2) was added to 50 mL of the treatment solution, and the mixture was stirred for 1 hour at room temperature on a rotating plate, and then the concentration of the NS compound in the treatment solution was analyzed. From the concentration of the NS compound, the removal rate (R) and the distribution coefficient (KdA) were calculated using the equations (1) and (2). The larger the value of the partition coefficient is, the easier it is to adsorb (ion-exchange) the ion-exchange resin, which is an index of the affinity with the ion-exchange resin.

ここで、[A] はイオン交換樹脂中のNS化合物濃度[mmol/kg−R]、Vは溶液量[L]、ρはイオン交換樹脂の比重[kg/L]、Wは添加したイオン交換樹脂重量[kg]を示す。 Here, [A] R is the concentration NS compound of an ion exchange resin [mmol / kg-R], V is the solution volume [L], ρ R is the specific gravity of the ion-exchange resin [kg / L], W R is added The weight [kg] of the ion-exchange resin thus obtained is shown.

2)カラム試験
カラム試験では、イオン交換樹脂による脱硫排水中のNS化合物の除去特性を把握するために、脱硫排水を模擬した排水(模擬排水)のNS化合物を処理した。カラム試験には、コンディショニング済みのイオン交換樹脂(WBA)を充填したカラム(直径10mm、長さ150mm)を用いた。摸擬排水は、成分をCa2+:570mg/L、Na:480mg/L、Cl-:1000mg/L、SO 2-:1000mg/Lとし塩化カルシウムと硫酸ナトリウムを用いて調製し、塩酸でpH5とした。試験前に摸擬排水をカラム出口のSO 2-およびCl-濃度が安定するまで、空間速度(以降、SV)20h-1の流速で通水した。その後、0.5mM のNS化合物を含む摸擬排水に切り替え、カラム入口と出口の試料を経時的に採取し、NS化合物を分析した。NS化合物の濃度から、式(3)を用いて除去率(R)を算出した。
ここで、[A]inと[A]outはカラム入口と出口のNS化合物の濃度[mmol/L]を示す。
2) Column test In the column test, in order to grasp the removal characteristics of the NS compound in the desulfurization wastewater by the ion exchange resin, the NS compound in the wastewater simulating the desulfurization wastewater (simulated wastewater) was treated. For the column test, a column (diameter 10 mm, length 150 mm) packed with conditioned ion exchange resin (WBA) was used. The simulated drainage was prepared using calcium chloride and sodium sulfate, with the components being Ca 2+ : 570 mg / L, Na + : 480 mg / L, Cl : 1000 mg / L, SO 4 2− : 1000 mg / L, and calcium chloride and sodium sulfate. The pH was set to 5. Before the test, the simulated wastewater was passed at a space velocity (hereinafter, SV) of 20 h- 1 until the SO 4 2- and Cl - concentrations at the column outlet became stable. Thereafter, the wastewater was switched to simulated wastewater containing 0.5 mM of the NS compound, and samples at the inlet and outlet of the column were collected with time to analyze the NS compound. The removal rate (R) was calculated from the concentration of the NS compound using the formula (3).
Here, [A] in and [A] out indicate the concentration [mmol / L] of the NS compound at the inlet and outlet of the column.

[活性炭によるNS化合物の除去特性]
活性炭の吸着試験は、イオン交換樹脂の吸着試験と同様にビーカーレベルの回分試験とカラム試験を実施した。
[Removal properties of NS compounds by activated carbon]
In the adsorption test of the activated carbon, a batch test at the beaker level and a column test were carried out in the same manner as the ion exchange resin adsorption test.

1)回分試験
50mMリン酸緩衝液(pH2、7)または50mM酢酸/酢酸ナトリウム緩衝液(pH4)に初期濃度0.5mMになるように各NS化合物の濃縮液を添加し、処理液とした。処理水30mLに対して0.3gの粉末活性炭素を添加し、緩衝液を用いた処理液では、室温、40℃および50℃で回転板を用いて2時間、撹拌した。撹拌後、処理液を孔径0.2μmのフィルタでろ過し、NS化合物の濃度を分析した。NS化合物の濃度から、式(1)により除去率を算出した。一部のNS化合物(HAMSとHAOMS)については、処理後の生成物を確認するために、超純水で0.5mMとした処理液による試験を行い、硫酸イオン(SO 2-)、アンモニアイオン(NH )、亜硝酸イオン(NO -)、硝酸イオン(NO -)、ヒドロキシルアミン(NHOH)および全窒素(TN)の濃度を分析した。SO 2-濃度については、活性炭からSO 2-が溶出するため、式(4)を用いて活性炭から溶出するSO 2-を差し引いたSO 2-増加分(ΔSO 2-)を計算した。
1) Batch test A concentrated solution of each NS compound was added to a 50 mM phosphate buffer (pH 2, 7) or a 50 mM acetic acid / sodium acetate buffer (pH 4) so as to have an initial concentration of 0.5 mM. 0.3 g of powdered activated carbon was added to 30 mL of treated water, and in the treated solution using a buffer solution, stirring was performed at room temperature, 40 ° C., and 50 ° C. using a rotating plate for 2 hours. After stirring, the treatment liquid was filtered with a filter having a pore size of 0.2 μm, and the concentration of the NS compound was analyzed. From the concentration of the NS compound, the removal rate was calculated by the equation (1). For some NS compounds (HAMS and HAOMS), in order to confirm the product after the treatment, a test was conducted with a treatment solution of 0.5 mM in ultrapure water, and sulfate ions (SO 4 2− ), ammonia The concentrations of ions (NH 4 + ), nitrite ions (NO 2 ), nitrate ions (NO 3 ), hydroxylamine (NH 2 OH) and total nitrogen (TN) were analyzed. For SO 4 2-concentration, to SO 4 2-elution from the activated carbon, the formula (4) SO 4 2- increment minus SO 4 2-a eluted from the activated carbon with a (ΔSO 4 2-) Calculated.

[数式4]
Δ[SO 2-]=[SO 2-−[SO 2-−[SO 2-AC
ここで、[SO 2-、[SO 2-、[SO 2-ACは、それぞれ処理前、処理後および活性炭から溶出するSO 2-濃度(mmol/L)を示す。[SO 2-ACは、NS化合物を添加しない処理液を同様に試験を実施し、SO 2-濃度の増加量から求めた。
[Equation 4]
Δ [SO 4 2− ] = [SO 4 2− ] t − [SO 4 2− ] 0 − [SO 4 2− ] AC
Here, [SO 4 2− ] 0 , [SO 4 2− ] t , and [SO 4 2− ] AC represent the SO 4 2− concentration (mmol / L) eluted from the activated carbon before, after and after the treatment, respectively. Show. [SO 4 2− ] AC was determined from the amount of increase in the SO 4 2− concentration by performing the same test on the treatment solution to which the NS compound was not added.

2)カラム試験
活性炭のカラム試験は、HAMSとHAOMSを対象に実施した。約60mLの洗浄した破砕状活性炭を充填したガラスカラム(直径25mm、長さ120mm)を用いた。HAMSおよびHAOMSを超純水で0.5mMとし、pH7に調整して処理水とした。処理水をカラムに対してSV10または5h-1の流速で、カラム出口のNS化合物濃度が安定するまで通水した。その後、カラム入口と出口の処理水を採取し、NS化合物およびSO 2-濃度を分析した。NS化合物とSO 2-濃度から、式(3)および式(4)を用いて除去率(R)とSO 2-増加分(Δ[SO 2-])を算出した。
2) Column test The column test of activated carbon was performed for HAMS and HAOMS. A glass column (diameter 25 mm, length 120 mm) filled with about 60 mL of the washed crushed activated carbon was used. HAMS and HAOMS were adjusted to 0.5 mM with ultrapure water and adjusted to pH 7 to obtain treated water. The treated water was passed through the column at a flow rate of SV10 or 5h- 1 until the NS compound concentration at the column outlet became stable. Thereafter, the treated water at the inlet and outlet of the column was collected, and the NS compound and SO 4 2- concentration were analyzed. From the NS compound and the SO 4 2− concentration, the removal rate (R) and the increase in SO 4 2− (Δ [SO 4 2− ]) were calculated using the formulas (3) and (4).

[実排水中のNS化合物の除去]
1)供試実排水
1箇所の石炭火力発電所から、脱硫排水を採取し、HAMSを除く4種のNS化合物(HATS,HADS,HAODS,HAOMS)を約0.5mMになるように添加した4種のNS化合物を含む脱硫排水を調製した(表2)。なお、HAMSは、Cl-濃度の高い排水中の分析が困難であるため、添加は省略した。脱硫排水は冷蔵保存し、使用前に孔径0.2μmのフィルタでろ過後、活性炭カラムによる処理ではpHは未調整で用い、イオン交換樹脂カラムによる処理では塩酸でpH5に調整して用いた。
[Removal of NS compounds in actual wastewater]
1) Actual test wastewater Desulfurization wastewater was collected from one coal-fired power plant, and four types of NS compounds (HATS, HADS, HAODS, HAOMS) except HAMS were added to about 0.5 mM4. A desulfurization effluent containing various NS compounds was prepared (Table 2). Incidentally, HAMS is, Cl - for analysis in a high concentration of the waste water is difficult, the addition was omitted. The desulfurization effluent was stored under refrigeration and filtered with a filter having a pore size of 0.2 μm before use. The pH was not adjusted in the treatment with the activated carbon column, and the pH was adjusted to 5 with hydrochloric acid in the treatment with the ion exchange resin column.

2)実排水によるカラム試験
実排水中のNS化合物のイオン交換樹脂および活性炭による除去を確認するため、イオン交換樹脂または活性炭を充填したカラムを用いて脱硫排水中のNS化合物の処理を行った。カラム試験には、ガラスカラム(直径25mm、長さ120mm)にイオン交換樹脂WBA約50mLまたは破砕状活性炭約60mLを充填して用いた。イオン交換樹脂による処理では、SV20h-1の流速で、活性炭による処理ではSV10h-1または5h-1で排水を通水した。通水後、経時的にカラム出口の処理液を採取し、各NS化合物、S 2-、SO 2-を分析した。
2) Column test using actual wastewater In order to confirm the removal of the NS compound in the actual wastewater by the ion exchange resin and the activated carbon, the NS compound in the desulfurization wastewater was treated using a column filled with the ion exchange resin or the activated carbon. In the column test, a glass column (diameter 25 mm, length 120 mm) was filled with about 50 mL of ion exchange resin WBA or about 60 mL of crushed activated carbon. In the treatment with the ion exchange resin, the wastewater was passed at a flow rate of SV20h- 1 and in the treatment with the activated carbon, the wastewater was passed at SV10h- 1 or 5h- 1 . After passing water over time collected treatment liquid column outlet, the NS compound, S 2 O 6 2-, were analyzed SO 4 2-.

[既存の処理技術を活用したNS化合物の処理法の検討]
既存の処理技術を活用し、NS化合物を処理する方法として、酸加水分解と活性炭処理を組み合わせた方法(酸性活性炭処理)とイオン交換樹脂と活性炭を組み合わせた方法(イオン交換樹・脂活性炭処理)を検討した。
[Examination of NS compound treatment method using existing treatment technology]
As a method for treating NS compounds by utilizing existing treatment technologies, a method combining acid hydrolysis and activated carbon treatment (acid activated carbon treatment) and a method combining ion exchange resin and activated carbon (ion exchange resin / fat activated carbon treatment) It was investigated.

試験装置の概略を図2に示す。酸性活性炭処理では、図2(A)に示すように、主に酸処理槽11と活性炭カラム12で構成され、活性炭による処理工程では、通常の運用条件とは異なり、酸性、加温した処理液を通水する。処理液は、0.1mol/L水酸化ナトリウムでpH10以上に調整したHATSまたはHADS溶液0.5mMを用いた。酸処理槽では、pH2に調整し、温度50℃、滞留時間1時間の条件で酸加水分解反応を行った。pH調整には、HAMSとSO 2-濃度をイオンクロマトグラフィーで分析できるように、2mol/Lリン酸を用いた。活性炭カラム12は、ガラスカラム(直径25mm、長さ120mm)に破砕状活性炭約60mLを充填して用いた。処理液の流速は、活性炭カラム12に対してSV5h-1(5mL/min)とした。通水後、経時的に酸処理槽11およびカラム12の出口の処理液を採取し、各NS化合物濃度を分析した。尚、図中の符号14はpH制御センサ、15は温度制御センサである。 FIG. 2 shows an outline of the test apparatus. As shown in FIG. 2 (A), the acidic activated carbon treatment mainly includes an acid treatment tank 11 and an activated carbon column 12. In the treatment step using activated carbon, unlike an ordinary operating condition, an acidic and heated treatment solution is used. Through water. As a treatment solution, a HATS or HADS solution 0.5 mM adjusted to pH 10 or more with 0.1 mol / L sodium hydroxide was used. In the acid treatment tank, the pH was adjusted to 2, and the acid hydrolysis reaction was performed under the conditions of a temperature of 50 ° C and a residence time of 1 hour. For pH adjustment, 2 mol / L phosphoric acid was used so that HAMS and SO 4 2− concentration could be analyzed by ion chromatography. The activated carbon column 12 was used by filling a glass column (diameter 25 mm, length 120 mm) with about 60 mL of crushed activated carbon. The flow rate of the treatment liquid was set to SV5h- 1 (5 mL / min) with respect to the activated carbon column 12. After passing the water, the treatment liquid at the outlet of the acid treatment tank 11 and the column 12 was sampled with time, and the concentration of each NS compound was analyzed. In the drawing, reference numeral 14 denotes a pH control sensor, and 15 denotes a temperature control sensor.

イオン交換樹脂・活性炭処理では、図2(B)に示すように主にイオン交換樹脂カラム21と活性炭カラム22とで構成される。各カラム21,22は、前述のガラスカラムにイオン交換樹脂WBA約50mLと破砕状活性炭約60mLを充填して用いた。処理液は、HAMSまたはHAMSを除く4種のNS化合物を0.5mMになるように添加した模擬排水(脱硫排水を模擬した排水)に、1mol/L硫酸でpH5に調整したものを用いた。処理液の流速は、酸性活性炭処理と同様とした。通水後、経時的に各カラム出口から処理液を採取し、各NS化合物濃度を分析した。   In the ion-exchange resin / activated carbon treatment, as shown in FIG. 2B, the ion-exchange resin / activated carbon treatment mainly includes an ion-exchange resin column 21 and an activated carbon column 22. Each of the columns 21 and 22 was prepared by filling the above-mentioned glass column with about 50 mL of ion exchange resin WBA and about 60 mL of crushed activated carbon. The treatment liquid used was a simulated wastewater (a wastewater simulating desulfurization effluent) to which HAMS or four types of NS compounds excluding HAMS were added to a concentration of 0.5 mM and adjusted to pH 5 with 1 mol / L sulfuric acid. The flow rate of the treatment liquid was the same as in the acidic activated carbon treatment. After passing the water, the treatment liquid was sampled from each column outlet with time, and the concentration of each NS compound was analyzed.

[分析方法]
分析試料は孔径0.2μmのフィルタでろ過した後に、各種分析に供した。NS化合物およびS 2-の分析には、イオンクロマトグラフィー(サーモフィッシャーサイエンティフィック、ICS1600)を使用した。分析条件は、HAMS、HAOMSには分離カラムとしてIonPac AS9−HCを用い、溶離液として9mM炭酸ナトリウム溶液を用いた。HADS、HAODS、S 2-の分析には分離カラムとしてIonPac AS16を用い、溶離液として30mM水酸化ナトリウム水溶液を用いた。HATSの分析には分離カラムとしてIonPac AS16を用い、溶離液として80mM水酸化ナトリウム水溶液を用いた。なお、HAMSは、塩化物イオン(Cl-)と保持時間がほぼ同じであるため、溶液中にCl-を含む場合はTN濃度を指標に算出した。
[Analysis method]
The analysis sample was subjected to various analyses after being filtered through a filter having a pore size of 0.2 μm. The NS compounds and S 2 O 6 2-analysis, using ion chromatography (Thermo Fisher Scientific, ICS1600). The analysis conditions were as follows: IonPac AS9-HC was used as a separation column for HAMS and HAOMS, and a 9 mM sodium carbonate solution was used as an eluent. HADS, HAODS, using IonPac AS16 as separation column in S 2 O 6 2-analysis, using a 30mM aqueous solution of sodium hydroxide as the eluent. For HATS analysis, IonPac AS16 was used as a separation column, and an 80 mM aqueous sodium hydroxide solution was used as an eluent. Since the retention time of HAMS is almost the same as that of chloride ion (Cl ), when the solution contains Cl , the calculation was performed using the TN concentration as an index.

TOCおよびTNは、全有機体炭素/全窒素分析装置(東レエンジニアリング)を用いて分析した。CODは、JIS K0102(2013)のCODMnに従って分析した。SO 2-、NO -、NO -、Cl-およびNH は、イオンクロマトグラフィーを用いて分析した。 TOC and TN were analyzed using a total organic carbon / total nitrogen analyzer (Toray Engineering). COD was analyzed according to JIS K0102 (2013) COD Mn . SO 4 2− , NO 3 , NO 2 , Cl and NH 4 + were analyzed using ion chromatography.

[結果と考察]
[加水分解と亜硝酸添加法によるNS化合物の分解特性]
[Results and discussion]
[Degradation characteristics of NS compounds by hydrolysis and nitrite addition method]

1)加水分解
NS化合物の加水分解におけるpH、温度の影響を検討した結果を図3に示す。HAMS、HAOMSおよびHAODSは、本報の条件範囲(温度;室温〜50℃、pH;2〜7、反応時間;2時間)では、ほとんど加水分解しないことがわかった。HATSとHADSは、室温ではpH4以上でほとんど加水分解しないが、pH2では加水分解が確認された。これらの加水分解は温度が高いほど進行し、pH2の条件では40℃以上でほぼすべてが加水分解した。なお、HATSおよびHADSの加水分解物はそれぞれHAODSおよびHAMSであるため、加水分解後にはHAODSとHAMSが蓄積している。
従って、酸性条件による加水分解では、脱硫排水中のNS化合物の分解除去は困難である。
1) Hydrolysis
FIG. 3 shows the results of examining the effects of pH and temperature on the hydrolysis of NS compounds. It was found that HAMS, HAOMS and HAODS hardly hydrolyzed in the condition range of this report (temperature; room temperature to 50 ° C., pH; 2 to 7, reaction time: 2 hours). HATS and HADS hardly hydrolyze at room temperature at pH 4 or higher, but at pH 2, hydrolysis was confirmed. The hydrolysis proceeded as the temperature increased, and almost all hydrolyzed at 40 ° C. or higher under the condition of pH2. Since the hydrolysis products of HATS and HADS are HAODS and HAMS, respectively, HAODS and HAMS accumulate after hydrolysis.
Therefore, in the hydrolysis under acidic conditions, it is difficult to decompose and remove the NS compound in the desulfurization wastewater.

[イオン交換樹脂によるNS化合物の除去特性] [Removal characteristics of NS compound by ion exchange resin]

1)回分試験
2種類のイオン交換樹脂を用いた回分試験を行い、50mM塩化ナトリウム溶液中におけるNS化合物の分配係数を求め、脱硫排水に含まれるSO 2-、NO 、S 2-とともに表3に比較した。2価または3価のイオンであるHADS、HAODS、HATSの分配係数はS 2-と同程度であり、SO 2-よりも大きいことがわかった。一方、1価のHAMS、HAOMSの分配係数は、NO と同程度であり、SO 2-より小さい結果となった。同じ価数であれば、分配係数をイオン交換樹脂の選択性として比較ができるため、イオン交換樹脂の選択性としてはSO 2-<HADS<HAODS,S 2−の関係にある。また、一般的にイオン交換樹脂は価数が大きいほど吸着しやすいことから、選択性としてはHAMS,HAOMS,NO ?<SO 2?<HATSのような傾向がある。
1) Batch test A batch test using two types of ion-exchange resins was performed to determine the partition coefficient of the NS compound in a 50 mM sodium chloride solution, and SO 4 2− , NO 3 , and S 2 O 6 contained in the desulfurization wastewater were determined. Table 2 was compared with 2- . The distribution coefficient of HADS, HAODS, and HATS, which are divalent or trivalent ions, was about the same as that of S 2 O 6 2− and was found to be larger than that of SO 4 2− . On the other hand, the partition coefficients of monovalent HAMS and HAOMS were almost the same as those of NO 3 −, and were smaller than SO 4 2− . If the valences are the same, the partition coefficient can be compared as the selectivity of the ion exchange resin. Therefore, the selectivity of the ion exchange resin has a relationship of SO 4 2− <HADS <HAODS, S 2 O 6 2− . Also, generally ion exchange resins since it is easy to adsorb higher the valence, there HAMS, HAOMS, tendency such as NO 3? <SO 4 2? <HATS as selectivity.

2)カラム試験
脱硫排水は、SO 2-、Cl-濃度の高い排水である。このような排水中のNS 化合物をイオン交換樹脂で処理できるか検討するために、イオン交換樹脂を充填したカラムを用いて脱硫排水を模擬した排水中のNS化合物に対する除去率を確認した(図4)。HAMSはカラムに通水後、速やかに除去率が低下し、脱硫排水中ではほとんど除去されないことが確認された。HAOMSは、通水後、徐々に除去率が低下しており、試験終了時には除去率が約0.6となった。一方、SO 2-よりも分配係数の高いNS化合物(HADS、HAODS、HATS)とS 2-は、試験終了時までカラム出口でほぼ検出されず、試験期間中、安定した脱硫排水からの除去が確認された。
2) Column test The desulfurization effluent is a effluent with a high concentration of SO 4 2− and Cl . In order to examine whether the NS compound in the waste water can be treated with the ion exchange resin, the removal rate of the NS compound in the waste water simulating desulfurization waste water was confirmed using a column filled with the ion exchange resin (FIG. 4). ). It was confirmed that the removal rate of HAMS decreased immediately after passing through the column, and it was hardly removed in the desulfurization wastewater. The removal rate of HAOMS gradually decreased after passing water, and the removal rate was about 0.6 at the end of the test. On the other hand, SO 4 2-high NS compounds having partition coefficients than (HADS, HAODS, HATS) S 2 O 6 2- and not detected substantially at the column outlet to the end of the study, during the study period, a stable desulfurization effluent Removal was confirmed.

以上より、イオン交換樹脂の母体の材質、構造などによっても吸着特性は変わる可能性はあるものの、5種のNS化合物のうちHADS、HAODS、HATSは、SO 2-濃度の高い脱硫排水中でもイオン交換樹脂による除去が可能である。一方、HAMSとHAOMSは、イオン交換樹脂による脱硫排水の処理では高い除去率を維持することは困難である。 As described above, among the five NS compounds, HADS, HAODS, and HATS of the five NS compounds are not ionized even in the desulfurization wastewater having a high SO 4 2− concentration, although the adsorption characteristics may change depending on the material and structure of the base of the ion exchange resin. Removal by exchange resin is possible. On the other hand, it is difficult for HAMS and HAOMS to maintain a high removal rate in the treatment of desulfurization wastewater with an ion exchange resin.

[活性炭によるNS化合物の除去特性]
1)回分試験
活性炭によるNS化合物の吸着特性を評価するために、粉末状の活性炭を用いた回分試験を実施した(図5)。HAMSとHAOMSは、処理条件(pH;2〜7、温度;室温〜50℃)に関わらず、高い除去率であった。HAODS、HADS、HATSは、pHが低いほど、温度が高いほど除去率が高くなる傾向があった。本試験で実施した範囲では、pH 2、40℃以上の条件ですべてのNS化合物を除去できる可能性があることがわかった。しかし、活性炭による脱硫排水の処理は、一般的に常温、中性付近であるため、実機におけるHAODS、HADSおよびHATSの除去は困難である。
[Removal properties of NS compounds by activated carbon]
1) Batch test In order to evaluate the adsorption characteristics of NS compounds by activated carbon, a batch test using powdered activated carbon was performed (FIG. 5). HAMS and HAOMS had high removal rates regardless of the processing conditions (pH; 2 to 7, temperature; room temperature to 50 ° C.). HAODS, HADS, and HATS tended to have a higher removal rate as the pH was lower and the temperature was higher. It was found that within the range performed in this test, there was a possibility that all NS compounds could be removed under conditions of pH 2 and 40 ° C. or higher. However, the treatment of desulfurization effluent with activated carbon is generally at room temperature and near neutrality, so it is difficult to remove HAODS, HADS and HATS in actual equipment.

超純水で希釈したHAMS、HAODSを用いて回分試験を実施したところ、処理後にHAMS、HAODS の減少とともにSO 2-濃度の増加が確認された(図6)。その濃度は約0.4mMであり、HAMS、HAODSの初期添加量(約0.5mM)に近いSO 2-が検出された。また、処理液中のNH 、NO -、NO -、NHOHおよびTNの濃度を分析したところ、HAOMSでは、NH の増加が確認され、その濃度は約0.4mMとTNやSO 2-濃度と同程度であることがわかった。これは、HAOMSがSO 2-とNH に分解されたことを示唆しており、活性炭が加水分解反応などの触媒として作用したと考えられる。一方、HAMSは、NH などの濃度上昇は認められず、TNも0.04mM以下に減少した。HAMSは、SO 2-濃度の増加にもかかわらず、TNが減少していることから、HAOMSとは異なる活性炭との反応が示唆された。HAMSは、ケトンやアルデヒドなどカルボニル化合物と反応してオキシムを形成することが知られており、活性炭表面上の官能基と反応した可能性が考えられる。 When a batch test was performed using HAMS and HAODS diluted with ultrapure water, it was confirmed that after the treatment, the HA42 and HAODS decreased and the SO 4 2− concentration increased (FIG. 6). The concentration was about 0.4 mM, and SO 4 2− near the initial addition amount (about 0.5 mM) of HAMS and HAODS was detected. Also, NH in the processing solution 4 +, NO 2 -, NO 3 -, was analyzed the concentration of NH 2 OH and TN, in HAOMS, confirmed an increase in NH 4 +, the concentration is about 0.4mM It was found to be about the same as TN and SO 4 2− concentrations. This suggests that HAOMS was decomposed into SO 4 2− and NH 4 + , and it is considered that activated carbon acted as a catalyst such as a hydrolysis reaction. On the other hand, in HAMS, no increase in the concentration of NH 4 + or the like was observed, and TN also decreased to 0.04 mM or less. HAMS showed a reaction with activated carbon different from HAOMS, since TN decreased despite an increase in SO 4 2− concentration. HAMS is known to react with carbonyl compounds such as ketones and aldehydes to form oximes, and it is possible that HAMS has reacted with functional groups on the surface of activated carbon.

2)カラム試験
実際の排水における活性炭処理は、活性炭を充填した吸着塔による処理が一般的である。そこで、活性炭を充填したカラムによるHAMSおよびHAOMSの除去を確認するために、破砕状活性炭を充填したカラムに、0.5mM HAMS、HAOMS溶液を異なる流速(SV10h−1、SV5h−1)で通水し、その除去率を求めた(図7)。HAMSおよびHAOMSの除去率は、流速の早いSV10h−1で0.8および0.5、SV5h−1で0.9および0.8となり、HAMSの方がHAOMSより除去率が高い傾向があった。回分試験では、ほぼすべてのHAMSとHAOMSは除去されたが、カラム試験では処理後にも一部残留する結果となった。これは、本試験で使用した活性炭のカラムは、実験の都合上、長さ120mmと短いものを使用していたことが一因と思われる。
2) Column test The activated carbon treatment in actual wastewater is generally performed by an adsorption tower filled with activated carbon. Therefore, in order to confirm the removal of HAMS and HAOMS by the column packed with activated carbon, 0.5 mM HAMS and HAOMS solution were passed through the column packed with crushed activated carbon at different flow rates (SV10h -1 and SV5h -1 ). Then, the removal rate was obtained (FIG. 7). Removal rate of HAMS and HAOMS are fast SV10h -1 in 0.8 and 0.5 of a flow rate, 0.9 and 0.8 becomes in SV5h -1, who HAMS is removal rate than HAOMS tended to be higher . In the batch test, almost all of the HAMS and HAOMS were removed, but in the column test, some remained after the treatment. This is probably due to the fact that the activated carbon column used in this test had a short length of 120 mm for the convenience of the experiment.

以上より、活性炭処理は、吸着塔の容量や流速などを至適化することで、水温やpHなど通常の運用条件においてもHAMSとHAOMSの処理法として適用できる可能性がある。ただし、HAOMSについては、処理後にNH 濃度の増加が予想され、排水中のHAOMS濃度によっては別途、窒素処理を考慮する必要がある。 As described above, the activated carbon treatment may be applicable as a treatment method for HAMS and HAOMS even under ordinary operating conditions such as water temperature and pH by optimizing the capacity and flow rate of the adsorption tower. However, regarding HAOMS, an increase in NH 4 + concentration after the treatment is expected, and it is necessary to separately consider nitrogen treatment depending on the HAOMS concentration in the wastewater.

[実排水中のNS化合物の除去]
1)イオン交換樹脂カラム処理
石炭火力発電所から採取した脱硫排水に4種のNS化合物を添加した排水をカラムに通水した結果を図8に示す。HATS、HADSおよびHAODSは、試験終了時まで未検出となり、実排水においてもHADSとHAODSはHATSと同様にイオン交換樹脂で除去可能であることが確認された。一方、HAOMSでは、処理後に濃度の低下が確認され、その平均で約59%の除去率であった。
[Removal of NS compounds in actual wastewater]
1) Ion-exchange resin column treatment Fig. 8 shows the result of passing through a column wastewater obtained by adding four types of NS compounds to desulfurization wastewater collected from a coal-fired power plant. HATS, HADS, and HAODS were not detected until the end of the test, and it was confirmed that HADS and HAODS could be removed by ion exchange resin in the actual wastewater as well as HATS. On the other hand, in the HAOMS, a decrease in the concentration was confirmed after the treatment, and the removal rate was about 59% on average.

以上より、実際の脱硫排水においてもイオン交換樹脂による処理で、5種のNS化合物のうちHATS、HAODS、HADSは除去が可能であることがわかった。HAOMSは濃度の低減は期待できるが、脱硫排水のHAOMS濃度やSO 2-濃度などによって除去率は変動することが考えられる。本試験では、HAMSの添加を省略したが、HAMSはHAOMSと同程度の分配係数であること(表3)、イオン交換樹脂によるNS化合物の除去特性を検討した先のカラム試験からHAOMSより除去率が低いことから(図4)、実排水においてもHAOMSと同様またはより低い除去率となると考えられる。 From the above, it was found that HATS, HAODS, and HADS among the five NS compounds could be removed from the actual desulfurization wastewater by the treatment with the ion exchange resin. Although the concentration of HAOMS can be expected to be reduced, the removal rate may vary depending on the HAOMS concentration, SO 4 2− concentration, etc. of the desulfurization wastewater. In this test, the addition of HAMS was omitted, but HAMS has a distribution coefficient similar to that of HAOMS (Table 3). Is low (FIG. 4), it is considered that the removal rate is the same as or lower than that of HAOMS in actual wastewater.

2)活性炭カラム処理
図9にNS化合物を添加した脱硫排水を活性炭カラムで処理した結果を示す。SO 2-濃度が安定した後のHATS、HADSおよびHAODSの濃度は処理前とほとんど変わらず、その平均の除去率は0〜7%と低い結果となった。一方、HAOMSでは、処理後に濃度の低下が確認され、実排水においても活性炭によるHAOMSの除去が確認できた。しかし、その平均除去率は約0.6であるため、カラム容量や処理流速など処理条件の最適化は必要である。
2) Activated carbon column treatment Fig. 9 shows the results of treating the desulfurized wastewater to which the NS compound was added with the activated carbon column. SO 4 2-concentration stable HATS after, HADS and HAODS concentration hardly changes with the pretreatment, the removal rate of the average became 0-7% and low results. On the other hand, in HAOMS, a decrease in concentration was confirmed after the treatment, and removal of HAOMS by activated carbon was confirmed also in actual wastewater. However, since the average removal rate is about 0.6, it is necessary to optimize processing conditions such as column capacity and processing flow rate.

[既存の処理技術を活用したNS化合物の処理法]
酸性活性炭処理によりHATSとHADSを処理した結果を図10および図11に示す。HATSを添加した処理液では、酸処理槽で加水分解によりHAODSが生成し、生成したHAODSは活性炭処理で濃度が減少した(図10)。活性炭処理後のHATSと総NS化合物の平均濃度(通水量600〜1800mLの平均)は、それぞれ約0.01mM、0.08mMとなり、HATSで約98%、総NS化合物で約83%の除去率であった。また、HADSでは、酸処理槽でHADSの減少とともにHAMSが生成し、活性炭処理後に減少した。活性炭処理後のHADSと総NS化合物の除去率はいずれも約99%と、高い除去率を得た。
[Method of treating NS compounds using existing treatment technology]
The results of treating HATS and HADS by acidic activated carbon treatment are shown in FIGS. In the treatment solution to which HATS was added, HAODS was produced by hydrolysis in the acid treatment tank, and the concentration of the produced HAODS was reduced by activated carbon treatment (FIG. 10). The average concentrations of HATS and total NS compounds after treatment with activated carbon (average of 600-1800 mL of water flow) are about 0.01 mM and 0.08 mM, respectively. The removal rate of about 98% for HATS and about 83% for total NS compounds Met. In HADS, HAMS was produced in the acid treatment tank together with the decrease in HADS, and decreased after activated carbon treatment. The removal rates of HADS and total NS compounds after the activated carbon treatment were both as high as about 99%.

イオン交換樹脂と活性炭の組み合わせてNS化合物を処理した結果を図12に示す。HAMSを除く4種のNS化合物を添加した処理液では、4種全てでイオン交換樹脂による処理後にそのほとんどが除去され、除去率は平均99%以上(処理水量600〜1950mLの平均)であった(図12(A)参照)。イオン交換樹脂によるNS化合物の除去特性並びに実排水中のNS化合物の除去に関する検討において、HAOMSのイオン交換樹脂による処理では、一部処理液に残留する結果となっていた。これは、本試験のイオン交換樹脂のカラム容量の違いや模擬排水のSO 2-濃度が実排水より低いことによる影響と考えられる。一方、HAMSを添加した処理液では、イオン交換樹脂では除去されず、活性炭処理後に濃度の低下が確認された(図12(B)参照)。活性炭処理後のHAMSの除去率は、平均で約73%(同上)であった。 FIG. 12 shows the results obtained by treating the NS compound using a combination of an ion exchange resin and activated carbon. In the treatment liquids to which the four NS compounds except HAMS were added, almost all of them were removed after the treatment with the ion-exchange resin in all four kinds, and the removal rate was 99% or more on average (average of treated water amount of 600 to 1950 mL). (See FIG. 12A). In the study on the removal characteristics of the NS compound by the ion exchange resin and the removal of the NS compound in the actual wastewater, the treatment of the HAOMS with the ion exchange resin resulted in a part remaining in the treatment liquid. This, SO 4 2-density difference and mock drainage column capacity of the ion exchange resin of the present study is considered to impact of less than the actual waste water. On the other hand, in the treatment solution to which HAMS was added, it was not removed by the ion exchange resin, and a decrease in the concentration was confirmed after the activated carbon treatment (see FIG. 12B). The HAMS removal rate after the activated carbon treatment was about 73% on average (as described above).

以上より、通常の運用条件での活性炭充填塔では処理が困難なHATSやHADSでも、酸処理槽を設置して酸性条件下での活性炭処理することで濃度の低減が可能となり、他の3種も含めてNS化合物を処理できる可能性が示された。また、イオン交換樹脂と活性炭を組み合わせることでも、5種のNS化合物の除去や濃度の低減ができる可能性が示された。   From the above, it is possible to reduce the concentration of HATS or HADS, which is difficult to treat with an activated carbon packed tower under normal operating conditions, by installing an acid treatment tank and treating with activated carbon under acidic conditions. It has been shown that NS compounds can be treated as well. It was also shown that the combination of an ion exchange resin and activated carbon could remove five NS compounds and reduce the concentration.

[既存排水処理技術によるNS化合物の除去方法のまとめ]
イオン交換樹脂や活性炭など一般的な排水処理技術では、処理できるNS化合物が異なることがわかった。脱硫排水中の5種のNS化合物すべてを処理するためには、酸性条件下で活性炭を用いる方法やイオン交換樹脂と活性炭の処理を組み合わせる方法、また、活性炭処理において、酸性条件、加温した処理槽に粉末活性炭を添加する方法や活性炭充填塔の前に酸処理槽を設置する方法で対応できると考えられる。
[Summary of NS compound removal method using existing wastewater treatment technology]
It has been found that NS compounds that can be treated are different with general wastewater treatment techniques such as ion exchange resins and activated carbon. In order to treat all five NS compounds in the desulfurization effluent, a method using activated carbon under acidic conditions, a method combining ion-exchange resin and activated carbon treatment, or an acidic carbon treatment in activated carbon treatment, It is considered that a method of adding powdered activated carbon to the tank or a method of installing an acid treatment tank in front of the activated carbon packed tower can be used.

1 酸活性炭処理槽
2 凝集槽
3 分離槽
4 脱硫排水
5 粉末活性炭
6 酸
7 凝集剤
8 アルカリ溶液
9 排水
11 酸処理槽
12 活性炭充填塔
13 酸
21 イオン交換樹脂充填塔
22 活性炭充填塔
DESCRIPTION OF SYMBOLS 1 Acid activated carbon treatment tank 2 Coagulation tank 3 Separation tank 4 Desulfurization drainage 5 Powdered activated carbon 6 Acid 7 Coagulant 8 Alkaline solution 9 Drainage 11 Acid treatment tank 12 Activated carbon filling tower 13 Acid 21 Ion exchange resin filling tower 22 Activated carbon filling tower

Claims (5)

脱硫排水に粉末活性炭を添加すると共に酸を添加してpH2以下に調整して酸活性炭処理槽で攪拌処理し、攪拌処理後の前記脱硫排水に凝集剤とアルカリ溶液を添加して凝集槽で凝集させた後、前記脱硫排水と前記凝集物とを分離槽で分離して排水のみを通過させることを特徴とする脱硫排水処理方法。   The powdered activated carbon is added to the desulfurization wastewater and the acid is added to adjust the pH to 2 or less, and the mixture is stirred in an acid activated carbon treatment tank. The desulfurization wastewater treatment method, wherein the desulfurization wastewater and the aggregates are separated in a separation tank and only the wastewater is passed. 活性炭充填塔の前に設置された酸処理槽内で脱硫排水に酸を添加して攪拌しpH2以下に調整した後、pH調整後の前記脱硫排水を前記活性炭充填塔を通過させ、NS化合物を前記活性炭充填塔内の活性炭に付着させて除去し、排水のみを通過させることを特徴とする脱硫排水処理方法。   An acid is added to the desulfurization effluent in an acid treatment tank installed in front of the activated carbon packed tower and stirred to adjust the pH to 2 or less. Then, the desulfurized effluent after pH adjustment is passed through the activated carbon packed tower to remove NS compounds. A desulfurization wastewater treatment method, comprising attaching and removing the activated carbon in the activated carbon packed tower and passing only wastewater. 前記pH調整時に前記脱硫排水を少なくとも40℃に加温することを特徴とする請求項1または2に記載の脱硫排水処理方法。   The desulfurization wastewater treatment method according to claim 1, wherein the desulfurization wastewater is heated to at least 40 ° C. during the pH adjustment. 前記酸処理の際に50℃に加温することを特徴とする請求項3記載の脱硫排水処理方法。   The desulfurization wastewater treatment method according to claim 3, wherein the acid treatment is heated to 50 ° C. 脱硫排水系路にイオン交換樹脂充填塔と活性炭充填塔とを直列に連結し、イオン交換と活性炭吸着とを連続的に実施することを特徴とする脱硫排水処理方法。   A desulfurization wastewater treatment method characterized by connecting an ion exchange resin packed tower and an activated carbon packed tower in series to a desulfurization drainage system, and continuously performing ion exchange and activated carbon adsorption.
JP2018120359A 2018-06-26 2018-06-26 Method for treating NS compounds that affect COD of desulfurization wastewater Active JP7162975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018120359A JP7162975B2 (en) 2018-06-26 2018-06-26 Method for treating NS compounds that affect COD of desulfurization wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018120359A JP7162975B2 (en) 2018-06-26 2018-06-26 Method for treating NS compounds that affect COD of desulfurization wastewater

Publications (2)

Publication Number Publication Date
JP2020000962A true JP2020000962A (en) 2020-01-09
JP7162975B2 JP7162975B2 (en) 2022-10-31

Family

ID=69097907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018120359A Active JP7162975B2 (en) 2018-06-26 2018-06-26 Method for treating NS compounds that affect COD of desulfurization wastewater

Country Status (1)

Country Link
JP (1) JP7162975B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112707483A (en) * 2020-11-26 2021-04-27 国网河北省电力有限公司电力科学研究院 Desulfurization waste water treatment spray set of thermal power plant

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08281296A (en) * 1995-04-17 1996-10-29 Chiyoda Corp Treatment of flue gas desulfurization waste water and device therefor
JP2006272065A (en) * 2005-03-28 2006-10-12 Kurita Water Ind Ltd Treatment method and apparatus of fluorine-containing water containing toc component

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5618511A (en) 1995-08-11 1997-04-08 The Arizona Board Of Regents On Behalf Of The University Of Arizona Process for producing ammonium sulfate from flue-gas scrubber waste liquor
JP6232606B1 (en) 2017-04-27 2017-11-22 株式会社ノアテック Wastewater treatment method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08281296A (en) * 1995-04-17 1996-10-29 Chiyoda Corp Treatment of flue gas desulfurization waste water and device therefor
JP2006272065A (en) * 2005-03-28 2006-10-12 Kurita Water Ind Ltd Treatment method and apparatus of fluorine-containing water containing toc component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112707483A (en) * 2020-11-26 2021-04-27 国网河北省电力有限公司电力科学研究院 Desulfurization waste water treatment spray set of thermal power plant

Also Published As

Publication number Publication date
JP7162975B2 (en) 2022-10-31

Similar Documents

Publication Publication Date Title
Andrzejewski et al. N-nitrosodimethylamine (NDMA) formation during ozonation of dimethylamine-containing waters
Randtke et al. Effects of salts on activated carbon adsorption of fulvic acids
JP7398021B2 (en) Treatment method and treatment equipment for cyanide-containing water
KR20160148284A (en) Complex water treatment system using advanced oxidation process of two-step uv for combining hydrogen peroxide-uv process and chlorine-uv process, and method for the same
EP2792645B1 (en) Process for removing fluorides from water
JP2020000962A (en) Treatment method of ns compound affecting cod of desulfurized wastewater
JP2013255864A (en) Apparatus for producing purified water
EP2452923B1 (en) Process for decontamination of hazardous sulfur compounds in oilfield produced water
WO2019225433A1 (en) Fluorine concentration measurement method, fluorine concentration measurement device, water treatment method, and water treatment device
JP6846185B2 (en) Deterioration diagnosis method for solid catalyst carrier, deterioration diagnosis device, and measurement device for substances to be treated
Kim et al. A novel ion exchange process for As removal
US20100147776A1 (en) Magnesium thiosulfate as chlorine quencher and scrubber
JP2019191100A (en) Urea analysis device and pure water production device
US11339075B2 (en) Titania-based treatment solution and method of promoting precipitation and removal of heavy metals from an aqueous source
US20200377386A1 (en) Phospate recovery by acid retardation
JP2006068680A (en) Denitrating reductant composition and producing method therefor
Yapsaklı et al. Interaction of ozone with formic acid: a system which supresses the scavenging effect of HCO3-/CO32
JPS6274438A (en) Method for purifying industrial gas or exhaust gas
JP2015221424A (en) Organic wastewater treatment method and apparatus
JP2019171228A (en) Water purifying treatment method and water purifying treatment apparatus
JP5980652B2 (en) Persulfate treatment apparatus, persulfate treatment method, oxidation-reduction potential measurement apparatus, and oxidation-reduction potential measurement method
JP2010194479A (en) Pure-water production apparatus
JP2021037449A (en) Method for treating fluorine-containing waste water
Rahman et al. Bench scale evaluation of Fe (II) ions on haloacetic acids (HAAs) formation in synthetic water
Frederick et al. Calcium–Nom Loading onto Gac

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221018

R150 Certificate of patent or registration of utility model

Ref document number: 7162975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150