JP7162975B2 - Method for treating NS compounds that affect COD of desulfurization wastewater - Google Patents

Method for treating NS compounds that affect COD of desulfurization wastewater Download PDF

Info

Publication number
JP7162975B2
JP7162975B2 JP2018120359A JP2018120359A JP7162975B2 JP 7162975 B2 JP7162975 B2 JP 7162975B2 JP 2018120359 A JP2018120359 A JP 2018120359A JP 2018120359 A JP2018120359 A JP 2018120359A JP 7162975 B2 JP7162975 B2 JP 7162975B2
Authority
JP
Japan
Prior art keywords
activated carbon
compounds
treatment
desulfurization
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018120359A
Other languages
Japanese (ja)
Other versions
JP2020000962A (en
Inventor
淳 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2018120359A priority Critical patent/JP7162975B2/en
Publication of JP2020000962A publication Critical patent/JP2020000962A/en
Application granted granted Critical
Publication of JP7162975B2 publication Critical patent/JP7162975B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、火力発電所の脱硫排水処理設備から排出される脱硫排水の化学的酸素要求量(chemical oxygen demand:以下、CODと呼ぶ)に影響する窒素-硫黄化合物(以下、単にNS化合物と称す)の処理方法に関する。さらに詳述すると、本発明は、主に活性炭を活用したCODに影響するNS化合物の処理手法に関するものである。 The present invention relates to a nitrogen-sulfur compound (hereinafter simply referred to as an NS compound) that affects the chemical oxygen demand (hereinafter referred to as COD) of desulfurized wastewater discharged from a desulfurized wastewater treatment facility of a thermal power plant. ) related to the processing method. More specifically, the present invention relates to a method of treating NS compounds that affect COD, mainly using activated carbon.

火力発電所の脱硫排水処理系統では、有機物系COD成分の処理には活性炭充填塔が、ジチオン酸の処理にはイオン交換樹脂が導入されるが、発電所によってはしばしば既存の排水処理設備では処理しきれない原因不明のCOD上昇事象が発生しており、有効な対策を講じることができない場合があることが問題となっている。この問題は、使用炭種の多様化や運転条件の変更、規制強化などに伴って、状況が深刻化することが危惧されており、対策が求められている。 In the desulfurization wastewater treatment system of thermal power plants, an activated carbon filled tower is introduced for the treatment of organic COD components, and an ion exchange resin is introduced for the treatment of dithionic acid. It is a problem that there are cases where the phenomenon of increasing COD of unknown cause occurs, and effective countermeasures cannot be taken. It is feared that this problem will become more serious as the types of coal used are diversified, operating conditions are changed, and regulations are strengthened, and countermeasures are required.

そこで、有機物やジチオン酸に起因しない脱硫排水の原因不明のCOD上昇について種々研究・実験を行ったところ、排煙脱硫設備にて反応生成したNS化合物が原因であることを見出した(非特許文献1,2参照)。脱硫装置内で生成する可能性のあるNS化合物は8種であり(表1、図13参照)、5種のヒドロキシルアミン系NS化合物と3種のスルファミン系NS化合物に大別されるが、その内のヒドロキシルアミン系NS化合物がCODに影響を与えるため、5種類のNS化合物の全てが除去対象とされることが望まれる。 Therefore, various studies and experiments were conducted on the increase in COD of desulfurization wastewater, which is not caused by organic matter or dithionic acid, and it was found that the cause was NS compounds generated by reaction in flue gas desulfurization equipment (non-patent document 1, 2). There are eight types of NS compounds that can be generated in the desulfurization apparatus (see Table 1 and FIG. 13), which are roughly divided into five types of hydroxylamine-based NS compounds and three types of sulfamine-based NS compounds. Since the hydroxylamine-based NS compounds in the group affect COD, it is desired that all five types of NS compounds be targeted for removal.

Figure 0007162975000001
Figure 0007162975000001

.
しかしながら、活性炭吸着による既存の排水処理設備の場合、脱硫排水中のNS化合物の除去の有無については判明していないし、イオン交換樹脂を活用した一般的な排水処理技術に対しても、各種のNS化合物への適用性の情報は少なく、5種のNS化合物のうちの1種(HATS)の除去を確認したのみ(非特許文献4)であり、それ以外の4種のNS化合物を吸着できるか否かさえ予測できないものである。そこで、脱硫排水中の5種類のNS化合物の全てが除去できる排水処理方法・設備の開発が求められている。
.
However, in the case of existing wastewater treatment facilities using activated carbon adsorption, it is not clear whether or not NS compounds are removed from desulfurization wastewater. There is little information on the applicability to compounds, and only one of the five NS compounds (HATS) was confirmed to be removed (Non-Patent Document 4). It is unpredictable whether or not Therefore, there is a demand for the development of wastewater treatment methods and equipment capable of removing all five types of NS compounds in desulfurization wastewater.

従来のNS化合物の処理方法としては、酸性条件下での亜硝酸添加によりNS化合物の加水分解物を処理する亜硝酸ナトリウム添加法(非特許文献3)や、次亜塩素酸ナトリウムを添加してNS化合物の加水分解物を処理する次亜塩素酸ナトリウム添加法並びに硫酸などの酸性下でNS化合物を加水分解物する酸加水分解法が知られており、これらを排煙脱硫設備に適用することが提案されている(特許文献1)。 Conventional methods for treating NS compounds include a sodium nitrite addition method (Non-Patent Document 3) in which a hydrolyzate of an NS compound is treated by adding nitrous acid under acidic conditions, and a method by adding sodium hypochlorite. A sodium hypochlorite addition method for treating hydrolysates of NS compounds and an acid hydrolysis method for hydrolysates of NS compounds under acidic conditions such as sulfuric acid are known, and these methods should be applied to flue gas desulfurization equipment. has been proposed (Patent Document 1).

特開平05-31483号公報JP-A-05-31483

青田新, 正木浩幸, 大山聖一. 脱硫排水中難処理性COD成分としてのNS化合物に関する文献調査-生成機構および処理技術、測定技術-. 電力中央研究所 調査報告 V13301. 2013.Arata Aota, Hiroyuki Masaki, Seiichi Oyama. Literature survey on NS compounds as difficult-to-treat COD components in desulfurization wastewater - Formation mechanism, treatment technology, measurement technology - Central Research Institute of Electric Power Industry Research Report V13301. 2013. 青田新, 大山聖一. 難処理性COD成分としてのNS化合物の管理技術-NS化合物の合成および分析条件検討、脱硫排水中NS化合物の特定-. 電力中央研究所 研究報告 V14002. 平成27年4月発行Arata Aota, Seiichi Oyama. Control technology for NS compounds as difficult-to-treat COD components -Synthesis of NS compounds and examination of analysis conditions, Identification of NS compounds in desulfurization wastewater-. Central Research Institute of Electric Power Industry Research Report V14002. monthly issue 田中隆, 横山隆寿, 小泉道夫, 石原義巳. 排煙脱硝湿式還元法(第5報)-亜硝酸塩と亜硫酸塩の反応速度および反応性生物-. 電力中央研究所 研究報告 278019. 1978.Tanaka, T., Yokoyama, T., Koizumi, M., Ishihara, Y. Flue gas denitrification wet reduction method (5th report) -Reaction rates and reactive organisms of nitrite and sulfite-. Central Research Institute of Electric Power Industry Research Report 278019. 1978. 平賀由紀, 他. 排水中のヒドロキシルアミントリスルホン酸(HATS)の定量分析および除去方法. 四国電力, 四国総合研究所 研究期報. 2015, 102, p.1-5.Yuki Hiraga, et al. Quantitative Analysis and Removal Method of Hydroxylamine Trisulfonic Acid (HATS) in Wastewater. Shikoku Electric Power Company, Shikoku Research Institute Annual Report.

しかしながら、亜硝酸ナトリウム添加法の場合、過剰量の亜硝酸ナトリウムの添加が必要であり、排水中に残留する亜硝酸ナトリウム自体もCODに影響を与えるものであることから、後段に残留する亜硝酸の処理工程・設備(所謂、酸化処理工程・設備)をさらに必要とする問題を伴う。また、次亜塩素酸添加法の場合も同様であり、過剰量の次亜塩素酸ナトリウムの添加が必要であり、後段に残留する次亜塩素酸を処理する工程・設備(所謂、還元剤処理工程・設備)を必要とする。このことから、これら処理法は、不定期に発生するNS化合物の処理法としては課題が多く、好ましいものとは言えない。 However, in the case of the sodium nitrite addition method, it is necessary to add an excessive amount of sodium nitrite, and the sodium nitrite itself remaining in the wastewater also affects COD. This entails the problem of further requiring a treatment process/equipment (so-called oxidation treatment process/equipment). In addition, the same is true for the hypochlorous acid addition method, and it is necessary to add an excessive amount of sodium hypochlorite. process/equipment). For this reason, these treatment methods have many problems as treatment methods for NS compounds that occur irregularly, and cannot be said to be preferable.

また、加水分解法の場合、5種のNS化合物のうち、HAODS,HAMS,HAOMSは酸に比較的安定であるため、それだけでは処理できない。加えて、残りの2種類のNS化合物、即ちHATS、HADSも加水分解後にHAODS,HAMSを生成する。このため、酸加水分解法単独での処理は全く不可能である。 Further, in the hydrolysis method, among the five NS compounds, HAODS, HAMS, and HAOMS are relatively stable to acids, and therefore cannot be treated alone. In addition, the remaining two NS compounds, namely HATS and HADS also produce HAODS and HAMS after hydrolysis. For this reason, treatment by acid hydrolysis alone is completely impossible.

本発明は、火力発電所において有機物系COD成分の処理やジチオン酸の処理のために導入されている既存の排水処理技術に着目し、既設設備の一部を活用することでCOD値に影響する5種のNS化合物の全てを除去可能とする処理方法を提供することを目的とする。より具体的には、本発明は、活性炭を活用したCODに影響する5種のNS化合物の処理手法を提供することを目的とする。 The present invention focuses on the existing wastewater treatment technology that has been introduced for the treatment of organic COD components and the treatment of dithionic acid in thermal power plants, and utilizes part of the existing equipment to affect the COD value. An object of the present invention is to provide a treatment method capable of removing all five types of NS compounds. More specifically, the object of the present invention is to provide a method for treating five NS compounds that affect COD using activated carbon.

かかる目的を達成するため、本発明者等が種々研究・実験した結果、温度やpHを調整せずに(即ち、常温のままpH7付近で)、単に活性炭を通過させるだけの通常の活性炭充填塔ではNS化合物は普通除去されないとするのが常識であったが、pHを調整したり、温度を変化させることで、活性炭にNS化合物を吸着させ得ることを知見した。 In order to achieve this object, the inventors of the present invention conducted various studies and experiments, and as a result, a normal activated carbon packed tower that simply allows activated carbon to pass through without adjusting the temperature or pH (that is, at around pH 7 at room temperature) It was common knowledge that the NS compounds were not usually removed in the conventional method, but it was found that the NS compounds could be adsorbed onto the activated carbon by adjusting the pH or changing the temperature.

即ち、通常の活性炭充填塔は、HADS,HATSがすり抜けるので、NS化合物は処理できないと従来は考えられていた。これは、CODに影響する5種のNS化合物のうち、なかでも、HATSが排煙脱硫装置の脱硫吸収液中に最も蓄積され、濃度が高くなることに大きな影響が与えられたものと思われる。ヒドロキシルアミン態化合物の一つであるHATSは、図13の生成経路に示したように、脱硫吸収液内で亜硫酸水素イオン(HSO )と亜硝酸イオン(NO )の反応生成物であるHADSを経由した後に生成し、脱硫吸収液および脱硫排水が中性からアルカリ性である場合、HATSの加水分解は抑制されるため、他のヒドロキシルアミン態化合物に変化せず、HATSの形態を維持すると考えられている。このことから、HATSがCOD上昇の主要因と推測される(非特許文献1)。 That is, conventionally, it was thought that NS compounds could not be treated in ordinary activated carbon-packed towers because HADS and HATS pass through them. Among the five types of NS compounds that affect COD, HATS is the most accumulated in the desulfurization absorption liquid of the flue gas desulfurization unit, and it is thought that this has a large effect on the increase in concentration. . HATS, which is one of the hydroxylamine compounds, is a reaction product of hydrogen sulfite ions (HSO 3 ) and nitrite ions (NO 2 ) in the desulfurization absorbent, as shown in the production route of FIG. When the desulfurization absorbent and desulfurization effluent are neutral to alkaline, the hydrolysis of HATS is suppressed, so it does not change to other hydroxylamine compounds and maintains the form of HATS. It is believed that From this, HATS is presumed to be the main factor of COD increase (Non-Patent Document 1).

このNS化合物の出発物質となるHADSと最も濃度が高くなるHATSとが活性炭充填塔をすり抜けるので、CODが下がらないという問題がもともとあって、活性炭では普通NS化合物を除去できないと考えられていたが、本発明者等のよる研究の結果、温度やpHを未調整のまま(即ち、常温のままpH7付近)で単に通過させるだけでも、一部のNS化合物の除去を可能にすること、並びに温度やpHを調整することにより全てのNS化合物の除去を可能にすることを知見するに至った。 Since HADS, which is the starting material for the NS compounds, and HATS, which has the highest concentration, pass through the activated carbon packed tower, there was originally a problem that the COD did not decrease, and it was thought that the NS compounds could not normally be removed with activated carbon. , as a result of research by the present inventors, it was possible to remove some of the NS compounds simply by passing the temperature and pH unadjusted (that is, at room temperature and around pH 7), and that the temperature It has been found that all NS compounds can be removed by adjusting the pH.

本発明の脱硫排水処理方法はかかる知見に基づくものであって、HAMS、HAOMS、HADS、HAODS、HATSの5種のCOD値に影響するNS化合物を含む脱硫排水に粉末活性炭を添加すると共に酸を添加してpH2以下に調整し、室温から50℃の範囲内で2時間酸活性炭処理槽で攪拌処理し、攪拌処理後の前記脱硫排水に凝集剤とアルカリ溶液を添加して凝集槽で凝集させた後、前記脱硫排水と前記凝集物とを分離槽で分離して排水のみを通過させるようにしている。 The desulfurization wastewater treatment method of the present invention is based on such knowledge, and comprises adding powdered activated carbon to desulfurization wastewater containing NS compounds that affect the COD value of HAMS, HAOMS, HADS, HAODS, and HATS, and adding an acid. It is added to adjust the pH to 2 or less, stirred for 2 hours in an acid activated carbon treatment tank within the range of room temperature to 50 ° C., a flocculant and an alkaline solution are added to the desulfurized waste water after the agitation treatment, and flocculated in the flocculation tank. After that, the desulfurization waste water and the aggregates are separated in a separation tank, and only the waste water is allowed to pass through.

また、請求項2記載の発明にかかる脱硫排水処理方法は、処理槽内でHAMS、HAOMS、HADS、HAODS、HATSの5種のCOD値に影響するNS化合物を含む脱硫排水に酸を添加して攪拌しpH2以下に調整し、50℃で1時間酸加水分解を行った後、pH調整後の前記脱硫排水を流速SV5h -1 前記活性炭充填塔を通過させ、NS化合物を前記活性炭充填塔内の活性炭に付着させて除去し、排水のみを通過させるようにしている。 Further, in the desulfurization wastewater treatment method according to the second aspect of the invention, acid is added to desulfurization wastewater containing NS compounds that affect the COD value of five kinds of HAMS, HAOMS, HADS, HAODS, and HATS in the acid treatment tank. The pH was adjusted to 2 or less by stirring at 50° C. for 1 hour , and then the pH-adjusted desulfurization effluent was passed through the activated carbon packed tower at a flow rate of SV5h −1 to remove the NS compound from the activated carbon packed tower. It is attached to the activated carbon inside and removed, allowing only waste water to pass through.

また、本発明にかかる脱硫排水処理方法は、活性炭に接触させる前のpH調整時に少なくとも40℃、好ましくは50℃に加温するようにしている。 Further, in the desulfurization wastewater treatment method according to the present invention, the water is heated to at least 40°C, preferably 50°C during pH adjustment before contact with activated carbon.

本発明の脱硫排水処理方法によれば、既設設備の一部を活用することでCOD値に影響する全てのNS化合物の除去を可能とすることができる。より具体的には、本発明は、火力発電所において一般的な既設の排水処理設備である活性炭を活用して、CODに影響する全てのNS化合物の処理を実施することができる。 According to the desulfurization wastewater treatment method of the present invention, it is possible to remove all NS compounds that affect the COD value by utilizing part of the existing equipment. More specifically, the present invention can utilize activated carbon, which is a common existing wastewater treatment facility in thermal power plants, to treat all NS compounds that affect COD.

本発明の脱硫排水のCODに影響するNS化合物の処理方法の一実施形態を示す概略図であり、(A)は活性炭を活用したバッチ式処理システム、(B)は活性炭を活用した連続式処理システム、(C)はイオン交換樹脂と活性炭とを活用した連続式処理システムである。BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic diagram showing one embodiment of a method for treating NS compounds that affect the COD of desulfurization wastewater according to the present invention, in which (A) is a batch type treatment system using activated carbon, and (B) is a continuous treatment using activated carbon. System (C) is a continuous treatment system utilizing ion exchange resin and activated carbon. 本発明の脱硫排水のCODに影響するNS化合物の処理方法の実験装置の一例を示す概略図であり、(A)は活性炭を活用した連続式処理、(B)はイオン交換樹脂と活性炭とを活用した連続式処理を実施するためのものである。BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic diagram showing an example of an experimental apparatus for the method of treating NS compounds that affect the COD of desulfurization wastewater according to the present invention, where (A) is a continuous treatment using activated carbon, and (B) is an ion exchange resin and activated carbon. It is intended to perform an active continuous process. NS化合物の加水分解におけるpH、温度の影響を示すグラフであり、(A)はHAMS、(B)はHAOMS、(C)はHADS、(D)はHAODS、(E)はHATSをそれぞれ示す。1 is a graph showing the effects of pH and temperature on the hydrolysis of NS compounds, (A) HAMS, (B) HAOMS, (C) HADS, (D) HAODS, and (E) HATS, respectively. イオン交換樹脂(WBA)カラムによる吸着試験における5種のNS化合物の除去率の変化を示すグラフである。4 is a graph showing changes in the removal rate of five NS compounds in an adsorption test using an ion exchange resin (WBA) column. 活性炭処理におけるpH、温度の影響を示すグラフであり、(A)はHAMS、(B)はHAOMS、(C)はHADS、(D)はHAODS、(E)はHATSをそれぞれ示す。It is a graph which shows the influence of pH and temperature in activated carbon treatment, (A) HAMS, (B) HAOMS, (C) HADS, (D) HAODS, and (E) HATS, respectively. HAMS及びHAOMSの活性炭処理における除去率と生成物を示すグラフである。1 is a graph showing removal rate and products in activated carbon treatment of HAMS and HAOMS. HAMS及びHAOMSの活性炭カラム試験における除去率を示すグラフである。1 is a graph showing removal rates in activated carbon column tests for HAMS and HAOMS. NS化合物を添加した脱硫排水のイオン交換樹脂による処理結果を示すグラフである。4 is a graph showing the results of treating desulfurized wastewater to which an NS compound was added using an ion-exchange resin. NS化合物を添加した脱硫排水の活性炭による処理結果を示すグラフである。4 is a graph showing the results of treating desulfurization wastewater to which an NS compound was added with activated carbon. 酸性活性炭処理によるHATSの処理結果を示すグラフである。It is a graph which shows the processing result of HATS by acid activated carbon processing. 酸性活性炭処理によるHADSの処理結果を示すグラフである。It is a graph which shows the processing result of HADS by acidic activated carbon processing. イオン交換樹脂・活性炭処理によるNS化合物の処理結果を示すグラフである。4 is a graph showing the results of treatment of NS compounds by ion-exchange resin/activated carbon treatment. NS化合物の生成機構図である。FIG. 2 is a diagram of the formation mechanism of NS compounds.

以下、本発明の構成を図面に示す実施形態に基づいて詳細に説明する。 Hereinafter, the configuration of the present invention will be described in detail based on the embodiments shown in the drawings.

本発明の脱硫排水処理方法は、火力発電所において有機物系COD成分の処理やジチオン酸の処理のために導入されている既存の排水処理技術に着目し、既設設備の一部を活用することでCOD値に影響する5種のNS化合物の全てを除去可能とするものである。例えば、火力発電所等において排水処理技術として一般的な活性炭充填塔(あるいはバッチ式の活性炭処理設備を含む)やイオン交換樹脂充填塔などを活用し、特に活性炭を用いた排水処理技術を活用してCODに影響する5種のNS化合物の全てを処理使用とするものである。 The desulfurization wastewater treatment method of the present invention focuses on the existing wastewater treatment technology that has been introduced for the treatment of organic COD components and the treatment of dithionic acid in thermal power plants, and utilizes a part of the existing equipment. It makes it possible to remove all five NS compounds that affect the COD value. For example, in thermal power plants, etc., we utilize general activated carbon packed towers (or batch-type activated carbon treatment equipment) and ion exchange resin packed towers as wastewater treatment technology. Therefore, all five NS compounds that affect COD are treated and used.

既設の排水処理技術として一般的な活性炭充填塔(あるいはバッチ式の活性炭処理設備を含む)は、普通の活性炭処理を施す場合、即ちpHや温度の調整をせずにそのまま常温・pH7で脱硫排水を処理する場合でも、HAMS、HAOMSは除去できることが本発明等によって明らかにされた。また、その他のHADS、HAODS及びHATSの3種のNS化合物についても、酸性下で加温して運用することにより、例えばpH2で少なくとも40℃に加温することで、活性炭処理で除去できることが明らかにされた。さらに、一部のNS化合物においては、pH4程度の酸性下でも少なくとも40℃、好ましくは50℃程度に加温するだけで、HADSは除去率1.0程度に除去できるし、HAODSはほぼ除去できることを知見するに至った。 A general activated carbon packed tower (or batch-type activated carbon treatment facility) as an existing wastewater treatment technology is used when normal activated carbon treatment is performed, that is, desulfurized wastewater is treated at normal temperature and pH 7 without adjusting pH or temperature. It has been clarified by the present invention and the like that HAMS and HAOMS can be removed even when treating . In addition, it is clear that the other three NS compounds, HADS, HAODS and HATS, can also be removed by activated carbon treatment by heating under acidic conditions, for example, by heating to at least 40°C at pH 2. was made Furthermore, in some NS compounds, HADS can be removed to a removal rate of about 1.0, and HAODS can be almost removed simply by heating to at least 40°C, preferably about 50°C, even in an acidic environment of about pH 4. I came to know.

他方、イオン交換樹脂による排水処理の場合には、HADS,HAODS,HATSの3種のNS化合物は除去できるが、HAMS,HAOMSの2種は除去されないという知見を得た。そして、活性炭による普通の排水処理と陰イオン交換樹脂による排水処理とでは、除去できるNS化合物と、除去できないNS化合物とがあり、尚且つそれらが相補的な関係にあるとの知見を得た。 On the other hand, in the case of wastewater treatment with an ion exchange resin, three types of NS compounds, HADS, HAODS, and HATS, can be removed, but two types, HAMS and HAOMS, are not removed. They also found that there are NS compounds that can be removed and NS compounds that cannot be removed by normal wastewater treatment with activated carbon and wastewater treatment with an anion exchange resin, and that they are in a complementary relationship.

このことから、5種のNS化合物全てを除去処理するためには、活性炭充填塔(あるいはバッチ式の活性炭処理設備を含む)のみを利用する場合には、pHを調整したり、温度を変化させることが必要であり、イオン交換樹脂処理と活性炭処理とを組み合わせる場合には脱硫排水へのpH調整も温度調整も必要としないことを見い出した。 Therefore, in order to remove all five types of NS compounds, when using only an activated carbon packed tower (or a batch-type activated carbon treatment facility), it is necessary to adjust the pH or change the temperature. It was found that when ion exchange resin treatment and activated carbon treatment are combined, it is not necessary to adjust the pH or temperature of the desulfurization effluent.

図1(A)に本発明にかかる脱硫排水処理方法の一実施形態を示す。この脱硫排水処理システムは、回分処理(バッチ処理)システムであり、酸活性炭処理槽1と、凝集槽2と、分離槽3とで構成され、脱硫排水4に粉末活性炭5を添加すると共に酸6を添加して酸性下例えばpH2以下に調整して酸活性炭処理槽1で所定時間例えば2時間攪拌処理し、攪拌処理後の脱硫排水4に凝集剤7とアルカリ溶液8を添加して凝集槽2で凝集させると共に中和した後、脱硫排水4と凝集物(図示省略)とを分離槽3で分離して排水9のみを通過させるようにしている。尚、酸としては例えば塩酸、凝集剤としては硫酸バンドやポリ塩化アルミニウム(PAC)、またアルカリ溶液としては水酸化ナトリウムなどの使用が好ましい。 FIG. 1(A) shows an embodiment of the desulfurization wastewater treatment method according to the present invention. This desulfurization wastewater treatment system is a batch treatment (batch treatment) system, and is composed of an acid activated carbon treatment tank 1, a flocculation tank 2, and a separation tank 3. Powdered activated carbon 5 is added to desulfurization wastewater 4, and acid 6 is added to adjust the pH to 2 or less under acidity, for example, and stirred in the acid activated carbon treatment tank 1 for a predetermined time, for example, 2 hours. After flocculation and neutralization, desulfurization waste water 4 and aggregates (not shown) are separated in a separation tank 3, and only waste water 9 is allowed to pass through. It is preferable to use, for example, hydrochloric acid as the acid, aluminum sulfate or polyaluminum chloride (PAC) as the coagulant, and sodium hydroxide as the alkaline solution.

ここで、酸活性炭処理槽1における攪拌処理は、酸性下望ましくはpH2以下に調整して、常温から少なくとも40℃、望ましくは50℃に加温して行われる。粉末活性炭の濃度は例えば1w/v%(1回分当たり)としたが、この量は実験的に目的が達成されるに十分な量として採用されたものであり、この量に限定される特定の理由はなく、また最適化された量でもない。適宜必要に応じて添加されることとなる。また、攪拌時間は、バッチ処理の場合容器・カラムの容量などによって異なるが、実験においては例えば2時間(1回分当たり)程度で目的が達成された。尚、本システムにおいて、上述の攪拌時間や粉末活性炭の添加濃度などは、最適値を示すものではなく、この量に特に限られるものではない。また、酸活性炭処理槽1での脱硫排水4の温度は、加水分解を促進する上で加温した方が好ましいが、例えば50℃程度に高く設定する方がNS化合物の除去が進行するし反応槽を小さくする上で望ましいが、必ずしも50℃としなくとも良く、実験からは40℃でも十分な効果が得られた。 Here, the stirring treatment in the acid-activated carbon treatment tank 1 is carried out by heating from room temperature to at least 40° C., preferably 50° C., under acidic conditions, preferably adjusted to pH 2 or less. The concentration of the powdered activated carbon was, for example, 1 w/v% (per dose), but this amount was experimentally adopted as a sufficient amount to achieve the purpose, and a specific amount limited to this amount was used. No reason, and not an optimized amount. It will be added appropriately as needed. In the case of batch processing, the stirring time varies depending on the capacity of the container and column, but in the experiment, the purpose was achieved with, for example, about 2 hours (per batch). In this system, the above-described stirring time, powdered activated carbon addition concentration, and the like do not indicate optimum values, and are not particularly limited to these amounts. Further, the temperature of the desulfurization waste water 4 in the acid-activated carbon treatment tank 1 is preferably heated in order to promote hydrolysis. Although it is desirable to make the tank smaller, it is not always necessary to set the temperature to 50°C. Experiments have shown that even 40°C is sufficiently effective.

NS化合物の除去は、より好ましくは加温して加水分解を促進させることであるが、場合によっては常温であっても実施可能である。本実施形態の場合、pH2で処理するようにしているがこれに特に限られるものではなく、例えばpH4程度でも十分な効果が得られた。実験結果からも明らかなように、加温温度を高めに設定すれば、例えば50℃に設定すれば、pH4でも十分にNS化合物の除去効果が得られる。その反面、勿論、加水分解であるから、50℃よりも高い温度まで加温すれば、さらに除去効果は上がるが、熱経済的に必要以上の高温に加温することは好ましくないことと、充填塔のカラムの大きさ・容量や処理時間の関係で、50℃程度とすることが望ましい。 The removal of the NS compound is more preferably carried out by heating to promote hydrolysis, but in some cases it can be carried out even at room temperature. In the case of this embodiment, the treatment is performed at pH 2, but it is not particularly limited to this, and a sufficient effect was obtained even at about pH 4, for example. As is clear from the experimental results, if the heating temperature is set higher, for example, if the temperature is set at 50° C., a sufficient NS compound removal effect can be obtained even at pH 4. On the other hand, of course, since this is hydrolysis, heating to a temperature higher than 50 ° C. will further increase the removal effect, but it is not preferable to heat to a higher temperature than necessary from a thermal economic point of view. It is desirable to set the temperature to about 50° C. in relation to the size and capacity of the column of the tower and the treatment time.

図1(B)に本発明にかかる脱硫排水処理方法の他の実施形態を示す。この脱硫排水処理システムは、連続処理システムであり、酸処理槽11と、活性炭充填塔12とで構成され、脱硫排水4に酸13を添加してpH2以下に調整して酸処理槽11で攪拌処理し、攪拌処理後の脱硫排水を活性炭充填塔12に供給して通過させ、活性炭と接触させてNS化合物を除去して排水9のみを通過させるようにしている。 FIG. 1(B) shows another embodiment of the desulfurization wastewater treatment method according to the present invention. This desulfurization wastewater treatment system is a continuous treatment system, and is composed of an acid treatment tank 11 and an activated carbon packed tower 12. An acid 13 is added to the desulfurization wastewater 4 to adjust the pH to 2 or less, and the mixture is stirred in the acid treatment tank 11. After the desulfurization treatment and stirring, the desulfurized waste water is supplied to the activated carbon packed tower 12 and passed through it to contact with the activated carbon to remove the NS compounds and allow only the waste water 9 to pass through.

ここで、酸処理槽11における攪拌処理は、塩酸または硫酸などの酸を添加して例えばpH2に調整し、常温から50℃の温度範囲で加温されてから行われることが好ましい。加温温度は、より高く設定する方が加水分解を促進させ反応槽を小さくできるので好ましいが、必ずしも50℃程度としなくとも良く、実験では40℃でも十分な効果が得られた。尚、活性炭充填塔を通過した排水は酸性のままであるので、必要に応じて下流において中和処理を施してから排水することが好ましい。 Here, the stirring treatment in the acid treatment tank 11 is preferably carried out after adjusting the pH to, for example, 2 by adding an acid such as hydrochloric acid or sulfuric acid, and heating in the temperature range from normal temperature to 50°C. It is preferable to set the heating temperature higher because hydrolysis is promoted and the reaction vessel can be made smaller. Since the waste water that has passed through the activated carbon-filled tower remains acidic, it is preferable to neutralize the waste water downstream, if necessary, before discharging the waste water.

図1(C)に本発明にかかる脱硫排水処理方法のさらに他の実施形態を示す。この脱硫排水処理システムは、連続処理を可能とするものであり、イオン交換樹脂充填塔21と、活性炭充填塔22とで構成され、イオン交換樹脂充填塔21でNS化合物の一部即ちHADS、HAODS及びHATSを除去した後、活性炭充填塔22でNS化合物の残りの一部即ちHAMS及びHAOMSを除去して、排水9のみを通過させるようにしている。したがって、5種のNS化合物の全ての除去が可能となる。 FIG. 1(C) shows still another embodiment of the desulfurization wastewater treatment method according to the present invention. This desulfurization wastewater treatment system enables continuous treatment, and is composed of an ion-exchange resin-filled tower 21 and an activated carbon-filled tower 22. In the ion-exchange resin-filled tower 21, part of the NS compounds, ie, HADS and HAODS and HATS are removed, the remaining part of the NS compounds, that is, HAMS and HAOMS are removed in the activated carbon packed tower 22, and only the waste water 9 is allowed to pass. Therefore, removal of all five NS compounds is possible.

以上の実施形態において用いられる活性炭充填塔あるいはイオン交換樹脂充填塔は、火力発電所の脱硫排水処理設備から排出される脱硫排水の排水処理のための既設設備として一般に備えられているものであることからり、その一部を活用することで、設置スペース並びに設備コストなどを抑えることができる。同時に、他の処理対象物即ち有機物系COD成分並びにジチオン酸の処理と平行して処理することできる。 The activated carbon-filled tower or ion-exchange resin-filled tower used in the above embodiments is generally provided as existing equipment for wastewater treatment of desulfurized wastewater discharged from the desulfurized wastewater treatment equipment of thermal power plants. It is possible to reduce the installation space and equipment cost by utilizing a part of the karari. At the same time, it can be treated in parallel with the treatment of other objects to be treated, that is, organic COD components and dithionic acid.

なお、上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。 Although the above embodiment is an example of the preferred embodiment of the present invention, the present invention is not limited to this, and can be modified in various ways without departing from the gist of the present invention.

脱硫排水に生成する可能性のある5種のNS化合物について、イオン交換樹脂および活性炭による処理の可能性を、模擬的な排水を用いた回分試験、カラム試験および実排水を用いたカラム試験を実施して調べた。 Batch tests using simulated waste water, column tests, and column tests using actual waste water were conducted to investigate the possibility of treatment with ion-exchange resin and activated carbon for 5 types of NS compounds that may be generated in desulfurization waste water. and investigated.

[試薬等]
NS化合物として、COD上昇に影響する5種(HAMS、HAOMS、HADS、HAODS、HATS)を供試した(表1)。これらのうち、HAOMSは和光純薬工業より入手した。HAOMS以外の4種は市販されていないため、合成した。各NS化合物は純度を100%と仮定して、水酸化カリウム溶液(pH10~12)または緩衝液(pH2~7)を用いて50mMの濃縮液を調製し、適宜希釈して使用した。
[Reagents, etc.]
Five NS compounds (HAMS, HAOMS, HADS, HAODS, and HATS) that affect the increase in COD were tested (Table 1). Among these, HAOMS was obtained from Wako Pure Chemical Industries. Since four types other than HAOMS are not commercially available, they were synthesized. Assuming that each NS compound has a purity of 100%, a potassium hydroxide solution (pH 10-12) or a buffer solution (pH 2-7) was used to prepare a 50 mM concentrated solution, which was then diluted appropriately before use.

イオン交換樹脂は、NS化合物が陰イオンであることを踏まえ、脱硫排水のCOD成分であるジチオン酸(S 2-)の除去にも用いられる弱塩基性陰イオン交換樹脂および強塩基性陰イオン交換樹脂II型を用いた。弱塩基性陰イオン交換樹脂と強塩基性陰イオン交換樹脂II型は、試薬として入手可能なダウ・ケミカルDOWEX Marathon WBA(以降、WBA)およびDOWEX Marathon A2(以降、A2)を用いた。イオン交換樹脂は、いずれも使用前に超純水、4%水酸化ナトリウム溶液、1 mol/L塩酸および超純水で洗浄し、コンディショニングを行った。 Based on the fact that NS compounds are anions , ion exchange resins are weakly basic anion exchange resins and strongly basic Anion exchange resin type II was used. Weakly basic anion exchange resin and strongly basic anion exchange resin type II used Dow Chemical DOWEX Marathon WBA (hereafter WBA) and DOWEX Marathon A2 (hereafter A2) available as reagents. All ion exchange resins were conditioned by washing with ultrapure water, 4% sodium hydroxide solution, 1 mol/L hydrochloric acid and ultrapure water before use.

活性炭は、粉末活性炭素(中性、和光純薬工業;以降粉末活性炭)および破砕状活性炭素(粒径2~5mm、和光純薬工業;以降、破砕状活性炭)を用いた。粉末活性炭はそのまま使用し、破砕状活性炭は超純水で洗浄後に使用した。 As the activated carbon, powdered activated carbon (neutral, Wako Pure Chemical Industries; hereinafter powdered activated carbon) and crushed activated carbon (particle size 2 to 5 mm, Wako Pure Chemicals; hereinafter crushed activated carbon) were used. Powdered activated carbon was used as it was, and crushed activated carbon was used after washing with ultrapure water.

[加水分解と亜硝酸添加法によるNS化合物の分解特性]
5種のNS化合物に対して、加水分解および亜硝酸添加法による分解特性を把握するために、pH、温度条件を変えたビーカーレベルの回分試験を行った。
1)加水分解
5種のNS化合物に対して、pHを2,4,7、温度を室温(約25℃)、40℃、50℃の条件でNS化合物の加水分解を行った。pH2および7の条件では10 mMリン酸緩衝液、pH4では10mM酢酸/酢酸ナトリウム緩衝液を用い、緩衝液に初期濃度0.5mMになるように各NS化合物の濃縮液を添加した。室温または40℃、50℃の恒温水槽中で静置し、1時間後にNS化合物の濃度を測定した。処理前後のNS化合物濃度から式(1)を用いて分解率(R)を算出した。
[Decomposition characteristics of NS compounds by hydrolysis and nitrous acid addition method]
In order to understand the degradation characteristics of five NS compounds by hydrolysis and nitrous acid addition, beaker-level batch tests were carried out under different pH and temperature conditions.
1) Hydrolysis Five NS compounds were hydrolyzed under the conditions of pH of 2, 4 and 7 and room temperature (about 25°C), 40°C and 50°C. A 10 mM phosphate buffer was used at pH 2 and 7, and a 10 mM acetic acid/sodium acetate buffer was used at pH 4. A concentrated solution of each NS compound was added to the buffer to an initial concentration of 0.5 mM. It was allowed to stand in a constant temperature water bath at room temperature or at 40°C or 50°C, and the concentration of the NS compound was measured after 1 hour. A decomposition rate (R) was calculated from the NS compound concentrations before and after the treatment using the formula (1).

Figure 0007162975000002
ここで、[A]と[A]は処理前後のNS化合物濃度[mmol/L]を示す。
2)亜硝酸添加法
酸加水分解の回分試験と同様に、pH 2,4,7、温度を室温(約25℃)、40℃、50℃の条件で実施した。各pHの緩衝液で0.5mMに調製したNS化合物溶液に亜硝酸ナトリウムを5 mMになるように添加し、各温度で処理を行った。酸加水分解と同様に処理前後のNS化合物濃度から分解率(R)を算出した。
Figure 0007162975000002
Here, [A] 0 and [A] indicate the NS compound concentration [mmol/L] before and after treatment.
2) Nitrous acid addition method Similar to the acid hydrolysis batch test, the conditions were pH 2, 4, 7 and room temperature (about 25°C), 40°C, and 50°C. Sodium nitrite was added to NS compound solutions adjusted to 0.5 mM with buffers of each pH to 5 mM, and the treatment was carried out at each temperature. The decomposition rate (R) was calculated from the NS compound concentrations before and after the treatment in the same manner as in the acid hydrolysis.

[イオン交換樹脂によるNS化合物の除去特性]
NS化合物に対するイオン交換樹脂への吸着試験は、ビーカーレベルの回分試験とカラム試験を実施した。
[Removal characteristics of NS compounds by ion exchange resin]
A beaker-level batch test and a column test were carried out for the adsorption test of the NS compound to the ion exchange resin.

1)回分試験
各NS化合物の処理液は、NS化合物濃度を0.5mMとした50mM塩化ナトリウム溶液を用い、1mol/L塩酸でpH5に調製した。50mLの処理液にコンディショニング済みイオン交換樹脂(WBAおよびA2)1gを添加し、回転板で1時間、室温で撹拌した後、処理液中のNS化合物の濃度を分析した。NS化合物の濃度から、式(1)及び式(2)を用いて除去率(R)と分配係数(KdA)を算出した。分配係数は、値が大きいほどイオン交換樹脂で吸着(イオン交換)しやすいことを示し、イオン交換樹脂との親和性の指標となる。
1) Batch Test A treatment solution for each NS compound was prepared to pH 5 with 1 mol/L hydrochloric acid using a 50 mM sodium chloride solution with an NS compound concentration of 0.5 mM. 1 g of conditioned ion-exchange resin (WBA and A2) was added to 50 mL of the treatment solution and stirred for 1 hour on a rotating plate at room temperature, after which the concentration of NS compounds in the treatment solution was analyzed. From the concentration of the NS compound, the removal rate (R) and partition coefficient (KdA) were calculated using equations (1) and (2). The larger the partition coefficient, the easier it is to adsorb (ion-exchange) with the ion-exchange resin, and it is an index of the affinity with the ion-exchange resin.

Figure 0007162975000003
ここで、[A] はイオン交換樹脂中のNS化合物濃度[mmol/kg-R]、Vは溶液量[L]、ρはイオン交換樹脂の比重[kg/L]、Wは添加したイオン交換樹脂重量[kg]を示す。
Figure 0007162975000003
Here, [A] R is the concentration of the NS compound in the ion exchange resin [mmol/kg-R], V is the volume of the solution [L], ρ R is the specific gravity of the ion exchange resin [kg/L], and WR is the added The weight of the ion-exchange resin [kg] is shown.

2)カラム試験
カラム試験では、イオン交換樹脂による脱硫排水中のNS化合物の除去特性を把握するために、脱硫排水を模擬した排水(模擬排水)のNS化合物を処理した。カラム試験には、コンディショニング済みのイオン交換樹脂(WBA)を充填したカラム(直径10mm、長さ150mm)を用いた。摸擬排水は、成分をCa2+:570mg/L、Na:480mg/L、Cl-:1000mg/L、SO 2-:1000mg/Lとし塩化カルシウムと硫酸ナトリウムを用いて調製し、塩酸でpH5とした。試験前に摸擬排水をカラム出口のSO 2-およびCl-濃度が安定するまで、空間速度(以降、SV)20h-1の流速で通水した。その後、0.5mM のNS化合物を含む摸擬排水に切り替え、カラム入口と出口の試料を経時的に採取し、NS化合物を分析した。NS化合物の濃度から、式(3)を用いて除去率(R)を算出した。

Figure 0007162975000004
ここで、[A]inと[A]outはカラム入口と出口のNS化合物の濃度[mmol/L]を示す。 2) Column test In the column test, NS compounds in wastewater simulating desulfurization wastewater (simulated wastewater) were treated in order to understand the removal characteristics of the NS compounds in the desulfurization wastewater by the ion exchange resin. A column (diameter 10 mm, length 150 mm) filled with conditioned ion exchange resin (WBA) was used for the column test. The simulated wastewater was prepared with Ca 2+ : 570 mg/L, Na + : 480 mg/L, Cl : 1000 mg/L, SO 4 2− : 1000 mg/L using calcium chloride and sodium sulfate. A pH of 5 was used. Before the test, simulated waste water was passed through the column outlet at a space velocity (hereinafter referred to as SV) of 20 h -1 until the SO 4 2- and Cl - concentrations stabilized. Thereafter, the system was switched to simulated waste water containing 0.5 mM NS compound, and samples were taken at the column inlet and outlet over time to analyze the NS compound. The removal rate (R) was calculated using the formula (3) from the concentration of the NS compound.
Figure 0007162975000004
Here, [A] in and [A] out indicate the concentration [mmol/L] of the NS compound at the column inlet and outlet.

[活性炭によるNS化合物の除去特性]
活性炭の吸着試験は、イオン交換樹脂の吸着試験と同様にビーカーレベルの回分試験とカラム試験を実施した。
[Removal characteristics of NS compounds by activated carbon]
For the adsorption test of activated carbon, a beaker-level batch test and a column test were carried out in the same manner as the adsorption test of the ion exchange resin.

1)回分試験
50mMリン酸緩衝液(pH2、7)または50mM酢酸/酢酸ナトリウム緩衝液(pH4)に初期濃度0.5mMになるように各NS化合物の濃縮液を添加し、処理液とした。処理水30mLに対して0.3gの粉末活性炭素を添加し、緩衝液を用いた処理液では、室温、40℃および50℃で回転板を用いて2時間、撹拌した。撹拌後、処理液を孔径0.2μmのフィルタでろ過し、NS化合物の濃度を分析した。NS化合物の濃度から、式(1)により除去率を算出した。一部のNS化合物(HAMSとHAOMS)については、処理後の生成物を確認するために、超純水で0.5mMとした処理液による試験を行い、硫酸イオン(SO 2-)、アンモニアイオン(NH )、亜硝酸イオン(NO -)、硝酸イオン(NO -)、ヒドロキシルアミン(NHOH)および全窒素(TN)の濃度を分析した。SO 2-濃度については、活性炭からSO 2-が溶出するため、式(4)を用いて活性炭から溶出するSO 2-を差し引いたSO 2-増加分(ΔSO 2-)を計算した。
1) Batch test A concentrated solution of each NS compound was added to 50 mM phosphate buffer (pH 2, 7) or 50 mM acetic acid/sodium acetate buffer (pH 4) to an initial concentration of 0.5 mM to prepare a treatment solution. 0.3 g of powdered activated carbon was added to 30 mL of treated water, and the treated solution using a buffer solution was stirred at room temperature, 40° C. and 50° C. for 2 hours using a rotating plate. After stirring, the treated liquid was filtered through a filter with a pore size of 0.2 μm, and the concentration of the NS compound was analyzed. The removal rate was calculated by the formula (1) from the concentration of the NS compound. For some NS compounds (HAMS and HAOMS), in order to confirm the products after treatment, a test was performed with a treatment solution adjusted to 0.5 mM with ultrapure water, and sulfate ion (SO 4 2- ), ammonia Concentrations of ions (NH 4 + ), nitrite (NO 2 - ), nitrate (NO 3 - ), hydroxylamine (NH 2 OH) and total nitrogen (TN) were analyzed. Regarding the SO 4 2- concentration, since SO 4 2- elutes from the activated carbon, the SO 4 2- increment (ΔSO 4 2- ) obtained by subtracting the SO 4 2- eluted from the activated carbon is calculated using the equation (4). Calculated.

[数式4]
Δ[SO 2-]=[SO 2--[SO 2--[SO 2-AC
ここで、[SO 2-、[SO 2-、[SO 2-ACは、それぞれ処理前、処理後および活性炭から溶出するSO 2-濃度(mmol/L)を示す。[SO 2-ACは、NS化合物を添加しない処理液を同様に試験を実施し、SO 2-濃度の増加量から求めた。
[Formula 4]
Δ[SO 4 2- ]=[SO 4 2- ] t - [SO 4 2- ] 0 - [SO 4 2- ] AC
Here, [SO 4 2- ] 0 , [SO 4 2- ] t , and [SO 4 2- ] AC are the SO 4 2- concentration (mmol/L) before treatment, after treatment, and eluted from activated carbon, respectively. show. [SO 4 2- ] AC was determined from the amount of increase in SO 4 2- concentration by conducting the same test on the treatment solution to which no NS compound was added.

2)カラム試験
活性炭のカラム試験は、HAMSとHAOMSを対象に実施した。約60mLの洗浄した破砕状活性炭を充填したガラスカラム(直径25mm、長さ120mm)を用いた。HAMSおよびHAOMSを超純水で0.5mMとし、pH7に調整して処理水とした。処理水をカラムに対してSV10または5h-1の流速で、カラム出口のNS化合物濃度が安定するまで通水した。その後、カラム入口と出口の処理水を採取し、NS化合物およびSO 2-濃度を分析した。NS化合物とSO 2-濃度から、式(3)および式(4)を用いて除去率(R)とSO 2-増加分(Δ[SO 2-])を算出した。
2) Column test A column test of activated carbon was performed on HAMS and HAOMS. A glass column (25 mm diameter, 120 mm length) packed with about 60 mL of washed crushed activated carbon was used. HAMS and HAOMS were adjusted to 0.5 mM with ultrapure water and adjusted to pH 7 to obtain treated water. The treated water was passed through the column at a flow rate of SV 10 or 5 h -1 until the NS compound concentration at the column outlet stabilized. Thereafter, the treated water at the column inlet and outlet was sampled and analyzed for NS compound and SO 4 2- concentrations. From the NS compound and the SO 4 2- concentration, the removal rate (R) and SO 4 2- increment (Δ[SO 4 2- ]) were calculated using equations (3) and (4).

[実排水中のNS化合物の除去]
1)供試実排水
1箇所の石炭火力発電所から、脱硫排水を採取し、HAMSを除く4種のNS化合物(HATS,HADS,HAODS,HAOMS)を約0.5mMになるように添加した4種のNS化合物を含む脱硫排水を調製した(表2)。なお、HAMSは、Cl-濃度の高い排水中の分析が困難であるため、添加は省略した。脱硫排水は冷蔵保存し、使用前に孔径0.2μmのフィルタでろ過後、活性炭カラムによる処理ではpHは未調整で用い、イオン交換樹脂カラムによる処理では塩酸でpH5に調整して用いた。
[Removal of NS compounds in actual wastewater]
1) Tested actual wastewater Desulfurization wastewater was collected from one coal-fired power plant, and four NS compounds (HATS, HADS, HAODS, HAOMS) other than HAMS were added to about 0.5 mM. A desulfurization effluent containing NS compounds was prepared (Table 2). The addition of HAMS was omitted because it is difficult to analyze waste water with a high Cl 2 -concentration. The desulfurization effluent was stored in a refrigerator, filtered through a filter with a pore size of 0.2 μm before use, and used without pH adjustment in the treatment with an activated carbon column, and adjusted to pH 5 with hydrochloric acid in the treatment with an ion-exchange resin column.

Figure 0007162975000005
Figure 0007162975000005

2)実排水によるカラム試験
実排水中のNS化合物のイオン交換樹脂および活性炭による除去を確認するため、イオン交換樹脂または活性炭を充填したカラムを用いて脱硫排水中のNS化合物の処理を行った。カラム試験には、ガラスカラム(直径25mm、長さ120mm)にイオン交換樹脂WBA約50mLまたは破砕状活性炭約60mLを充填して用いた。イオン交換樹脂による処理では、SV20h-1の流速で、活性炭による処理ではSV10h-1または5h-1で排水を通水した。通水後、経時的にカラム出口の処理液を採取し、各NS化合物、S 2-、SO 2-を分析した。
2) Column test using actual wastewater In order to confirm the removal of NS compounds in actual wastewater by ion-exchange resin and activated carbon, NS compounds in desulfurization wastewater were treated using a column filled with ion-exchange resin or activated carbon. For the column test, a glass column (25 mm diameter, 120 mm length) filled with about 50 mL of ion-exchange resin WBA or about 60 mL of crushed activated carbon was used. Wastewater was passed at a flow rate of SV 20h -1 for treatment with ion exchange resin, and at SV 10h -1 or 5h -1 for treatment with activated carbon. After the passage of water, the treated liquid at the column outlet was sampled over time and analyzed for each NS compound, S 2 O 6 2- and SO 4 2- .

[既存の処理技術を活用したNS化合物の処理法の検討]
既存の処理技術を活用し、NS化合物を処理する方法として、酸加水分解と活性炭処理を組み合わせた方法(酸性活性炭処理)とイオン交換樹脂と活性炭を組み合わせた方法(イオン交換樹・脂活性炭処理)を検討した。
[Examination of treatment methods for NS compounds using existing treatment technology]
As a method of treating NS compounds using existing treatment technology, a method combining acid hydrolysis and activated carbon treatment (acidic activated carbon treatment) and a method combining ion exchange resin and activated carbon (ion exchange resin/activated carbon treatment). It was investigated.

試験装置の概略を図2に示す。酸性活性炭処理では、図2(A)に示すように、主に酸処理槽11と活性炭カラム12で構成され、活性炭による処理工程では、通常の運用条件とは異なり、酸性、加温した処理液を通水する。処理液は、0.1mol/L水酸化ナトリウムでpH10以上に調整したHATSまたはHADS溶液0.5mMを用いた。酸処理槽では、pH2に調整し、温度50℃、滞留時間1時間の条件で酸加水分解反応を行った。pH調整には、HAMSとSO 2-濃度をイオンクロマトグラフィーで分析できるように、2mol/Lリン酸を用いた。活性炭カラム12は、ガラスカラム(直径25mm、長さ120mm)に破砕状活性炭約60mLを充填して用いた。処理液の流速は、活性炭カラム12に対してSV5h-1(5mL/min)とした。通水後、経時的に酸処理槽11およびカラム12の出口の処理液を採取し、各NS化合物濃度を分析した。尚、図中の符号14はpH制御センサ、15は温度制御センサである。 A schematic of the test apparatus is shown in FIG. As shown in FIG. 2(A), the acidic activated carbon treatment is mainly composed of an acid treatment tank 11 and an activated carbon column 12. In the treatment process using activated carbon, unlike normal operating conditions, an acidic and heated treatment solution is used. water through. A 0.5 mM HATS or HADS solution adjusted to pH 10 or higher with 0.1 mol/L sodium hydroxide was used as the treatment liquid. In the acid treatment bath, the pH was adjusted to 2, and the acid hydrolysis reaction was carried out under the conditions of a temperature of 50° C. and a residence time of 1 hour. 2 mol/L phosphoric acid was used for pH adjustment so that HAMS and SO 4 2− concentrations could be analyzed by ion chromatography. As the activated carbon column 12, a glass column (25 mm in diameter, 120 mm in length) filled with about 60 mL of crushed activated carbon was used. The flow rate of the treated liquid was set to SV5h −1 (5 mL/min) with respect to the activated carbon column 12 . After the passage of water, the treated liquids at the outlets of the acid treatment tank 11 and the column 12 were sampled over time, and the concentration of each NS compound was analyzed. In the figure, reference numeral 14 is a pH control sensor, and 15 is a temperature control sensor.

イオン交換樹脂・活性炭処理では、図2(B)に示すように主にイオン交換樹脂カラム21と活性炭カラム22とで構成される。各カラム21,22は、前述のガラスカラムにイオン交換樹脂WBA約50mLと破砕状活性炭約60mLを充填して用いた。処理液は、HAMSまたはHAMSを除く4種のNS化合物を0.5mMになるように添加した模擬排水(脱硫排水を模擬した排水)に、1mol/L硫酸でpH5に調整したものを用いた。処理液の流速は、酸性活性炭処理と同様とした。通水後、経時的に各カラム出口から処理液を採取し、各NS化合物濃度を分析した。 The ion exchange resin/activated carbon treatment is mainly composed of an ion exchange resin column 21 and an activated carbon column 22 as shown in FIG. 2(B). Each of the columns 21 and 22 was used by filling about 50 mL of the ion exchange resin WBA and about 60 mL of crushed activated carbon in the glass column described above. The treatment solution used was simulated waste water (effluent simulating desulfurization waste water) to which HAMS or four NS compounds other than HAMS were added to a concentration of 0.5 mM, and was adjusted to pH 5 with 1 mol/L sulfuric acid. The flow rate of the treatment liquid was the same as in the acidic activated carbon treatment. After the passage of water, the treated liquid was sampled from each column outlet over time, and the concentration of each NS compound was analyzed.

[分析方法]
分析試料は孔径0.2μmのフィルタでろ過した後に、各種分析に供した。NS化合物およびS 2-の分析には、イオンクロマトグラフィー(サーモフィッシャーサイエンティフィック、ICS1600)を使用した。分析条件は、HAMS、HAOMSには分離カラムとしてIonPac AS9-HCを用い、溶離液として9mM炭酸ナトリウム溶液を用いた。HADS、HAODS、S 2-の分析には分離カラムとしてIonPac AS16を用い、溶離液として30mM水酸化ナトリウム水溶液を用いた。HATSの分析には分離カラムとしてIonPac AS16を用い、溶離液として80mM水酸化ナトリウム水溶液を用いた。なお、HAMSは、塩化物イオン(Cl-)と保持時間がほぼ同じであるため、溶液中にCl-を含む場合はTN濃度を指標に算出した。
[Analysis method]
The analytical sample was filtered through a filter with a pore size of 0.2 μm and then subjected to various analyses. Ion chromatography (Thermo Fisher Scientific, ICS1600 ) was used for analysis of NS compounds and S2O62- . HAMS and HAOMS were analyzed using an IonPac AS9-HC separation column and a 9 mM sodium carbonate solution as an eluent. HADS, HAODS, and S 2 O 6 2− were analyzed using IonPac AS16 as a separation column and 30 mM sodium hydroxide aqueous solution as an eluent. For analysis of HATS, IonPac AS16 was used as a separation column, and 80 mM sodium hydroxide aqueous solution was used as an eluent. Since the retention time of HAMS is almost the same as that of chloride ions (Cl - ), the TN concentration was used as an indicator when the solution contained Cl - .

TOCおよびTNは、全有機体炭素/全窒素分析装置(東レエンジニアリング)を用いて分析した。CODは、JIS K0102(2013)のCODMnに従って分析した。SO 2-、NO -、NO -、Cl-およびNH は、イオンクロマトグラフィーを用いて分析した。 TOC and TN were analyzed using a total organic carbon/total nitrogen analyzer (Toray Engineering). COD was analyzed according to COD Mn of JIS K0102 (2013). SO 4 2- , NO 3 - , NO 2 - , Cl - and NH 4 + were analyzed using ion chromatography.

[結果と考察]
[加水分解と亜硝酸添加法によるNS化合物の分解特性]
[Results and discussion]
[Decomposition characteristics of NS compounds by hydrolysis and nitrous acid addition method]

1)加水分解
NS化合物の加水分解におけるpH、温度の影響を検討した結果を図3に示す。HAMS、HAOMSおよびHAODSは、本報の条件範囲(温度;室温~50℃、pH;2~7、反応時間;2時間)では、ほとんど加水分解しないことがわかった。HATSとHADSは、室温ではpH4以上でほとんど加水分解しないが、pH2では加水分解が確認された。これらの加水分解は温度が高いほど進行し、pH2の条件では40℃以上でほぼすべてが加水分解した。なお、HATSおよびHADSの加水分解物はそれぞれHAODSおよびHAMSであるため、加水分解後にはHAODSとHAMSが蓄積している。
従って、酸性条件による加水分解では、脱硫排水中のNS化合物の分解除去は困難である。
1) Hydrolysis
FIG. 3 shows the results of examining the effects of pH and temperature on the hydrolysis of NS compounds. It was found that HAMS, HAOMS and HAODS hardly hydrolyzed under the conditions of this report (temperature: room temperature to 50°C, pH: 2 to 7, reaction time: 2 hours). HATS and HADS are hardly hydrolyzed at pH 4 or higher at room temperature, but hydrolysis was confirmed at pH 2. These hydrolysis proceeded at higher temperatures, and almost all hydrolyzed at 40°C or higher under pH 2 conditions. Since the hydrolyzates of HATS and HADS are HAODS and HAMS, respectively, HAODS and HAMS are accumulated after hydrolysis.
Therefore, it is difficult to decompose and remove NS compounds in desulfurization effluent by hydrolysis under acidic conditions.

[イオン交換樹脂によるNS化合物の除去特性] [Removal characteristics of NS compounds by ion exchange resin]

1)回分試験
2種類のイオン交換樹脂を用いた回分試験を行い、50mM塩化ナトリウム溶液中におけるNS化合物の分配係数を求め、脱硫排水に含まれるSO 2-、NO 、S 2-とともに表3に比較した。2価または3価のイオンであるHADS、HAODS、HATSの分配係数はS 2-と同程度であり、SO 2-よりも大きいことがわかった。一方、1価のHAMS、HAOMSの分配係数は、NO と同程度であり、SO 2-より小さい結果となった。同じ価数であれば、分配係数をイオン交換樹脂の選択性として比較ができるため、イオン交換樹脂の選択性としてはSO 2-<HADS<HAODS,S 2-の関係にある。また、一般的にイオン交換樹脂は価数が大きいほど吸着しやすいことから、選択性としてはHAMS,HAOMS,NO ?<SO 2?<HATSのような傾向がある。
1 ) Batch test A batch test was performed using two types of ion - exchange resins to determine the partition coefficient of the NS compound in a 50 mM sodium chloride solution. 2- and are compared in Table 3. It was found that the partition coefficients of HADS, HAODS and HATS, which are divalent or trivalent ions, are comparable to that of S 2 O 6 2- and larger than that of SO 4 2- . On the other hand, the distribution coefficients of monovalent HAMS and HAOMS were similar to those of NO 3 - and smaller than that of SO 4 2- . If the valences are the same, the partition coefficient can be compared as the selectivity of the ion-exchange resin, so the selectivity of the ion-exchange resin has a relationship of SO 4 2- <HADS<HAODS, S 2 O 6 2- . In addition, since ion exchange resins generally tend to adsorb more easily as the valence number increases, the selectivity tends to be HAMS, HAOMS, NO 3 ? < SO 4 2 ? < HATS.

Figure 0007162975000006
Figure 0007162975000006

2)カラム試験
脱硫排水は、SO 2-、Cl-濃度の高い排水である。このような排水中のNS 化合物をイオン交換樹脂で処理できるか検討するために、イオン交換樹脂を充填したカラムを用いて脱硫排水を模擬した排水中のNS化合物に対する除去率を確認した(図4)。HAMSはカラムに通水後、速やかに除去率が低下し、脱硫排水中ではほとんど除去されないことが確認された。HAOMSは、通水後、徐々に除去率が低下しており、試験終了時には除去率が約0.6となった。一方、SO 2-よりも分配係数の高いNS化合物(HADS、HAODS、HATS)とS 2-は、試験終了時までカラム出口でほぼ検出されず、試験期間中、安定した脱硫排水からの除去が確認された。
2) Column test Desulfurization effluent has a high concentration of SO 4 2- and Cl - . In order to investigate whether such NS compounds in wastewater can be treated with an ion exchange resin, we used a column filled with ion exchange resin to confirm the removal rate of NS compounds in wastewater simulating desulfurization wastewater (Fig. 4). ). It was confirmed that the removal rate of HAMS rapidly decreased after passing water through the column, and that HAMS was hardly removed in the desulfurization effluent. With HAOMS, the removal rate gradually decreased after passing water, and the removal rate was about 0.6 at the end of the test. On the other hand, NS compounds (HADS, HAODS, HATS) and S 2 O 6 2- , which have higher partition coefficients than SO 4 2- , were hardly detected at the column outlet until the end of the test. Confirmed removal from

以上より、イオン交換樹脂の母体の材質、構造などによっても吸着特性は変わる可能性はあるものの、5種のNS化合物のうちHADS、HAODS、HATSは、SO 2-濃度の高い脱硫排水中でもイオン交換樹脂による除去が可能である。一方、HAMSとHAOMSは、イオン交換樹脂による脱硫排水の処理では高い除去率を維持することは困難である。 From the above, although the adsorption characteristics may change depending on the material and structure of the matrix of the ion exchange resin, among the five NS compounds, HADS , HAODS , and HATS are ion Removal by exchange resin is possible. On the other hand, it is difficult for HAMS and HAOMS to maintain a high removal rate in the treatment of desulfurization wastewater with ion exchange resins.

[活性炭によるNS化合物の除去特性]
1)回分試験
活性炭によるNS化合物の吸着特性を評価するために、粉末状の活性炭を用いた回分試験を実施した(図5)。HAMSとHAOMSは、処理条件(pH;2~7、温度;室温~50℃)に関わらず、高い除去率であった。HAODS、HADS、HATSは、pHが低いほど、温度が高いほど除去率が高くなる傾向があった。本試験で実施した範囲では、pH 2、40℃以上の条件ですべてのNS化合物を除去できる可能性があることがわかった。しかし、活性炭による脱硫排水の処理は、一般的に常温、中性付近であるため、実機におけるHAODS、HADSおよびHATSの除去は困難である。
[Removal characteristics of NS compounds by activated carbon]
1) Batch Test In order to evaluate the adsorption properties of NS compounds by activated carbon, a batch test was carried out using powdered activated carbon (Fig. 5). HAMS and HAOMS showed high removal rates regardless of treatment conditions (pH: 2 to 7, temperature: room temperature to 50°C). HAODS, HADS and HATS tended to have higher removal rates at lower pH and higher temperatures. It was found that all NS compounds could be removed under conditions of pH 2 and 40° C. or higher within the scope of this test. However, since desulfurization waste water is generally treated with activated carbon at room temperature and near neutrality, it is difficult to remove HAODS, HADS and HATS in actual equipment.

超純水で希釈したHAMS、HAODSを用いて回分試験を実施したところ、処理後にHAMS、HAODS の減少とともにSO 2-濃度の増加が確認された(図6)。その濃度は約0.4mMであり、HAMS、HAODSの初期添加量(約0.5mM)に近いSO 2-が検出された。また、処理液中のNH 、NO -、NO -、NHOHおよびTNの濃度を分析したところ、HAOMSでは、NH の増加が確認され、その濃度は約0.4mMとTNやSO 2-濃度と同程度であることがわかった。これは、HAOMSがSO 2-とNH に分解されたことを示唆しており、活性炭が加水分解反応などの触媒として作用したと考えられる。一方、HAMSは、NH などの濃度上昇は認められず、TNも0.04mM以下に減少した。HAMSは、SO 2-濃度の増加にもかかわらず、TNが減少していることから、HAOMSとは異なる活性炭との反応が示唆された。HAMSは、ケトンやアルデヒドなどカルボニル化合物と反応してオキシムを形成することが知られており、活性炭表面上の官能基と反応した可能性が考えられる。 When a batch test was performed using HAMS and HAODS diluted with ultrapure water, it was confirmed that HAMS and HAODS decreased and SO 4 2- concentration increased after treatment (Fig. 6). Its concentration was about 0.4 mM, and SO 4 2− close to the initial addition amount (about 0.5 mM) of HAMS and HAODS was detected. Further, when the concentrations of NH 4 + , NO 2 , NO 3 , NH 2 OH and TN in the treatment liquid were analyzed, HAOMS confirmed an increase in NH 4 + with a concentration of about 0.4 mM. It was found to be comparable to TN and SO 4 2- concentrations. This suggests that HAOMS was decomposed into SO 4 2- and NH 4 + , and it is considered that activated carbon acted as a catalyst for hydrolysis reaction and the like. On the other hand, in HAMS, no increase in concentration of NH 4 + was observed, and TN decreased to 0.04 mM or less. HAMS showed a decrease in TN in spite of an increase in SO 4 2- concentration, suggesting a different reaction with activated carbon than HAOMS. HAMS is known to react with carbonyl compounds such as ketones and aldehydes to form oximes, and it is possible that HAMS reacted with functional groups on the surface of activated carbon.

2)カラム試験
実際の排水における活性炭処理は、活性炭を充填した吸着塔による処理が一般的である。そこで、活性炭を充填したカラムによるHAMSおよびHAOMSの除去を確認するために、破砕状活性炭を充填したカラムに、0.5mM HAMS、HAOMS溶液を異なる流速(SV10h-1、SV5h-1)で通水し、その除去率を求めた(図7)。HAMSおよびHAOMSの除去率は、流速の早いSV10h-1で0.8および0.5、SV5h-1で0.9および0.8となり、HAMSの方がHAOMSより除去率が高い傾向があった。回分試験では、ほぼすべてのHAMSとHAOMSは除去されたが、カラム試験では処理後にも一部残留する結果となった。これは、本試験で使用した活性炭のカラムは、実験の都合上、長さ120mmと短いものを使用していたことが一因と思われる。
2) Column test In actual wastewater treatment with activated carbon, treatment using an adsorption tower filled with activated carbon is common. Therefore, in order to confirm the removal of HAMS and HAOMS by a column packed with activated carbon, 0.5 mM HAMS and HAOMS solutions were passed through a column packed with crushed activated carbon at different flow rates (SV10h -1 , SV5h -1 ). and the removal rate was determined (Fig. 7). The removal rates of HAMS and HAOMS were 0.8 and 0.5 at high flow rate SV10h -1 and 0.9 and 0.8 at SV5h-1, and HAMS tended to have a higher removal rate than HAOMS. . Batch tests removed almost all HAMS and HAOMS, while column tests resulted in some remaining after treatment. This is probably because the activated carbon column used in this test was as short as 120 mm in length for the convenience of the experiment.

以上より、活性炭処理は、吸着塔の容量や流速などを至適化することで、水温やpHなど通常の運用条件においてもHAMSとHAOMSの処理法として適用できる可能性がある。ただし、HAOMSについては、処理後にNH 濃度の増加が予想され、排水中のHAOMS濃度によっては別途、窒素処理を考慮する必要がある。 From the above, by optimizing the capacity and flow rate of the adsorption tower, activated carbon treatment may be applicable as a treatment method for HAMS and HAOMS even under normal operating conditions such as water temperature and pH. However, with regard to HAOMS, an increase in NH 4 + concentration is expected after treatment, and depending on the HAOMS concentration in the waste water, it is necessary to separately consider nitrogen treatment.

[実排水中のNS化合物の除去]
1)イオン交換樹脂カラム処理
石炭火力発電所から採取した脱硫排水に4種のNS化合物を添加した排水をカラムに通水した結果を図8に示す。HATS、HADSおよびHAODSは、試験終了時まで未検出となり、実排水においてもHADSとHAODSはHATSと同様にイオン交換樹脂で除去可能であることが確認された。一方、HAOMSでは、処理後に濃度の低下が確認され、その平均で約59%の除去率であった。
[Removal of NS compounds in actual wastewater]
1) Ion-exchange resin column treatment Fig. 8 shows the results of passing water through a column of desulfurized wastewater collected from a coal-fired power plant to which four types of NS compounds were added. HATS, HADS and HAODS were not detected until the end of the test, and it was confirmed that HADS and HAODS could be removed with an ion exchange resin in the same way as HATS in actual wastewater. On the other hand, with HAOMS, a decrease in concentration was confirmed after treatment, and the average removal rate was about 59%.

以上より、実際の脱硫排水においてもイオン交換樹脂による処理で、5種のNS化合物のうちHATS、HAODS、HADSは除去が可能であることがわかった。HAOMSは濃度の低減は期待できるが、脱硫排水のHAOMS濃度やSO 2-濃度などによって除去率は変動することが考えられる。本試験では、HAMSの添加を省略したが、HAMSはHAOMSと同程度の分配係数であること(表3)、イオン交換樹脂によるNS化合物の除去特性を検討した先のカラム試験からHAOMSより除去率が低いことから(図4)、実排水においてもHAOMSと同様またはより低い除去率となると考えられる。 From the above, it was found that out of the five NS compounds, HATS, HAODS, and HADS can be removed from actual desulfurization waste water by treatment with an ion exchange resin. A reduction in the concentration of HAOMS can be expected, but the removal rate may vary depending on the concentration of HAOMS and SO 4 2- concentration in the desulfurization effluent. Although the addition of HAMS was omitted in this test, HAMS has a partition coefficient similar to that of HAOMS (Table 3). (Fig. 4), it is considered that the removal rate in actual wastewater is similar to or lower than that of HAOMS.

2)活性炭カラム処理
図9にNS化合物を添加した脱硫排水を活性炭カラムで処理した結果を示す。SO 2-濃度が安定した後のHATS、HADSおよびHAODSの濃度は処理前とほとんど変わらず、その平均の除去率は0~7%と低い結果となった。一方、HAOMSでは、処理後に濃度の低下が確認され、実排水においても活性炭によるHAOMSの除去が確認できた。しかし、その平均除去率は約0.6であるため、カラム容量や処理流速など処理条件の最適化は必要である。
2) Activated Carbon Column Treatment FIG. 9 shows the results of treating the desulfurization wastewater to which the NS compound was added using an activated carbon column. After the SO 4 2- concentration stabilized, the concentrations of HATS, HADS and HAODS were almost the same as before treatment, and the average removal rate was as low as 0-7%. On the other hand, in HAOMS, a decrease in concentration was confirmed after the treatment, and removal of HAOMS by activated carbon was also confirmed in actual wastewater. However, since its average removal rate is about 0.6, it is necessary to optimize treatment conditions such as column capacity and treatment flow rate.

[既存の処理技術を活用したNS化合物の処理法]
酸性活性炭処理によりHATSとHADSを処理した結果を図10および図11に示す。HATSを添加した処理液では、酸処理槽で加水分解によりHAODSが生成し、生成したHAODSは活性炭処理で濃度が減少した(図10)。活性炭処理後のHATSと総NS化合物の平均濃度(通水量600~1800mLの平均)は、それぞれ約0.01mM、0.08mMとなり、HATSで約98%、総NS化合物で約83%の除去率であった。また、HADSでは、酸処理槽でHADSの減少とともにHAMSが生成し、活性炭処理後に減少した。活性炭処理後のHADSと総NS化合物の除去率はいずれも約99%と、高い除去率を得た。
[Method for treating NS compounds using existing treatment technology]
The results of treating HATS and HADS by acidic activated carbon treatment are shown in FIGS. 10 and 11. FIG. In the treatment solution containing HATS, HAODS was produced by hydrolysis in the acid treatment tank, and the concentration of the produced HAODS was reduced by the activated carbon treatment (Fig. 10). The average concentrations of HATS and total NS compounds after activated carbon treatment (average of 600 to 1800 mL of water flow) were approximately 0.01 mM and 0.08 mM, respectively, with a removal rate of approximately 98% for HATS and approximately 83% for total NS compounds. Met. In addition, in HADS, HAMS was generated as HADS decreased in the acid treatment tank, and decreased after activated carbon treatment. A high removal rate of about 99% was obtained for both HADS and total NS compounds after the activated carbon treatment.

イオン交換樹脂と活性炭の組み合わせてNS化合物を処理した結果を図12に示す。HAMSを除く4種のNS化合物を添加した処理液では、4種全てでイオン交換樹脂による処理後にそのほとんどが除去され、除去率は平均99%以上(処理水量600~1950mLの平均)であった(図12(A)参照)。イオン交換樹脂によるNS化合物の除去特性並びに実排水中のNS化合物の除去に関する検討において、HAOMSのイオン交換樹脂による処理では、一部処理液に残留する結果となっていた。これは、本試験のイオン交換樹脂のカラム容量の違いや模擬排水のSO 2-濃度が実排水より低いことによる影響と考えられる。一方、HAMSを添加した処理液では、イオン交換樹脂では除去されず、活性炭処理後に濃度の低下が確認された(図12(B)参照)。活性炭処理後のHAMSの除去率は、平均で約73%(同上)であった。 FIG. 12 shows the result of treating the NS compound with a combination of ion exchange resin and activated carbon. In the treatment solutions to which four types of NS compounds were added, excluding HAMS, most of them were removed after treatment with ion exchange resin, and the removal rate was 99% or more on average (average of treated water volume 600 to 1950 mL). (See FIG. 12(A)). In a study on the removal characteristics of NS compounds by ion exchange resins and the removal of NS compounds in actual waste water, the treatment with HAOMS ion exchange resins resulted in a portion of NS compounds remaining in the treated liquid. This is thought to be due to the difference in the column capacity of the ion exchange resin used in this test and the SO 4 2− concentration of the simulated wastewater being lower than that of the actual wastewater. On the other hand, in the treated liquid containing HAMS, it was not removed by the ion exchange resin, and the concentration was confirmed to decrease after the activated carbon treatment (see FIG. 12(B)). The removal rate of HAMS after activated carbon treatment averaged about 73% (same as above).

以上より、通常の運用条件での活性炭充填塔では処理が困難なHATSやHADSでも、酸処理槽を設置して酸性条件下での活性炭処理することで濃度の低減が可能となり、他の3種も含めてNS化合物を処理できる可能性が示された。また、イオン交換樹脂と活性炭を組み合わせることでも、5種のNS化合物の除去や濃度の低減ができる可能性が示された。 From the above, it is possible to reduce the concentration of HATS and HADS, which are difficult to treat with an activated carbon packed tower under normal operating conditions, by installing an acid treatment tank and performing activated carbon treatment under acidic conditions. Possibility of processing NS compounds including It was also shown that the combination of ion-exchange resin and activated charcoal can also remove five types of NS compounds and reduce their concentrations.

[既存排水処理技術によるNS化合物の除去方法のまとめ]
イオン交換樹脂や活性炭など一般的な排水処理技術では、処理できるNS化合物が異なることがわかった。脱硫排水中の5種のNS化合物すべてを処理するためには、酸性条件下で活性炭を用いる方法やイオン交換樹脂と活性炭の処理を組み合わせる方法、また、活性炭処理において、酸性条件、加温した処理槽に粉末活性炭を添加する方法や活性炭充填塔の前に酸処理槽を設置する方法で対応できると考えられる。
[Summary of methods for removing NS compounds using existing wastewater treatment technology]
It was found that common wastewater treatment technologies such as ion exchange resin and activated carbon can treat different NS compounds. In order to treat all five types of NS compounds in desulfurization wastewater, there are methods using activated carbon under acidic conditions, methods combining treatment with ion-exchange resin and activated carbon, and methods under acidic conditions and heating in activated carbon treatment. A method of adding powdered activated carbon to the tank or a method of installing an acid treatment tank in front of the activated carbon packed tower is considered to be able to cope with this problem.

1 酸活性炭処理槽
2 凝集槽
3 分離槽
4 脱硫排水
5 粉末活性炭
6 酸
7 凝集剤
8 アルカリ溶液
9 排水
11 酸処理槽
12 活性炭充填塔
13 酸
21 イオン交換樹脂充填塔
22 活性炭充填塔
1 acid activated carbon treatment tank 2 flocculation tank 3 separation tank 4 desulfurization waste water 5 powdered activated carbon 6 acid 7 flocculant 8 alkaline solution 9 waste water 11 acid treatment tank 12 activated carbon packed tower 13 acid 21 ion exchange resin packed tower 22 activated carbon packed tower

Claims (4)

HAMS、HAOMS、HADS、HAODS、HATSの5種のCOD値に影響するNS化合物を含む脱硫排水に粉末活性炭を添加すると共に酸を添加してpH2以下に調整し、室温から50℃の範囲内で2時間酸活性炭処理槽で攪拌処理し、攪拌処理後の前記脱硫排水に凝集剤とアルカリ溶液を添加して凝集槽で凝集させた後、前記脱硫排水と前記凝集物とを分離槽で分離して排水のみを通過させることを特徴とする脱硫排水処理方法。 Powdered activated carbon is added to desulfurization effluent containing NS compounds that affect the COD value of HAMS, HAOMS, HADS, HAODS, and HATS, and acid is added to adjust the pH to 2 or less . After stirring in an acid-activated carbon treatment tank for 2 hours , adding a flocculating agent and an alkaline solution to the desulfurized waste water after the stirring process and flocculating it in the flocculating tank, the desulfurized waste water and the flocculate are separated in a separation tank. A desulfurization wastewater treatment method, characterized in that only wastewater is allowed to pass through. 処理槽内でHAMS、HAOMS、HADS、HAODS、HATSの5種のCOD値に影響するNS化合物を含む脱硫排水に酸を添加して攪拌しpH2以下に調整し、50℃で1時間酸加水分解を行った後、pH調整後の前記脱硫排水を流速SV5h -1 前記活性炭充填塔を通過させ、NS化合物を前記活性炭充填塔内の活性炭に付着させて除去し、排水のみを通過させることを特徴とする脱硫排水処理方法。 In an acid treatment tank, acid is added to desulfurization effluent containing five NS compounds that affect the COD value of HAMS, HAOMS, HADS, HAODS, and HATS . After decomposition , the pH-adjusted desulfurization waste water is passed through the activated carbon packed tower at a flow rate of SV5h −1 to remove the NS compounds by attaching them to the activated carbon in the activated carbon packed tower, and only the waste water is allowed to pass through. A desulfurization wastewater treatment method characterized by: 前記pH調整時に前記脱硫排水を少なくとも40℃に加温することを特徴とする請求項記載の脱硫排水処理方法。 2. The desulfurization waste water treatment method according to claim 1 , wherein the desulfurization waste water is heated to at least 40[deg.] C. during the pH adjustment. 前記酸処理の際に50℃に加温することを特徴とする請求項記載の脱硫排水処理方法。 2. The desulfurization wastewater treatment method according to claim 1 , wherein the acid treatment is performed by heating to 50.degree.
JP2018120359A 2018-06-26 2018-06-26 Method for treating NS compounds that affect COD of desulfurization wastewater Active JP7162975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018120359A JP7162975B2 (en) 2018-06-26 2018-06-26 Method for treating NS compounds that affect COD of desulfurization wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018120359A JP7162975B2 (en) 2018-06-26 2018-06-26 Method for treating NS compounds that affect COD of desulfurization wastewater

Publications (2)

Publication Number Publication Date
JP2020000962A JP2020000962A (en) 2020-01-09
JP7162975B2 true JP7162975B2 (en) 2022-10-31

Family

ID=69097907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018120359A Active JP7162975B2 (en) 2018-06-26 2018-06-26 Method for treating NS compounds that affect COD of desulfurization wastewater

Country Status (1)

Country Link
JP (1) JP7162975B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112707483A (en) * 2020-11-26 2021-04-27 国网河北省电力有限公司电力科学研究院 Desulfurization waste water treatment spray set of thermal power plant

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5618511A (en) 1995-08-11 1997-04-08 The Arizona Board Of Regents On Behalf Of The University Of Arizona Process for producing ammonium sulfate from flue-gas scrubber waste liquor
JP2006272065A (en) 2005-03-28 2006-10-12 Kurita Water Ind Ltd Treatment method and apparatus of fluorine-containing water containing toc component
JP2018183755A (en) 2017-04-27 2018-11-22 株式会社ノアテック Wastewater treatment method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3843141B2 (en) * 1995-04-17 2006-11-08 千代田化工建設株式会社 Method and apparatus for treating flue gas desulfurization waste water

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5618511A (en) 1995-08-11 1997-04-08 The Arizona Board Of Regents On Behalf Of The University Of Arizona Process for producing ammonium sulfate from flue-gas scrubber waste liquor
JP2006272065A (en) 2005-03-28 2006-10-12 Kurita Water Ind Ltd Treatment method and apparatus of fluorine-containing water containing toc component
JP2018183755A (en) 2017-04-27 2018-11-22 株式会社ノアテック Wastewater treatment method

Also Published As

Publication number Publication date
JP2020000962A (en) 2020-01-09

Similar Documents

Publication Publication Date Title
RU2501738C2 (en) Method of reducing corrosion, formed of sediments and reducing of water consumption in cooling tower systems
Müslehiddinoğlu et al. Effect of operating parameters on selective separation of heavy metals from binary mixtures via polymer enhanced ultrafiltration
Randtke et al. Effects of salts on activated carbon adsorption of fulvic acids
US20080156734A1 (en) Apparatus for treating a flow of an aqueous solution containing arsenic
Guan et al. Removal of Mn (II) and Zn (II) ions from flue gas desulfurization wastewater with water-soluble chitosan
Shemer et al. State-of-the-art review on post-treatment technologies
EP2792645B1 (en) Process for removing fluorides from water
Leiviskä et al. Vanadium (V) removal from aqueous solution and real wastewater using quaternized pine sawdust
Hans et al. A preliminary batch study of sorption kinetics of Cr (VI) ions from aqueous solutions by a magnetic ion exchange (MIEX®) resin and determination of film/pore diffusivity
Dizge et al. Removal of thiocyanate from aqueous solutions by ion exchange
JP7162975B2 (en) Method for treating NS compounds that affect COD of desulfurization wastewater
JP2020032412A (en) Method and equipment for treating cyanide-containing water
Víctor-Ortega et al. Experimental design for optimization of olive mill wastewater final purification with Dowex Marathon C and Amberlite IRA-67 ion exchange resins
US20220227653A1 (en) Titania-based treatment solution and method of promoting precipitation and removal of heavy metals from an aqueous source
WO2019225433A1 (en) Fluorine concentration measurement method, fluorine concentration measurement device, water treatment method, and water treatment device
EP2874953A1 (en) A process for removal of hydrogen peroxide from an aqueous solution
US20200377386A1 (en) Phospate recovery by acid retardation
Reinhardt et al. Fixed-bed column studies of phosphonate and phosphate adsorption on granular ferric hydroxide (GFH)
Wang et al. Adsorption of bismuth (III) by bayberry tannin immobilized on collagen fiber
Heiderscheidt et al. Evaluating the influence of pH adjustment on chemical purification efficiency and the suitability of industrial by-products as alkaline agents
Zhang Ammonia Removal from Mining Wastewater by Ion-Exchange Regenerated by Chlorine Solutions
Godini et al. The efficiency of modified powdered activated carbon for removal of ammonia nitrogen from aqueous solution: a process optimization using RSM (Response Surface Methodology), adsorption isotherm and kinetic study
JP4956905B2 (en) Method and apparatus for treating fluorine-containing water containing TOC component
Anderson et al. Evaluation of temperature impacts on drinking water treatment efficacy of magnetic ion exchange and enhanced coagulation
Shuryberko et al. Study of the sorption and desorption processes of sulfites on the anion-exchange redoxites

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221018

R150 Certificate of patent or registration of utility model

Ref document number: 7162975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150