JP2018183755A - Wastewater treatment method - Google Patents

Wastewater treatment method Download PDF

Info

Publication number
JP2018183755A
JP2018183755A JP2017088372A JP2017088372A JP2018183755A JP 2018183755 A JP2018183755 A JP 2018183755A JP 2017088372 A JP2017088372 A JP 2017088372A JP 2017088372 A JP2017088372 A JP 2017088372A JP 2018183755 A JP2018183755 A JP 2018183755A
Authority
JP
Japan
Prior art keywords
wastewater
cod
water
treatment method
activated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017088372A
Other languages
Japanese (ja)
Other versions
JP6232606B1 (en
Inventor
益二郎 有田
Masujiro Arita
益二郎 有田
佐藤 淳一
Junichi Sato
淳一 佐藤
恵子 仲野
Keiko Nakano
恵子 仲野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOATECH CORP
Original Assignee
NOATECH CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOATECH CORP filed Critical NOATECH CORP
Priority to JP2017088372A priority Critical patent/JP6232606B1/en
Application granted granted Critical
Publication of JP6232606B1 publication Critical patent/JP6232606B1/en
Publication of JP2018183755A publication Critical patent/JP2018183755A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wastewater treatment method capable of performing efficient treatment of wastewater containing COD component such as oil and surfactant, and possible to sufficiently lower the COD of treated water.SOLUTION: There is provided a wastewater treatment method, including: performing pretreatment of adding manganese dioxide and water soluble inorganic salt into wastewater containing COD component to decompose the COD component under acidic condition, adding powdered activated carbon to adsorb residual COD component; adding an alkaline agent to neutralize the wastewater; and adding a polymeric flocculant or an inorganic flocculant in a pH neutral region to coagulate powdered activated carbon on which the COD component etc., is adsorbed.SELECTED DRAWING: Figure 1

Description

本発明は、COD成分を含有する排水の処理方法に関する。さらに詳しくは、高濃度の有機物を含有する排水を効果的に処理し、COD濃度を低下させることができる排水処理方法に関する。   The present invention relates to a method for treating waste water containing a COD component. More specifically, the present invention relates to a wastewater treatment method capable of effectively treating wastewater containing a high concentration of organic matter and reducing the COD concentration.

工場や発電所などから排出される有機物(油、界面活性剤など)を含有する排水は、COD(化学的酸素要求量)が高く、このようなCOD濃度が高い排水の処理としては、一般に、活性炭吸着法、活性汚泥法、オゾンや過酸化水素を添加する方法などが知られている。   Wastewater containing organic matter (oil, surfactant, etc.) discharged from factories and power plants has high COD (chemical oxygen demand), and as a treatment of wastewater with such high COD concentration, An activated carbon adsorption method, an activated sludge method, a method of adding ozone or hydrogen peroxide, and the like are known.

しかしながら、活性炭吸着法では、活性炭の吸着能力が短期間に低下し、新しい活性炭との交換頻度が高くなることに伴い、処理コストが増大する。活性汚泥法では、排水中に含まれる有機物によって微生物の活性が弱められるため、前処理設備として凝集分離槽やスラッジ処理設備などを設置しなければならず、活性炭吸着法と同様に処理コストが増大する。オゾン添加法では、オゾン濃度のコントロールが難しく、残存オゾン処理も必要となる。過酸化水素を添加する方法では、添加量を多くしないと処理効率が低下する。   However, in the activated carbon adsorption method, the adsorption capacity of activated carbon decreases in a short period of time, and the treatment cost increases as the frequency of replacement with new activated carbon increases. In the activated sludge method, the activity of microorganisms is weakened by organic substances contained in the wastewater, so a coagulation separation tank and sludge treatment facility must be installed as pretreatment equipment, and the treatment cost increases as with the activated carbon adsorption method. To do. In the ozone addition method, it is difficult to control the ozone concentration, and the residual ozone treatment is also required. In the method of adding hydrogen peroxide, the treatment efficiency decreases unless the addition amount is increased.

COD濃度が高い排水の処理方法として、特許文献1には、排水に粉末活性炭を添加・吸着処理した後、活性二酸化珪素及びアルミナを主成分とする無機系粉末凝集剤を添加することにより、油分とCOD成分を同時に処理する方法が提案されている。実施例には、油分386mg/L、COD839mg/Lの排水処理例が開示されている。この方法は、凝集沈殿槽内において、排水に粉末活性炭を3質量%添加して処理した後、無機系粉末凝集剤を3000ppm(対排水)添加するため、活性炭の凝集性、凝集した活性炭の沈降性が高く、回収した上澄み水を処理水として系外に排出できる利点がある。
しかしながら、特許文献1記載の方法では、油分などを吸着した活性炭を凝集させてフロックを形成することで、排水のCODを低下させることはできるが、COD濃度が高い排水に適用した場合、活性炭使用量が増えることで処理コストが増大するという課題があった。
As a method for treating wastewater having a high COD concentration, Patent Document 1 discloses that an oil content is obtained by adding and adsorbing powdered activated carbon to wastewater and then adding an inorganic powder flocculant mainly composed of active silicon dioxide and alumina. And a method for simultaneously processing COD components. In the examples, a wastewater treatment example having an oil content of 386 mg / L and COD of 839 mg / L is disclosed. In this method, after adding 3% by mass of powdered activated carbon to the wastewater in the coagulation sedimentation tank, the inorganic powder coagulant is added in an amount of 3000 ppm (with respect to the wastewater). There is an advantage that the collected supernatant water can be discharged out of the system as treated water.
However, the method described in Patent Document 1 can reduce the COD of wastewater by agglomerating activated carbon that has adsorbed oil and the like to form flocs. However, when applied to wastewater with a high COD concentration, activated carbon is used. There has been a problem that the processing cost increases as the amount increases.

特許文献2には、ゴミ埋立地浸出水などの難分解性CODを含有する排水に、酸性状態で酸化力を発揮する酸化剤(過マンガン酸塩、過酸化水素など)を添加混合した後、二酸化マンガンの存在下でCODを酸化し、この酸化された酸化液を曝気槽にて曝気して溶存マンガンを不溶化し、曝気槽から排出される曝気液に、中和剤と無機系凝集剤(塩化第二鉄、硫酸第二鉄など)を添加してpH5.8〜8.6(望ましくは7.0〜8.6)に調整した槽内でマンガン化合物を共沈させることにより、処理水と汚泥に分離する方法が提案されている。
しかしながら、特許文献2記載の方法では、無機系凝集剤を添加した槽内のpHをアルカリ側に調整しているので、無機系凝集剤のpH調整機能を利用していない。
In Patent Document 2, an oxidant (permanganate, hydrogen peroxide, etc.) that exhibits oxidizing power in an acidic state is added to and mixed with wastewater containing persistent COD such as waste landfill leachate, COD is oxidized in the presence of manganese dioxide, this oxidized oxidation solution is aerated in an aeration tank to insolubilize dissolved manganese, and a neutralizing agent and an inorganic flocculant ( Treated with co-precipitated manganese compound in a tank adjusted to pH 5.8 to 8.6 (preferably 7.0 to 8.6) by adding ferric chloride, ferric sulfate, etc. A method of separating the sludge into sludge has been proposed.
However, in the method described in Patent Document 2, since the pH in the tank to which the inorganic flocculant is added is adjusted to the alkali side, the pH adjusting function of the inorganic flocculant is not used.

特許第4169614号公報(特許請求の範囲、段落[0023]〜[0024]、[0035]等)Japanese Patent No. 4169614 (claims, paragraphs [0023] to [0024], [0035], etc.) 特公平6−96150号公報(特許請求の範囲、第1表〜第2表、図1、図2等)Japanese Examined Patent Publication No. 6-96150 (Claims, Tables 1 and 2, FIG. 1, FIG. 2, etc.)

本発明は、前記の課題に鑑みてなされたものであり、油や界面活性剤などのCOD成分を含有する排水の処理を効率よく行え、COD濃度が高い排水に対しても処理水のCODを十分低下させることが可能な、排水処理方法を提供することを目的とする。   The present invention has been made in view of the above problems, and can efficiently treat wastewater containing COD components such as oil and surfactant, and can treat the COD of treated water even for wastewater having a high COD concentration. It aims at providing the waste water treatment method which can fully be reduced.

前記課題を解決するため、本発明者等は鋭意研究を重ねた結果、COD成分を含有する排水を前処理した後、活性炭及び凝集剤で処理することにより、少ない活性炭使用量で良好な処理結果が得られることを見出し、本発明に到達した。   In order to solve the above-mentioned problems, the present inventors have conducted intensive research. As a result, after pre-treating the wastewater containing the COD component, treatment with activated carbon and a flocculant results in good treatment results with a small amount of activated carbon. And the present invention has been achieved.

すなわち、本発明の排水処理方法は、
COD成分を含有する排水に、二酸化マンガンと水溶性無機塩を添加して酸性下でCOD成分を分解する前処理を行った後、
粉末活性炭を添加して残存COD成分の吸着処理を行い、
アルカリ剤を添加して中和し、pH中性領域において、高分子系凝集剤または無機系凝集剤を添加して前記粉末活性炭を凝集処理することを特徴とする。
That is, the wastewater treatment method of the present invention is
After performing pre-treatment to decompose the COD component under acidity by adding manganese dioxide and water-soluble inorganic salt to the wastewater containing the COD component,
Add powdered activated carbon to adsorb residual COD components,
An alkaline agent is added for neutralization, and the powdered activated carbon is agglomerated by adding a polymer flocculant or an inorganic flocculant in a neutral pH range.

本発明に係る排水処理方法においては、活性炭吸着処理を行う前に、排水に二酸化マンガンと水溶性無機塩を、必要により酸性凝集助剤等の酸性剤を添加し酸性下で前処理することにより、排水中の油分や界面活性剤などのCOD成分を効率的に除去することができ、その後の活性炭吸着処理が容易になる。   In the wastewater treatment method according to the present invention, before performing the activated carbon adsorption treatment, manganese dioxide and a water-soluble inorganic salt are added to the wastewater, and if necessary, an acidic agent such as an acidic agglomeration aid is added and pretreated under acidity. In addition, COD components such as oil and surfactant in the waste water can be efficiently removed, and the subsequent activated carbon adsorption treatment becomes easy.

また、本発明に係る排水処理方法においては、排水のCOD濃度が500mg/L以上であるときに、より好適に適用でき効果も高い。   In the wastewater treatment method according to the present invention, when the COD concentration of the wastewater is 500 mg / L or more, it can be applied more suitably and the effect is high.

また、本発明に係る排水処理方法においては、二酸化マンガンと水溶性無機塩の排水に対する好ましい合計添加量は、0.05〜5.0質量%の範囲である。添加量が少なすぎる場合は前処理効果が不十分となり、一方、添加量が多すぎても前処理効果の向上は見られず、却って処理コストが高くなるおそれがある。   Moreover, in the waste water treatment method according to the present invention, the preferable total addition amount of the manganese dioxide and the water-soluble inorganic salt to the waste water is in the range of 0.05 to 5.0% by mass. When the addition amount is too small, the pretreatment effect is insufficient. On the other hand, when the addition amount is too large, the pretreatment effect is not improved, and the processing cost may be increased.

また、本発明に係る排水処理方法においては、酸性剤が、鉄系凝集助剤またはアルミニウム系凝集助剤であることが好ましいが、硫酸、塩酸、硝酸などの無機酸等も使用可能である。酸性下での二酸化マンガンと水溶性無機塩の添加により排水中のCODの一部が分解され、濃度が低下した排水中のCOD成分を吸着処理することになるので、少量の粉末活性炭の添加で、高濃度の有機物を含有する排水のCOD濃度を低下させることができる。二酸化マンガンと水溶性無機塩を添加する前または添加した後の排水のpHは3.0〜5.5が好ましく、前処理時における排水の温度は35℃以上であることが好ましい。この理由は明らかではないが、排水温度を上げることにより、COD成分の分解を促進する効果があるものと推察される。   In the wastewater treatment method according to the present invention, the acid agent is preferably an iron-based agglomeration aid or an aluminum-based agglomeration aid, but inorganic acids such as sulfuric acid, hydrochloric acid, and nitric acid can also be used. By adding manganese dioxide and water-soluble inorganic salt under acidic conditions, a part of COD in the wastewater is decomposed, and the COD component in the wastewater whose concentration has decreased is adsorbed, so a small amount of powdered activated carbon can be added. The COD concentration of waste water containing high concentration organic matter can be reduced. The pH of the waste water before or after the addition of manganese dioxide and the water-soluble inorganic salt is preferably 3.0 to 5.5, and the temperature of the waste water during the pretreatment is preferably 35 ° C. or higher. The reason for this is not clear, but it is presumed that increasing the drainage temperature has the effect of promoting the decomposition of the COD component.

また、本発明に係る排水処理方法においては、活性二酸化珪素及びアルミナを主成分とする無機系粉末凝集剤が好ましく用いられる。このような無機系粉末凝集剤は、その凝集性能が排水のpHの影響を受けにくいため、より好適に適用でき効果も高い。   In the wastewater treatment method according to the present invention, an inorganic powder flocculant mainly composed of active silicon dioxide and alumina is preferably used. Such an inorganic powder flocculant is less susceptible to the influence of the pH of the wastewater, and thus can be more suitably applied and has a high effect.

以上説明した通り、本発明の排水処理方法によれば、高濃度のCOD成分を含有する排水を効率的に処理し、処理水のCODを所定の目標値以下にすることが可能となり、その後の上澄み水やスラッジを既設の排水処理設備で処理することができる。   As described above, according to the wastewater treatment method of the present invention, wastewater containing high-concentration COD components can be efficiently treated, and the COD of treated water can be reduced to a predetermined target value or less. Supernatant water and sludge can be treated with existing wastewater treatment equipment.

本発明に係る排水処理方法の一実施形態を示す概略工程図である。It is a schematic process drawing which shows one Embodiment of the waste water treatment method which concerns on this invention.

以下、本発明を図を参照しながら詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

図1は、本発明の排水処理方法の一実施形態を示す概略工程図である。図1に示す排水処理方法は、二酸化マンガンと水溶性無機塩を添加する1次前処理槽10と、酸性剤を添加混合する2次前処理槽20と、活性炭による吸着処理を行うCOD吸着槽30と、pH調整槽40と、凝集剤による凝集処理を行う凝集処理槽50と、を備えている。   FIG. 1 is a schematic process diagram showing an embodiment of the waste water treatment method of the present invention. The waste water treatment method shown in FIG. 1 includes a primary pretreatment tank 10 to which manganese dioxide and a water-soluble inorganic salt are added, a secondary pretreatment tank 20 to which an acid agent is added and mixed, and a COD adsorption tank that performs adsorption treatment with activated carbon. 30, a pH adjusting tank 40, and an aggregating treatment tank 50 for performing an aggregating treatment with an aggregating agent.

先ず、1次前処理槽10に排水(通常pH6〜8)を収容する。次いで、収容した排水に、二酸化マンガンと水溶性無機塩を添加し、撹拌する。二酸化マンガンと水溶性無機塩の添加順序は任意であり、特に限定されない。   First, waste water (normally pH 6-8) is accommodated in the primary pretreatment tank 10. Subsequently, manganese dioxide and a water-soluble inorganic salt are added to the accommodated waste water and stirred. The order of adding manganese dioxide and water-soluble inorganic salt is arbitrary, and is not particularly limited.

排水としては、主に、工場、発電所などから排出される油分、界面活性剤、染色排水、皮革製造排水、塗料排水などの有機物を含有する排水が用いられる。油分としては、例えば、原油、重油、重油貯蔵タンクに堆積したスラッジ等の原油由来成分や、動植物油、絶縁油、潤滑油、離型油、切削油、鉱油、塗料、タンニンなどが挙げられる。本発明の排水処理方法における排水のCOD濃度は、特に限定されるものではないが、排水のCOD濃度が500mg/L以上であるときに、より好適に適用できる。   As wastewater, wastewater containing organic matter such as oil discharged from factories, power plants, surfactants, dyeing wastewater, leather manufacturing wastewater, paint wastewater is mainly used. Examples of the oil component include crude oil-derived components such as crude oil, heavy oil, and sludge accumulated in a heavy oil storage tank, animal and vegetable oils, insulating oil, lubricating oil, release oil, cutting oil, mineral oil, paint, and tannin. The COD concentration of the wastewater in the wastewater treatment method of the present invention is not particularly limited, but can be more suitably applied when the COD concentration of the wastewater is 500 mg / L or more.

本発明において、二酸化マンガンは、COD成分を酸化分解し、CODを低減させる効果がある。二酸化マンガンは、排水の水質によって異なるが、排水に対し、0.025〜2.5質量%添加することが好ましく、より好ましくは0.025〜2.0質量%、さらに好ましくは0.025〜1.0質量%である。前記添加量が0.025質量%以上であれば、排水中の有機物を酸化分解することができ、また、2.5質量%以下であれば、残存マンガンを処理するための設備を別途設ける必要がない。   In the present invention, manganese dioxide has the effect of oxidatively decomposing COD components and reducing COD. Although manganese dioxide varies depending on the quality of the wastewater, it is preferably added in an amount of 0.025 to 2.5% by mass, more preferably 0.025 to 2.0% by mass, and still more preferably 0.025 to 2.5%. 1.0% by mass. If the added amount is 0.025% by mass or more, the organic matter in the waste water can be oxidatively decomposed. If the added amount is 2.5% by mass or less, it is necessary to separately provide equipment for treating the remaining manganese. There is no.

本発明において、水溶性無機塩は、排水中の有機物(油、界面活性剤など)に対する二酸化マンガンの酸化分解を補助する作用があるものと推察される。添加量は排水の水質によって異なるが、二酸化マンガンと同様、排水に対し、0.025〜2.5質量%添加することが好ましく、より好ましくは0.025〜2.0質量%、さらに好ましくは0.025〜1.0質量%である。前記添加量が0.025質量%以上であれば、排水中のCOD成分に対する二酸化マンガンの酸化分解を分解補助することができ、また、2.5質量%以下であれば、その後の処理に悪影響を及ぼす恐れがない。   In the present invention, the water-soluble inorganic salt is presumed to have an action of assisting oxidative decomposition of manganese dioxide with respect to organic substances (oil, surfactant, etc.) in waste water. Although the amount of addition varies depending on the quality of the wastewater, it is preferably added in an amount of 0.025 to 2.5% by mass, more preferably 0.025 to 2.0% by mass, and still more preferably, in the same manner as manganese dioxide. It is 0.025-1.0 mass%. If the added amount is 0.025% by mass or more, the oxidative decomposition of manganese dioxide with respect to the COD component in the wastewater can be decomposed, and if it is 2.5% by mass or less, the subsequent treatment is adversely affected. There is no fear of affecting.

水溶性無機塩としては、ナトリウム塩、カリウム塩などの排水に対する溶解度が高い化合物が好ましく、例えば、硫酸ナトリウム、硫酸カリウム、塩化ナトリウム、塩化カリウム、硝酸カリウム、硝酸ナトリウム、ヨウ化カリウム、ヨウ化ナトリウムなどが挙げられる。   As the water-soluble inorganic salt, a compound having high solubility in waste water such as sodium salt and potassium salt is preferable. For example, sodium sulfate, potassium sulfate, sodium chloride, potassium chloride, potassium nitrate, sodium nitrate, potassium iodide, sodium iodide, etc. Is mentioned.

排水に添加する二酸化マンガンと水溶性無機塩の割合は、質量比で、8:2〜2:8の範囲が好ましく、より好ましくは6:4〜4:6の範囲である。質量比は、排水中の有機物の種類や量によって、選択することができる。   The ratio of manganese dioxide and water-soluble inorganic salt added to the wastewater is preferably in the range of 8: 2 to 2: 8, more preferably in the range of 6: 4 to 4: 6, by mass ratio. The mass ratio can be selected depending on the type and amount of organic matter in the waste water.

凝集前処理時においては、排水の温度に特に制限はないが、1次前処理槽10に収容した排水の温度が高い方が、排水のCOD濃度をより低下させることができる。排水の温度は、加熱処理を導入することによる処理コストの増加を考慮すると、35〜60℃程度が好ましい。凝集前処理時には、前記温度の排水をそのまま用いても良いし、排水を加温して用いても良い。   During the pre-aggregation treatment, the temperature of the waste water is not particularly limited, but the higher the temperature of the waste water stored in the primary pretreatment tank 10, the lower the COD concentration of the waste water. The temperature of the waste water is preferably about 35 to 60 ° C. in consideration of an increase in processing cost due to introduction of heat treatment. During the pre-aggregation treatment, the waste water having the above temperature may be used as it is, or the waste water may be heated and used.

排水温度は、含有する界面活性剤の親水親油バランス(hydrophile-lipophile balance:HLB)を考慮して決定すると良い。例えば、ゴム工場から排出される排水中には離型剤が混入しており、該離型剤としては、エチレンオキサイド(EO)とプロピレンオキサイド(PO)の付加体などの非イオン界面活性剤が使用されることがある。非イオン界面活性剤は固有の曇り点(cloud point)を有し、曇り点以下の温度では水によく溶けるが、曇り点以上の温度では難溶性になることが知られている。水の温度が上がると水和度が減少し、親水基と疎水基のバランスが疎水性に傾く。したがって、1次前処理槽10で水溶性無機塩を添加することにより、曇り点が降下し、排水中のCOD成分がより分解しやすくなるものと推定される。   The drainage temperature is preferably determined in consideration of the hydrophile-lipophile balance (HLB) of the surfactant contained. For example, a release agent is mixed in waste water discharged from a rubber factory, and examples of the release agent include nonionic surfactants such as adducts of ethylene oxide (EO) and propylene oxide (PO). Sometimes used. Nonionic surfactants are known to have an inherent cloud point and are well soluble in water at temperatures below the cloud point, but become sparingly soluble at temperatures above the cloud point. As the temperature of water increases, the degree of hydration decreases, and the balance between hydrophilic and hydrophobic groups tends to be hydrophobic. Therefore, it is presumed that by adding the water-soluble inorganic salt in the primary pretreatment tank 10, the cloud point is lowered and the COD component in the wastewater is more easily decomposed.

二酸化マンガンと水溶性無機塩を添加した1次前処理槽10に収容した排水は、後流の2次前処理槽20に移送され、該2次前処理槽において、酸性剤が添加混合される。酸性剤としては、一般的な鉄系凝集助剤またはアルミニウム系凝集助剤などの酸性凝集助剤の他、硫酸や塩酸、硝酸などの無機酸が挙げられるが、中でも、排水中の懸濁物質を凝集できる点より、酸性凝集助剤が好ましく用いられる。酸性凝集助剤としては、例えば、ポリ硫酸アルミニウム(PAC)、ポリ塩化アルミニウム、硫酸アルミニウム(通称:硫酸バン土)、ポリ硫酸第二鉄(通称:ポリ鉄)、ポリシリカ鉄、塩化第一鉄、塩化第二鉄、硫酸第二鉄などの溶液や、これらを主成分とする溶液、あるいはこれらの混合液などを用いることができる。これらの酸性凝集助剤のなかでも、マンガン化合物を沈降させる効果が高い点より、塩化第二鉄、硫酸第二鉄などの3価の鉄系凝集助剤が好ましい。酸性凝集助剤は、一般的な使用濃度で用いればよく、通常、排水に対し0.05〜0.5質量%添加する。   The wastewater accommodated in the primary pretreatment tank 10 to which manganese dioxide and water-soluble inorganic salt are added is transferred to the downstream secondary pretreatment tank 20, and an acid agent is added and mixed in the secondary pretreatment tank. . Examples of the acidic agent include inorganic acid acids such as sulfuric acid, hydrochloric acid, and nitric acid in addition to general acidic agglomeration aids such as iron-based agglomeration aids and aluminum-based agglomeration aids. In view of the ability to agglomerate, an acidic agglomeration aid is preferably used. Examples of the acidic agglomeration aid include polyaluminum sulfate (PAC), polyaluminum chloride, aluminum sulfate (common name: vanous sulfate), polyferric sulfate (common name: polyiron), polysilica iron, ferrous chloride, A solution such as ferric chloride or ferric sulfate, a solution containing these as a main component, or a mixture thereof can be used. Among these acidic agglomeration aids, trivalent iron-based agglomeration aids such as ferric chloride and ferric sulfate are preferable because they have a high effect of precipitating manganese compounds. The acid flocculation aid may be used at a general use concentration, and is usually added in an amount of 0.05 to 0.5% by mass with respect to the waste water.

2次前処理槽20に収容した排水のpHは、3.0〜5.5(酸性)の範囲にあることが好ましい。従って、排水のpHが前記範囲内にある場合、酸性剤の添加は不要である。   It is preferable that the pH of the waste water accommodated in the secondary pretreatment tank 20 is in the range of 3.0 to 5.5 (acidic). Therefore, when the pH of the waste water is within the above range, addition of an acid agent is unnecessary.

2次前処理槽20の前処理水は、COD吸着槽30に移送され、該COD吸着槽30において、粉末活性炭が添加される。このCOD吸着槽30に収容した前処理水に対するpH調整は必須ではないが、pH5.0〜6.5の範囲にあることが好ましい。   Pretreated water in the secondary pretreatment tank 20 is transferred to the COD adsorption tank 30, and powdered activated carbon is added to the COD adsorption tank 30. Although pH adjustment with respect to the pretreatment water accommodated in the COD adsorption tank 30 is not essential, it is preferably in the range of pH 5.0 to 6.5.

酸性の前処理水に粉末活性炭を添加し、所定の時間、撹拌することによって、前処理水中の残存COD成分が粉末活性炭に吸着する。粉末活性炭の種類は特に限定されない。粉末活性炭としては、平均粒径が200μm以下の粉末活性炭が好ましく、より好ましくは平均粒径が1〜150μm、さらに好ましくは平均粒径が1〜100μmのものが良い。平均粒径が1μm未満では、飛散等し易く取扱いが困難になると共に微粒子化のコストが高くなる傾向があり、150μmを超えると、比表面積が小さくなり、一定の吸着能力を維持するために多量の粉末活性炭を要する傾向がある。粉末活性炭の平均粒径の測定方法としては、レーザー回析散乱法などの公知の方法を用いることができる。   The powdered activated carbon is added to the acidic pretreated water and stirred for a predetermined time, whereby the residual COD component in the pretreated water is adsorbed on the powdered activated carbon. The kind of powder activated carbon is not specifically limited. The powdered activated carbon is preferably powdered activated carbon having an average particle size of 200 μm or less, more preferably an average particle size of 1 to 150 μm, and still more preferably an average particle size of 1 to 100 μm. If the average particle size is less than 1 μm, it tends to be scattered and difficult to handle, and the cost of micronization tends to increase. If it exceeds 150 μm, the specific surface area becomes small and a large amount is required to maintain a constant adsorption capacity. Tend to require powdered activated carbon. As a method for measuring the average particle diameter of the powdered activated carbon, a known method such as a laser diffraction scattering method can be used.

粉末活性炭の添加量は、活性炭の種類や処理対象排水によっても異なるが、排水(処理水)に対して、0.1〜10質量%が好ましく、より好ましくは0.5〜5質量%、特に好ましくは1〜3質量%である。0.1質量%以上であれば、粉末活性炭の吸着能力が不足することがなく、10質量%以下であれば処理コストが著しく増加することがない。
前処理後の排水中に残存しているCOD成分を粉末活性炭に吸着させるための所要時間は特に限定されないが、通常5分間以上撹拌することが好ましい。
The amount of powdered activated carbon added varies depending on the type of activated carbon and the wastewater to be treated, but is preferably 0.1 to 10% by mass, more preferably 0.5 to 5% by mass, particularly with respect to the wastewater (treated water). Preferably it is 1-3 mass%. If it is 0.1 mass% or more, the adsorption capacity of the powdered activated carbon will not be insufficient, and if it is 10 mass% or less, the processing cost will not be remarkably increased.
The time required for adsorbing the COD component remaining in the waste water after the pretreatment to the powdered activated carbon is not particularly limited, but it is usually preferable to stir for 5 minutes or more.

次いで、粉末活性炭を添加した処理水をpH調整槽40に移送し、移送した前処理水を、中和剤としてアルカリ剤を用い、pH6.0〜8.0に調整する。pHをこの範囲に調整することにより、後流で添加する無機系凝集剤または高分子凝集剤による凝集が円滑に行われるようになる。アルカリ剤としては、消石灰、生石灰、石灰、苛性ソーダ、ソーダ灰などが挙げられるが、スラッジ量の低減の点より、苛性ソーダが好ましい。   Next, the treated water to which the powdered activated carbon is added is transferred to the pH adjusting tank 40, and the transferred pretreated water is adjusted to pH 6.0 to 8.0 using an alkali agent as a neutralizing agent. By adjusting the pH within this range, aggregation with an inorganic flocculant or a polymer flocculant added in the downstream is smoothly performed. Examples of the alkaline agent include slaked lime, quicklime, lime, caustic soda, soda ash, etc. Caustic soda is preferable from the viewpoint of reducing the amount of sludge.

次いで、粉末活性炭の入った中性の前処理水を凝集処理槽50に移送し、当該凝集処理槽50中の排水(処理水)に凝集剤を添加する。凝集剤を添加することにより、粉末活性炭に吸着された油やCOD成分が、粉末活性炭とともに凝集沈殿処理され、スラッジとなり、排水中の油分及びCOD成分は、スラッジに含まれて処理されることとなる。一方、凝集処理槽50の上層には、油分やCOD成分が除去された上澄み水が形成される。   Next, neutral pretreatment water containing powdered activated carbon is transferred to the agglomeration treatment tank 50, and a flocculant is added to the waste water (treated water) in the aggregation treatment tank 50. By adding a flocculant, the oil and COD components adsorbed on the powdered activated carbon are coagulated and precipitated together with the powdered activated carbon to form sludge, and the oil and COD components in the waste water are contained in the sludge and processed. Become. On the other hand, in the upper layer of the flocculation treatment tank 50, supernatant water from which oil and COD components have been removed is formed.

凝集剤は、一般的な使用濃度で用いればよく、処理水に対し、0.01〜1.0質量%添加することが好ましく、より好ましくは0.02〜0.5質量%である。   What is necessary is just to use a flocculant by a general use density | concentration, It is preferable to add 0.01-1.0 mass% with respect to treated water, More preferably, it is 0.02-0.5 mass%.

凝集剤は、一般的な高分子系凝集剤や無機系凝集剤を用いることができる。高分子系凝集剤としては、例えば、アクリルアマイド(共)重合体などのポリアクリルアマイド系凝集剤、ポリスチレンスルホン酸などのスチレン系凝集剤、ポリアクリル酸などのアクリル系凝集剤などから選ばれる、ノニオン系、カチオン系、アニオン系、両性系のものを用いることができる。その他、キトサン系の高分子凝集剤や、アルギン酸系の高分子凝集剤を用いることもできる。それらの中でも、性能やコストなどの点から、ポリアクリルアマイド系高分子凝集剤が好ましい。   As the flocculant, a general polymer flocculant or an inorganic flocculant can be used. The polymer flocculant is selected from, for example, polyacrylamide flocculants such as acrylic amide (co) polymer, styrene flocculants such as polystyrene sulfonic acid, acrylic flocculants such as polyacrylic acid, and the like. Nonionic, cationic, anionic and amphoteric ones can be used. In addition, chitosan-based polymer flocculants and alginic acid-based polymer flocculants can also be used. Among them, polyacrylamide polymer flocculants are preferable from the viewpoint of performance and cost.

無機系凝集剤としては、活性二酸化珪素とアルミナを主成分とする無機系粉末凝集剤が好ましい。当該凝集剤は、広いpH領域において優れた凝集性能を発揮するため、処理水のpH調整が容易である利点を有している。   As the inorganic flocculant, an inorganic powder flocculant mainly composed of active silicon dioxide and alumina is preferable. Since the flocculant exhibits excellent flocculation performance in a wide pH range, it has an advantage that pH adjustment of treated water is easy.

沈降したスラッジを凝集処理槽50の槽外へ排出した後、濾過及び/または脱水処理が行われて、脱水ケーキが得られる。脱水装置としては、従来公知の脱水装置を使用することができ、例えば、織布又は不織布を用いたフィルター、遠心分離機、ロータリープレスフィルター、バグフィルター、フィルタープレス、ベルトプレス等が挙げられる。スラッジは脱水性が極めて良いため、容易に回収することが可能である。脱水装置も簡単な構成のものでよいため、濾過システムや脱水システムの簡素化を図ることができる。   After the settled sludge is discharged out of the flocculation treatment tank 50, filtration and / or dehydration treatment is performed to obtain a dehydrated cake. As the dehydrating device, a conventionally known dehydrating device can be used, and examples thereof include a filter using a woven fabric or a non-woven fabric, a centrifuge, a rotary press filter, a bag filter, a filter press, a belt press and the like. Since sludge has extremely good dewaterability, it can be easily recovered. Since the dehydrating apparatus may have a simple configuration, the filtration system and the dehydrating system can be simplified.

一方、上澄み水は、従来公知の処理装置を使用して処理し、処理水として放流することができる。例えば、上澄み水を砂濾過塔、活性炭吸着塔に順次通過させる方法などが挙げられる。   On the other hand, the supernatant water can be treated using a conventionally known treatment device and discharged as treated water. For example, a method in which the supernatant water is sequentially passed through a sand filtration tower and an activated carbon adsorption tower.

上澄み水は、水質検査に供される。水質検査では水のpH、SS、CODを計測し、所定の基準値をクリアーしているか否かを検査する。処理水が所定のpH基準値(例えば6〜8)、SS基準値(例えば25mg/L以下)、COD基準値(例えば160mg/L以下)であることを目安とし、処理水として放流することができる。処理水が所定の基準値(特にCOD基準値)をクリアーしていない場合は、再度、前処理、活性炭吸着、中和・凝集処理を行うのが良い。これにより、処理水のCODを確実に所定の基準値以下にすることができる。   The supernatant water is used for water quality inspection. In the water quality test, the pH, SS, and COD of the water are measured to check whether or not a predetermined reference value is cleared. The treated water can be discharged as treated water with reference to a predetermined pH standard value (for example, 6 to 8), SS standard value (for example, 25 mg / L or less), and COD standard value (for example, 160 mg / L or less). it can. If the treated water does not clear a predetermined reference value (particularly the COD reference value), pretreatment, activated carbon adsorption, neutralization / coagulation treatment may be performed again. Thereby, COD of treated water can be reliably made below a predetermined standard value.

本発明に係る排水処理方法においては、活性炭吸着工程(COD吸着槽30)における前処理水の好ましいpHは5.0〜6.5の範囲であり、凝集処理工程(凝集処理槽50)における処理水の好ましいpHは6.0〜8.0の範囲である。活性炭吸着工程の前処理水のpHを前記範囲に調整することにより、排水中のCOD成分等が正荷電を帯びることで活性炭に吸着し易くなると推定される。その後中和剤を用いて処理水のpHを中性に調整することにより電荷が中和され、排水中の浮遊物や溶解物はフロックを形成して速やかに凝集沈澱するようになる。さらに、無機系または高分子系凝集剤を添加することにより、大きなフロックが形成されるため、優れた沈降、分離効果を得ることができる。   In the wastewater treatment method according to the present invention, the preferred pH of the pretreatment water in the activated carbon adsorption step (COD adsorption tank 30) is in the range of 5.0 to 6.5, and the treatment in the aggregation treatment step (aggregation treatment tank 50). The preferred pH of water is in the range of 6.0 to 8.0. By adjusting the pH of the pretreated water in the activated carbon adsorption step to the above range, it is presumed that the COD component in the wastewater is easily adsorbed on the activated carbon by being positively charged. Thereafter, the pH of the treated water is neutralized by using a neutralizing agent, so that the charge is neutralized, and suspended matters and dissolved matters in the waste water form flocs and quickly aggregate and precipitate. Furthermore, since a large floc is formed by adding an inorganic or polymer flocculant, an excellent sedimentation and separation effect can be obtained.

以上の処理工程を実施することにより、高濃度のCOD含有排水を、既設排水処理設備で処理可能なまでに処理することができる。   By carrying out the above treatment steps, it is possible to treat high-concentration COD-containing wastewater until it can be treated with existing wastewater treatment facilities.

本発明の排水処理方法は、バッチ処理に適用してもよいし、連続処理に適用してもよい。また、1次前処理槽10と2次前処理槽20の処理順序を入れ替え、2次前処理槽20を1次前処理槽、1次前処理槽10を2次前処理槽として構成することもでる。さらに、1次前処理槽10と2次前処理槽20を1つの処理槽で構成することもできる。このように1つの処理槽で前処理を行う場合、二酸化マンガン、水溶性無機塩、酸性剤の添加順序は任意であり、特に限定されない。   The waste water treatment method of the present invention may be applied to batch treatment or continuous treatment. In addition, the processing order of the primary pretreatment tank 10 and the secondary pretreatment tank 20 is switched, and the secondary pretreatment tank 20 is configured as a primary pretreatment tank and the primary pretreatment tank 10 is configured as a secondary pretreatment tank. It comes out. Furthermore, the primary pretreatment tank 10 and the secondary pretreatment tank 20 can be configured as a single treatment tank. Thus, when performing a pre-processing in one processing tank, the addition order of manganese dioxide, a water-soluble inorganic salt, and an acidic agent is arbitrary, and is not specifically limited.

またさらに、COD吸着槽30とpH調整槽40と凝集処理槽50を1つの処理槽で構成することもでき、1次前処理槽10から凝集処理槽50までを1つの処理槽で構成することもできる。1次前処理槽10から凝集処理槽50までを1つの処理槽で構成した場合も、二酸化マンガン、水溶性無機塩、酸性剤の添加順序は特に限定されるものではなく、酸性下でCOD成分を分解するための前処理が行われればよい。   Furthermore, the COD adsorption tank 30, the pH adjustment tank 40, and the coagulation treatment tank 50 can be constituted by one treatment tank, and the primary pretreatment tank 10 to the coagulation treatment tank 50 can be constituted by one treatment tank. You can also. Even when the primary treatment tank 10 to the coagulation treatment tank 50 are constituted by one treatment tank, the order of addition of manganese dioxide, water-soluble inorganic salt, and acid agent is not particularly limited, and the COD component is acidic. The pre-processing for decomposing | disassembling should just be performed.

以下、実施例を挙げて本発明をさらに具体的に説明するが、本発明はそれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further more concretely, this invention is not limited to those Examples.

(実施例1)
図1に示すような排水処理装置で、鉱油とゴム離型剤(非イオン系界面活性剤)を含む排水を処理した。排水性状は、pH:7.9、SS:36mg/L、COD:3500mg/Lのものを用いた。
Example 1
Waste water containing mineral oil and a rubber release agent (nonionic surfactant) was treated with a waste water treatment apparatus as shown in FIG. The drainage properties were pH: 7.9, SS: 36 mg / L, COD: 3500 mg / L.

液温40℃の上記排水を1次前処理槽10に導入し、排水に対し、0.1質量%(1kg/m)の二酸化マンガンと、0.1質量%(1kg/m)の硫酸カリウム粉末を添加混合した後、この排水を2次前処理槽20に移送し、排水に対し、0.1質量%(1L/m)の塩化第二鉄水溶液を添加し約20分間混合した。このときの水(処理水)のpHは3.5であった。
上記の処理水をCOD吸着槽30に導入し、排水に対し、2質量%(20kg/m)の粉末活性炭((株)ノアテック製、商品名:「NAC−TJ」)を添加した後、撹拌機にて約10分間撹拌して粉末活性炭を処理水中に分散させた。この処理水をpH調整槽40に移送し、苛性ソーダを添加して処理水のpHを6.2に調整した。
中和した処理水を凝集処理槽50に導入した後、処理水に対し、0.05質量%(500g/m)の無機系粉末凝集剤((株)ノアテック製、商品名:「スーパーナミットTN315NY−T3」、平均粒径150μm)を添加撹拌して粉末活性炭を凝集させた後、撹拌を停止して粉末活性炭と無機系粉末凝集剤を沈降させた。
The waste water having a liquid temperature of 40 ° C. is introduced into the primary pretreatment tank 10, and 0.1% by mass (1 kg / m 3 ) of manganese dioxide and 0.1% by mass (1 kg / m 3 ) of the waste water. After the potassium sulfate powder is added and mixed, this waste water is transferred to the secondary pretreatment tank 20, and 0.1 mass% (1 L / m 3 ) aqueous ferric chloride solution is added to the waste water and mixed for about 20 minutes. did. The pH of the water (treated water) at this time was 3.5.
After introducing the treated water into the COD adsorption tank 30 and adding 2% by mass (20 kg / m 3 ) of powdered activated carbon (trade name: “NAC-TJ” manufactured by Noatec Co., Ltd.) to the waste water, The powdered activated carbon was dispersed in the treated water by stirring with a stirrer for about 10 minutes. This treated water was transferred to the pH adjusting tank 40, and caustic soda was added to adjust the pH of the treated water to 6.2.
After introducing the neutralized treated water into the agglomeration treatment tank 50, 0.05% by mass (500 g / m 3 ) of inorganic powder flocculant (trade name: “Superna” manufactured by Noatec Co., Ltd.) with respect to the treated water. Mitt TN315NY-T3 ”(average particle size 150 μm) was added and agitated to agglomerate the powdered activated carbon, and then the agitation was stopped to allow the powdered activated carbon and the inorganic powder aggregating agent to settle.

上層に透明な上澄み水が得られたことを確認した後、凝集処理槽50の上澄み水を採取し水質分析した。その結果、処理水の水質は、pH6.5、SS10mg/L以下、COD70mg/Lであった。   After confirming that transparent supernatant water was obtained in the upper layer, the supernatant water of the flocculation tank 50 was collected and analyzed for water quality. As a result, the water quality of the treated water was pH 6.5, SS 10 mg / L or less, and COD 70 mg / L.

水処理後の処理水のCOD除去率は98%であり、排出基準値(160mg/L)をクリアーしていた。このため、そのまま処理水として系外に排出することができた。   The COD removal rate of the treated water after the water treatment was 98%, which cleared the emission standard value (160 mg / L). For this reason, it could be discharged out of the system as treated water.

ここで、凝集剤として用いた「スーパーナミットTN315NY−T3」の主要成分は以下の通りである。
SiO約70%
Al約15%
O 約5%
NaO 約2%
SO約1%
CaO 約1%
C 約2%
Here, the main components of “Super Namit TN315NY-T3” used as the flocculant are as follows.
SiO 2 approx. 70%
Al 2 O 3 about 15%
K 2 O about 5%
Na 2 O about 2%
SO 3 approx. 1%
CaO about 1%
C About 2%

(測定方法)
pH:JIS K0102 12.1 ガラス電極法
SS:JIS K0102 14.1 懸濁物質
COD:JIS K0102 17 100℃における過マンガン酸カリウムによる酸素消費量
(Measuring method)
pH: JIS K0102 12.1 Glass electrode method SS: JIS K0102 14.1 Suspended matter COD: JIS K0102 17 Oxygen consumption by potassium permanganate at 100 ° C

(実施例2)
実施例1において、液温25℃の排水を使用した以外は、実施例1と同様の方法で排水を処理した。その結果、処理水の水質は、pH6.5、SS10mg/L以下、COD147mg/Lであった。
(Example 2)
In Example 1, the wastewater was treated in the same manner as in Example 1 except that the wastewater having a liquid temperature of 25 ° C. was used. As a result, the water quality of the treated water was pH 6.5, SS 10 mg / L or less, and COD 147 mg / L.

(比較例1)
実施例1において、硫酸カリウムを添加しなかった以外は、実施例1と同様の方法で排水を処理した。その結果、処理水の水質は、pH6.5、SS10mg/L以下、COD185mg/Lであり、処理効果が著しく悪化した。
(Comparative Example 1)
In Example 1, waste water was treated in the same manner as in Example 1 except that potassium sulfate was not added. As a result, the water quality of the treated water was pH 6.5, SS 10 mg / L or less, and COD 185 mg / L, and the treatment effect was remarkably deteriorated.

(比較例2)
実施例1において、二酸化マンガンを添加しなかった以外は、実施例1と同様の方法で排水を処理した。その結果、処理水の水質は、pH6.5、SS10mg/L以下、COD320mg/Lであり、処理効果が著しく悪化した。
(Comparative Example 2)
In Example 1, the waste water was treated in the same manner as in Example 1 except that manganese dioxide was not added. As a result, the water quality of the treated water was pH 6.5, SS 10 mg / L or less, and COD 320 mg / L, and the treatment effect was remarkably deteriorated.

(実施例3)
実施例1において、塩化第2鉄水溶液を添加する代わりに、希塩酸を添加して排水のpHを3.5に調整した以外は、実施例1と同様の方法で排水を処理した。その結果、処理水の水質は、pH6.7、SS10mg/L以下、COD75mg/Lであった。
(Example 3)
In Example 1, the wastewater was treated in the same manner as in Example 1 except that dilute hydrochloric acid was added to adjust the pH of the wastewater to 3.5 instead of adding the ferric chloride aqueous solution. As a result, the water quality of the treated water was pH 6.7, SS 10 mg / L or less, and COD 75 mg / L.

本発明によれば、従来よりも低コストで高濃度COD排水を処理することができる。   According to the present invention, high-concentration COD wastewater can be treated at a lower cost than in the past.

10 1次前処理槽
20 2次前処理槽
30 COD吸着槽
40 pH調整槽
50 凝集処理槽
10 Primary pretreatment tank 20 Secondary pretreatment tank 30 COD adsorption tank 40 pH adjustment tank 50 Aggregation treatment tank

すなわち、本発明の排水処理方法は、
COD成分を含有する排水に、二酸化マンガンと水溶性無機塩(ただし、酸性凝集助剤を含まない。)と酸性凝集助剤を添加して酸性下でCOD成分を分解する前処理を行った後、
粉末活性炭を添加して残存COD成分の吸着処理を行い、
アルカリ剤を添加して中和し、pH中性領域において、高分子系凝集剤または無機系凝集剤を添加して前記粉末活性炭を凝集処理することを特徴とする。
That is, the wastewater treatment method of the present invention is
After pretreatment that decomposes the COD component under acidity by adding manganese dioxide, water-soluble inorganic salt (but does not include acidic flocculation aid) and acidic flocculation aid to wastewater containing COD component ,
Add powdered activated carbon to adsorb residual COD components,
An alkaline agent is added for neutralization, and the powdered activated carbon is agglomerated by adding a polymer flocculant or an inorganic flocculant in a neutral pH range.

Claims (7)

COD成分を含有する排水に、二酸化マンガンと水溶性無機塩を添加して酸性下でCOD成分を分解する前処理を行った後、
粉末活性炭を添加して残存COD成分の吸着処理を行い、
アルカリ剤を添加して中和し、pH中性領域において、高分子系凝集剤または無機系凝集剤を添加して前記粉末活性炭を凝集処理することを特徴とする排水処理方法。
After performing pre-treatment to decompose the COD component under acidity by adding manganese dioxide and water-soluble inorganic salt to the wastewater containing the COD component,
Add powdered activated carbon to adsorb residual COD components,
A wastewater treatment method characterized by neutralizing by adding an alkali agent and coagulating the powdered activated carbon by adding a polymer flocculant or an inorganic flocculant in a neutral pH range.
排水のCOD濃度が500mg/L以上である、請求項1記載の排水処理方法。   The wastewater treatment method according to claim 1, wherein the COD concentration of the wastewater is 500 mg / L or more. 水溶性無機塩が硫酸カリウムである、請求項1または2記載の排水処理方法。   The wastewater treatment method according to claim 1 or 2, wherein the water-soluble inorganic salt is potassium sulfate. 二酸化マンガンと水溶性無機塩を添加する前または添加した後のpHが3.0〜5.5である、請求項1〜3いずれか記載の排水処理方法。   The wastewater treatment method according to any one of claims 1 to 3, wherein the pH is 3.0 to 5.5 before or after adding manganese dioxide and a water-soluble inorganic salt. 前処理時に、酸性剤として、鉄系凝集助剤またはアルミニウム系凝集助剤から選ばれる酸性凝集助剤を添加する、請求項1〜4いずれか記載の排水処理方法。   The wastewater treatment method according to any one of claims 1 to 4, wherein an acidic aggregation assistant selected from iron-based aggregation assistant or aluminum-based aggregation assistant is added as an acidic agent during pretreatment. 前処理時における排水の温度が35℃以上である、請求項1〜5いずれか記載の排水処理方法。   The wastewater treatment method according to any one of claims 1 to 5, wherein the temperature of the wastewater during the pretreatment is 35 ° C or higher. 無機系凝集剤が、活性二酸化珪素とアルミナを主成分とする無機系粉末凝集剤である、請求項1〜6いずれか記載の排水処理方法。   The wastewater treatment method according to any one of claims 1 to 6, wherein the inorganic flocculant is an inorganic powder flocculant mainly composed of active silicon dioxide and alumina.
JP2017088372A 2017-04-27 2017-04-27 Wastewater treatment method Active JP6232606B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017088372A JP6232606B1 (en) 2017-04-27 2017-04-27 Wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017088372A JP6232606B1 (en) 2017-04-27 2017-04-27 Wastewater treatment method

Publications (2)

Publication Number Publication Date
JP6232606B1 JP6232606B1 (en) 2017-11-22
JP2018183755A true JP2018183755A (en) 2018-11-22

Family

ID=60417432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017088372A Active JP6232606B1 (en) 2017-04-27 2017-04-27 Wastewater treatment method

Country Status (1)

Country Link
JP (1) JP6232606B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146660A1 (en) 2018-01-25 2019-08-01 東レ株式会社 Spunbonded nonwoven fabric
JP7162975B2 (en) 2018-06-26 2022-10-31 一般財団法人電力中央研究所 Method for treating NS compounds that affect COD of desulfurization wastewater

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111348755A (en) * 2020-04-03 2020-06-30 姜文杰 Sewage treatment agent for printing and dyeing textile industry and preparation method thereof
CN111592082A (en) * 2020-05-19 2020-08-28 深圳市众望丽华实业有限公司 Water-based paint mist coagulant, and preparation method and application thereof
CN115321617A (en) * 2021-05-11 2022-11-11 贵州中车绿色环保有限公司 COD (chemical oxygen demand) degrading agent as well as preparation method and application thereof
CN114939396B (en) * 2022-05-24 2024-05-17 中国科学院生态环境研究中心 Inorganic silicon active carbon for removing perfluorinated compounds, preparation method and application

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145176B2 (en) * 1972-12-02 1976-12-02
JPS5126757A (en) * 1974-08-28 1976-03-05 Kowa Co SUISHITSU JOKAHOHO
JPS5141250A (en) * 1974-10-03 1976-04-07 Taiho Kogyo Co Ltd Haisuino shoriho
JPS60190290A (en) * 1984-03-13 1985-09-27 Mitsui Mining & Smelting Co Ltd Treatment of organic waste water
JPH0696150B2 (en) * 1990-03-08 1994-11-30 日本碍子株式会社 Treatment method and treatment device for wastewater containing persistent COD
JP4169614B2 (en) * 2003-03-14 2008-10-22 東京電力株式会社 Wastewater treatment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146660A1 (en) 2018-01-25 2019-08-01 東レ株式会社 Spunbonded nonwoven fabric
JP7162975B2 (en) 2018-06-26 2022-10-31 一般財団法人電力中央研究所 Method for treating NS compounds that affect COD of desulfurization wastewater

Also Published As

Publication number Publication date
JP6232606B1 (en) 2017-11-22

Similar Documents

Publication Publication Date Title
JP6232606B1 (en) Wastewater treatment method
Moradi et al. Various wastewaters treatment by sono-electrocoagulation process: a comprehensive review of operational parameters and future outlook
JP6935924B2 (en) Wastewater and sludge treatment system containing high concentration of suspended solids
CN104973675B (en) A kind of preparation method of wastewater purification agent
CN106745965A (en) A kind of fracture acidizing method for treating waste liquid
JP4662059B2 (en) Purification process for steel manufacturing wastewater
CN108892355A (en) A kind of method of municipal sludge harmless treatment
KR102021421B1 (en) Wastewater disinfection purification system generated from the treatment of aquatic organisms
JP4806426B2 (en) Method and apparatus for detoxifying heavy metal ions simultaneously with inorganic suspended particles
WO2001085618A1 (en) Method for treating wastewater with powders of slag generated from steel making process
JP4522297B2 (en) Method and apparatus for treating wastewater containing inorganic suspended particles
JPH0655320B2 (en) Waste treatment agent and waste treatment method
JP4471112B2 (en) Method for coagulating and dewatering muddy water
JP2008264764A (en) Method for treating oil-containing waste water
CN106830422A (en) A kind of short distance preprocess method of cutting waste fluid
JP2004275884A (en) Waste water treating method, waste water treating apparatus and treating system
JPH0673666B2 (en) Waste liquid treatment method
JP5693992B2 (en) Method for recovering dissolved iron from wastewater containing various metal ions
JP3680742B2 (en) Method for treating wastewater containing dioxins
KR101379374B1 (en) Reducing ironsalt processing method of dyeing wastewater
JP2000263065A (en) Removal of phosphorus in industrial waste solution
CN105084509A (en) Purification treatment process for industrial waste liquid
CN105152289A (en) Alkaline wastewater purification treatment agent
JP2007038196A (en) Metal etching wastewater treatment method
KR100358033B1 (en) The manufacturing method of composition for treating waste-water

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170922

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170927

R150 Certificate of patent or registration of utility model

Ref document number: 6232606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250