JPH0696150B2 - Treatment method and treatment device for wastewater containing persistent COD - Google Patents

Treatment method and treatment device for wastewater containing persistent COD

Info

Publication number
JPH0696150B2
JPH0696150B2 JP18362590A JP18362590A JPH0696150B2 JP H0696150 B2 JPH0696150 B2 JP H0696150B2 JP 18362590 A JP18362590 A JP 18362590A JP 18362590 A JP18362590 A JP 18362590A JP H0696150 B2 JPH0696150 B2 JP H0696150B2
Authority
JP
Japan
Prior art keywords
cod
tank
treatment
oxidizing
aeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18362590A
Other languages
Japanese (ja)
Other versions
JPH03278883A (en
Inventor
極 松原
栄助 百合草
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP18362590A priority Critical patent/JPH0696150B2/en
Publication of JPH03278883A publication Critical patent/JPH03278883A/en
Publication of JPH0696150B2 publication Critical patent/JPH0696150B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はゴミ埋立地浸出水、下水汚泥硝化槽脱離液など
難分解性COD含有排水の処理方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for treating persistent wastewater containing COD, such as leachate in a landfill, sewage sludge nitrification tank desorption liquid, and the like.

(従来の技術) 従来の難分解性COD含有排水の処理方法としては、
(ア)酸性凝集法、(イ)フェントン法および(ウ)こ
れらの方法と活性炭吸着を組み合わせる方法、などがあ
る。
(Conventional technology) As a conventional method for treating persistent wastewater containing COD,
(A) acidic coagulation method, (a) Fenton method and (c) a method combining these methods with activated carbon adsorption.

これらの方法のうち(ア)の概要を第8図に示すが、こ
の方法は原水に塩化第2鉄などの凝集剤と塩酸などの酸
を加えてPHを4〜5に調整した後に凝集沈澱槽(3)に
おいて難分解性CODを不溶化、凝集させて沈澱除去し、
上澄水は水酸化ナトリウムなどのアルカリを加えて中和
槽(7)にてPHを5.8〜8.6に調整して処理水とする方法
である。
Fig. 8 shows the outline of (a) among these methods. In this method, an aggregating agent such as ferric chloride and an acid such as hydrochloric acid are added to the raw water to adjust the pH to 4 to 5, and then the aggregation and precipitation are performed. Insoluble COD is insolubilized and agglomerated to remove the precipitate in the tank (3),
The supernatant water is a method in which an alkali such as sodium hydroxide is added and the pH is adjusted to 5.8 to 8.6 in the neutralization tank (7) to obtain treated water.

一方(イ)の方法はその概要を第9図に示すように、原
水に塩酸などの酸、過酸化水素、および硫酸第1鉄を添
加してPHを3程度に調整した後酸化槽(1)でCODを酸
化分解し、更に水酸化ナトリウムなどのアルカリおよび
凝集剤を添加、PHを5.8〜8.6に調整して、凝集沈澱槽
(3)にて固液分離し上澄液を処理水として得る方法で
ある。
On the other hand, the method of (a), as shown in the outline of Fig. 9, after adding acid such as hydrochloric acid, hydrogen peroxide, and ferrous sulfate to the raw water to adjust the PH to about 3, ) Oxidize and decompose COD, and then add an alkali such as sodium hydroxide and a coagulant, adjust the pH to 5.8 to 8.6, and perform solid-liquid separation in the coagulation sedimentation tank (3), and use the supernatant as treated water. Is the way to get.

しかしながら、上記(ア)の酸性凝集法によるCODの除
去率は50〜60%と難分解性COD含有排水の処理方法とし
ては比較的有効な方法であるが、除去率に限界があるた
め処理すべき原水のCODが高い場合には、処理目標を達
成できないことがしばしばあった。従ってこの場合に
は、活性炭処理を併用することが行われているが、処理
目標は達成できても活性炭処理のコストが高いため、全
体の処理費用は膨大なものとなり、更に悪い場合には活
性炭処理を併用しても処理目標が達成できず技術的対応
が不可能なこともあった。
However, the COD removal rate by the acidic coagulation method of (a) above is 50 to 60%, which is a relatively effective method for treating wastewater containing persistent COD, but the removal rate is limited. When the COD of raw water was high, treatment targets were often not achieved. Therefore, in this case, activated carbon treatment is also used in combination, but even if the treatment target can be achieved, the cost of activated carbon treatment is high, and the overall treatment cost becomes enormous. In some cases, the treatment target could not be achieved even if the treatments were used together, and it was impossible to technically respond.

また、上記(イ)のフェントン法においても薬品費が高
くつき、その上COD除去率も10〜30%と低く、難分解性C
OD含有排水を単独で処理することはほとんどできなかっ
た。
In addition, the Fenton method of (a) above has high chemical costs, and the COD removal rate is low at 10 to 30%.
Almost no treatment of OD-containing wastewater was possible.

(発明が解決しようとする課題) 本発明は、上記のような従来の問題点を解決して、活性
炭処理を併用することなく、本発明はプロセスのみで処
理目標を達成すること、および難分解性COD含有排水の
処理費用を安価におさえることができる難分解性COD含
有排水の処理方法および処理装置を提供することを目的
として完成されたものである。
(Problems to be Solved by the Invention) The present invention solves the conventional problems as described above, and the present invention achieves a treatment target only by a process without using activated carbon treatment, and hardly decomposes. The present invention has been completed for the purpose of providing a treatment method and a treatment device for persistent COD-containing wastewater, which can reduce the treatment cost of the characteristic COD-containing wastewater at low cost.

(課題を解決するための手段) 上記の課題を解決するためになされた第1の発明は、予
め酸性に調整したCODを含有する原水に酸性状態で酸化
力を発揮する酸化剤を添加混合した後酸化槽へ供給して
二酸化マンガンの存在下で前記CODを酸化し、次いでこ
の酸化された酸化液を曝気槽にて曝気して溶存マンガン
を不溶化し、更に曝気槽から排出される曝気液に中和剤
と凝集剤を添加して凝集沈澱槽にて処理水と汚泥とに分
離することを特徴とする難分解性COD含有排水の処理方
法であり、第2の発明は酸性状態にあるCODを含有する
原水に酸化剤供給機を接続し、得られた混合液を酸化処
理する二酸化マンガンを存在させた酸化槽と、該酸化槽
に接続され酸化液中の溶存マンガンを不溶化処理する曝
気槽と、該曝気槽に接続され曝気液を処理水と汚泥とに
分離処理する凝集沈澱槽とからなることを特徴とする難
分解性COD含有排水の処理装置である。
(Means for Solving the Problems) In the first invention made to solve the above problems, raw water containing COD adjusted to be acidic in advance is mixed with an oxidizing agent exhibiting an oxidizing power in an acidic state. The COD is supplied to the post-oxidation tank to oxidize the COD in the presence of manganese dioxide, and then the oxidized liquid is aerated in the aeration tank to insolubilize the dissolved manganese, and further into the aeration liquid discharged from the aeration tank. A method for treating persistent wastewater containing COD, which comprises adding a neutralizing agent and a coagulant and separating the treated water and sludge in a coagulating sedimentation tank. The second invention is COD in an acidic state. An oxidizing tank in which manganese dioxide is present to oxidize the resulting mixed solution by connecting an oxidant supplier to raw water containing the water, and an aeration tank connected to the oxidizing tank to insolubilize dissolved manganese in the oxidizing solution And connected to the aeration tank to treat the aeration liquid with treated water and sludge. A treatment device for persistent COD-containing wastewater, which comprises a coagulating sedimentation tank for separate treatment into and.

以下、本発明を図面に基いて詳細に説明する。第1図は
第1の発明の処理工程を示す概略フロー図であり、原水
は酸、および酸性状態で酸化力を発揮する酸化剤供給機
(8)から供給される酸化剤と混合されて酸化槽(1a)
に上向流または下降流として供給される。前記酸化剤と
しては酸性状態で酸化力を発揮する過マンガン酸塩、過
酸化水素等が使用される。酸化槽(1a)には触媒として
はたらく粒状二酸化マンガンまたは表面を二酸化マンガ
ンにて被覆した粒状担体を充填した固定床(4)が形成
されておりここで原水中のCODが酸化分解、除去される
こととなる。粒状二酸化マンガンとしては粒径0.5〜10m
mの二酸化マンガンそのもの、または粒状担体に二酸化
マンガンを被覆したものを用いることができる。また、
酸化剤として例えば過マンガン酸塩を用いた場合には、
過マンガン酸塩の添加量は第3図に示すようにKMnO4/CO
Dとして0.25〜2.0、望ましくは0.5〜2.0がよく、いかな
る場合も最大4.0(CODを酸化分解する理論値)でよい。
KMnO4/CODが0.25以下の場合にはCODの除去率が低下し、
また2.0より多く添加しても、添加した過マンガン酸塩
がCODの酸化に有効に使用されず酸化液に混合するた
め、別途過マンガン酸塩の処理を必要とするばかりか、
発生する汚泥量が増加する。そして、その際の処理PHは
5以下、望ましくは4以下とすることが必要である。処
理PHが5を越えるとそのPHの程度に応じて添加した過マ
ンガン酸塩の一部が酸化液中に残留するようになり、CO
Dの除去率が低下するばかりか、別途過マンガン酸塩の
処理が必要になる(第4図の記載参照)。また、酸化槽
(1a)における二酸化マンガンとの接触時間は第5図に
示すように5分〜60分、望ましくは15分〜60分がよい。
5分以下だとCODの除去率が低下し、また60分より長く
ても酸化槽(1a)の容積が大きくなるだけで有効には使
われない。
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic flow chart showing the treatment process of the first invention, in which raw water is mixed with an acid and an oxidant supplied from an oxidant supplier (8) which exhibits an oxidizing power in an acidic state and is oxidized. Tank (1a)
Is supplied as an upflow or a downflow. As the oxidant, permanganate, hydrogen peroxide, etc., which exhibit oxidizing power in an acidic state, are used. In the oxidation tank (1a), a fixed bed (4) filled with granular manganese dioxide which acts as a catalyst or a granular carrier whose surface is coated with manganese dioxide is formed, where COD in raw water is oxidatively decomposed and removed. It will be. Granular manganese dioxide has a particle size of 0.5-10 m
It is possible to use m manganese dioxide itself or a granular carrier coated with manganese dioxide. Also,
When, for example, permanganate is used as the oxidizing agent,
The addition amount of permanganate is KMnO 4 / CO as shown in Fig. 3.
D is 0.25 to 2.0, preferably 0.5 to 2.0, and in any case, 4.0 (theoretical value for oxidative decomposition of COD) may be the maximum.
When KMnO 4 / COD is 0.25 or less, COD removal rate decreases,
In addition, even if added more than 2.0, the added permanganate is not used effectively for the oxidation of COD and mixes with the oxidizing solution, so not only the treatment of permanganate is required,
The amount of sludge generated increases. The processing PH at that time needs to be 5 or less, preferably 4 or less. When the treated PH exceeds 5, a part of the permanganate added according to the degree of the PH will remain in the oxidizing solution, and CO
Not only does the removal rate of D decrease, but a separate treatment with permanganate is required (see the description in FIG. 4). The contact time with manganese dioxide in the oxidation tank (1a) is 5 minutes to 60 minutes, preferably 15 minutes to 60 minutes, as shown in FIG.
If it is less than 5 minutes, the COD removal rate will decrease, and if it is longer than 60 minutes, the volume of the oxidation tank (1a) will increase, and it will not be used effectively.

次に酸化槽(1a)でCODの酸化分解された酸化液は曝気
槽(2)に入る。ここでは、酸化槽(1a)でCODが過マ
ンガン酸塩に酸化分解を受けた結果溶け込んだマンガン
酸イオンと、酸性状態に維持されることによって溶け込
んできた酸化剤である過マンガン酸塩からの溶存マンガ
ンを曝気によって酸化し、二酸化マンガンとして析出さ
せる。曝気槽(2)における曝気時間は第6図に示すよ
うに5分〜30分、望ましくは10分〜30分がよい。曝気時
間が5分より短いと溶存マンガンに起因するCODが増加
し、また、30分より長くてもCODの低下は見込めない。
また、曝気量はとくに溶存マンガンの酸化速度には影響
を及ぼさないが、散気装置として多孔管を使った場合で
0.8〜2.0m3air/m3槽・Hr程度、散気板など微細気泡発生
装置を使った場合で0.4〜1.5m3air/m3槽・Hr程度でよ
い。この酸化液中の溶存マンガンの処理は前記曝気槽
(2)における曝気によるほか、溶存マンガンの濃度に
応じて塩素、過マンガン酸塩などの酸化剤を添加した後
混和・反応させる方法を用いてもよい。
Next, the oxidizing solution in which COD has been oxidatively decomposed in the oxidation tank (1a) enters the aeration tank (2). Here, the manganate ion dissolved as a result of oxidative decomposition of COD by permanganate in the oxidation tank (1a) and the permanganate that is an oxidant dissolved by being maintained in an acidic state Dissolved manganese is oxidized by aeration and deposited as manganese dioxide. The aeration time in the aeration tank (2) is 5 minutes to 30 minutes, preferably 10 minutes to 30 minutes, as shown in FIG. If the aeration time is shorter than 5 minutes, the COD due to dissolved manganese increases, and even if it is longer than 30 minutes, no reduction in COD can be expected.
In addition, the amount of aeration does not affect the oxidation rate of dissolved manganese, but when a perforated tube is used as an air diffuser,
0.8~2.0m 3 air / m 3 bath · Hr about, may be 0.4~1.5m 3 air / m 3 bath, about Hr when using diffuser plate such as the fine bubble generator. The treatment of the dissolved manganese in the oxidizing solution is performed by aeration in the aeration tank (2), or by adding an oxidizing agent such as chlorine or permanganate according to the concentration of dissolved manganese and then mixing and reacting. Good.

そして、曝気槽(2)を出た曝気液には塩化第2鉄、硫
酸バン土などの凝集剤を添加し、更に酸、アルカリなど
の中和剤を添加してPHを5.8〜8.6に調整して、凝集沈澱
槽(3)で凝集沈澱処理を行い、上澄水は処理水とし
て、沈降した汚泥は引抜汚泥として別途処理する。添加
する凝集剤は無機系凝集剤、高分子凝集剤のいずれでも
よいが、マンガン化合物の共沈のためには無機系凝集
剤、とくに塩化第2鉄、硫酸第2鉄などの3価の鉄系凝
集剤が好ましい。また、調整PHについてもマンガン化合
物の共沈のためには7.0〜8.6のアルカリ側が望ましい。
Then, the aeration liquid from the aeration tank (2) is added with a coagulant such as ferric chloride or vanadium sulfate, and a neutralizer such as acid or alkali is added to adjust the PH to 5.8 to 8.6. Then, the coagulation-sedimentation treatment is performed in the coagulation-sedimentation tank (3), and the supernatant water is treated as treated water and the settled sludge is treated as drawn-out sludge. The coagulant to be added may be either an inorganic coagulant or a polymer coagulant, but for coprecipitation of a manganese compound, an inorganic coagulant, particularly trivalent iron such as ferric chloride or ferric sulfate. A system flocculant is preferred. Also, the adjusted pH is preferably 7.0 to 8.6 on the alkaline side for coprecipitation of the manganese compound.

次に、第2図は他の実施例の処理工程を示す概略フロー
図で、酸化槽(1b)は粒径5〜500μの粉末二酸化マン
ガンが分散された流動床(5)が形成されている。この
場合、第7図に示すように酸化槽(1b)の滞留時間(接
触時間)は、触媒である粉末二酸化マンガンの濃度が50
0mg/以上である場合には15分から60分が望ましい。粉
末二酸化マンガン濃度が500mg/未満であったり、滞留
時間が15分より少ないとCOD除去率は低下する。そし
て、酸化槽(1b)でCODの酸化、分解された混合液は粒
径5〜100μの粉状二酸化マンガンを使用した場合は凝
集剤は無添加で、また粒径100〜500μの粉状二酸化マン
ガンを使用したときは1mg/程度のアニオン系高分子凝
集剤を添加して二酸化マンガン分離部(6)で二酸化マ
ンガンを沈降分離した後曝気槽(2)に入り、以降同様
に処理される。なお、分離された二酸化マンガンは酸化
槽(1b)に返送され循環して使用される。
Next, FIG. 2 is a schematic flow chart showing the treatment steps of another embodiment, in which the fluidized bed (5) in which powdered manganese dioxide having a particle size of 5 to 500 μm is dispersed is formed in the oxidation tank (1b). . In this case, as shown in FIG. 7, the residence time (contact time) of the oxidation tank (1b) was 50% when the concentration of the powdered manganese dioxide as the catalyst was 50%.
When it is 0 mg / or more, 15 to 60 minutes is desirable. If the concentration of powdered manganese dioxide is less than 500 mg /, or if the residence time is less than 15 minutes, the COD removal rate decreases. When COD is oxidized and decomposed in the oxidation tank (1b) and powdered manganese dioxide with a particle size of 5 to 100 μ is used, no coagulant is added, and powdered dioxide with a particle size of 100 to 500 μ is used. When manganese is used, an anionic polymer flocculant of about 1 mg / min is added, and manganese dioxide is separated and settled in the manganese dioxide separation section (6) and then entered into the aeration tank (2), and thereafter, the same treatment is performed. The separated manganese dioxide is returned to the oxidation tank (1b) and circulated for use.

(実施例) 次にこのように構成された第1の発明の難分解性COD含
有排水の処理方法を組み入れた処理過程(A:第1の発明
による処理→活性炭処理)と従来法を組みあわせた処理
過程(B:酸性凝集沈降処理→フェントン処理→中和沈澱
処理→活性炭処理)とによりゴミ埋立地浸出水の生物処
理水である原水(1)及び(2)の処理を1m3/日の規模
で行い、それぞれの処理過程における処理条件を第1表
及び第3表に、また、それぞれの処理過程により原水
(1)及び(2)を処理した結果を第2表および第4表
に示す。
(Example) Next, a treatment process (A: treatment according to the first invention-> activated carbon treatment) incorporating the treatment method for the hardly-decomposable COD-containing wastewater according to the first invention configured as described above is combined with a conventional method. 1m 3 / day of raw water (1) and (2), which are biological treated water of leachate in landfill, by the treatment process (B: acidic coagulation sedimentation treatment → Fenton treatment → neutralization sedimentation treatment → activated carbon treatment) Table 1 and Table 3 show the treatment conditions in each treatment process, and Tables 2 and 4 show the results of treating raw water (1) and (2) by each treatment process. Show.

上記の第2表および第4表の処理結果から本発明による
処理を行った場合には従来法に比べて処理水CODが大幅
に低下しており、更に色度も除去できることがわかる。
また、本発明の方法に活性炭処理を併用すれば「COD10m
g/以下」のような高度な処理目標も充分に達成できる
ことがわかる。
From the treatment results in Tables 2 and 4 above, it can be seen that when the treatment according to the present invention is performed, the treated water COD is significantly reduced compared to the conventional method, and the chromaticity can also be removed.
If activated carbon treatment is used in combination with the method of the present invention, "COD10m
It can be seen that advanced processing targets such as “g / or less” can be sufficiently achieved.

(発明の効果) 以上の結果からも明らかなように、本発明においては (1)二酸化マンガン触媒と酸化剤の作用によって、原
水中のCODを強力に酸化分解することができ、従来法で
は活性炭処理も含めないと達成できなかった処理目標も
本発明のみで対応できる。
(Effects of the Invention) As is clear from the above results, in the present invention, (1) the COD in raw water can be strongly oxidatively decomposed by the action of the manganese dioxide catalyst and the oxidizing agent, and the activated carbon in the conventional method is The processing target that could not be achieved without including the processing can be handled only by the present invention.

(2)本発明の主処理工程は酸化剤による処理のみであ
り、フローが簡単で操作がしやすいばかりでなく従来法
の2〜3段もの主処理工程の組み合わせ処理に比べて、
処理費用を安価におさえることができる。
(2) The main treatment step of the present invention is only a treatment with an oxidant, and the flow is simple and easy to operate, and compared with the conventional combined treatment of two or three stages of main treatment steps,
The processing cost can be kept low.

(3)従来法では技術的に対応できなかった「COD10mg/
以下」のような高度な処理目標も十分達成できる。
(3) "COD 10 mg /
Advanced processing goals such as the following can also be achieved.

(4)本発明によれば、排水中のCODのみならず色度の
除去も可能である。
(4) According to the present invention, not only COD in wastewater but also chromaticity can be removed.

という効果を奏し、従来の問題点を一掃した難分解性CO
D含有排水の処理方法および処理装置として産業の発展
に寄与するところは極めて大きいものである。
Persistent CO that has the effect of eliminating the conventional problems
As a method and a treatment device for D-containing wastewater, the contribution to industrial development is extremely large.

【図面の簡単な説明】[Brief description of drawings]

第1図および第2図は本発明の処理工程を示す概略フロ
ー図、第3図は本発明における処理水CODと過マンガン
酸塩添加率の関係を示す図面、第4図は本発明における
処理水CODと処理PHの関係を示す図面、第5図は本発明
における処理水CODと二酸化マンガン接触時間の関係を
示す図面、第6図は本発明における処理水CODと曝気槽
における曝気時間の関係を示す図面、第7図は本発明に
おける処理水CODと酸化槽における粉末二酸化マンガン
濃度及び滞留時間の関係を示す図面、第8図は従来法で
ある酸性凝集法の処理工程を示す図面、第9図は従来法
であるフェントン法の処理工程を示す概略フロー図であ
る。 (1a):固定床型の酸化槽 (1b):流動床型の酸化槽 (2):曝気槽、 (3):凝集沈澱槽、 (4):固定床、 (5):流動床、 (6):二酸化マンガン分離部、 (7):中和槽。 (8):酸性状態で酸化力を発揮する酸化剤供給機。
1 and 2 are schematic flow charts showing the treatment process of the present invention, FIG. 3 is a diagram showing the relationship between the treated water COD and the addition rate of permanganate in the present invention, and FIG. 4 is the treatment in the present invention. FIG. 5 is a drawing showing the relationship between water COD and treated PH, FIG. 5 is a drawing showing the relationship between treated water COD and manganese dioxide contact time in the present invention, and FIG. 6 is a relationship between treated water COD in the present invention and aeration time in an aeration tank. FIG. 7 is a drawing showing the relationship between the treated water COD of the present invention, the concentration of powdered manganese dioxide in the oxidation tank and the residence time, and FIG. 8 is a drawing showing the treatment steps of the conventional acidic coagulation method, FIG. 9 is a schematic flow chart showing the processing steps of the Fenton method, which is a conventional method. (1a): Fixed bed type oxidation tank (1b): Fluidized bed type oxidation tank (2): Aeration tank, (3): Coagulation sedimentation tank, (4): Fixed bed, (5): Fluidized bed, ( 6): Manganese dioxide separation section, (7): Neutralization tank. (8): An oxidizer feeder that exerts oxidizing power in an acidic state.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】予め酸性に調整したCODを含有する原水に
酸性状態で酸化力を発揮する酸化剤を添加混合した後酸
化槽へ供給して二酸化マンガンの存在下で前記CODを酸
化し、次いでこの酸化された酸化液を曝気槽にて曝気し
て溶存マンガンを不溶化し、更に曝気槽から排出される
曝気液に中和剤と凝集剤を添加して凝集沈澱槽にて処理
水と汚泥とに分離することを特徴とする難分解性COD含
有排水の処理方法。
1. A raw water containing COD adjusted to be acidic in advance is mixed with an oxidizing agent exhibiting an oxidizing power in an acidic state and then supplied to an oxidizing tank to oxidize the COD in the presence of manganese dioxide. This oxidized oxidizing liquid is aerated in an aeration tank to insolubilize dissolved manganese, and a neutralizing agent and a coagulant are added to the aeration liquid discharged from the aeration tank to treat water and sludge in a coagulation sedimentation tank. A method for treating persistent COD-containing wastewater, characterized by separating into.
【請求項2】酸性状態にあるCODを含有する原水に酸化
剤供給機を接続し、得られた混合液を酸化処理する二酸
化マンガンを存在させた酸化槽と、該酸化槽に接続され
た酸化液中の溶存マンガンを不溶化処理する曝気槽
(2)と、該曝気槽(2)に接続され曝気液を処理水と
汚泥とに分離処理する凝集沈澱槽(3)とからなること
を特徴とする難分解性COD含有排水の処理装置。
2. An oxidizing tank in which manganese dioxide is present to oxidize a mixture obtained by connecting an oxidant supplier to raw water containing COD in an acidic state, and an oxidation connected to the oxidizing tank. An aeration tank (2) for insolubilizing dissolved manganese in the liquid, and a coagulation sedimentation tank (3) connected to the aeration tank (2) for separating the aeration liquid into treated water and sludge. Wastewater treatment equipment containing persistent COD.
JP18362590A 1990-03-08 1990-07-10 Treatment method and treatment device for wastewater containing persistent COD Expired - Lifetime JPH0696150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18362590A JPH0696150B2 (en) 1990-03-08 1990-07-10 Treatment method and treatment device for wastewater containing persistent COD

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-57692 1990-03-08
JP5769290 1990-03-08
JP18362590A JPH0696150B2 (en) 1990-03-08 1990-07-10 Treatment method and treatment device for wastewater containing persistent COD

Publications (2)

Publication Number Publication Date
JPH03278883A JPH03278883A (en) 1991-12-10
JPH0696150B2 true JPH0696150B2 (en) 1994-11-30

Family

ID=26398756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18362590A Expired - Lifetime JPH0696150B2 (en) 1990-03-08 1990-07-10 Treatment method and treatment device for wastewater containing persistent COD

Country Status (1)

Country Link
JP (1) JPH0696150B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2740623B2 (en) * 1993-09-03 1998-04-15 日本碍子株式会社 Advanced sewage treatment method
JP2000288560A (en) * 1999-04-02 2000-10-17 Hitachi Ltd Water purifying treatment apparatus and method
KR100375292B1 (en) * 1999-12-09 2003-03-10 주식회사 엔비로 A disposal mathod of wastewater repeating oxidation and neutralization reaction
KR101292731B1 (en) * 2010-03-15 2013-08-02 심종섭 The gas captured type gas-liquid reactor and the water treatment apparatus, gas purification apparatus using thereof
US9422177B2 (en) 2013-10-10 2016-08-23 Tronox Llc Removal of organic impurities from water
JP6232606B1 (en) * 2017-04-27 2017-11-22 株式会社ノアテック Wastewater treatment method
CN110240305A (en) * 2019-05-20 2019-09-17 南京金陵化工厂有限责任公司 A kind of production wastewater treatment pond of stabilizer for plastics and its processing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5684688A (en) * 1979-12-12 1981-07-10 Nojimagumi:Kk Terminal treatment of waste water
JPS5715899A (en) * 1980-07-02 1982-01-27 Ebara Infilco Co Ltd Treatment of organic waste water
JPS5936592A (en) * 1982-08-23 1984-02-28 Sekisui Enbairomento:Kk Treatment of sewage
JPS6443391A (en) * 1987-08-08 1989-02-15 Suido Kiko Kk Removal of moldy smell in water

Also Published As

Publication number Publication date
JPH03278883A (en) 1991-12-10

Similar Documents

Publication Publication Date Title
US4294703A (en) Hydrogen peroxide treatment of effluent
JPH0696150B2 (en) Treatment method and treatment device for wastewater containing persistent COD
JPH0741277B2 (en) Waste treatment agent and waste treatment method
JP2716348B2 (en) Sewage return water treatment method
CN113184972B (en) Method for removing organic pollutants in wastewater by sequencing batch reaction
JP4552164B2 (en) Waste liquid treatment method
JPH10118664A (en) Treatment of waste water containing cyan compound and organic matter
JPH0416238B2 (en)
JP3377346B2 (en) Organic wastewater treatment method and apparatus
JPH08257574A (en) Method and apparatus for treating hardly decomposable cod-containing waste water
JPS62241596A (en) Treatment of waste water containing organic matter
JP4620302B2 (en) Organic wastewater treatment method
JP2000157972A (en) Device for advanced sewage treatment
JP3403348B2 (en) Treatment method for nitrogen-containing wastewater
JPS6339307B2 (en)
JP2002326088A (en) Method and apparatus for treating phosphorous and cod- containing water
JP2003071487A (en) Method and apparatus for treating organic wastewater
JP2002263676A (en) Waste water treatment method and facility
JPS6339309B2 (en)
JP2000354892A (en) Treatment apparatus of hardly decomposable organic matter-containing water
JPH0651188B2 (en) Treatment method and treatment device for wastewater containing persistent COD
JP2003062583A (en) Treating method for sewage containing decomposition resistant organic material and bromine, and equipment therefor
JPH07163987A (en) Complete treatment of water
JPS6227880B2 (en)
JPH10244279A (en) Method for removing nitrogen and phosphorus in water to be treated using iron

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081130

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081130

Year of fee payment: 14

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081130

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081130

Year of fee payment: 14

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081130

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091130

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091130

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 16