JPS6339309B2 - - Google Patents

Info

Publication number
JPS6339309B2
JPS6339309B2 JP55091429A JP9142980A JPS6339309B2 JP S6339309 B2 JPS6339309 B2 JP S6339309B2 JP 55091429 A JP55091429 A JP 55091429A JP 9142980 A JP9142980 A JP 9142980A JP S6339309 B2 JPS6339309 B2 JP S6339309B2
Authority
JP
Japan
Prior art keywords
sludge
chemical oxidation
tank
hydrogen peroxide
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55091429A
Other languages
Japanese (ja)
Other versions
JPS5719086A (en
Inventor
Katsuyuki Kataoka
Shogo Tsunoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP9142980A priority Critical patent/JPS5719086A/en
Publication of JPS5719086A publication Critical patent/JPS5719086A/en
Publication of JPS6339309B2 publication Critical patent/JPS6339309B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Treatment Of Sludge (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、下水、し尿、し尿浄化槽汚泥、ゴミ
埋立滲出汚水、各種産業廃水などの有機性廃水の
革新的な処理プロセスに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an innovative treatment process for organic wastewater such as sewage, human waste, human waste septic tank sludge, landfill leachate, and various industrial wastewaters.

〔従来の技術〕[Conventional technology]

最近、活性汚泥法などの種々の生物処理を行つ
ても除去されない色度成分や、難生物分解性の
COD成分を除去するための方法として、鉄塩ま
たはアルミニウム塩と、過酸化水素またはオゾン
との併用の化学酸化処理法が知られている。(な
お、これら酸化剤と光、超音波の併用法もよく知
られている) 例えば、古くからフエントン法として知られて
いる、鉄塩と過酸化水素の併用法では第1図に示
すように希釈水で10〜20倍希釈された廃水1は活
性汚泥法の曝気槽2aにおいて曝気用空気32で
充分生成処理され、曝気槽2aからの流出スラリ
ー3は、沈殿池4で固液分離され、スラツジ5の
一部は返送汚泥6として曝気槽2aに返送され、
残部は余剰汚泥16aとなる。沈殿池4の越流水
7(この中には、BODは殆どないが、色度と難
生物分解性CODが多量に含まれている)は化学
酸化処理槽8に流入し、前記鉄イオンを解離する
物質としての硫酸鉄9と前記酸化剤としての過酸
化水素10が添加され、PH2〜4の酸性条件下で
所定時間撹拌されCOD、色度などが分解された
のち、中和槽11において苛性ソーダなどのアル
カリ剤12が添加され、PH6前後に中和される。
この中和処理によつて、水酸化第2鉄Fe(OH)3
を主体とするスラツジ13aが析出するので、こ
れを沈殿池14にて分離して処理水15とするも
のである。
Recently, chromatic components that cannot be removed even with various biological treatments such as activated sludge method, and those that are difficult to biodegrade
As a method for removing COD components, a chemical oxidation treatment method using a combination of iron salt or aluminum salt and hydrogen peroxide or ozone is known. (In addition, the combined use of these oxidizing agents, light, and ultrasound is also well known.) For example, in the combined use of iron salt and hydrogen peroxide, which has long been known as the Fuenton method, as shown in Figure 1. Wastewater 1 diluted 10 to 20 times with dilution water is sufficiently generated and treated with aeration air 32 in an aeration tank 2a of the activated sludge method, and slurry 3 flowing out from the aeration tank 2a is separated into solid and liquid in a settling tank 4. A part of the sludge 5 is returned to the aeration tank 2a as return sludge 6,
The remainder becomes surplus sludge 16a. The overflow water 7 of the settling tank 4 (there is almost no BOD in it, but it contains a large amount of chromatic and non-biodegradable COD) flows into the chemical oxidation treatment tank 8, where the iron ions are dissociated. Iron sulfate (9) as a substance to be oxidized and hydrogen peroxide (10) as an oxidizing agent are added, stirred for a predetermined time under acidic conditions of pH 2 to 4 to decompose COD, chromaticity, etc., and then mixed with caustic soda in a neutralization tank 11. An alkaline agent 12 such as the following is added to neutralize the pH to around 6.
Through this neutralization treatment, ferric hydroxide Fe(OH) 3
A sludge 13a mainly composed of is precipitated, and this is separated in a sedimentation tank 14 and used as treated water 15.

一方、前記生物処理工程からの余剰汚泥16a
と前記化学酸化処理工程から排出されるスラツジ
17は、混合されたのちカチオンポリマーなど汚
泥脱水用の凝集剤18が撹拌槽19に添加混合さ
れたのち、遠心脱水機20などの脱水機により脱
水ケーキ21と脱水分離水22とに分離される。
On the other hand, surplus sludge 16a from the biological treatment process
The sludge 17 discharged from the chemical oxidation treatment process is mixed, and then a flocculant 18 for sludge dewatering such as a cationic polymer is added and mixed in a stirring tank 19, and then a dewatered cake is formed by a dehydrator such as a centrifugal dehydrator 20. 21 and dehydrated separated water 22.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この従来法は、次のような重大な問題点を生じ
ている。
This conventional method has the following serious problems.

生物処理工程から発生する有機性汚泥の脱水
性が悪いため、カチオンポリマーなどの凝集剤
を多量に使用しても、低含水率の脱水ケーキが
得られない。
Because the organic sludge generated from the biological treatment process has poor dewatering properties, a dehydrated cake with a low water content cannot be obtained even if a large amount of flocculant such as a cationic polymer is used.

しかも、化学酸化処理工程からも多量のFe
(OH)3を主体とする難脱水性のスラツジが発
生するので、一層、汚泥発生量が増大し、脱水
ケーキの含水率も高くなる。
Moreover, a large amount of Fe is also produced in the chemical oxidation process.
Since a sludge containing (OH) 3 that is difficult to dehydrate is generated, the amount of sludge generated further increases and the moisture content of the dehydrated cake also increases.

したがつて、脱水ケーキの埋立て、コンポス
ト化、焼却などの汚泥処分工程に不都合を生ず
る。
Therefore, this causes inconvenience in sludge disposal processes such as landfilling, composting, and incineration of the dehydrated cake.

化学酸化処理工程と前記汚泥脱水工程に、そ
れぞれ多量の薬剤を使用するので、運転経費が
著しく高額となる。
Since large amounts of chemicals are used in each of the chemical oxidation treatment step and the sludge dewatering step, operating costs become extremely high.

本発明は、これらの従来プロセスの問題点を解
決することができる有機性廃水の処理方法を提供
することを目的とするものであり、生物処理工
程、化学酸化処理工程、汚泥処理工程の各工程を
著しく合理化し、省資源化することを可能にする
ものである。
The purpose of the present invention is to provide a method for treating organic wastewater that can solve the problems of these conventional processes. This makes it possible to significantly streamline the process and save resources.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、有機性廃水を生物反応槽にて生物処
理する工程と、該生物処理工程の前段及び/又は
後段に化学酸化処理工程を組合わせて処理する方
法において、前記化学酸化処理工程で酸化剤と、
水溶液中で鉄イオンを解離する物質を添加し、生
成する酸化スラツジを直接又は予め濃縮したのち
前記生物処理工程に添加し、前記生物処理工程か
ら排出される、生物処理スラツジと前記酸化スラ
ツジとの混合スラツジに鉱酸を添加したのち、さ
らに過酸化水素を添加し、機械脱水することを特
徴とする有機性廃水の処理方法である。
The present invention provides a method for treating organic wastewater by combining a step of biologically treating organic wastewater in a biological reaction tank and a chemical oxidation treatment step before and/or after the biological treatment step. agent and
A substance that dissociates iron ions in an aqueous solution is added, and the resulting oxidized sludge is added to the biological treatment process either directly or after being concentrated in advance, and the biological treatment sludge discharged from the biological treatment process is combined with the oxidized sludge. This method of treating organic wastewater is characterized by adding mineral acid to the mixed sludge, then further adding hydrogen peroxide, and mechanically dewatering the sludge.

〔実施例〕〔Example〕

本発明の実施態様を図面を参照しながら説明す
ると、第2図において、し尿、ゴミ滲出汚水など
の(有機性)廃水1は、活性汚泥法など、任意の
生物処理工程の生物反応槽2bに流入し、生物処
理によつて、BOD、CODの除去、NH4−Nの硝
化脱窒素を受ける。なお、この生物処理工程に生
物学硝化脱窒素プロセス、生物学的脱リンプロセ
スを採用する場合、廃水1は一般に嫌気部に流入
される。生物反応槽2bからの流出スラリー3は
沈殿池4に流入し、ここで活性汚泥が分離された
のち、沈殿池4の越流水7は化学酸化処理槽8に
導入され、スリツジ5の一部は返送汚泥6として
生物反応槽2bに返送される。前記化学酸化処理
槽8においては越流水7は前記鉄イオンを解離す
る物質として硫酸鉄9と前記酸化剤として過酸化
水素10が添加、撹拌され、CODと色度が分解
される。
An embodiment of the present invention will be described with reference to the drawings. In Fig. 2, (organic) wastewater 1 such as human waste and garbage-leaching sewage is fed into a biological reaction tank 2b of any biological treatment process such as an activated sludge method. The inflow is subjected to biological treatment to remove BOD and COD, and to nitrify and denitrify NH 4 -N. Note that when a biological nitrification denitrification process or a biological dephosphorization process is employed in this biological treatment step, the wastewater 1 generally flows into an anaerobic section. The outflow slurry 3 from the biological reaction tank 2b flows into the settling tank 4, where the activated sludge is separated, and then the overflow water 7 of the settling tank 4 is introduced into the chemical oxidation treatment tank 8, and a part of the sludge 5 is The sludge is returned to the biological reaction tank 2b as return sludge 6. In the chemical oxidation treatment tank 8, to the overflow water 7, iron sulfate 9 as a substance for dissociating the iron ions and hydrogen peroxide 10 as the oxidizing agent are added and stirred to decompose the COD and chromaticity.

次で、化学酸化処理槽8のスラリーは中和槽1
1に流入し、ここで水酸化マグネシウムなどのア
ルカリ剤12が添加され、析出するFe(OH)3
主体とする沈殿物を含むスラリーは沈殿池14に
て沈殿スラツジとしての酸化スラツジ13bと処
理水15に沈降分離され、酸化スラツジ13bは
生物反応槽2b又は前記流出スラリー3にリサイ
クルされる。
Next, the slurry in chemical oxidation treatment tank 8 is transferred to neutralization tank 1.
1, an alkaline agent 12 such as magnesium hydroxide is added thereto, and the precipitated slurry containing a precipitate mainly composed of Fe(OH) 3 is processed in a settling tank 14 as an oxidized sludge 13b as a precipitated sludge. The oxidized sludge 13b is separated by sedimentation into water 15 and recycled to the biological reaction tank 2b or the effluent slurry 3.

このような方法によると、緻密な酸化スラツジ
13bが流出スラリー3中の活性汚泥フロツクに
よつて取り込まれるため、前記活性汚泥の沈降性
が向上し、沈殿池4における懸濁物質のキヤリオ
ーバーが著しく少なくなり、また、バルキングも
発生しにくくなる。
According to such a method, since the dense oxidized sludge 13b is taken up by the activated sludge flocs in the effluent slurry 3, the settling properties of the activated sludge are improved, and the carryover of suspended solids in the settling tank 4 is significantly reduced. In addition, bulking becomes less likely to occur.

一方、生物処理スラツジと酸化スラツジ13b
との混合スラツジ16bは汚泥処理工程に流入
し、酸処理槽23において硫酸などの鉱酸24が
添加され、酸化スラツジ13b中のFe(OH)3
溶解し、Fe3+イオン状となる。酸処理槽23か
らのスラリーは次で撹拌槽25に流入し、ここで
過酸化水素26が添加され、Fe3+イオンの触媒
効果によりスラツジが改質され、脱水性が著しく
改善される。撹拌槽25内の処理液のPHは2〜4
に設定することが好ましく、これにより過酸化水
素26の酸化力を充分に向上することができる。
On the other hand, biologically treated sludge and oxidized sludge 13b
The mixed sludge 16b flows into the sludge treatment process, where a mineral acid 24 such as sulfuric acid is added in an acid treatment tank 23, and Fe(OH) 3 in the oxidized sludge 13b is dissolved to form Fe 3+ ions. The slurry from the acid treatment tank 23 then flows into the stirring tank 25, where hydrogen peroxide 26 is added and the sludge is reformed by the catalytic effect of Fe 3+ ions, significantly improving the dewatering properties. The pH of the processing liquid in the stirring tank 25 is 2 to 4.
It is preferable to set the oxidizing power of the hydrogen peroxide 26 to a sufficient value.

かくて改質されたスラツジはフイルタープレス
などの機械脱水機27により脱水され、脱水ケー
キ28と脱水分離水29に分離され、脱水分離水
29は前記化学酸化処理槽8にリサイクルされ、
新品の硫酸鉄9の添加量を不要にするか、又はこ
れが大幅に減少できるようになつている。この場
合、脱水分離水29中に多量のFe3+イオンを回
収するには前記機械脱水工程をPH2〜3の範囲に
設定することが重要である。
The thus modified sludge is dehydrated by a mechanical dehydrator 27 such as a filter press, separated into a dehydrated cake 28 and dehydrated separated water 29, and the dehydrated separated water 29 is recycled to the chemical oxidation treatment tank 8.
The amount of new iron sulfate 9 added is now unnecessary or can be significantly reduced. In this case, in order to recover a large amount of Fe 3+ ions in the dehydrated separated water 29, it is important to set the mechanical dehydration step to a pH range of 2 to 3.

なお、撹拌槽25におけるスラツジの改質処理
用のFe3+イオンが、酸化スラツジ13bから溶
出するFe3+イオンの量では不足する場合は硫酸
鉄30を補充添加してもよい。
Note that if the amount of Fe 3+ ions for the sludge reforming treatment in the stirring tank 25 is insufficient in the amount of Fe 3+ ions eluted from the oxidized sludge 13b, iron sulfate 30 may be supplemented.

また、酸処理槽23において、酸化スラツジ1
3bとのFe(OH)3の溶解に伴つて、残留する
COD成分も溶出してくる場合には、このCOD成
分が処理系内にリサイクルされるのを防止するた
めに、COD除去槽31に酸化剤として過酸化水
素33が添加される。この場合、Fe3+イオンは
過酸化水素33の酸化力向上の触媒として作用す
る。
In addition, in the acid treatment tank 23, the oxidized sludge 1
As Fe(OH) 3 dissolves with 3b, the remaining
When COD components are also eluted, hydrogen peroxide 33 is added to the COD removal tank 31 as an oxidizing agent in order to prevent this COD component from being recycled into the treatment system. In this case, Fe 3+ ions act as a catalyst to improve the oxidizing power of hydrogen peroxide 33.

次に、第3図の実施態様は生物処理工程の前に
化学酸化処理工程を設けた場合である。第3図示
例は、BODよりもCODが高く、かつ、COD成分
が難生物分解性である廃水を処理するのに好適で
ある。すなわち、COD成分が化学酸化処理の結
果、生物分解され易いものに変化し、後続する生
物処理工程で効果的に除去される。また、この場
合、第1図の従来例における沈殿池14を省略で
きる利点もある。
Next, the embodiment shown in FIG. 3 is a case where a chemical oxidation treatment step is provided before the biological treatment step. The example shown in the third figure is suitable for treating wastewater in which the COD is higher than the BOD and the COD component is hardly biodegradable. That is, as a result of the chemical oxidation treatment, the COD component changes into something that is easily biodegradable, and is effectively removed in the subsequent biological treatment process. Further, in this case, there is an advantage that the sedimentation tank 14 in the conventional example shown in FIG. 1 can be omitted.

なお、本発明においては、前記生物処理工程と
して、回転円板法、流動触媒生物処理法などの生
物膜法を採用した場合、前記返送汚泥6の返送は
不要となる。また、化学処理槽8、COD除去槽
31に添加される前記酸化剤としては、過酸化水
素のほかに、オゾン、塩素系酸化剤(次亜塩素酸
ソーダなど)も使用でき、これらの併用も可能で
ある。さらに前記アルカリ剤12としては、極め
て緻密な酸化スラツジ13bが得られることから
マグネシウム系アルカリ剤が好ましいが、苛性ソ
ーダ、消石灰の使用も可能である。
In addition, in the present invention, when a biofilm method such as a rotating disk method or a fluidized catalyst biological treatment method is employed as the biological treatment step, the return sludge 6 does not need to be returned. In addition, as the oxidizing agent added to the chemical treatment tank 8 and the COD removal tank 31, in addition to hydrogen peroxide, ozone and chlorine-based oxidizing agents (sodium hypochlorite, etc.) can also be used, and these can also be used in combination. It is possible. Further, as the alkaline agent 12, a magnesium-based alkaline agent is preferable because an extremely dense oxidized sludge 13b can be obtained, but caustic soda and slaked lime can also be used.

また、第2図示例では化学酸化処理槽8と、撹
拌槽25において、同一種類の前記金属イオン解
離物質が添加されているが、互いに異なる種類の
ものを使用してもよく、また、上記各槽で複数種
類のものを使用する場合、その組合わせが異なる
ものであつてもよい。
Further, in the second illustrated example, the same type of metal ion dissociated substance is added to the chemical oxidation treatment tank 8 and the stirring tank 25, but different types of substances may be used. When using a plurality of types in a tank, the combinations may be different.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、次のような工業上重要な利益
を得ることができる。
According to the present invention, the following industrially important benefits can be obtained.

(1) 生物処理工程からの余剰汚泥、酸化スラツジ
の両者を極めて合理的に改質でき、含水率の低
い脱水ケーキが容易に得られる。
(1) Both surplus sludge and oxidized sludge from the biological treatment process can be modified in a very rational manner, and a dehydrated cake with a low moisture content can be easily obtained.

(2) 機械脱水工程の前処理工程として、カチオン
ポリマーなどを添加する凝集処理が不要とな
り、残留カチオンポリマーなどによる二次公害
の心配がない。
(2) As a pre-treatment step for the mechanical dewatering process, there is no need for agglomeration treatment that involves adding cationic polymers, etc., and there is no need to worry about secondary pollution caused by residual cationic polymers.

(3) 色度成分、難生物分解性のCOD成分を効果
的に除去することができる。
(3) Chromaticity components and non-biodegradable COD components can be effectively removed.

(4) 機械脱水工程からの脱水ケーキ量が大幅に減
少でき、しかも、脱水ケーキの埋め立て、コン
ポスト化、焼却などの処分を容易に、低コスト
で行うことができる。
(4) The amount of dehydrated cake from the mechanical dewatering process can be significantly reduced, and furthermore, the dehydrated cake can be disposed of by landfilling, composting, incineration, etc. easily and at low cost.

次に本発明の実施例について記す。 Next, examples of the present invention will be described.

比較例(従来例) F県I市Kし尿処理場では、20倍希釈したし尿
を、第1図に示したプロセスに従つて活性汚泥法
で処理したのち、沈殿池4からの越流水の色度、
COD、リン酸を除去するため、硫酸第1鉄100
mg/(Feとして)、と過酸化水素H2O2100mg/
を添加して、PH3〜3.5の条件で4時間撹拌し
たのち、消石灰Ca(OH)2を加え、PH6〜7に中
和し、アニオンポリマー1.0mg/を加え沈降分
離させて処理水を得る方法をとつていた。しか
し、活性汚泥の余剰汚泥と、化学酸化処理工程か
ら発生する酸化スラツジとの濃縮、脱水性が極め
て悪く、カチオンポリマーをSS当たり2.0%添加
してベルトプレス型脱水機で脱水しても、脱水ケ
ーキの含水率が85〜86%と高く、乾燥、焼却の燃
料費が非常に高額で、大きな問題となつていた。
Comparative Example (Conventional Example) At the human waste treatment plant in City I, F Prefecture, human waste diluted 20 times was treated using the activated sludge method according to the process shown in Figure 1, and then the color of the overflow water from settling tank 4 was changed. Every time,
Ferrous Sulfate 100 to remove COD, phosphoric acid
mg/(as Fe), and hydrogen peroxide H 2 O 2 100 mg/
After stirring for 4 hours at a pH of 3 to 3.5, slaked lime Ca(OH) 2 is added to neutralize the pH to 6 to 7, and 1.0 mg of anionic polymer is added and sedimentation is performed to obtain treated water. I was taking it. However, the concentration and dewatering properties of surplus activated sludge and oxidized sludge generated from the chemical oxidation treatment process are extremely poor, and even when cationic polymer is added at 2.0% per SS and dewatered using a belt press type dehydrator, The moisture content of the cake was as high as 85-86%, and the fuel costs for drying and incineration were extremely high, creating a major problem.

実施例 1 比較例に示した現状を根本的に改善するために
第2図に示す本発明方法を適用した。
Example 1 In order to fundamentally improve the current situation shown in the comparative example, the method of the present invention shown in FIG. 2 was applied.

すなわち、沈殿池4の越流水に、硫酸第1鉄を
Feとして100mg/(スタート時のみ)および
H2O2100mg/を添加して、比較例と同様の撹拌
条件、中和条件で化学酸化処理し、酸化スラツジ
を曝気槽にリサイクルさせた。次に、酸化スラツ
ジと生物処理スラツジとの混合スラツジ16bを
シツクナーで濃縮したのち(SS濃度4.0%)、硫酸
を加えてPHを1.5に調整後、2時間撹拌した。次
に、過酸化水素を2500ppmと水酸化マグネシウム
を加えPH2〜2.5の条件で20分間撹拌したのち、
フイルタープレス(供給圧力3Kgf/cm2、圧搾圧
力15Kgf/cm2)で脱水した結果、含水率65%とい
う著しい低含水率の脱水ケーキが得られた。
That is, ferrous sulfate is added to the overflow water of settling tank 4.
100mg/(starting only) as Fe and
100 mg of H 2 O 2 was added, chemical oxidation treatment was carried out under the same stirring conditions and neutralization conditions as in the comparative example, and the oxidized sludge was recycled to the aeration tank. Next, the mixed sludge 16b of oxidized sludge and biologically treated sludge was concentrated using a thickener (SS concentration: 4.0%), and sulfuric acid was added to adjust the pH to 1.5, followed by stirring for 2 hours. Next, 2500 ppm of hydrogen peroxide and magnesium hydroxide were added and stirred for 20 minutes at a pH of 2 to 2.5.
As a result of dehydration using a filter press (supply pressure 3 Kgf/cm 2 , squeezing pressure 15 Kgf/cm 2 ), a dehydrated cake with a significantly low water content of 65% was obtained.

一方、脱水分離水は、化学酸化処理工程8にリ
サイクルし、脱水分離水中の鉄分を再利用した結
果、新鮮な硫酸第1鉄の所要添加量は比較例の1/
10の10mg/(Feとして)に減少できた。以上
の結果、従来法(比較例)の問題点はすべて解決
され、脱水ケーキの乾燥、焼却費は節約され、し
かも、化学酸化処理工程から排出されるスラツジ
量は比較例に比べ1/10に減少でき、焼却灰の発生
量も減少し、処分に要する費用も低減化できた。
On the other hand, as a result of recycling the dehydrated separated water to chemical oxidation treatment step 8 and reusing the iron content in the dehydrated separated water, the required amount of fresh ferrous sulfate to be added is 1/1 of that of the comparative example.
It was possible to reduce it to 10 mg/(as Fe) of 10. As a result of the above, all the problems of the conventional method (comparative example) have been solved, the cost of drying and incinerating the dehydrated cake has been saved, and the amount of sludge discharged from the chemical oxidation process has been reduced to 1/10 compared to the comparative example. The amount of incinerated ash generated was also reduced, and the costs required for disposal were also reduced.

実施例 2 酸化剤としてH2O2の代わりにO3又は次亜塩素
酸ソーダを用いたほかは実施例1と同じ条件で処
理した結果、処理水のCODは(H2O2を使用した
場合5ppmであつたのに対し)O3による場合は
15ppmであり、次亜塩素酸ソーダを用いた場合は
18〜19ppmであつた。
Example 2 As a result of treatment under the same conditions as in Example 1 except that O 3 or sodium hypochlorite was used instead of H 2 O 2 as the oxidizing agent, the COD of the treated water was ( 5 ppm) while in the case of O 3
15ppm, and when using sodium hypochlorite
It was 18-19 ppm.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来法の系統説明図、第2図及び第3
図は本発明の各実施態様を示す系統説明図であ
る。 1……廃水、2a……曝気槽、2b……生物反
応槽、3……流出スラリー、4……沈殿池、5…
…スラツジ、6……返送汚泥、7……越流水、8
……化学酸化処理槽、9……硫酸鉄、10……過
酸化水素、11……中和槽、12……アルカリ
剤、13a……スラツジ、13b……酸化スラツ
ジ、14……沈殿池、15……処理水、16a…
…余剰汚泥、16b……混合スラツジ、17……
スラツジ、18……凝集剤、19……撹拌槽、2
0……遠心脱水機、21……脱水ケーキ、22…
…脱水分離水、23……酸処理槽、24……鉱
酸、25……撹拌槽、26……過酸化水素、27
……機械脱水機、28……脱水ケーキ、29……
脱水分離水、30……硫酸鉄、31……COD除
去槽、32……空気、33……過酸化水素。
Figure 1 is a diagram explaining the system of the conventional method, Figures 2 and 3
The figure is a system explanatory diagram showing each embodiment of the present invention. 1... Wastewater, 2a... Aeration tank, 2b... Biological reaction tank, 3... Effluent slurry, 4... Sedimentation tank, 5...
...Sludge, 6...Return sludge, 7...Overflow water, 8
... Chemical oxidation treatment tank, 9 ... Iron sulfate, 10 ... Hydrogen peroxide, 11 ... Neutralization tank, 12 ... Alkali agent, 13a ... Sludge, 13b ... Oxidation sludge, 14 ... Sedimentation tank, 15... Treated water, 16a...
...Excess sludge, 16b...Mixed sludge, 17...
Sludge, 18...Flocculant, 19...Stirring tank, 2
0...Centrifugal dehydrator, 21...Dehydrated cake, 22...
... Dehydrated separated water, 23 ... Acid treatment tank, 24 ... Mineral acid, 25 ... Stirring tank, 26 ... Hydrogen peroxide, 27
... Mechanical dehydrator, 28 ... Dehydrated cake, 29 ...
Dehydrated separated water, 30...iron sulfate, 31...COD removal tank, 32...air, 33...hydrogen peroxide.

Claims (1)

【特許請求の範囲】 1 有機性廃水を生物反応槽にて生物処理する工
程と、該生物処理工程の前段及び/又は後段に化
学酸化処理工程を組合わせて処理する方法におい
て、前記化学酸化処理工程で酸化剤と、水溶液中
で鉄イオンを解離する物質とを添加し、生成する
酸化スラツジを直接又は予め濃縮したのち前記生
物処理工程に添加し、前記生物処理工程から排出
される、生物処理スラツジと前記酸化スラツジと
の混合スラツジに鉱酸を添加したのち、さらに、
過酸化水素を添加し、機械脱水することを特徴と
する有機性廃水の処理方法。 2 前記化学酸化処理工程が、前記機械脱水工程
からの脱水分離水又は脱水分離水に前記過酸化水
素を添加したものを返送添加して処理されるもの
である特許請求の範囲第1項記載の処理方法。 3 前記化学酸化処理工程が、その後段に、前記
化学酸化処理工程で生成する前記スラツジの中和
処理工程を含むものである特許請求の範囲第1項
又は第2項記載の処理方法。 4 前記機械脱水工程の前段の前記過酸化水素を
添加する工程が、前記鉄イオンを解離する物質を
併用添加して処理されるものである特許請求の範
囲第1〜3項のいずれか一つの項記載の処理方
法。 5 前記機械脱水工程の前段の、前記過酸化水素
を添加する工程が、PHを2〜4に設定して処理さ
れるものである特許請求の範囲第1〜4項のいず
れか一つの項記載の処理方法。
[Scope of Claims] 1. A method of treating organic wastewater by combining a step of biologically treating organic wastewater in a biological reaction tank and a chemical oxidation treatment step before and/or after the biological treatment step, wherein the chemical oxidation treatment Biological treatment in which an oxidizing agent and a substance that dissociates iron ions in an aqueous solution are added in the process, and the resulting oxidized sludge is added to the biological treatment process either directly or after being concentrated in advance, and is discharged from the biological treatment process. After adding mineral acid to the mixed sludge of the sludge and the oxidized sludge, further
A method for treating organic wastewater characterized by adding hydrogen peroxide and mechanical dehydration. 2. The method according to claim 1, wherein the chemical oxidation treatment step is performed by returning and adding the dehydrated separated water from the mechanical dehydration step or the dehydrated separated water to which the hydrogen peroxide has been added. Processing method. 3. The treatment method according to claim 1 or 2, wherein the chemical oxidation treatment step includes a subsequent step of neutralizing the sludge produced in the chemical oxidation treatment step. 4. The method according to any one of claims 1 to 3, wherein the step of adding hydrogen peroxide before the mechanical dehydration step is performed by adding a substance that dissociates the iron ions in combination. Treatment method described in section. 5. The method according to any one of claims 1 to 4, wherein the step of adding hydrogen peroxide before the mechanical dehydration step is performed by setting the pH to 2 to 4. processing method.
JP9142980A 1980-07-04 1980-07-04 Disposal of organic waste water Granted JPS5719086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9142980A JPS5719086A (en) 1980-07-04 1980-07-04 Disposal of organic waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9142980A JPS5719086A (en) 1980-07-04 1980-07-04 Disposal of organic waste water

Publications (2)

Publication Number Publication Date
JPS5719086A JPS5719086A (en) 1982-02-01
JPS6339309B2 true JPS6339309B2 (en) 1988-08-04

Family

ID=14026124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9142980A Granted JPS5719086A (en) 1980-07-04 1980-07-04 Disposal of organic waste water

Country Status (1)

Country Link
JP (1) JPS5719086A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107265527A (en) * 2015-12-01 2017-10-20 蔡留凤 Composite water purifying agent and its application are prepared using aluminium scrap lime-ash

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6451200A (en) * 1987-08-20 1989-02-27 Mitsuo Saito Treatment of waste
JPH0655320B2 (en) * 1987-09-02 1994-07-27 満郎 齋藤 Waste treatment agent and waste treatment method
JPH04131188A (en) * 1990-09-25 1992-05-01 Daiso Co Ltd Treatment of waste water
CN102838201A (en) * 2012-09-28 2012-12-26 天津莱特化工有限公司 Process for treating industrial wastewater by enhanced Fenton method
CN117756371B (en) * 2023-12-15 2024-06-25 中国科学院重庆绿色智能技术研究院 Chemical conditioning and dewatering control method for reservoir sediment sludge

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5245582A (en) * 1975-10-09 1977-04-11 Tokai Denka Kogyo Kk Solid-liquid separation method of organic waste fluid sludge
JPS534356A (en) * 1976-07-02 1978-01-14 Toho Beslon Co Drainage treating method
JPS5399657A (en) * 1977-02-14 1978-08-31 Mitsubishi Heavy Ind Ltd Method of oxidizing waste water
JPS5419549A (en) * 1977-07-14 1979-02-14 Toa Gosei Chem Ind Method of highly treating nighttsoil secondary treated water
JPS5462655A (en) * 1977-10-26 1979-05-19 Mitsubishi Gas Chemical Co Method of treating sludge

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5245582A (en) * 1975-10-09 1977-04-11 Tokai Denka Kogyo Kk Solid-liquid separation method of organic waste fluid sludge
JPS534356A (en) * 1976-07-02 1978-01-14 Toho Beslon Co Drainage treating method
JPS5399657A (en) * 1977-02-14 1978-08-31 Mitsubishi Heavy Ind Ltd Method of oxidizing waste water
JPS5419549A (en) * 1977-07-14 1979-02-14 Toa Gosei Chem Ind Method of highly treating nighttsoil secondary treated water
JPS5462655A (en) * 1977-10-26 1979-05-19 Mitsubishi Gas Chemical Co Method of treating sludge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107265527A (en) * 2015-12-01 2017-10-20 蔡留凤 Composite water purifying agent and its application are prepared using aluminium scrap lime-ash

Also Published As

Publication number Publication date
JPS5719086A (en) 1982-02-01

Similar Documents

Publication Publication Date Title
JPS6210720B2 (en)
JPS6339309B2 (en)
JP2928569B2 (en) Water purification method
JPH0124558B2 (en)
JP2007061773A (en) Organic sludge treatment method and apparatus
JP3326080B2 (en) How to reduce organic sludge
JPH03106493A (en) Treating waste water
JPS58153594A (en) Treatment of organic waste
JPS6339308B2 (en)
JPH0141110B2 (en)
JPS6339307B2 (en)
JPS6320600B2 (en)
JP3383541B2 (en) Biological treatment method and apparatus for organic wastewater
JPH0585240B2 (en)
JP3326084B2 (en) How to reduce organic sludge
JPS591118B2 (en) How to treat organic wastewater
JPH0445236B2 (en)
JPS5942099A (en) Treatment of waste water containing hardly biologically decomposable material
JPH0155920B2 (en)
JPS63315197A (en) Treatment process for organic waste water
JPS6254077B2 (en)
JPS591117B2 (en) How to treat organic wastewater
JPS5940520B2 (en) How to treat organic wastewater
JPH0141119B2 (en)
JPH091162A (en) High degree treating method for waste water and catalyst for oxidation treatment of waste water