JPH04131188A - Treatment of waste water - Google Patents

Treatment of waste water

Info

Publication number
JPH04131188A
JPH04131188A JP25583890A JP25583890A JPH04131188A JP H04131188 A JPH04131188 A JP H04131188A JP 25583890 A JP25583890 A JP 25583890A JP 25583890 A JP25583890 A JP 25583890A JP H04131188 A JPH04131188 A JP H04131188A
Authority
JP
Japan
Prior art keywords
oxidizing agent
wastewater
catalyst
waste water
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25583890A
Other languages
Japanese (ja)
Inventor
Toshiyuki Ikeda
俊幸 池田
Hiroshi Takatomi
廣志 高富
Shinji Yamauchi
信次 山内
Toshio Muranaga
村永 外志雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP25583890A priority Critical patent/JPH04131188A/en
Publication of JPH04131188A publication Critical patent/JPH04131188A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the COD or BOD of waste water by decomposing org. matter in the waste water using an oxidizing agent and a metal compound as its catalyst. CONSTITUTION:An oxidizing agent, together with a metal compound as a catalyst, is brought into contact with waste water to decompose the oxidizing agent and, at the same time, decompose and remove org. matter contained in the waste water. The salt of alkali metal such as sodium hypochlorite and potassium hypochlorite and the salt of alkaline earth metal such as calcium hypochlorite are suitable for use as the oxidizing agent. The metal compound for use as the catalyst are nickel, cobalt, copper or iron chloride, sulfate, nitrate and hydroxide. A pH value of about 8.5-10 is suitable at the time of contacting the waste water and the catalyst. This method permits an efficient reduction in the high concn. of COD or BOD.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は排水の処理方法に関する。特に工場排水のCO
D、BODを低下させる処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for treating wastewater. In particular, CO from factory wastewater
D. Concerning a treatment method for lowering BOD.

〔従来の技術〕[Conventional technology]

従来、工場等の排水処理方法としては好気性微生物を用
いた活性汚泥法や酸素曝気法、あるいは活性炭による浜
過法等が一般に用いられている。
Conventionally, activated sludge method using aerobic microorganisms, oxygen aeration method, or sand filtration method using activated carbon are generally used as methods for treating wastewater from factories and the like.

活性汚泥法については、活性汚泥が排水中の有機物を支
障なく分解し排水を浄化するためには、微生物か増殖て
きる条件を整える必要かあり、pH。
Regarding the activated sludge method, in order for activated sludge to decompose organic matter in wastewater without any problems and purify the wastewater, it is necessary to create conditions for microorganisms to grow, and the pH must be adjusted.

水温、栄養条件さらに十分な酸素の供給か必要である。Water temperature, nutritional conditions, and sufficient oxygen supply are necessary.

排水中には必ずしも微生物の増殖に好都合な物質たけて
なくこれを阻害する物質を含む場合も多くこれを除去す
るとともに、微生物を阻害物質の影響を受けない状態に
馴致することも重要であり、工程の維持管理面に複雑な
要素か多い。また酸素又は空気による曝気法については
簡単であり、小形の設備によく利用されているか十分な
効果か得られていないのか現状である。また活性炭によ
る浜過あるいは吸着等については微量の有機物(COD
約10〜20ppm)には効果かあるが、吸着量か少な
いのて高濃度の場合は適当てない。
Wastewater does not necessarily contain substances that are favorable for the growth of microorganisms, but often also contains substances that inhibit it, and it is important to remove these substances and also to adapt the microorganisms to a state where they are not affected by the inhibitory substances. There are many complicated elements in the maintenance and management aspects of the process. In addition, aeration methods using oxygen or air are simple and are often used in small-sized equipment, but the current situation is that they are not sufficiently effective. In addition, activated carbon absorbs trace amounts of organic matter (COD), etc.
It is effective at about 10 to 20 ppm), but the adsorption amount is small and it is not suitable for high concentrations.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

本発明は、酸化剤とその分解触媒となる金属化合物を使
用して、排水中の有機物を分解せしめ排水のCODもし
くはBODを低下させることを目的とする。
The present invention aims to decompose organic matter in wastewater using an oxidizing agent and a metal compound serving as a decomposition catalyst, thereby lowering the COD or BOD of the wastewater.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はすなわち排水に、酸化剤とニッケル。 In other words, the present invention uses an oxidizing agent and nickel in wastewater.

コバルト、銅及び鉄より選ばれた1種又は2種以上の金
属塩もしくは金属水酸化物とを接触させて、該酸化剤を
分解せしめるとともに排水中に含まれる有機物を分解除
去することを特徴とする排水の処理方法である。
The oxidizer is brought into contact with one or more metal salts or metal hydroxides selected from cobalt, copper, and iron to decompose the oxidizing agent and to decompose and remove organic substances contained in the wastewater. This is a method for treating wastewater.

本発明方法に使用される酸化剤どしては次亜塩素酸塩、
例えば次亜塩素酸ナトリウム、次亜塩素酸カリウム等の
アルカリ金属塩、次亜塩素酸カルシウム等のアルカリ土
類金属塩か好適であり、また過硫酸塩、例えば過硫酸ナ
トリウム、過硫酸カリウム、過硫酸アンモニウム等も使
用される。これらの酸化剤は上記金属塩もしくは金属水
酸化物によって容易に分解し発生期の酸素を放出する。
Oxidizing agents used in the method of the invention include hypochlorite,
For example, alkali metal salts such as sodium hypochlorite and potassium hypochlorite, alkaline earth metal salts such as calcium hypochlorite are suitable, and persulfates such as sodium persulfate, potassium persulfate, persulfate, etc. Ammonium sulfate and the like are also used. These oxidizing agents are easily decomposed by the metal salts or metal hydroxides and release nascent oxygen.

上記金属塩もしくは金属水酸化@(以下触媒という)と
してはニッケル、コバルト、銅、又は鉄の塩化物、硫酸
塩、硝醜塩、水酸化物等か挙けられる。これら触媒の形
態は粉末又は粉末を成形した粒状、ペレット状1円柱状
2あるいは活性炭、セライ)・ セビオライト、モンモ
リロナイト等の担体に触媒を担持させたもの等種々用い
られる。
Examples of the metal salts or metal hydroxides (hereinafter referred to as catalysts) include chlorides, sulfates, nitric salts, and hydroxides of nickel, cobalt, copper, or iron. These catalysts can be used in various forms, such as powder, granules formed from powder, pellets, cylindrical shapes, or catalysts supported on carriers such as activated carbon, Seviolite, and montmorillonite.

排水と触媒とを接触させる方法は排水に触媒を添加後、
又は添加と同時に酸化剤を添加して攪拌する回分方式、
あるいは粒状触媒、触媒担持体を充填したカラムに酸化
剤を添加した排水を通過させるカラム方式のいずれでも
よい。
The method of bringing the wastewater into contact with the catalyst is to add the catalyst to the wastewater, then
Or a batch method in which the oxidizing agent is added and stirred at the same time as the addition.
Alternatively, a column method may be used in which wastewater to which an oxidizing agent has been added is passed through a column filled with a granular catalyst or catalyst carrier.

回分方式の場合、触媒の添加量は排水中のCODもしく
はBODの濃度にもよるが、排水量に対し0. OO]
〜10重量%好ましくは0.01〜1重量%である。酸
化剤の添加量は排水中のCODもしくはBOD濃度にも
よるが、これら濃度の理論値の1.2〜2.0倍径度か
好ましい。なお分解し難い有機物を含む排水については
この範囲を超える場合もある。
In the case of a batch system, the amount of catalyst added depends on the concentration of COD or BOD in the waste water, but the amount of catalyst added is 0. OO]
-10% by weight, preferably 0.01-1% by weight. The amount of the oxidizing agent added depends on the concentration of COD or BOD in the waste water, but is preferably 1.2 to 2.0 times the theoretical value of these concentrations. Note that this range may be exceeded for wastewater containing organic matter that is difficult to decompose.

排水と触媒とを接触させるときのpHは、これらの触媒
の水中への溶出を防止するためにアルカリ性に調整する
必要があり、p H8,5〜10程度が適当である。
The pH when bringing the waste water into contact with the catalyst needs to be adjusted to be alkaline in order to prevent the catalyst from leaching into the water, and a pH of about 8.5 to 10 is appropriate.

なお酸化剤として次亜塩素酸塩を使用する場合の排水の
処理温度は常温でよいが、過硫酸塩を使用する場合は6
0°C以上に保つ必要かある。また造粒後触媒の乾燥温
度は空気中では60’C以下、不活性ガス中では60〜
250″C程度である。また造粒された触媒あるいは触
媒担持体を直ちに使用せず保存する場合は、予め酸化剤
によりその表面処理を行うことか安定性を保つために有
効である。
When using hypochlorite as an oxidizing agent, the wastewater treatment temperature may be at room temperature, but when using persulfate,
Is it necessary to keep it above 0°C? In addition, the drying temperature of the catalyst after granulation is 60'C or less in air, and 60-60'C in inert gas.
The temperature is approximately 250''C. If the granulated catalyst or catalyst support is to be stored without being used immediately, it is effective to perform surface treatment with an oxidizing agent in advance to maintain stability.

〔イ乍用〕[For use]

本発明方法は排水中に添加された次亜塩素酸塩等の酸化
剤がニッケル、コバルト、銅又は鉄の金属塩もしくは金
属水酸化物の触媒作用によりその分解か促進されて発生
期の酸素を生し、これにより排水中の有機物か分解除去
されるものである。
In the method of the present invention, the decomposition of oxidizing agents such as hypochlorite added to wastewater is accelerated by the catalytic action of metal salts or metal hydroxides of nickel, cobalt, copper, or iron, and the nascent oxygen is removed. This process decomposes and removes the organic matter in the wastewater.

〔実施例〕〔Example〕

以下実施例により本発明の詳細な説明する。 The present invention will be explained in detail below with reference to Examples.

実施例I C0D I 10 oppmの工場排水を採取し、これ
に下記方法により製造された触媒を作用させた。
Example I C0D I 10 oppm of industrial wastewater was collected and treated with a catalyst produced by the method described below.

すなわち500mlのビーカーに入れた純水100mj
l’にNiSO4−6H2012gを加え約10分間攪
拌して溶解させ、これに径2mmのセビオライト(近江
鉱業社製)100gを攪拌しなから添加し約1時間硫酸
ニッケルを含浸させて添着させた。これに有効塩素濃度
13重量%の次亜塩素酸ナトリウム30mnを加えて約
15分間攪拌し硫酸ニッケルか茶黒色になるまて表面処
理を行った。得られた触媒]Ogを300mlのビーカ
ーに採集し、こねに上記工場排水200mrと濃度13
重量%の次亜塩素酸ナトリウム溶液20 m lを加え
て攪拌した(I)HI3.45)。30分後触媒を浜過
分離し排水溶液をJIS−KO102によって分析した
ところCODは90ppmであった。
In other words, 100mj of pure water in a 500ml beaker
2012 g of NiSO4-6H was added to l' and dissolved by stirring for about 10 minutes, and 100 g of Seviolite (manufactured by Ohmi Mining Co., Ltd.) having a diameter of 2 mm was added thereto without stirring, and impregnated with nickel sulfate for about 1 hour. To this, 30 ml of sodium hypochlorite having an effective chlorine concentration of 13% by weight was added, and the mixture was stirred for about 15 minutes, and the surface was treated until it became nickel sulfate or brownish-black. Obtained catalyst] Og was collected in a 300 ml beaker, mixed with 200 ml of the above factory wastewater and a concentration of 13
20 ml of a wt % sodium hypochlorite solution was added and stirred (I) HI 3.45). After 30 minutes, the catalyst was filtered and the wastewater solution was analyzed according to JIS-KO102, and the COD was found to be 90 ppm.

実施例2 比較例 実施例1と同し工場排水(CODIlooppm)各2
00m1を採取し、これに下記金属塩粉末及び存効塩素
濃度13重量%の次亜塩素酸すl・リウム溶液20mj
?(理論量の約2倍)をそれぞれ添加し、液温20℃、
pH12,45にて30分間攪拌後、金属塩をt月過分
離しJll−KO102に従って処理後排水のCODの
分析を行った結果を次表に示す。なおNα11は次亜塩
素酸ナトリウム溶液のみを加えた比較例である。
Example 2 Comparative Example Same as Example 1 Factory wastewater (CODIlooppm) 2 each
00ml was collected, and to this was added the following metal salt powder and 20ml of sulfur/lium hypochlorite solution with an effective chlorine concentration of 13% by weight.
? (approximately twice the theoretical amount), the liquid temperature was 20℃,
After stirring for 30 minutes at pH 12.45, the metal salts were separated for t months, and the COD of the treated wastewater was analyzed according to Jll-KO102. The results are shown in the following table. Note that Nα11 is a comparative example in which only a sodium hypochlorite solution was added.

第1表 実施例3 粉末モンモリロナイト1kgに水酸化ニッケル200g
、塩化鉄200gとα型セビオライト400gを添加し
て、これを高速攪拌機(FDG−C−5J  深沈工業
社製)にて攪拌混合しこれを円筒造粒機にかけて造粒し
た(外径4mm、長さ5〜6mm)。これを窒素ガス雰
囲気の乾燥機150°Cにて乾燥して得られた触媒]O
gを使用した以外は実施例1と全く同様にして同し工場
排水200mlの処理を行ったところ30分後のCOD
濃度は120ppmであった。
Table 1 Example 3 1 kg of powdered montmorillonite and 200 g of nickel hydroxide
, 200 g of iron chloride and 400 g of α-type Seviolite were added, stirred and mixed using a high-speed stirrer (FDG-C-5J manufactured by Fukushin Kogyo Co., Ltd.), and then granulated using a cylindrical granulator (outer diameter: 4 mm, length: 5-6 mm). The catalyst obtained by drying this in a dryer at 150°C in a nitrogen gas atmosphere]
200 ml of the same factory wastewater was treated in the same manner as in Example 1 except that g was used, and the COD after 30 minutes was
The concentration was 120 ppm.

実施例4 実施例1にて得られた触媒9.2gを内径20mm。Example 4 9.2 g of the catalyst obtained in Example 1 had an inner diameter of 20 mm.

高さ30Cmのカラムに25cm深さに充填し、工場排
水(COD300〜400ppm)10Iに有効塩素濃
度13重量%の次亜塩素酸ナトリウム溶液を500mj
?添加した液を上記カラムに上向流にて通液(SV=2
.0hr−’、LV=0.5m/hr)したところ、出
口の排液中のCODは30〜60ppmとなり良好な結
果か得られた。
A column with a height of 30 cm was filled to a depth of 25 cm, and 500 mj of a sodium hypochlorite solution with an effective chlorine concentration of 13% by weight was added to 10 I of industrial wastewater (COD 300-400 ppm).
? The added solution was passed through the column in an upward flow (SV=2
.. 0 hr-', LV=0.5 m/hr), the COD in the waste liquid at the outlet was 30 to 60 ppm, which was a good result.

実施例5 COD1300ppm、80″Cの工場排水を500m
lのビーカーに200mA’採取し、ウオターパスにて
80″Cに保温し、これにN15O1・68201gを
添加し、酸化剤としてに=、S20a3gを加え、次い
て苛性ソーダにてpH9に調整した。この液を攪拌しな
から10分後、さらに酸化剤1gを加えて同様にpH調
整を行い、合計30分間反応させた。非常に分解し難い
排水であったが、この処理によりCOD80ppmとな
った。
Example 5 500m of industrial wastewater with COD 1300ppm and 80″C
A sample of 200 mA' was collected in a 1-liter beaker and kept at 80''C with a water pass. 68201 g of N15O1 was added to this, 3 g of S20a was added as an oxidizing agent, and the pH was adjusted to 9 with caustic soda. This solution After 10 minutes without stirring, 1 g of oxidizing agent was added, the pH was adjusted in the same way, and the reaction was carried out for a total of 30 minutes.Although the waste water was very difficult to decompose, this treatment reduced the COD to 80 ppm.

〔発明の効果〕〔Effect of the invention〕

本発明方法によれば、工場等の排水中の有機物を分解し
比較的高濃度のCODやBODを効率よく低下させるこ
とができる。また使用される金属塩や金属水酸化物は少
量てよく触媒的作用によりそれ自体は化学変化や溶出を
起こさぬので再生使用も可能である。さらに従来法に比
へて小規模な装置、簡易な方法て行いうるのて工業的に
有利である。
According to the method of the present invention, it is possible to decompose organic matter in wastewater from factories, etc., and to efficiently reduce relatively high concentrations of COD and BOD. In addition, only a small amount of metal salts or metal hydroxides are used, and because they themselves do not undergo chemical change or elution due to their catalytic action, they can be recycled. Furthermore, it is industrially advantageous because it can be carried out using a smaller-scale apparatus and a simpler method than conventional methods.

Claims (5)

【特許請求の範囲】[Claims] (1)排水に、酸化剤とニッケル、コバルト、銅及び鉄
より選ばれた1種又は2種以上の金属塩もしくは金属水
酸化物とを接触させて、該酸化剤を分解せしめるととも
に排水中に含まれる有機物を分解除去することを特徴と
する排水の処理方法。
(1) Bringing an oxidizing agent into contact with one or more metal salts or metal hydroxides selected from nickel, cobalt, copper, and iron to decompose the oxidizing agent and adding it to the wastewater. A method for treating wastewater, characterized by decomposing and removing the organic matter contained therein.
(2)上記酸化剤が次亜塩素酸塩又は過硫酸塩である請
求項1に記載の排水の処理方法。
(2) The method for treating wastewater according to claim 1, wherein the oxidizing agent is a hypochlorite or a persulfate.
(3)上記金属塩がニッケル、コバルト、銅又は鉄の塩
化物、硫酸塩、硝酸塩である請求項1に記載の排水の処
理方法。
(3) The method for treating wastewater according to claim 1, wherein the metal salt is a chloride, sulfate, or nitrate of nickel, cobalt, copper, or iron.
(4)上記金属塩もしくは金属水酸化物の接触が、これ
らの粉末もしくは担持体を排水に添加後もしくは添加と
同時に酸化剤を添加し攪拌することを特徴とする請求項
1に記載の排水の処理方法。
(4) The metal salt or metal hydroxide is brought into contact with the wastewater according to claim 1, wherein an oxidizing agent is added and stirred after or simultaneously with the addition of the powder or carrier to the wastewater. Processing method.
(5)上記金属塩もしくは金属水酸化物の接触が、これ
らの担持体もしくは造粒体をカラムに充填し酸化剤を添
加した排水を通液させることを特徴とする請求項1に記
載の排水の処理方法。
(5) The wastewater according to claim 1, wherein the contact with the metal salt or metal hydroxide is carried out by filling a column with these carriers or granules and passing the wastewater to which an oxidizing agent has been added. processing method.
JP25583890A 1990-09-25 1990-09-25 Treatment of waste water Pending JPH04131188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25583890A JPH04131188A (en) 1990-09-25 1990-09-25 Treatment of waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25583890A JPH04131188A (en) 1990-09-25 1990-09-25 Treatment of waste water

Publications (1)

Publication Number Publication Date
JPH04131188A true JPH04131188A (en) 1992-05-01

Family

ID=17284300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25583890A Pending JPH04131188A (en) 1990-09-25 1990-09-25 Treatment of waste water

Country Status (1)

Country Link
JP (1) JPH04131188A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002045436A (en) * 2000-08-03 2002-02-12 Noritsu Koki Co Ltd Cracking treatment method for hazardous material and apparatus for the same
KR20030065837A (en) * 2002-02-01 2003-08-09 이세진 Treatment of polluted water using catalysis oxidation number
JP5194223B1 (en) * 2012-03-05 2013-05-08 株式会社セイネン Chemical treatment agent
CN108689474A (en) * 2018-06-15 2018-10-23 武汉工程大学 A kind of water treatment agent and method for treating water of the catalyst of di-iron trioxide containing calcium analysis

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5223860A (en) * 1975-08-19 1977-02-23 Asahi Glass Co Ltd Drainage disposal process
JPS5342446A (en) * 1976-09-28 1978-04-17 Asahi Glass Co Ltd Drainage treating agent
JPS5719086A (en) * 1980-07-04 1982-02-01 Ebara Infilco Co Ltd Disposal of organic waste water

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5223860A (en) * 1975-08-19 1977-02-23 Asahi Glass Co Ltd Drainage disposal process
JPS5342446A (en) * 1976-09-28 1978-04-17 Asahi Glass Co Ltd Drainage treating agent
JPS5719086A (en) * 1980-07-04 1982-02-01 Ebara Infilco Co Ltd Disposal of organic waste water

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002045436A (en) * 2000-08-03 2002-02-12 Noritsu Koki Co Ltd Cracking treatment method for hazardous material and apparatus for the same
KR20030065837A (en) * 2002-02-01 2003-08-09 이세진 Treatment of polluted water using catalysis oxidation number
JP5194223B1 (en) * 2012-03-05 2013-05-08 株式会社セイネン Chemical treatment agent
JP2013184983A (en) * 2012-03-05 2013-09-19 Seinen:Kk Chemical treatment agent
CN108689474A (en) * 2018-06-15 2018-10-23 武汉工程大学 A kind of water treatment agent and method for treating water of the catalyst of di-iron trioxide containing calcium analysis

Similar Documents

Publication Publication Date Title
EP0200834B1 (en) Removal of ammonia from wastewater
CA1238995A (en) Process for waste treatment
JPH0716669B2 (en) Method for treating running water containing undesired amounts of cyanide
JPH10174976A (en) Method for treating water containing nitrogen compound
US5705078A (en) Oxidative removal of aqueous cyanide by manganese(IV)-containing oxides
EP0859746A1 (en) Advanced oxidation of water using catalytic ozonation
WO2005075355A2 (en) Process of removal of ammonium from waste water
JPH04131188A (en) Treatment of waste water
JPH09276881A (en) Treatment of nitrogen compound-containing water
EP1594806B1 (en) Method for the removal of organic and inorganic contaminants from an aqueous liquid
KR19980046307A (en) Method and apparatus for reuse by chemical treatment of regeneration water used for regeneration of NH₄ + saturated zeolite
JP2004216367A (en) Treatment agent for nitric acid phase and nitrous acid phase nitrogen-containing compound, and treatment method for soil or water using the same
Gogolashvili et al. Detoxication of hydrazine in waste waters
SU1357063A1 (en) Method of regenerating ionite
KR100520133B1 (en) Agent for Denitrification of Wastewater and method for preparing thereof
JP4450146B2 (en) COD component-containing water treatment method
JPH0417118B2 (en)
JP3269176B2 (en) Method of treating ammonium fluoride-containing water
JP2009183902A (en) Treatment method of nitrate nitrogen-containing water
JPH1043771A (en) Denitrifying treatment and device therefor
KR100327946B1 (en) Method for eliminating nitrate using fine reduced iron powder
JPH0218908B2 (en)
JPS6158237B2 (en)
HU201893B (en) Process for chemical removing nitrate and nitrite content of waters
JP2004313947A (en) Treatment method of organic material-containing water