JPH03106493A - Treating waste water - Google Patents

Treating waste water

Info

Publication number
JPH03106493A
JPH03106493A JP1244730A JP24473089A JPH03106493A JP H03106493 A JPH03106493 A JP H03106493A JP 1244730 A JP1244730 A JP 1244730A JP 24473089 A JP24473089 A JP 24473089A JP H03106493 A JPH03106493 A JP H03106493A
Authority
JP
Japan
Prior art keywords
sludge
wastewater
added
decomposition
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1244730A
Other languages
Japanese (ja)
Other versions
JP2830164B2 (en
Inventor
Isamu Kato
勇 加藤
Masaaki Shishido
宍戸 正明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP1244730A priority Critical patent/JP2830164B2/en
Publication of JPH03106493A publication Critical patent/JPH03106493A/en
Application granted granted Critical
Publication of JP2830164B2 publication Critical patent/JP2830164B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To reduce the use amt. of coagulant and the vol. of sludge to be formed by a method wherein hydrogen peroxide is added is to settled sludge in the presence of ion salt, and its pH is adjusted so as not to exceed a specific value in order to subject the settled sludge to oxidative decomposition and the resulting decomposition products are added to the waste to be treated so as to recover coagulant. CONSTITUTION:Separately settled sludge in a sedimentation tank 2 is admixed with hydrogen peroxide (H2O2) from a pipe 17 and further with acids such as H2SO4 and HCl in an oxidative decomposition tank 3 in order to adjust its pH to a value not exceeding 4 and then subjected to the oxidative decomposition by Fenton reaction. Org. substances in the sludge are decomposed and, due to the acidic conditions thereof, the Mg compounds existing in the sludge as Mg(OH)2 are dissociated into Mg<2+> so as to be completely dissolved therein. Therefore, since the Mg<2+>, a coagulating component, is contained in the liq. decomposition product of the sludge, by the addition of this liq. to waste water, its coagulating treatment can be effected and, in this way, the amt. of the coagulant used can be reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は廃水の処理方法に係り、特に有機性廃水に凝集
剤としてマグネシウム化合物を加えて凝集処理する方法
において、凝集剤の使用量及び汚泥発生量を大幅に低減
することができる廃水の処理方法に関する. [従来の技術] 有機物を含む廃水の処理は一般に生物処理が行なわれて
いるが、ノニオン系界面活性剤等の界面活性剤廃水や染
色廃水等のようにwI集処理が可能な廃水については凝
集処理がなされている。この場合、凝集処理にはアル主
ニム塩、鉄塩、マグネシウム塩等がW1集剤として使用
されている.具体的には、有機性廃水、特に界面活性剤
廃水、染色廃水等を海水中のマグネシウム塩を利用して
凝集処理を行なうことが公知である(特開昭48−21
668、特公昭49−4676!5等).特にマグネシ
ウム塩Cよる処理は鉄塩で処理するよりは凝集効果が優
れており、好ましい方法である.このような凝集処理に
より生成する懸濁液を固液分離して得られる汚泥は、脱
水後処分される。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for treating wastewater, and particularly in a method for flocculating organic wastewater by adding a magnesium compound as a flocculant, the amount of flocculant used and sludge This paper relates to a wastewater treatment method that can significantly reduce the amount generated. [Conventional technology] Biological treatment is generally used to treat wastewater containing organic matter, but for wastewater that can be treated with waste water, such as surfactant wastewater such as nonionic surfactant wastewater and dyeing wastewater, flocculation is used. Processing is being done. In this case, aluminum-based salts, iron salts, magnesium salts, etc. are used as W1 collectors in the flocculation process. Specifically, it is known that organic wastewater, especially surfactant wastewater, dyeing wastewater, etc., is subjected to flocculation treatment using magnesium salts in seawater (Japanese Patent Laid-Open No. 48-21
668, Special Publication Showa 49-4676!5 etc.). In particular, treatment with magnesium salt C has a better flocculation effect than treatment with iron salt, and is therefore a preferred method. The sludge obtained by solid-liquid separation of the suspension produced by such aggregation treatment is dehydrated and then disposed of.

[発明が解決しようとするi!I題] このような有機性廃水の凝集処理において、従来、凝集
剤は使い捨てとされている.例えば、上記海水中のマグ
ネシウム塩を利用する方法においても、凝集剤使用量の
低減については検討はなされておらず、発生汚泥の処分
についても何ら触れられていない.このため、凝集処理
費や汚泥処分費等の面で極めて効率が悪いという欠点が
あった。
[The invention attempts to solve i! Issue I] In the flocculation treatment of organic wastewater, flocculants have traditionally been considered disposable. For example, even in the above-mentioned method of using magnesium salts in seawater, there is no study on reducing the amount of flocculant used, and no mention is made of the disposal of the generated sludge. For this reason, there was a drawback that efficiency was extremely low in terms of coagulation processing costs, sludge disposal costs, and the like.

本発明は上記従来の問題点を解決し、凝集剤を回収する
ことにより、凝集剤使用量を低減し、また汚泥発生量を
減容化する廃水の処理方法を提供することを目的とする
. [課題を解決するための手段] 本発明の廃水の処理方法は、原水の有機性廃水にマグネ
シウム化合物を加え、pH10〜14に調整して得られ
る懸濁液を固液分離して処理水と沈殿汚泥とに分離する
廃水の処理方法Cおいて、該沈殿汚泥に鉄塩共存下で過
酸化水素を添加するとともにpHを4以下に調節して沈
殿汚泥を酸化分解し、得られる分解物を原水に添加する
ことを特徴とする. 以下に本発明を図面を参照して詳細に説明する。
It is an object of the present invention to solve the above-mentioned conventional problems and provide a wastewater treatment method that reduces the amount of coagulant used and reduces the volume of sludge generated by recovering the coagulant. [Means for Solving the Problems] The wastewater treatment method of the present invention includes adding a magnesium compound to raw organic wastewater, adjusting the pH to 10 to 14, separating the obtained suspension into solid and liquid, and separating it into treated water. In method C for treating wastewater that is separated into precipitated sludge, hydrogen peroxide is added to the precipitated sludge in the coexistence of iron salt, and the pH is adjusted to 4 or less to oxidize and decompose the precipitated sludge, and the resulting decomposed product is It is characterized by being added to raw water. The present invention will be explained in detail below with reference to the drawings.

第1図は本発明の廃水の処理方法の一実施例を示す系統
図である. 本実施例の方法において、まず、配管!1より凝集4!
1に導入した原水に、配管12より凝集剤としてマグネ
シウム(Mg)塩等のMg化合物を添加し、同時に鉄(
Fe)塩及びpH調整剤としてNaOH等のアルカリ等
を添加し、更に必要に応じてポリアクリルアよド加水分
解物等のポリマーを添加して凝集処理する. Mg化合物を用いる凝集処理の最適pHは10〜l4で
あるが、本発明においては、過剰のマグネシウムイオン
(Mg”)を完全に沈殿させるためにPHII〜12で
凝集を行なうのが好ましい.即ち、Mg 2+を完全に
沈殴させ、aa処理後固液分離して得られる沈殿汚泥中
に、添加したMg化合物のほぼ全量を取り込むようにす
ることにより、Mg 24″の循環再利用効率が向上す
るため極めて有利である.この場合、pH調整に用いる
pH調整剤としてはNaOHの他、Ca (OH)2等
のアルカリ、或いは場合によってHaSO4,HCJ2
等の酸を用いることができる. 用いるMg化合物としてはM g S O 4、MgC
j!2等のMg塩の他、MgO、Mg(OH)2等が挙
げられる.本発明においては、原水のpHに応じて添加
するMg化合物を変え、pH調整作用を得るのが効果的
である.即ち、原水が酸性廃水である場合にはMgOや
Mg (OH)2等のアルカリ性Mg化合物を添加する
。これにより、Mg化合物が凝集剤としての作用と共に
、アルカリ剤としてpH調整作用を奏するため経済的で
ある.原水が中性ないしアルカリ性の廃水である場合に
はMg塩を用いるのが有利である. Mg化合物の初期添加量は、原水水質によっても異なる
が、通常の場合、CODcrに対して5〜20倍程度の
割合で添加するのが好ましい.Fe塩は後述の酸化分解
の触媒である.従って、Fe塩は後述の酸化分解槽3或
いはそれよりも上流のどの工程に添加しても良いが、本
実施例の如く、凝集槽mに添加することにより、凝集系
内にFeの水酸化物が生成し、これが凝集効率を向上さ
せる作用を奏するため極めて有利である.Fa塩として
は硫酸第一鉄、塩化第一鉄等の第一鉄塩、塩化第二鉄、
硫酸第二鉄等の第二鉄塩のいずれをも用いることができ
る. なお、凝集槽1に添加するボリマーとしては、ポリアク
リルアよド郎分加水分解物等を用いることができる.本
発明において、ボリマーの添加は必ずしも必要とされな
いが、ポリマーを添加することにより凝集効率を向上さ
せることができる.ボリマーを添加する場合、その添加
量は廃水量に対して1〜5ppm程度とするのが好まし
い.凝集槽lの凝集処理液は、配管13より沈殿槽2等
の固液分離手段に送給して固液分離を行なう.この沈殿
4!2としては自然沈![を用いることができ、その他
、遠心分離機、フィルタープレス、ベルトプレス等の固
液分離手段を用いることもできる. 沈殿槽2にて固液分離して得られた処理水は、配管14
より糸外に排出され、必要社応じて更に適当な浄化処理
を行なった後放流される.一方、沈殿槽2にて分離され
た沈殿汚泥は、配管15、16を経て酸化分解檜3に送
給する.そして、酸化分解槽3にて、配管17より過酸
化水素(H2 02)を添加すると共にH2 504、
HCj2等の酸を添加してpHを4以下社調整してフェ
ントン反応により酸化分解を行なう.フェントン反応は
一般的な条件で行なうことができる.即ち、H 2 0
 2 / F 6 (重量比)は1〜100、H202
濃度(ppm)は処理汚泥中のCODc?(0換算)の
1〜3倍、pHは2〜4、反応時間は2〜4時間で行な
うのが好ましい.従って、前記凝集禮1におけるFe塩
の添加量は、この酸化分解槽3におけるフエントン反応
条件の好適Fe塩量となるようじ適宜決定される. 酸化分解槽3におけるフエントン反応により、汚泥中の
有機物は分解され、また、汚泥中にMg(OH)2とし
て存在するMg化合物も系内が酸性条件であることから
、Mg″ゝとなって完全に溶解する.従って、酸化分解
I13における前記沈殿汚泥の酸化分解IAFI!によ
り得られる分解物は、液状ないし薄いスラリー状となる
. このような酸化分解処理液は、配管18より凝集槽1に
循環し、原水の凝集処理に用い、同様の処理を繰り返す
. なお、本発明において、凝集剤として用いたMg化合物
は、前述の如く、酸化分解I!3にてMg 24″とな
って溶解するため凝集剤として再利用可能である.同様
に、フェントン反応においては、Fe 2+であっても
Fe’+であっても触媒作用な奥するため、Fe塩もま
た再利用が可能である。
Figure 1 is a system diagram showing an embodiment of the wastewater treatment method of the present invention. In the method of this example, first, piping! 4 is more cohesive than 1!
Mg compounds such as magnesium (Mg) salts are added as a coagulant through pipe 12 to the raw water introduced into step 1, and at the same time iron (
Fe) A salt and an alkali such as NaOH are added as a pH adjuster, and if necessary, a polymer such as a polyacrylamide hydrolyzate is added for aggregation treatment. The optimum pH for flocculation treatment using an Mg compound is 10 to 14, but in the present invention, it is preferable to perform flocculation at PHII to 12 in order to completely precipitate excess magnesium ions (Mg"). That is, By completely sinking Mg 2+ and incorporating almost the entire amount of the added Mg compound into the precipitated sludge obtained by solid-liquid separation after aa treatment, the efficiency of circulating and reusing Mg 24'' is improved. Therefore, it is extremely advantageous. In this case, in addition to NaOH, the pH adjusting agent used for pH adjustment is an alkali such as Ca(OH)2, or in some cases HaSO4, HCJ2.
Acids such as can be used. Mg compounds used include MgSO4, MgC
j! In addition to Mg salts such as 2, MgO, Mg(OH)2, etc. In the present invention, it is effective to change the Mg compound added depending on the pH of the raw water to obtain a pH adjusting effect. That is, when the raw water is acidic wastewater, an alkaline Mg compound such as MgO or Mg(OH)2 is added. This is economical because the Mg compound acts as a flocculant and also acts as an alkaline agent to adjust pH. When the raw water is neutral or alkaline wastewater, it is advantageous to use Mg salts. Although the initial amount of the Mg compound added varies depending on the quality of the raw water, it is usually preferable to add it at a ratio of about 5 to 20 times the CODcr. Fe salt is a catalyst for oxidative decomposition, which will be described later. Therefore, Fe salt may be added to the oxidation decomposition tank 3 described later or any step upstream thereof, but by adding it to the flocculation tank m as in this example, Fe hydroxylation occurs in the flocculation system. This is extremely advantageous because it produces substances that improve the flocculation efficiency. As Fa salts, ferrous salts such as ferrous sulfate and ferrous chloride, ferric chloride,
Any ferric salt such as ferric sulfate can be used. As the polymer added to the flocculation tank 1, polyacrylic acid, dross hydrolyzate, etc. can be used. In the present invention, the addition of a polymer is not necessarily required, but the aggregation efficiency can be improved by adding a polymer. When adding a polymer, the amount added is preferably about 1 to 5 ppm based on the amount of wastewater. The flocculation treatment liquid in the flocculation tank 1 is sent from a pipe 13 to a solid-liquid separation means such as a settling tank 2 for solid-liquid separation. This precipitation 4!2 is natural precipitation! In addition, solid-liquid separation means such as a centrifuge, a filter press, and a belt press can also be used. The treated water obtained by solid-liquid separation in the settling tank 2 is transferred to the pipe 14.
The waste is discharged outside the twine, and after further appropriate purification treatment is performed depending on the company's needs, it is released into the stream. On the other hand, the settled sludge separated in the settling tank 2 is sent to the oxidative decomposition cypress 3 via pipes 15 and 16. Then, in the oxidation decomposition tank 3, hydrogen peroxide (H2 02) is added from the pipe 17, and H2 504,
Add an acid such as HCj2 to adjust the pH to 4 or less and perform oxidative decomposition by Fenton reaction. The Fenton reaction can be carried out under standard conditions. That is, H 2 0
2/F6 (weight ratio) is 1 to 100, H202
Is the concentration (ppm) CODc in treated sludge? (calculated as 0), the pH is preferably 2 to 4, and the reaction time is preferably 2 to 4 hours. Therefore, the amount of Fe salt added in the coagulation process 1 is appropriately determined so as to provide a suitable amount of Fe salt for the Fuenton reaction conditions in the oxidation decomposition tank 3. The organic matter in the sludge is decomposed by the Fuenton reaction in the oxidation decomposition tank 3, and the Mg compounds present in the sludge as Mg(OH)2 are also completely converted to Mg'' due to the acidic conditions in the system. Therefore, the decomposed product obtained by the oxidative decomposition IAFI! of the precipitated sludge in oxidative decomposition I13 becomes liquid or thin slurry. Such oxidative decomposition treated liquid is circulated to the flocculation tank 1 through the pipe 18. The Mg compound used as a flocculant in the present invention dissolves as Mg 24'' in oxidative decomposition I!3 as described above. It can be reused as a flocculant. Similarly, in the Fenton reaction, either Fe 2+ or Fe'+ has a catalytic effect, so Fe salt can also be reused.

従って、Mg化合物及びFa塩は一度添加すれば、以後
これらを特に添加する必要はない.しかしながら、酸化
分解処理液中には未分解の有機物が濃縮され、次第に凝
集幻理効率が低下してくるため、汚泥は必要に応じて配
管19より引き抜き、脱水処理した後処分する必要があ
る.本発明の方法においては、通常の場合4〜5回或い
はそれ以上の回数にわたって、汚泥の酸化分解処理液を
循環再利用することができるが、循環再利用社より凝集
処理効率が低下した場合には汚泥の一部又は全部を引き
抜く.この場合には、少なくとも引き抜き量に相当する
Mg化合物及びFe塩を添加する必要がある. なお、引き抜き汚泥の脱水処理は、遠心脱水機やベルト
プレス、フィルタプレス等の通常の脱水処理により行な
うことができる.この場合、汚泥の酸化分解、循環再利
用は汚泥の脱水性に殆ど悪影響を及ぼすことはなく、引
き抜き汚泥は効率的に脱水処理される. 第1図は本発明の一実施例を示し、本発明の方法は何ら
図示の方法に限定されるものではない本発明の方法は、
連続処理によっても、バッチ処理によっても実施するこ
とが可能である.なお、本発明の方法において、処理対
象となる廃水の種類や性状等Cは特に制限はないが、本
発明は特に洗剤製造廃水、脱脂工程廃水、切削廃水等の
界面活性剤含有廃水や染色工場廃水、染料製造廃水、バ
ルプ製造廃水等の着色廃水等に極めて有効であり、少な
い汚泥生成量及び薬注量にて、高水質の処理水を得るこ
とが可能とされる.[作用] 有機性廃水の凝集処理により生成した汚泥に、Fe塩共
存下でH202を添加してpH4以下とすることにより
、汚泥中の有機物はフェントン分解により酸化分解され
て減容化される.また、凝集により汚泥中に存在するM
g(OH)2は、系内が酸性であるためMg2+となっ
て完全に溶解される.従って、汚泥の酸化分解液中には
、凝集成分であるMg 2+が含有されるものとなるた
め、これを原水に添加することにより、原水の凝集処理
を行なうことができ、凝集剤使用量を低減することがで
きる. [実施例] 以下に実施例及び参考例を挙げて本発明をより具体的に
説明する. 実施例1 本発明の方法に従って、廃水の処理をバッチ処理にて行
なった.{11理・した原水の種類及び水質並びに処理
手順は下記の通りである. 毘エ 種類:食器用洗剤製造廃水(主成分としてアニオン界面
活性剤と脂肪酸ソーダを含 み、また若干のノニオン系界面活性剤 を含む) 水質:pH冨6.5 CODMn−510PPffl CODcr”1 420ppm (I)  原水にMgSO+ 300ppm (Mg換
算)、Fe104200ppm (Fe換算〉及びボリ
マー分解物(ポリアクリルアミド郎分加水分解物)2p
pmを添加しPHIIで凝集処理を行なった. (■) 凝集処理液を20%(容量)に濃縮し、分離水
は処理水として排出した. (III)(II)の濃縮汚泥の全量にH2 S04を
添加してpH3に調整すると共にs H 20 2を3
0000pPtn (対汚泥)添加し、3時間反応させ
て有機物を分解した. (IT)  有機物の分解処理を行なった汚泥を原水と
混合し、pH11で凝集処理を行なった.(この場合、
M g S O 4、FeSO+の添加は行なわない.
) 凝集処理液は上記(II)、(I亘!)、(TV)の順
で処理を行なった.以下、(II)、( III )、
(rV)の操作を繰り返した. 各パッチ毎に得られた処理水の水質を第1表に示す. 第  1  表 なお、第4回目の汚泥循環(バッチ勤.5)で原水の凝
集性悪化の徴候が現れたため、第5回目の汚泥循m(バ
ッチ〜.6)では、原水と循環汚泥の混合水にMgSO
+100PPnlを添加し、また生成した汚泥は酸化分
解処理することなく全量引き抜いた. 実施例2 原水として下記のものを用い、また、工程(1)〜(r
V)において処理条件を下記の如く変えたこと以外は、
実施例1と同様にして廃水の処理を行なった. 艷土 種類:染色工場総合廃水 水買:pHm8.0 CODMj1−66ppm CODc,”157ppm 外観:赤褐色 工程(I):MgSO4薬注量謬 500ppm (Mg換算) F6150411注量一 2 0 Gl p m ( F 6換算)工程(■):
原水に対する汚泥生成量は第2表に示す通り.汚泥は全
量工程 (!!璽)へ送る. 工程(IV):H20a薬注量一 3400ppm (対汚泥〉 各バッチ毎に得られた処理水の水質を第2表に示す. 第2表 第2表から明らかな通り、第4回目の汚泥循環(バッチ
勤.5)においても、凝集性は非常に良好であり、高水
質の男理水が得られた.なお、パッチ胞.1で得られた
生成汚泥及び第4回目の汚泥循環(バッチ勤.5)で得
られた酸化分解処理液のC O D In%CODcr
はそれぞれ、下記第3表の通りであった. また、第4回目の汚泥循環(バッチへ.5)で得られた
酸化分解処理液量は、原水に対してl2VOぶ%であっ
た. 第  3  表 これらの結果から次のことが明らかである.本実施例に
おいて発生した汚泥のCODM!1及びC O D C
rN O分解率は、1回のパッチで生成する汚泥(CO
DMj1−770ppm%CODcr雪996ppm)
の5バッチ分に対して、最終的に生威する酸化分解処理
液はCODMII■315ppm%CODc,m362
ppmであることから、 COD分解率: 770x 5−315 x10o,9,896770X
 5 CODC,分解率: 996x 5−362 ×100,,,,,996XS となり、いずれも90%以上と非常に高い.しかも、本
実施例においては、最終的に生成した汚泥量は5バッチ
目の原水の1 2voj!%のみであり、各バッチ毎に
生成する汚泥を何ら処理することなく排出する場合の汚
泥生成量(第2表に示す汚泥量の和〉に対して約1/5
(=127(10+10+11+11+10))と大幅
に低減された. 参考例1 実施例1で原水とした廃水について、第4表に示す条件
にてFe塩凝集又はMg塩凝集を行ない、得られた処理
水の水質及び汚泥生成量(原水に対する容積比)を第4
表に示した. 第4表 した. 第5表 *Fe塩凝集の最適条件 第4表の結果から、実施例1で用いた廃水については、
Fe塩aXよりもMg塩凝集の方が凝集効率が高く、良
好な結果が得られることが明らかである. 参考例2 実施例2で原水とした廃水について、第5表に示す条件
にてFe塩凝集又はMg塩凝集を行ない、得られた処理
水の水質及び外観を第5表に示第5表の結果から、実施
例2で用いた廃水についても、Fe塩凝集よりもMg塩
81&の方がaX効率が高く、良好な結果が得られるこ
とが明らかである. [発明の効果] 以上詳述した通り、本発明の廃水の処理方法によれば、 ■ 凝集剤であるマグネシウム化合物の使用量が、例え
ば、従来法の1/4〜1/5と大幅に低減される. ■ 汚泥の酸化分解に要する鉄塩使用量も比較的少量で
足りる. ■ 汚泥発生量が大幅に低減される.このため、汚泥処
分量が削減される. 等の効果が奥され、廃水を低コストで効率的に処理する
ことが可能とされる.
Therefore, once the Mg compound and Fa salt are added, there is no need to add them later. However, undecomposed organic matter is concentrated in the oxidative decomposition solution, and the flocculation efficiency gradually decreases, so the sludge must be extracted from the pipe 19 and dehydrated before being disposed of, if necessary. In the method of the present invention, the sludge oxidation and decomposition treatment solution can normally be recycled 4 to 5 times or more, but if the coagulation treatment efficiency decreases, pulls out some or all of the sludge. In this case, it is necessary to add at least an amount of Mg compound and Fe salt corresponding to the amount of extraction. The extracted sludge can be dehydrated using a conventional dewatering process such as a centrifugal dehydrator, belt press, or filter press. In this case, oxidative decomposition and cyclic reuse of sludge have almost no negative effect on the dewatering properties of sludge, and the extracted sludge is efficiently dehydrated. FIG. 1 shows one embodiment of the present invention, and the method of the present invention is not limited to the illustrated method in any way.
It is possible to carry out both continuous processing and batch processing. In addition, in the method of the present invention, there are no particular restrictions on the type or properties of wastewater to be treated, but the present invention is particularly applicable to surfactant-containing wastewater such as detergent manufacturing wastewater, degreasing process wastewater, cutting wastewater, etc., and dyeing factory wastewater. It is extremely effective for colored wastewater such as wastewater, dye manufacturing wastewater, bulp manufacturing wastewater, etc., and it is said that it is possible to obtain high quality treated water with a small amount of sludge production and chemical injection. [Operation] By adding H202 in the coexistence of Fe salt to the sludge produced by the coagulation treatment of organic wastewater to make the pH below 4, the organic matter in the sludge is oxidized and decomposed by Fenton decomposition, and its volume is reduced. In addition, M present in sludge due to coagulation
Since the system is acidic, g(OH)2 becomes Mg2+ and is completely dissolved. Therefore, the oxidative decomposition solution of sludge contains Mg 2+, which is a flocculating component, and by adding Mg 2+ to raw water, it is possible to perform flocculation treatment of raw water and reduce the amount of flocculant used. This can be reduced. [Example] The present invention will be explained in more detail below by giving examples and reference examples. Example 1 According to the method of the present invention, wastewater was treated in a batch process. {11 The type and quality of raw water treated and the treatment procedure are as follows. Type: Dishwashing detergent manufacturing wastewater (contains anionic surfactant and fatty acid soda as main components, and some nonionic surfactant) Water quality: pH 6.5 CODMn-510PPffl CODcr”1 420ppm (I ) MgSO+ 300ppm (Mg conversion), Fe104 200ppm (Fe conversion) and polymer decomposition product (polyacrylamide hydrolyzate) 2p in raw water
pm was added and flocculation treatment was performed with PHII. (■) The flocculation treatment liquid was concentrated to 20% (volume), and the separated water was discharged as treated water. (III) Add H2S04 to the entire amount of the thickened sludge from (II) to adjust the pH to 3, and at the same time adjust the pH to 3.
0000pPtn (to sludge) was added and reacted for 3 hours to decompose organic matter. (IT) Sludge treated with decomposition of organic matter was mixed with raw water and subjected to flocculation treatment at pH 11. (in this case,
M g SO 4 and FeSO+ were not added.
) The flocculation treatment solution was treated in the order of (II), (Iwata!), and (TV) above. Below, (II), (III),
(rV) operation was repeated. Table 1 shows the quality of the treated water obtained for each patch. Table 1 Note that since signs of deterioration in the flocculation of raw water appeared in the fourth sludge circulation (batch shift .5), in the fifth sludge circulation m (batch ~.6), mixing of raw water and circulating sludge was carried out. MgSO in water
+100 PPnl was added, and all of the generated sludge was extracted without oxidative decomposition treatment. Example 2 The following raw water was used, and steps (1) to (r
V), except that the processing conditions were changed as shown below.
Wastewater was treated in the same manner as in Example 1. Soil type: Dyeing factory general wastewater purchase: pHm8.0 CODMj1-66ppm CODc, 157ppm Appearance: Reddish brown Process (I): MgSO4 chemical injection amount 500ppm (Mg conversion) F6150411 injection amount 1 20 Gl pm (F 6 conversion) process (■):
The amount of sludge produced relative to raw water is shown in Table 2. All sludge is sent to the process (!!). Step (IV): H20a chemical injection amount - 3400 ppm (relative to sludge) The quality of the treated water obtained for each batch is shown in Table 2. As is clear from Table 2, the fourth sludge circulation (Batch work.5), the flocculation was also very good, and high quality men's water was obtained.In addition, the produced sludge obtained in Patch cell.1 and the 4th sludge circulation (Batch work. COD In% CODcr of the oxidized decomposition treated liquid obtained in Step 5)
were as shown in Table 3 below. In addition, the amount of oxidized decomposition treated liquid obtained in the fourth sludge circulation (to batch .5) was 12VO% relative to the raw water. Table 3 From these results, the following is clear. CODM of sludge generated in this example! 1 and C O D C
The rNO decomposition rate is the sludge (CO
DMj1-770ppm%CODcr snow 996ppm)
The final oxidative decomposition treatment solution for 5 batches of CODM II ■ 315ppm% CODc, m362
Since it is ppm, COD decomposition rate: 770x 5-315 x10o, 9,896770X
5 CODC, decomposition rate: 996x 5-362 x 100,,,,,996XS, all of which are extremely high at over 90%. Moreover, in this example, the amount of sludge finally produced was 12 voj of the raw water of the 5th batch! %, and is approximately 1/5 of the amount of sludge produced (sum of sludge amounts shown in Table 2) when the sludge generated in each batch is discharged without any treatment.
(=127 (10+10+11+11+10)). Reference Example 1 The wastewater used as raw water in Example 1 was subjected to Fe salt flocculation or Mg salt flocculation under the conditions shown in Table 4, and the quality of the resulting treated water and the amount of sludge produced (volume ratio to raw water) were 4
It is shown in the table. Table 4 shows. Table 5 *Optimum conditions for Fe salt flocculation From the results in Table 4, for the wastewater used in Example 1,
It is clear that Mg salt aggregation has a higher aggregation efficiency than Fe salt AX, and better results can be obtained. Reference Example 2 The wastewater used as the raw water in Example 2 was subjected to Fe salt coagulation or Mg salt coagulation under the conditions shown in Table 5, and the water quality and appearance of the resulting treated water are shown in Table 5. From the results, it is clear that even for the wastewater used in Example 2, Mg salt 81& has a higher aX efficiency than Fe salt coagulation, and good results can be obtained. [Effects of the invention] As detailed above, according to the wastewater treatment method of the present invention, ■ The amount of magnesium compound used as a flocculant is significantly reduced to, for example, 1/4 to 1/5 of the conventional method. It will be done. ■ The amount of iron salt required for oxidative decomposition of sludge is also relatively small. ■ The amount of sludge generated is significantly reduced. Therefore, the amount of sludge to be disposed of is reduced. It is said that the effects of this method are profound, and it is possible to treat wastewater efficiently at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の廃水のfiF!方法の一実施例を示す
系統図である. 1・・・凝集禮、    2・・・沈殿槽、3・・・酸
化分解槽.
Figure 1 shows the fiF of the wastewater of the present invention! It is a system diagram showing an example of the method. 1... Coagulation, 2... Sedimentation tank, 3... Oxidation decomposition tank.

Claims (1)

【特許請求の範囲】[Claims] (1)原水の有機性廃水にマグネシウム化合物を加え、
pH10〜14に調整して得られる懸濁液を固液分離し
て処理水と沈殿汚泥とに分離する廃水の処理方法におい
て、該沈殿汚泥に鉄塩共存下で過酸化水素を添加すると
ともにpHを4以下に調節して沈殿汚泥を酸化分解し、
得られる分解物を原水に添加することを特徴とする廃水
の処理方法。
(1) Adding a magnesium compound to raw organic wastewater,
In a wastewater treatment method in which a suspension obtained by adjusting the pH to 10 to 14 is separated into treated water and precipitated sludge by solid-liquid separation, hydrogen peroxide is added to the precipitated sludge in the coexistence of iron salt, and the pH 4 or less to oxidize and decompose the settled sludge,
A wastewater treatment method characterized by adding the obtained decomposition product to raw water.
JP1244730A 1989-09-20 1989-09-20 Wastewater treatment method Expired - Fee Related JP2830164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1244730A JP2830164B2 (en) 1989-09-20 1989-09-20 Wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1244730A JP2830164B2 (en) 1989-09-20 1989-09-20 Wastewater treatment method

Publications (2)

Publication Number Publication Date
JPH03106493A true JPH03106493A (en) 1991-05-07
JP2830164B2 JP2830164B2 (en) 1998-12-02

Family

ID=17123041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1244730A Expired - Fee Related JP2830164B2 (en) 1989-09-20 1989-09-20 Wastewater treatment method

Country Status (1)

Country Link
JP (1) JP2830164B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996005142A1 (en) * 1994-08-16 1996-02-22 The Water Board Method of alkaline flocculation for waste water streams
US6884332B2 (en) 2001-11-14 2005-04-26 Kuntz Electroplating Inc. Method and apparatus for treating an aqueous electroplating bath solution
EP1918248A3 (en) * 2006-10-29 2010-06-09 Silicon Fire AG Provision of H2O2 from sulphuric acid which is produced from the sulphur residue during combustion of fossil fuels, and utilisation of H2O2 as an energy carrier
KR101044989B1 (en) * 2010-12-01 2011-06-29 지에스건설 주식회사 Method for biological treatment of organic sludge and apparatus used therefor
JP2011240339A (en) * 2011-07-01 2011-12-01 Hitachi Industrial Equipment Systems Co Ltd Oil-water separation method and oil-water separator
CN103803747A (en) * 2014-03-04 2014-05-21 中凯化学(大连)有限公司 Integrated high-efficiency water treatment reactor
CN103803748A (en) * 2014-03-04 2014-05-21 中凯化学(大连)有限公司 Butadiene styrene rubber wastewater treatment process
JP2019069399A (en) * 2017-10-06 2019-05-09 オルガノ株式会社 Processor and processing method for silica-containing water
JP2019126784A (en) * 2018-01-25 2019-08-01 オルガノ株式会社 Silica-containing water treatment apparatus and treatment method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996005142A1 (en) * 1994-08-16 1996-02-22 The Water Board Method of alkaline flocculation for waste water streams
US6884332B2 (en) 2001-11-14 2005-04-26 Kuntz Electroplating Inc. Method and apparatus for treating an aqueous electroplating bath solution
EP1918248A3 (en) * 2006-10-29 2010-06-09 Silicon Fire AG Provision of H2O2 from sulphuric acid which is produced from the sulphur residue during combustion of fossil fuels, and utilisation of H2O2 as an energy carrier
KR101044989B1 (en) * 2010-12-01 2011-06-29 지에스건설 주식회사 Method for biological treatment of organic sludge and apparatus used therefor
JP2011240339A (en) * 2011-07-01 2011-12-01 Hitachi Industrial Equipment Systems Co Ltd Oil-water separation method and oil-water separator
CN103803747A (en) * 2014-03-04 2014-05-21 中凯化学(大连)有限公司 Integrated high-efficiency water treatment reactor
CN103803748A (en) * 2014-03-04 2014-05-21 中凯化学(大连)有限公司 Butadiene styrene rubber wastewater treatment process
CN103803748B (en) * 2014-03-04 2015-09-16 中凯化学(大连)有限公司 A kind of sbr wastewater treatment process
CN103803747B (en) * 2014-03-04 2016-02-17 中凯化学(大连)有限公司 Integrated high-efficiency water processing reactor
JP2019069399A (en) * 2017-10-06 2019-05-09 オルガノ株式会社 Processor and processing method for silica-containing water
JP2019126784A (en) * 2018-01-25 2019-08-01 オルガノ株式会社 Silica-containing water treatment apparatus and treatment method

Also Published As

Publication number Publication date
JP2830164B2 (en) 1998-12-02

Similar Documents

Publication Publication Date Title
US6884355B2 (en) Process for treating organic wastewater and apparatus for treating the organic wastewater
JP5828969B2 (en) Coal gasification wastewater treatment system and coal gasification wastewater treatment method
CN105502739B (en) Method for breaking complexing and synchronously removing heavy metal by self-reinforced ozone
JP2008188479A (en) Method and apparatus for treating waste acid liquid
CN112607893A (en) Plating solution wastewater treatment method for nickel plating of plated part
JPH03106493A (en) Treating waste water
CN111320316A (en) Landfill leachate membrane concentrated solution treatment method
JPH06106173A (en) Treatment of waste water
JP3642516B2 (en) Method and apparatus for removing COD components in water
KR20020041504A (en) Process for treating waste water in plating process
JP2621090B2 (en) Advanced wastewater treatment method
JPS6339307B2 (en)
WO2009101744A1 (en) Process for treatment of waste water
JP5693992B2 (en) Method for recovering dissolved iron from wastewater containing various metal ions
JP2601441B2 (en) Wastewater treatment method
JPS6339309B2 (en)
JP2001300553A (en) Method for treating cyanide-containing wastewater
JPS591118B2 (en) How to treat organic wastewater
JPS59375A (en) Treatment of water containing difficultly biodegradative substance
KR19980033561A (en) Electrolytic Treatment of Plating Wastewater with Hexavalent Chromium and Cyan
KR100315434B1 (en) Wastewater Disposal Process
KR102277551B1 (en) Processing Method of Non-biodegradable Organic Wastewater Based on Improved Oxidation Treatment
JPS5942099A (en) Treatment of waste water containing hardly biologically decomposable material
JPH0155920B2 (en)
JPH0128629B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees