JP2601441B2 - Wastewater treatment method - Google Patents
Wastewater treatment methodInfo
- Publication number
- JP2601441B2 JP2601441B2 JP5309687A JP30968793A JP2601441B2 JP 2601441 B2 JP2601441 B2 JP 2601441B2 JP 5309687 A JP5309687 A JP 5309687A JP 30968793 A JP30968793 A JP 30968793A JP 2601441 B2 JP2601441 B2 JP 2601441B2
- Authority
- JP
- Japan
- Prior art keywords
- reaction tank
- sludge
- added
- solid
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004065 wastewater treatment Methods 0.000 title claims description 19
- 238000006243 chemical reaction Methods 0.000 claims description 200
- 239000010802 sludge Substances 0.000 claims description 154
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 92
- 239000007788 liquid Substances 0.000 claims description 61
- 238000000034 method Methods 0.000 claims description 46
- 229910052751 metal Inorganic materials 0.000 claims description 42
- 239000002184 metal Substances 0.000 claims description 42
- 238000000926 separation method Methods 0.000 claims description 36
- 150000003839 salts Chemical class 0.000 claims description 34
- 239000002351 wastewater Substances 0.000 claims description 20
- 239000000701 coagulant Substances 0.000 claims description 19
- 239000007787 solid Substances 0.000 claims description 17
- 230000008569 process Effects 0.000 claims description 10
- 229920000642 polymer Polymers 0.000 claims description 9
- 239000007800 oxidant agent Substances 0.000 claims description 6
- 239000000356 contaminant Substances 0.000 claims description 5
- 239000002957 persistent organic pollutant Substances 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims 1
- 239000010931 gold Substances 0.000 claims 1
- 229910052737 gold Inorganic materials 0.000 claims 1
- 230000001590 oxidative effect Effects 0.000 claims 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 44
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 27
- 238000004062 sedimentation Methods 0.000 description 24
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 18
- 229910052742 iron Inorganic materials 0.000 description 16
- 239000003513 alkali Substances 0.000 description 15
- 238000005273 aeration Methods 0.000 description 13
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 12
- 238000012545 processing Methods 0.000 description 12
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 11
- 239000000126 substance Substances 0.000 description 11
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 10
- 239000000920 calcium hydroxide Substances 0.000 description 10
- 235000011116 calcium hydroxide Nutrition 0.000 description 10
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 239000012528 membrane Substances 0.000 description 10
- 238000001556 precipitation Methods 0.000 description 10
- 230000018044 dehydration Effects 0.000 description 9
- 238000006297 dehydration reaction Methods 0.000 description 9
- 239000008267 milk Substances 0.000 description 9
- 210000004080 milk Anatomy 0.000 description 9
- 235000013336 milk Nutrition 0.000 description 9
- 230000003647 oxidation Effects 0.000 description 9
- 238000007254 oxidation reaction Methods 0.000 description 9
- 235000011121 sodium hydroxide Nutrition 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 208000005156 Dehydration Diseases 0.000 description 7
- 238000000746 purification Methods 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 239000006228 supernatant Substances 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 5
- 239000003344 environmental pollutant Substances 0.000 description 5
- 230000014759 maintenance of location Effects 0.000 description 5
- 231100000719 pollutant Toxicity 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 238000010908 decantation Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 239000010842 industrial wastewater Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000010979 pH adjustment Methods 0.000 description 4
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 3
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229920002401 polyacrylamide Polymers 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000000108 ultra-filtration Methods 0.000 description 3
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 229920006318 anionic polymer Polymers 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000001112 coagulating effect Effects 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- 239000010840 domestic wastewater Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000000855 fermentation Methods 0.000 description 2
- 230000004151 fermentation Effects 0.000 description 2
- 229910001447 ferric ion Inorganic materials 0.000 description 2
- 229960002089 ferrous chloride Drugs 0.000 description 2
- 239000010800 human waste Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000002440 industrial waste Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 150000002505 iron Chemical class 0.000 description 2
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 description 2
- 238000002386 leaching Methods 0.000 description 2
- 244000144972 livestock Species 0.000 description 2
- 229910000000 metal hydroxide Inorganic materials 0.000 description 2
- 150000004692 metal hydroxides Chemical class 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 235000013379 molasses Nutrition 0.000 description 2
- 150000004045 organic chlorine compounds Chemical class 0.000 description 2
- 239000000575 pesticide Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 239000008213 purified water Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 229920001661 Chitosan Polymers 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000006114 decarboxylation reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- -1 etc. Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000008214 highly purified water Substances 0.000 description 1
- 150000002506 iron compounds Chemical class 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical group [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 235000012254 magnesium hydroxide Nutrition 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Treatment Of Sludge (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、排水処理方法に関し、
更に詳しくはSS、油分、COD、BOD、濁質成分、
着色物質、有機塩素化合物、農薬、その他の有害物質を
含む排水の処理方法において、最終的に得られる処理水
の浄化度が高く且つ発生する汚泥の沈降速度、固形分濃
度及び脱水性が高く、汚泥の最終処理が容易な排水処理
方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wastewater treatment method,
More specifically, SS, oil, COD, BOD, turbid component,
In the treatment method of wastewater containing coloring substances, organic chlorine compounds, pesticides and other harmful substances, the purification degree of the finally obtained treated water is high and the sedimentation speed of the generated sludge, the solid content concentration and the dehydration property are high, The present invention relates to a wastewater treatment method that facilitates final treatment of sludge.
【0002】[0002]
【従来の技術】従来、工業排水、家庭用等の生活排水、
産業廃棄物埋め立て地の浸出水、し尿、糖蜜排水、発酵
工業排水、畜産業における排水等、種々の排水が大量に
発生するが、これらの排水は、例えば、SS、油分、C
OD、BOD、濁質成分、着色物質、有機塩素化合物、
農薬、その他の有害物質を多量に含んでおり、環境保全
の面からこれらの有害物質を除去した後、清浄な水とし
て自然環境に戻すことが極めて重要である。上記の如き
各種排水の処理方法のうち、有機物質の除去方法として
は活性汚泥方式、凝集剤や分離膜等による固液分離方法
等があり、更にこれらの処理方法では除去されにくいC
ODや色度成分等を含む生物難分解性の有機物質含有排
水の高度処理方法として、本願出願人の提案による酸化
処理方法が広く行われている。これらのいずれの方法に
おいても凝集剤として用いた金属の水酸化物に基づく多
量の汚泥が発生する。2. Description of the Related Art Conventionally, industrial wastewater, domestic wastewater for domestic use, etc.
Various wastewaters such as leachate of industrial waste landfill, night soil, molasses wastewater, fermentation industrial wastewater, wastewater in livestock industry, etc. are generated in large quantities. These wastewaters are, for example, SS, oil, C
OD, BOD, turbid components, coloring substances, organochlorine compounds,
It contains a large amount of pesticides and other harmful substances, and it is extremely important to remove these harmful substances and return them to the natural environment as clean water after environmental protection. Among the various wastewater treatment methods described above, examples of a method for removing organic substances include an activated sludge method, a solid-liquid separation method using a coagulant or a separation membrane, and the like.
BACKGROUND ART As an advanced treatment method for wastewater containing an organic substance that is difficult to decompose and contains OD and chromaticity components, an oxidation treatment method proposed by the present applicant is widely used. In any of these methods, a large amount of sludge is generated based on the metal hydroxide used as the flocculant.
【0003】[0003]
【発明が解決しようとしている問題点】上記従来のいず
れの方法においても発生する汚泥の処理が大きな問題と
して残っている。即ち、従来技術の活性汚泥方式では排
水中のBOD成分は分解除去されるが、その他のCOD
や色度成分等の生物難分解性の有機汚染物質の除去が困
難であり、多量の汚泥発生の問題と共に、排水によって
は更に高度な浄化処理が必要とされる。又、凝集剤や膜
を使用する固液分離方法では、凝集剤による凝集フロッ
クの沈澱池等における沈降性が悪く、その為固液分離に
際し非常に大きな沈澱槽と長時間の沈降処理が要求さ
れ、そのうえ、上記活性汚泥方法と同様な問題があり、
更に沈降分離された汚泥は含水率が高いばかりではな
く、それらの脱水性が劣り、脱水処理後に最終的に処分
すべき汚泥の粘性及び含水率が非常に高く、その結果焼
却や埋め立て等の最終処理が非常にコスト高であるとい
う問題がある。Problems to be Solved by the Invention The treatment of sludge generated in any of the above-mentioned conventional methods remains a major problem. That is, in the activated sludge method of the prior art, the BOD component in the wastewater is decomposed and removed, but other COD
It is difficult to remove biologically hard-to-decompose organic pollutants such as colorants and chromaticity components, and a large amount of sludge is generated. Further, in the solid-liquid separation method using a flocculant or a membrane, the flocculation of floc by the flocculant has a poor sedimentation property in a sedimentation basin or the like. In addition, there is a problem similar to the above activated sludge method,
Furthermore, the sludge separated by settling not only has a high water content, but also has a poor dewatering property, and the sludge to be finally disposed of after the dehydration treatment has a very high viscosity and a high water content. There is a problem that processing is very expensive.
【0004】又、活性汚泥方法や凝集方法、膜分離方法
で処理された二次処理水を、更に酸化剤や金属塩凝集剤
等で高度処理する方法では、高度浄化水が得られるもの
の、触媒や凝集剤として使用した金属塩に基づく水酸化
金属を主成分とするスラッジが大量に発生するという問
題があり、該スラッジの処理の問題が別に発生する。従
って、本発明の目的は、最終的に得られる処理水の浄化
度が高く且つ発生する汚泥の沈降速度、固形分濃度及び
脱水性が高く、汚泥の最終処理が容易な排水処理方法を
提供することである。[0004] Further, in the method in which secondary treatment water treated by the activated sludge method, coagulation method, or membrane separation method is further treated with an oxidizing agent or a metal salt coagulant, etc., highly purified water is obtained, In addition, there is a problem that a large amount of sludge mainly composed of a metal hydroxide based on a metal salt used as a flocculant is generated, and a problem of treating the sludge is generated separately. Accordingly, an object of the present invention is to provide a wastewater treatment method in which the degree of purification of the finally obtained treated water is high, the sedimentation speed, solid content and dehydration of the generated sludge are high, and the final treatment of the sludge is easy. That is.
【0005】[0005]
【問題点を解決する為の手段】上記目的は以下の本発明
によって達成される。即ち、本発明は、有機汚染物含有
原水を反応槽に導入してpH調整し、凝集剤として金属
塩を添加して原水中の固形分を凝集させ、該処理水を固
液分離する排水処理方法において、分離された汚泥の一
部を、凝集剤として添加された金属塩(金属原子とし
て)の2〜50倍量の該金属原子を含む量、前記反応槽
に戻す工程を繰り返し又は連続的に行うことを特徴とす
る排水処理方法を基本とする。The above object is achieved by the present invention described below. That is, the present invention provides a wastewater treatment in which raw water containing organic contaminants is introduced into a reaction tank to adjust pH, a metal salt is added as a coagulant to coagulate solids in the raw water, and the treated water is subjected to solid-liquid separation. In the method, a part of the separated sludge is converted into a metal salt (as a metal atom) added as a flocculant.
The method is based on a wastewater treatment method characterized by repeating or continuously performing the step of returning to the reaction tank an amount containing the metal atom in an amount of 2 to 50 times the amount of the metal atom .
【0006】[0006]
【作用】排水の凝集沈澱方法において、固液分離装置で
発生した汚泥の一部を被処理原水側に戻して循環処理す
ることにより、最終的に得られる処理水の浄化度が高く
且つ発生する汚泥の沈降速度、固形分濃度及び脱水性が
高く、汚泥の最終処理が非常に容易な排水処理方法を提
供することが出来る。In the method of coagulating and sedimenting wastewater, a part of the sludge generated in the solid-liquid separation device is returned to the raw water to be treated and circulated, whereby the purification degree of the finally obtained treated water is high and generated. It is possible to provide a wastewater treatment method in which sludge settling speed, solid content concentration and dehydration are high, and final treatment of sludge is extremely easy.
【0007】[0007]
【好ましい実施態様】次に好ましい実施態様を図面に示
す実施例により説明する。本発明の基本は、有機汚染物
含有原水を反応槽に導入してpH調整し、凝集剤として
金属塩を添加して原水中の固形分を凝集させ、該処理水
を固液分離する排水処理方法において、分離された汚泥
の一部を前記反応槽に戻す工程を繰り返し又は連続的に
行うことを特徴としている。尚、本発明において「pH
調整」という用語は、酸又はアルカリの添加によって被
処理水を所望のpHに調整することを意味すると共に、
予め被処理水が所望のpH範囲にある場合には、酸又は
アルカリを添加しないが、この場合も「pH調整」とい
う。Preferred embodiments will now be described with reference to the drawings. The basic principle of the present invention is a wastewater treatment in which raw water containing organic contaminants is introduced into a reaction tank to adjust pH, a metal salt is added as a coagulant to coagulate solids in the raw water, and the treated water is subjected to solid-liquid separation. The method is characterized in that the step of returning a part of the separated sludge to the reaction tank is repeatedly or continuously performed. In the present invention, “pH
The term "adjustment" means that the water to be treated is adjusted to a desired pH by adding an acid or an alkali,
If the water to be treated is in a desired pH range in advance, no acid or alkali is added, but this case is also referred to as “pH adjustment”.
【0008】図1に示す例は、本発明の好ましい1形態
であり、先ず被処理排水である原水を、第一反応槽に適
当な流量で導入し、第二反応槽を経由して、最終的に固
液分離装置から汚泥が分離され、分離された汚泥の一部
を原水側に戻すと共に、浄化水が放流される。第一反応
槽では、撹拌機を作動させ、好ましくは曝気を行ないつ
つ、固液分離装置から戻される汚泥のpHを考慮しつ
つ、アルカリ又は酸(通常の金属塩や凝集剤は酸性であ
るので通常はアルカリ添加)により第一反応槽内のpH
調整をする。この際、図示の通り第三反応槽を設けて、
ここでpH調整して汚泥を第一反応槽に戻すことも出来
る。金属塩が、例えば、第二鉄塩である場合は第一反応
槽内のpHは3.0〜5.5の範囲に、第一鉄塩の場合
はpHが7〜9に、そしてアルミニウム塩の場合にはp
Hが6〜9に保たれる様にpH計と連動させてアルカリ
を注入する。尚、第一反応槽におけるpH調整は、第三
反応槽に添加するアルカリによって行なってもよく、こ
の場合には第一反応槽におけるアルカリ添加は省略して
もよい。更に濃度が5〜5,000mg/リットル(金
属イオンとして)になる様に一次凝集剤として鉄やアル
ミニウム等の金属塩を添加して一次凝集を行う。The embodiment shown in FIG. 1 is a preferred embodiment of the present invention. First, raw water, which is waste water to be treated, is introduced into a first reaction tank at an appropriate flow rate, and is finally passed through a second reaction tank. Sludge is separated from the solid-liquid separation device, a part of the separated sludge is returned to the raw water side, and purified water is discharged. In the first reaction tank, an agitator is operated, preferably while performing aeration, while considering the pH of the sludge returned from the solid-liquid separation device, an alkali or an acid (a normal metal salt or a flocculant is acidic. (Usually alkali addition)
Make adjustments. At this time, a third reaction tank was provided as shown in the figure,
Here, the pH can be adjusted and the sludge can be returned to the first reaction tank. If the metal salt is, for example, a ferric salt, the pH in the first reaction vessel is in the range of 3.0 to 5.5, if the metal salt is a ferrous salt, the pH is 7 to 9, and the aluminum salt is In the case of p
The alkali is injected in conjunction with the pH meter so that H is maintained at 6 to 9. The pH adjustment in the first reaction tank may be performed by using an alkali added to the third reaction tank. In this case, the addition of the alkali in the first reaction tank may be omitted. Further, primary aggregation is performed by adding a metal salt such as iron or aluminum as a primary aggregation agent so that the concentration becomes 5 to 5,000 mg / liter (as metal ions).
【0009】この第一反応槽における処理液の温度は常
温でもよく幾分加温してもよい。又、処理液の第一反応
槽における滞留時間は通常5〜60分間程度である。こ
の際、第一反応槽に過酸化水素等の酸化剤を添加するこ
とによって、被処理水中の、特に溶解しているCOD、
BOD及び色度成分等をフェントン反応によりを酸化分
解して排水中の有機物を減少させ、処理水質を更に向上
させることが出来る。本発明においては全ての工程は常
温で行うことが出来るが、上記酸化処理を行う場合には
被処理水を40〜90℃程度の温度に加温することによ
り、酸化をより一層有利に行うことが出来、同時に本発
明の目的である汚泥の沈降性、脱水性等を更に向上させ
ることが出来る。又、酸化剤として過酸化水素を使用す
る場合には一次凝集剤としては鉄化合物を用いて酸化触
媒を兼ねさせることが好ましい。又、上記第一反応槽に
おいては、空気等で曝気して、処理水に酸素を供給する
ことで、本発明の目的である汚泥の沈降性、脱水性等を
更に向上させることが出来る。The temperature of the processing solution in the first reaction tank may be room temperature or may be somewhat increased. The residence time of the treatment liquid in the first reaction tank is usually about 5 to 60 minutes. At this time, by adding an oxidizing agent such as hydrogen peroxide to the first reaction tank, particularly dissolved COD in the water to be treated,
The BOD and chromaticity components are oxidatively decomposed by the Fenton reaction to reduce organic matter in wastewater, thereby further improving the quality of treated water. In the present invention, all the steps can be performed at normal temperature. However, in the case of performing the above oxidation treatment, the oxidation can be performed more advantageously by heating the water to be treated to a temperature of about 40 to 90 ° C. And at the same time, the sedimentation and dewatering properties of the sludge, which are the objects of the present invention, can be further improved. When hydrogen peroxide is used as the oxidizing agent, it is preferable to use an iron compound as the primary flocculant and also to serve as an oxidation catalyst. Further, in the first reaction tank, aeration with air or the like and supply of oxygen to the treated water can further improve the sludge settling property, dehydration property, and the like, which are objects of the present invention.
【0010】第二反応槽では撹拌機を作動させつつ、適
当な濃度、例えば、0.2〜10mg/リットルになる
様に、二次凝集剤として高分子凝集剤(例えば、ポリア
クリルアミド系弱アニオン性高分子凝集剤等)を添加
し、第一反応槽で凝集された凝集フロックを更に凝集さ
せて大きなフロックとして沈降性を向上させ、次の固液
分離装置に送る。尚、上記の高分子凝集剤は、固液分離
装置が沈降方式である場合に必要であって、固液分離装
置が膜分離方式等である場合には不要である。従って、
この場合には第二反応槽も本発明において必須ではなく
なる。以下全て固液分離装置として沈澱槽等の沈降方式
を採用した場合を代表して説明する。この第二反応槽に
おける処理液の温度は常温でもよく幾分加温してもよ
い。又、処理液の第二反応槽における滞留時間は通常5
〜60分間程度である。固液分離装置(沈澱槽)では、
第二反応槽で凝集された凝集フロックが沈降し、沈降し
た汚泥を抜き出し、上澄液は必要に応じてpH調整され
て放流される。この固液分離装置における滞留時間は、
固液分離装置の機種によって大いに異なるが、例えば、
沈澱槽の場合には通常1〜6時間程度である。In the second reaction tank, a polymer flocculant (for example, a polyacrylamide-based weak anion) is used as a secondary flocculant while operating a stirrer so as to have an appropriate concentration, for example, 0.2 to 10 mg / liter. Flocculant, etc.) is added, and the flocculated floc that has been flocculated in the first reaction tank is further flocculated to improve sedimentability as a large floc and sent to the next solid-liquid separator. The above-mentioned polymer flocculant is necessary when the solid-liquid separation device is a sedimentation system, and is unnecessary when the solid-liquid separation device is a membrane separation system or the like. Therefore,
In this case, the second reaction tank is not essential in the present invention. Hereinafter, a case where a sedimentation system such as a sedimentation tank is adopted as a solid-liquid separation device will be described as a representative. The temperature of the processing solution in the second reaction tank may be room temperature or may be slightly heated. The residence time of the treatment liquid in the second reaction tank is usually 5
About 60 minutes. In the solid-liquid separation device (precipitation tank),
Agglomerated flocs settled in the second reaction tank settle, the settled sludge is extracted, and the pH of the supernatant is adjusted if necessary and discharged. The residence time in this solid-liquid separation device is:
Although it varies greatly depending on the type of solid-liquid separation device, for example,
In the case of a precipitation tank, it is usually about 1 to 6 hours.
【0011】本発明では、上記固液分離装置から沈降し
た汚泥の引き抜きに際して、固液分離装置の底部から引
き抜いた汚泥の一部(第一反応槽で注入した金属原子の
約2〜50重量倍、好ましくは10〜25重量倍の金属
原子を含む汚泥)を第三反応槽に導き、ここで撹拌しつ
つ、汚泥にアルカリを加えて汚泥を弱アルカリ性からア
ルカリ性、例えば、金属塩として鉄塩を使用する場合は
pH4以上、アルミニウム塩を使用する場合はpH8以
上、亜鉛塩を使用する場合はpH9.0以上の如く、p
H5〜13、好ましくは7〜12にした後、該汚泥を第
一反応槽に戻すことを特徴としている。この操作によっ
て本発明の目的が主として達成される。第三反応槽にお
ける処理液の温度は常温でもよく幾分加温してもよい。
又、処理液の第三反応槽における滞留時間は通常2〜3
0分間程度である。以上の処理、特に第一及び第二反応
槽における処理によって、添加した金属塩及び汚泥中の
金属は、例えば、鉄の場合にはFeO(OH)に、アル
ミニウムの場合にはAlO(OH)にの如く一部脱水さ
れた形態となり、これが処理工程中を循環することによ
って、汚泥の沈降性や脱水性が極端に向上する。In the present invention, when the sludge settled out of the solid-liquid separator is extracted, a part of the sludge extracted from the bottom of the solid-liquid separator (the metal atom injected in the first reaction tank).
Sludge containing about 2 to 50 times by weight, preferably 10 to 25 times by weight of metal atoms) is led to the third reaction tank, where the sludge is added to the sludge while stirring, thereby converting the sludge from slightly alkaline to alkaline, for example, When an iron salt is used as the metal salt, the pH is 4 or more, when an aluminum salt is used, the pH is 8 or more, and when a zinc salt is used, the pH is 9.0 or more.
After making the H5 to 13, preferably 7 to 12, the sludge is returned to the first reaction tank. By this operation, the object of the present invention is mainly achieved. The temperature of the processing solution in the third reaction tank may be room temperature or may be slightly heated.
The residence time of the processing solution in the third reaction tank is usually 2-3
It takes about 0 minutes. By the above treatment, particularly the treatment in the first and second reaction tanks, the added metal salt and the metal in the sludge are, for example, FeO (OH) in the case of iron and AlO (OH) in the case of aluminum. The sedimentation and dewatering properties of the sludge are extremely improved by circulating through the treatment step as described above.
【0012】以上の操作を行い全工程におけるpH、凝
集剤、返送汚泥等の各条件が定常状態になった時点で、
固液分離装置の底部から引き抜いた汚泥の一部は第三反
応槽を経由して連続的に第一反応槽に戻され、残りの大
部分の汚泥は静置或は遠心分離等や膜分離等の適当な手
段によって脱水濃縮処理されて最終処分される。この
際、汚泥の脱水性は非常に良好であり、本発明を適用し
ない場合の脱水後の汚泥の固形分は通常約12〜25重
量%程度が限界であるのに対して、本発明では脱水後の
固形分を容易に約40〜60重量%程度とすることが出
来、埋め立て、焼却、有価物回収等の最終の汚泥処理が
著しく経済化される。一方、浄化された処理水は非常に
高い浄化率を示し、必要に応じてpH処理されて放流さ
れる。When the above operations are performed and the conditions such as pH, coagulant, and returned sludge in all the processes are in a steady state,
Part of the sludge withdrawn from the bottom of the solid-liquid separator is continuously returned to the first reaction tank via the third reaction tank, and most of the remaining sludge is allowed to stand still, centrifuged, or separated by membrane. The dewatering and concentration treatment is performed by an appropriate means such as the above, and the final disposal. At this time, the dewatering property of the sludge is very good, and the solid content of the dewatered sludge when the present invention is not applied is usually about 12 to 25% by weight, whereas in the present invention the dewatering property is very low. The subsequent solid content can be easily reduced to about 40 to 60% by weight, and the final sludge treatment such as landfill, incineration, and recovery of valuable resources is significantly economical. On the other hand, the purified treated water shows a very high purification rate, and is subjected to pH treatment as required and discharged.
【0013】図2に示す実施例は、上記図1の実施例の
変形であり、図1の例における第一反応槽が2分割さ
れ、図2の第一反応槽では酸性状態で一次凝集剤として
金属塩が添加され、必要に応じて酸又はアルカリを注入
してpH調整し、次の第二反応槽においてアルカリによ
ってpH調整され、金属塩が一次凝集剤として作用す
る。従って、第四反応槽で処理された返送汚泥は第二反
応槽に戻される。この図2に示す実施例では、第一反応
槽が酸性状態、例えば、pH3.5以下、好ましくは
2.5〜3.0であるので、第一反応槽で過酸化水素等
の酸化剤で被処理原水中の溶存COD、BOD及び色度
成分等の有機物の酸化分解を行うのに適しており、更に
金属塩凝集剤をイオン状態で排水中のBOD、COD及
び色度成分等の有機物と接触させることが出来、金属塩
凝集剤による有機物の凝集効果及び吸着効果が向上する
等の利点がある。尚、この例においても第二反応槽にお
けるpH調整は、第四反応槽に添加するアルカリ剤によ
って行なってもよく、この場合には第二反応槽における
アルカリ添加は省略してもよい。又、第二反応槽を曝気
して、酸素を供給することで、本発明の目的である汚泥
の沈降性及び脱水性等を向上させることが出来るのは図
1の場合と同様である。The embodiment shown in FIG. 2 is a modification of the embodiment shown in FIG. 1. The first reaction tank in the example of FIG. 1 is divided into two parts, and the first reaction tank in FIG. A metal salt is added, and if necessary, an acid or alkali is injected to adjust the pH, and the pH is adjusted by an alkali in the next second reaction tank, and the metal salt acts as a primary flocculant. Therefore, the returned sludge treated in the fourth reaction tank is returned to the second reaction tank. In the embodiment shown in FIG. 2, since the first reaction tank is in an acidic state, for example, pH 3.5 or less, preferably 2.5 to 3.0, the first reaction tank is oxidized with an oxidizing agent such as hydrogen peroxide. It is suitable for oxidative decomposition of dissolved COD, BOD and organic components such as chromaticity components in the raw water to be treated. Further, the metal salt coagulant is ionized with organic substances such as BOD, COD and chromaticity components in the wastewater. There is an advantage that the metal salt coagulant can improve the coagulation effect and the adsorption effect of the organic substance by the metal salt coagulant. In this example, the pH adjustment in the second reaction tank may be performed by an alkali agent added to the fourth reaction tank. In this case, the alkali addition in the second reaction tank may be omitted. Also, by aerating the second reaction tank and supplying oxygen, it is possible to improve the sedimentation and dewatering properties of sludge, which is the object of the present invention, as in the case of FIG.
【0014】図3に示す実施例は、上記図1の実施例と
上記図2の実施例の変形とを組み合わせた例であり、図
2の第二反応槽に相当する第五反応槽と、第三反応槽に
相当する第七反応槽との間に第六反応槽が設けられてい
る。第四反応槽で金属塩凝集剤として第一鉄を使用し、
且つ過酸化水素等の酸化剤を用いる場合には、大部分の
鉄は第二鉄となり、一部の第一鉄が残る場合がある。こ
の場合には、先ず第五反応槽のpHを3.0〜5.5に
調整して曝気することにより全ての鉄をFeO(OH)
とすることが出来る。この反応は第八反応槽からの返送
汚泥中の鉄分が1種の触媒となって行なわれる。第六反
応槽に送られた処理水中の第一鉄はpH6〜9で曝気に
より全てFeO(OH)になる。この際にも第一反応槽
からの鉄が触媒となる。その結果各槽中の汚泥は沈降性
及び脱水性が著しく向上する。The embodiment shown in FIG. 3 is an example in which the embodiment of FIG. 1 and the modification of the embodiment of FIG. 2 are combined, and a fifth reaction tank corresponding to the second reaction tank of FIG. A sixth reaction tank is provided between the third reaction tank and the seventh reaction tank. Using ferrous iron as a metal salt coagulant in the fourth reaction tank,
In addition, when an oxidizing agent such as hydrogen peroxide is used, most of the iron becomes ferric, and some ferrous iron may remain. In this case, first, the pH of the fifth reaction tank is adjusted to 3.0 to 5.5 and aeration is performed to remove all iron from FeO (OH).
It can be. This reaction is carried out using iron in sludge returned from the eighth reaction tank as one type of catalyst. The ferrous iron in the treated water sent to the sixth reaction tank becomes FeO (OH) by aeration at pH 6-9. Also in this case, iron from the first reaction tank serves as a catalyst. As a result, the sludge in each tank is significantly improved in sedimentation and dewatering properties.
【0015】この実施例の前半の工程では図1に示した
と同様な処理が行われると共に、第一固液分離装置から
放流される処理水が、図2に示したと同様な処理工程で
処理され、図1に示した例の利点と図2に示した例の利
点の双方が得られる。尚、この実施例における各工程条
件等は前記図1及び図2に示す実施例と同様であるが、
後半の工程における引き抜き汚泥の一部(点線表示)
は、前半の処理工程の第一反応槽に戻してもよい。この
実施例では、処理水の浄化率が一層向上し且つ汚泥の処
理が更に容易になると共に、更に第一反応槽に注入する
金属塩凝集剤の注入量を減少させても、COD、BOD
及び色度成分等の有機物に対する高い処理効果が得られ
る為、金属塩凝集剤に起因する汚泥発生量を更に少なく
することが出来る等の利点がある。In the first half of this embodiment, the same treatment as shown in FIG. 1 is performed, and the treated water discharged from the first solid-liquid separation device is treated in the same treatment step as shown in FIG. The advantages of the example shown in FIG. 1 and the advantages of the example shown in FIG. 2 are both obtained. The conditions of each step in this embodiment are the same as those in the embodiment shown in FIGS.
Part of the extracted sludge in the latter half of the process (shown by dotted lines)
May be returned to the first reaction tank in the first half of the processing step. In this embodiment, the purification rate of the treated water is further improved, the sludge treatment is further facilitated, and even if the injection amount of the metal salt coagulant injected into the first reaction tank is reduced, COD, BOD
In addition, since a high treatment effect on organic substances such as chromaticity components can be obtained, there is an advantage that the amount of sludge generated due to the metal salt coagulant can be further reduced.
【0016】図4に示す実施例は、上記図3に示す実施
例における第三反応槽と第八反応槽とを省略した実施例
であり、前半の工程では図1に示したと同様な処理が行
われるが、第一固液分離装置で抜き取られた汚泥の一部
が直接第一反応槽に戻される。第一固液分離装置から放
流される処理水は、前記図3に示した実施例において第
八反応槽が省略され、第二固液分離装置で抜き出された
汚泥の一部は第一、第四及び/又は第五反応槽に戻され
る。この実施例では3図に示した実施例の第三反応槽及
び第八反応槽が省略されているので、第一反応槽と第四
又は第五反応槽におけるpH調整が重要となる。この実
施例においても図3に示したと同様な作用効果が奏さ
れ、最終浄化水の浄化度を低下させることなく第一凝集
剤である金属塩の使用量を減少させることが出来、従っ
て最終的に発生する汚泥(スラッジ)の量も減少させる
ことが出来る。The embodiment shown in FIG. 4 is an embodiment in which the third reaction tank and the eighth reaction tank in the embodiment shown in FIG. 3 are omitted, and the same process as shown in FIG. In this case, part of the sludge extracted by the first solid-liquid separation device is directly returned to the first reaction tank. The treated water discharged from the first solid-liquid separator is the same as the embodiment shown in FIG. 3 except that the eighth reaction tank is omitted, and a part of the sludge extracted by the second solid-liquid separator is first, It is returned to the fourth and / or fifth reaction tank. In this embodiment, since the third reaction tank and the eighth reaction tank of the embodiment shown in FIG. 3 are omitted, pH adjustment in the first reaction tank and the fourth or fifth reaction tank is important. Also in this embodiment, the same operation and effect as shown in FIG. 3 are exerted, and the use amount of the metal salt as the first flocculant can be reduced without lowering the degree of purification of the final purified water. The amount of sludge generated in the plant can also be reduced.
【0017】本発明で処理される排水は、工業排水、家
庭用等の生活排水、産業廃棄物埋め立て地の浸出水、し
尿、糖蜜排水、発酵工業排水、畜産業における排水等等
の排水のいずれでもよく、更に本発明の方法は、上記排
水を処理した二次処理水を更に高度処理するのに極めて
有用である。又、以上の実施例で使用する各種薬剤は、
従来公知の排水処理における薬剤と同様である。例え
ば、一次凝集剤である金属塩としては、鉄、アルミニウ
ム、アルミン酸塩、銅、亜鉛、マンガン、コバルト等の
金属塩が使用され、特に鉄とアルミニウムが好ましい。
更に過酸化水素で酸化処理を併用する場合には鉄が酸化
触媒としても作用するので鉄塩を使用することが好まし
い。アルカリ又は酸としては特に限定されず、例えば、
苛性ソーダ、炭酸ソーダ、消石灰、水酸化マグネシウ
ム、硫酸等が任意に使用される。又、二次凝集剤として
は、例えば、通常使用されているポリアクリルアミド誘
導体、ポリアクリル酸誘導体、キトサン等のアニオン
系、カチオン系或はノニオン系の高分子凝集剤が使用さ
れる。、又、固液分離装置には、例えば、沈澱法、加圧
或は減圧浮上法、遠心分離法、限外濾過、精密濾過等の
いずれの方法でもよいが、通常は沈澱法又は限外濾過法
が使用される。The wastewater to be treated in the present invention may be any one of industrial wastewater, domestic wastewater such as domestic use, leachate from an industrial waste landfill, human waste, molasses wastewater, fermentation industrial wastewater, and wastewater in the livestock industry. Alternatively, the method of the present invention is extremely useful for further advanced treatment of the secondary treated water obtained by treating the wastewater. Also, various drugs used in the above examples,
It is the same as a conventionally known chemical in wastewater treatment. For example, metal salts such as iron, aluminum, aluminate, copper, zinc, manganese, and cobalt are used as the metal salt as the primary coagulant, and iron and aluminum are particularly preferable.
Further, when the oxidation treatment is performed in combination with hydrogen peroxide, it is preferable to use an iron salt because iron also acts as an oxidation catalyst. The alkali or acid is not particularly limited, for example,
Caustic soda, sodium carbonate, slaked lime, magnesium hydroxide, sulfuric acid and the like are optionally used. As the secondary flocculant, for example, a commonly used anionic, cationic or nonionic polymer flocculant such as a polyacrylamide derivative, a polyacrylic acid derivative or chitosan is used. The solid-liquid separator may be any of a precipitation method, a pressurized or reduced pressure flotation method, a centrifugal separation method, an ultrafiltration method and a microfiltration method. The law is used.
【0018】[0018]
【実施例】次に実施例及び比較例を挙げて本発明を更に
具体的に説明する。 実施例1 図1に示す工程で行った。被処理原水は公共下水を活性
汚泥処理によって処理された二次処理水であり、汚染物
質として下記成分を含有している。 BOD:3mg/リットル COD:12mg/リットル 全燐:4mg/リットル pH:7.8Next, the present invention will be described more specifically with reference to examples and comparative examples. Example 1 The process shown in FIG. 1 was performed. The raw water to be treated is secondary treated water obtained by treating public sewage by activated sludge treatment, and contains the following components as pollutants. BOD: 3 mg / liter COD: 12 mg / liter Total phosphorus: 4 mg / liter pH: 7.8
【0019】試験用処理設備は下記の通りである。 第一反応槽:容量10リットル 付属機器:急速撹拌機、pH計及び曝気2リットル/m
in. 第二反応槽:容量10リットル 付属機器:緩速撹拌機 固液分離装置(沈澱槽):容量180リットル 第三反応槽:容量0.8リットル 付属機器:急速撹拌機及びpH計The processing equipment for the test is as follows. First reactor: 10 liter capacity Attached equipment: rapid stirrer, pH meter and aeration 2 liter / m
in. Second reactor: 10 liters Auxiliary equipment: slow stirrer Solid-liquid separator (precipitation tank): 180 liters Third reactor: 0.8 liters auxiliary equipment: rapid stirrer and pH meter
【0020】先ず上記原水を、第一反応槽に60リット
ル/Hrの割合で導入し、第一及び第二反応槽の滞留量
を夫々8リットルとし、最終的に固液分離装置から処理
水が放流される様に設定した。第一反応槽には、撹拌機
を作動させつつ、第三反応槽から戻される汚泥のpHを
考慮しつつ、消石灰乳を第一反応槽内のpHが6〜7の
範囲に保たれる様にpH計と連動させて注入し、更に濃
度が10mg/リットル(Al3+として)になる様に一
次凝集剤としてポリ塩化アルミニウムを添加し、第二反
応槽では撹拌機を作動させつつ、濃度が1mg/リット
ルになる様に二次凝集剤として高分子凝集剤(ポリアク
リルアミド系弱アニオン性高分子凝集剤)を添加した。
更に固液分離装置(沈澱槽)の底部から汚泥を引き抜
き、その一部(第一反応槽で注入したAl3+量の20倍
量のアルミニウム原子を含む汚泥)を第三反応槽に導
く。撹拌機を作動させつつ、15重量%の消石灰乳を該
反応槽のpHが9〜10の範囲に保たれる様にpH計と
連動させて注入し、該汚泥を第一反応槽に戻した。First, the raw water is introduced into the first reaction tank at a rate of 60 liters / Hr, and the retention amounts of the first and second reaction tanks are each set to 8 liters. It was set to be released. In the first reaction tank, the pH of the slaked lime milk is maintained in the range of 6 to 7 while operating the stirrer and considering the pH of the sludge returned from the third reaction tank. And a polyaluminum chloride as a primary coagulant is added so that the concentration becomes 10 mg / liter (as Al 3+ ). Was added as a secondary coagulant (polyacrylamide-based weakly anionic polymer coagulant) so that the concentration became 1 mg / liter.
Further, sludge is withdrawn from the bottom of the solid-liquid separator (precipitation tank), and a part thereof (sludge containing 20 times the amount of Al 3+ aluminum atoms injected in the first reaction tank) is led to the third reaction tank. While operating the stirrer, 15% by weight slaked lime milk was injected in conjunction with a pH meter so that the pH of the reaction tank was maintained in the range of 9 to 10, and the sludge was returned to the first reaction tank. .
【0021】以上の全工程が定常状態になった時点で、
固液分離装置の底部から引き抜いた汚泥を1リットルの
メスシリンダーに採って静置沈澱を行い、下記表1に記
載の時間経過後、上澄み液をデカンテーションで除き、
残った沈降汚泥の濃度を測定し、下記表1の結果を得
た。 比較例1 汚泥返送を行わず、第一反応槽に消石灰乳を注入して第
一反応槽内のpHを7に調整した他は上記実施例と同一
の操作を繰り返し、同様に評価し、その結果を表1に示
した。At the time when all the above processes are in a steady state,
The sludge pulled out from the bottom of the solid-liquid separation device was collected in a 1-liter graduated cylinder and allowed to stand for sedimentation. After the lapse of time shown in Table 1 below, the supernatant was removed by decantation.
The concentration of the remaining settled sludge was measured, and the results shown in Table 1 below were obtained. Comparative Example 1 The same operation as in the above example was repeated except that sludge was not returned and slaked lime milk was injected into the first reaction tank to adjust the pH in the first reaction tank to 7, and the same evaluation was performed. The results are shown in Table 1.
【0022】[0022]
【表1】 汚泥の沈降性 以上の表1の結果から明らかである様に、汚泥の一部を
アルカリ処理して第一反応槽に戻す本発明発明方法によ
れば、比較例に比べて、静置時間0時間で約5倍の汚泥
の固形分濃度を示し、時間経過と共にその傾向は一層顕
著となり、24時間経過後には約10倍の汚泥固形分濃
度を示した。[Table 1] Sedimentation of sludge As is clear from the results in Table 1 above, according to the method of the present invention in which a part of the sludge is alkali-treated and returned to the first reaction tank, compared with the comparative example, about 5 hours at a standing time of 0 hour. The solid concentration of the sludge was doubled, and the tendency became more remarkable with the passage of time. After 24 hours, the solid concentration of the sludge was increased about 10 times.
【0023】実施例2 図2に示す工程で行った。被処理原水はし尿低希釈二段
活性汚泥処理によって処理された処理水であり、汚染物
質として下記成分を含有している。 BOD:8mg/リットル COD:45mg/リットル 全燐:77mg/リットル 全窒素:13mg/リットル 色度:210度 pH:8.1Example 2 The process shown in FIG. 2 was performed. The raw water to be treated is treated water that has been treated by low-dilution two-step activated sludge treatment of human waste, and contains the following components as pollutants. BOD: 8 mg / L COD: 45 mg / L Total phosphorus: 77 mg / L Total nitrogen: 13 mg / L Chromaticity: 210 degrees pH: 8.1
【0024】試験用処理設備は下記の通りである。 第一反応槽:容量10リットル 付属機器:急速撹拌機、pH計及び気曝2リットル/m
in. 第二反応槽:容量10リットル 付属機器:急速撹拌機及びpH計 第三反応槽:容量10リットル、限外濾過膜の循環水槽
として使用 付属機器:急速撹拌機 固液分離装置(限外濾過膜):内圧式11mmφチュー
ブラー、操作圧5Kg/cmG、通水速度膜1本当たり
15リットル/min.、ポリオレフィン膜、分画分子
量10万、膜面積0.8m2 、30分間に1回の割合で
ボール洗浄実施 第四反応槽:容量0.8リットル 付属機器:急速撹拌機及びpH計The test processing equipment is as follows. First reaction tank: capacity 10 liters Attached equipment: rapid stirrer, pH meter and air exposure 2 liters / m
in. Second reactor: 10 liter capacity Auxiliary equipment: rapid stirrer and pH meter Third reactor: 10 liter capacity, used as circulating water tank for ultrafiltration membrane Auxiliary equipment: rapid agitator solid-liquid separator (ultrafiltration membrane) ): Internal pressure type 11 mmφ tubular, operating pressure 5 kg / cmG, water flow rate 15 liter / min. Per membrane. , Polyolefin membrane, molecular weight cut off 100,000, membrane area 0.8 m 2 , ball washing once every 30 minutes 4th reactor: 0.8 liter capacity Attached equipment: rapid stirrer and pH meter
【0025】先ず上記原水を、第一反応槽に60リット
ル/Hrの割合で導入し、第一〜三反応槽の滞留量を夫
々8リットルとし、最終的に固液分離装置から処理水が
放流される様に設定した。第一反応槽には、撹拌機を作
動させつつ、第一反応槽内のpHが2.5〜3.0の範
囲に保たれる様にpH計と連動させて硫酸を注入し、更
に濃度が300mg/リットル(Fe3+として)になる
様に塩化第二鉄水溶液を添加し、第二反応槽では撹拌機
を作動させつつ、第四反応槽から戻される汚泥のpHを
考慮しつつ、pH4〜5の範囲に維持される様に苛性ソ
ーダ溶液を加えた。更に固液分離装置から汚泥を引き抜
き、その一部(金属塩として注入したFe3+量の20倍
量の鉄原子を含む汚泥量)を第四反応槽に導く。撹拌機
を作動させつつ、25重量%の苛性ソーダを該反応槽の
pHが7〜8の範囲に保たれる様にpH計と連動させて
注入し、該汚泥を第二反応槽に戻した。First, the raw water is introduced into the first reaction tank at a rate of 60 liters / Hr, and the retention amounts of the first to third reaction tanks are each set to 8 liters. Finally, treated water is discharged from the solid-liquid separation device. It was set to be done. While operating the stirrer, sulfuric acid is injected into the first reaction tank in conjunction with a pH meter so that the pH in the first reaction tank is maintained in the range of 2.5 to 3.0, and the concentration is further increased. Is adjusted to 300 mg / liter (as Fe 3+ ), and while the stirrer is operated in the second reaction tank, while considering the pH of the sludge returned from the fourth reaction tank, Caustic soda solution was added to maintain the pH in the range of 4-5. Further, the sludge is drawn out from the solid-liquid separation device, and a part thereof (the amount of sludge containing 20 times the amount of Fe 3+ iron atoms injected as the metal salt) is led to the fourth reaction tank. While operating the stirrer, 25% by weight of caustic soda was injected in conjunction with a pH meter so that the pH of the reaction tank was maintained in the range of 7 to 8, and the sludge was returned to the second reaction tank.
【0026】以上の全工程が定常状態になった時点で、
固液分離装置の底部から引き抜いた汚泥を1リットルの
メスシリンダーに採って静置沈澱を行い、下記表2に記
載の時間経過後上澄み液をデカンテーションで除き、残
った沈降汚泥の濃度を測定し下記表2の結果を得た。 比較例2 汚泥返送を行わず、第二反応槽に苛性ソーダ溶液を注入
して第二反応槽内のpH調整した他は上記実施例と同一
の操作を繰り返し、同様に評価し、その結果を表2に示
した。When all of the above steps have reached a steady state,
The sludge pulled out from the bottom of the solid-liquid separator is collected in a 1-liter graduated cylinder and allowed to stand for sedimentation. After a lapse of time shown in Table 2 below, the supernatant is removed by decantation, and the concentration of the remaining settled sludge is measured. The results in Table 2 below were obtained. Comparative Example 2 The same operation as in the above example was repeated except that the sludge was not returned and the pH of the second reaction tank was adjusted by injecting a caustic soda solution into the second reaction tank, and the same evaluation was performed. 2 is shown.
【0027】[0027]
【表2】汚泥の沈降性 以上の表2の結果から明らかである様に、汚泥の一部を
アルカリ処理して第二反応槽に戻す本発明発明方法によ
れば、比較例に比べて、0時間では有意の差は認められ
なかったが、時間経過と共にその汚泥固形分濃度の向上
は顕著となり、24時間経過後には約8倍の汚泥固形分
濃度を示した。[Table 2] Sedimentation of sludge As is clear from the results in Table 2 above, according to the method of the present invention in which a part of the sludge is alkali-treated and returned to the second reaction tank, a significant difference is recognized at 0 hours as compared with the comparative example. However, the improvement of the sludge solid concentration became remarkable with the passage of time, and after 24 hours, the sludge solid concentration was about eight times as high.
【0028】上記実施例2において、第一反応槽におけ
るpHのみを変化させた場合の引き抜き汚泥の30分間
静置後の汚泥濃度と、最終処理水の水質を調べた結果下
記表3の結果が得られた。In Example 2 above, when only the pH in the first reaction tank was changed, the concentration of the extracted sludge after standing for 30 minutes and the quality of the final treated water were examined. The results in Table 3 below were obtained. Obtained.
【表3】第一反応槽のpHと汚泥濃度並びに処理水水質 [Table 3] pH and sludge concentration of the first reactor and treated water quality
【0029】上記表3の結果からして、上記実施例2の
方法では、第一反応槽におけるpHは汚泥の濃縮性並び
に処理水水質に大きな関係があり、金属塩として第二鉄
塩を使用した場合には、pHが3.5以下では本発明の
効果が明瞭であるが、酸の注入量を多くすることは不経
済であるので、第一反応槽におけるpHは2.5〜3.
0の範囲が好ましい。更に上記実施例2において、第二
反応槽におけるpHのみを変化させた場合の引き抜き汚
泥の30分間静置後の汚泥濃度と、この汚泥を対象とし
たリーフテストで真空脱水した場合の脱水ケーキ濃度と
最終処理水の水質の変化を調べた結果下記表4の結果が
得られた。尚、リーフテストは濾過面積60cm2 、濾
過吸引時間1分間及び脱水吸引時間1分間にて行った。From the results shown in Table 3 above, in the method of Example 2, the pH in the first reaction tank has a great influence on the concentration of sludge and the quality of treated water, and the ferric salt is used as the metal salt. In this case, the effect of the present invention is clear when the pH is 3.5 or less, but it is uneconomical to increase the injection amount of the acid. Therefore, the pH in the first reaction tank is 2.5 to 3.0.
A range of 0 is preferred. Furthermore, in Example 2 above, the sludge concentration of the extracted sludge after standing for 30 minutes when only the pH in the second reaction tank was changed, and the dewatered cake concentration when the sludge was subjected to vacuum dehydration in a leaf test for this sludge As a result of examining the change in water quality of the final treated water, the results shown in Table 4 below were obtained. The leaf test was performed with a filtration area of 60 cm 2 , a filtration suction time of 1 minute, and a dehydration suction time of 1 minute.
【0030】[0030]
【表4】第二反応槽のpHと汚泥濃度並びに処理水水質 [Table 4] pH, sludge concentration and treated water quality of the second reaction tank
【0031】上記表4の結果からして、上記実施例2の
方法では、一次凝集剤として第二鉄塩を用いた場合、第
二反応槽におけるpHは汚泥の濃縮性に大きな関係があ
り、pH3.0〜4.5の範囲において本発明の効果が
顕著である。脱水ケーキの濃度もpH3.0〜5.5の
範囲では50重量%前後と極めて高い濃度を示し、本発
明の効果が明瞭である。しかしながら、pH2.5〜
3.0の範囲では処理水中に第二鉄イオンが残留する
為、処理水質の悪化が認められた。これは、第二反応槽
の後に不図示のpH調整槽を設けてpHを4以上にした
後固液分離することで回避することが出来る。From the results in Table 4 above, in the method of Example 2 above, when a ferric salt was used as the primary flocculant, the pH in the second reaction tank had a great relationship with the sludge concentration, The effect of the present invention is remarkable in the pH range of 3.0 to 4.5. The concentration of the dehydrated cake also shows a very high concentration of about 50% by weight in the range of pH 3.0 to 5.5, and the effect of the present invention is clear. However, pH 2.5-
In the range of 3.0, since the ferric ions remained in the treated water, deterioration of the treated water quality was recognized. This can be avoided by providing a pH adjusting tank (not shown) after the second reaction tank to adjust the pH to 4 or more, and then performing solid-liquid separation.
【0032】実施例3 図2に示す工程で行った。被処理原水はメッキ工場排水
の凝集沈澱処理水であり、汚染物質として下記成分を含
有している。 BOD:49mg/リットル COD:55mg/リットル pH:8.1 試験用処理設備は下記の通りである。 第一反応槽:容量10リットル 付属機器:急速撹拌機及びpH計 第二反応槽:容量10リットル 付属機器:急速撹拌機、pH計及び曝気2リットル/m
in. 第三反応槽:容量10リットル 付属機器:緩速撹拌機 固液分離装置(沈澱槽):容量180リットル 第四反応槽:容量0.8リットル 付属機器:急速撹拌機及びpH計Example 3 An experiment was performed according to the process shown in FIG. The raw water to be treated is the coagulated sedimentation treated water of the plating factory wastewater, and contains the following components as pollutants. BOD: 49 mg / liter COD: 55 mg / liter pH: 8.1 The processing equipment for the test is as follows. First reaction tank: capacity 10 liters Attached equipment: rapid stirrer and pH meter Second reaction tank: capacity 10 liters Auxiliary equipment: quick stirrer, pH meter and aeration 2 liter / m
in. Third reaction tank: 10 liter capacity Auxiliary equipment: slow stirrer Solid-liquid separator (precipitation tank): 180 liter capacity Fourth reaction tank: 0.8 liter capacity Auxiliary equipment: rapid stirrer and pH meter
【0033】先ず上記原水を、第一反応槽に60リット
ル/Hrの割合で導入し、第一〜三反応槽の滞留量を夫
々8リットルとし、最終的に固液分離装置から処理水が
放流される様に設定した。第一反応槽には、撹拌機を作
動させつつ、第一反応槽のpHが2.8前後に保たれる
様に硫酸をpH計と連動させて注入し、更に濃度が20
0mg/リットル(Fe2+として)になる様に塩化第一
鉄及び有効酸素換算で酸素濃度が50mg/リットルに
なる様に過酸化水素を添加し、被処理水中のCOD、B
OD及び色度成分等をフェントン酸化によって酸化分解
した。第二反応槽では撹拌機を作動させつつ、第四反応
槽から汚泥を戻した。第三反応槽では、濃度が1mg/
リットルになる様に高分子凝集剤を添加した。更に固液
分離装置から汚泥を引き抜き、その一部(第一反応槽に
おける加えた鉄(Fe2+)の10倍になる量の汚泥)を
第四反応槽に導く。撹拌機を作動させつつ、25重量%
の苛性ソーダ水溶液を第二反応槽のpHが4〜5の範囲
に保たれる様にpH計と連動させて注入し、該汚泥を第
二反応槽に戻した。First, the raw water is introduced into the first reaction tank at a rate of 60 liters / Hr, and the retention amounts of the first to third reaction tanks are each set to 8 liters. Finally, the treated water is discharged from the solid-liquid separator. It was set to be done. While operating the stirrer, sulfuric acid was injected into the first reaction tank in conjunction with the pH meter so that the pH of the first reaction tank was maintained at about 2.8, and the concentration was further increased to 20%.
0 mg / liter (as Fe 2+ ), ferrous chloride and hydrogen peroxide are added so that the oxygen concentration becomes 50 mg / liter in terms of available oxygen, and COD and B in the water to be treated are added.
OD and chromaticity components were oxidatively decomposed by Fenton oxidation. In the second reaction tank, the sludge was returned from the fourth reaction tank while operating the stirrer. In the third reaction tank, the concentration was 1 mg /
The polymer flocculant was added to make up liters. Further, the sludge is drawn out from the solid-liquid separation device, and a part of the sludge (the amount of the sludge which is 10 times the amount of iron (Fe 2+ ) added in the first reaction tank) is led to the fourth reaction tank. 25% by weight while operating the stirrer
The sodium hydroxide aqueous solution was injected in conjunction with a pH meter so that the pH of the second reaction tank was maintained in the range of 4 to 5, and the sludge was returned to the second reaction tank.
【0034】以上の全工程が定常状態になった時点で、
固液分離装置の底部から引き抜いた汚泥を1リットルの
メスシリンダーに採って静置沈澱を行い、下記表5に記
載の時間経過後上澄み液をデカンテーションで除き、残
った沈降汚泥の濃度を測定し下記表5の結果を得た。 比較例3 汚泥返送を行わず、第二反応槽に苛性ソーダ溶液を注入
して第二反応槽内のpH調整した他は上記実施例と同一
の操作を繰り返し、同様に評価し、その結果を表5に示
した。At the time when all the above processes are in a steady state,
The sludge pulled out from the bottom of the solid-liquid separator is collected in a 1-liter graduated cylinder and allowed to stand for sedimentation. After a lapse of time shown in Table 5 below, the supernatant is removed by decantation, and the concentration of the remaining settled sludge is measured. Then, the results shown in Table 5 below were obtained. Comparative Example 3 The same operation as in the above example was repeated except that the sludge was not returned and the pH of the second reaction tank was adjusted by injecting a caustic soda solution into the second reaction tank, and the same evaluation was performed. 5 is shown.
【0035】[0035]
【表5】汚泥の沈降性 以上の表2の結果から明らかである様に、汚泥の一部を
アルカリ処理して第二反応槽に戻す本発明発明方法によ
れば、比較例に比べて、0時間〜24時間に渡って著し
い汚泥固形分濃度の向上が認められた。上記実施例3に
おいて、第一反応槽におけるpHを変化させた場合の引
き抜き汚泥の30分間静置後の汚泥濃度と、最終処理水
の水質を調べた結果下記表6の結果が得られた。[Table 5] Sedimentation of sludge As is clear from the results of Table 2 above, according to the method of the present invention in which a part of the sludge is alkali-treated and returned to the second reaction tank, the sludge is treated for 0 to 24 hours as compared with the comparative example. A remarkable improvement in the sludge solids concentration was observed. In Example 3, as a result of examining the sludge concentration after leaving the extracted sludge for 30 minutes and the quality of the final treated water when the pH in the first reaction tank was changed, the results in Table 6 below were obtained.
【0036】[0036]
【表6】第一反応槽のpHと汚泥濃度並びに処理水水質 上記表6の結果からして、上記実施例3の方法でも、第
一反応槽におけるpHは汚泥の濃縮性並びに処理水水質
に大きな関係があり、酸化触媒として添加した第一鉄は
過酸化水素によって第二鉄に酸化されており、実施例2
と同様にpHが3.5以下では本発明の効果が明瞭であ
る。又、フェントン反応自体の好ましいpHも3前後で
あるので、水質的にも第一反応槽におけるpHは2.5
〜3.0の範囲が好ましい。[Table 6] pH and sludge concentration of the first reaction tank and treated water quality From the results in Table 6 above, also in the method of Example 3, the pH in the first reaction tank has a great influence on the sludge concentration and the quality of the treated water, and the ferrous iron added as the oxidation catalyst is hydrogen peroxide. Example 2
Similarly, when the pH is 3.5 or less, the effect of the present invention is clear. Further, since the preferred pH of the Fenton reaction itself is around 3, the pH in the first reaction tank is also 2.5 in water quality.
The range of -3.0 is preferable.
【0037】更に上記実施例3において、第二反応槽に
おけるpHのみを変化させた場合の引き抜き汚泥の30
分間静置後の汚泥濃度と、この汚泥を対象としたリーフ
テストで真空脱水した場合の脱水ケーキ濃度と最終処理
水の水質の変化を調べた結果下記表7の結果が得られ
た。尚、リーフテストは濾過面積60cm2 、濾過吸引
時間1分間及び脱水吸引時間1分間にて行った。Further, in Example 3, 30% of the extracted sludge when only the pH in the second reaction tank was changed.
After examining the sludge concentration after standing for a minute and the change in the dewatered cake concentration and the water quality of the final treated water when the sludge was subjected to vacuum dehydration in a leaf test, the results shown in Table 7 below were obtained. The leaf test was performed with a filtration area of 60 cm 2 , a filtration suction time of 1 minute, and a dehydration suction time of 1 minute.
【0038】[0038]
【表7】第二反応槽のpHと汚泥濃度並びに処理水水質 上記表7の結果からして、上記実施例3の方法では、第
二反応槽におけるpHは汚泥の濃縮性に大きな関係があ
り、実施例2と同様にpH3.0〜5.5の範囲におい
て本発明の効果が顕著である。脱水ケーキの濃度もpH
3.0〜5.5の範囲では60重量%前後と極めて高い
濃度を示し、本発明の効果が明瞭である。しかしなが
ら、pH2.5〜3.0の範囲では処理水中に第二鉄イ
オンが残留する為好ましくない。又、pH3.0〜5.
5では処理水を直接公共水域へ放流することが出来ない
ので、第二反応槽の後又は固液分離装置の後にpH調整
槽を設けることが好ましい。この点は実施例1及び2に
おいても同様である。[Table 7] pH, sludge concentration and treated water quality of the second reaction tank From the results in Table 7, in the method of Example 3 described above, the pH in the second reaction tank has a great relationship with the sludge concentrating property, and the pH in the range of 3.0 to 5.5 is the same as in Example 2. The effect of the present invention is remarkable. The concentration of the dehydrated cake is also pH
In the range of 3.0 to 5.5, the concentration is as high as about 60% by weight, and the effect of the present invention is clear. However, a pH in the range of 2.5 to 3.0 is not preferable because ferric ions remain in the treated water. Moreover, pH 3.0-5.
In 5, the treated water cannot be discharged directly to the public waters, so that a pH adjusting tank is preferably provided after the second reaction tank or after the solid-liquid separation device. This is the same in the first and second embodiments.
【0039】実施例4 図3に示す工程で行った。被処理原水は廃棄物埋め立て
場浸出汚水の嫌気好気循環型活性汚泥法による処理水で
あり、汚染物質として下記成分を含有している。 BOD:11mg/リットル COD:280mg/リットル 全窒素:22mg/リットル pH:7.6 色度:530度Example 4 This was performed in the process shown in FIG. The raw water to be treated is treated water by the anaerobic aerobic circulation type activated sludge method of the leaching wastewater discharged from a waste landfill, and contains the following components as pollutants. BOD: 11 mg / liter COD: 280 mg / liter Total nitrogen: 22 mg / liter pH: 7.6 Chromaticity: 530 degrees
【0040】試験用処理設備は下記の通りである。 第一反応槽:容量10リットル 付属機器:急速撹拌機、pH計及び気曝(脱炭酸) 第二反応槽:容量10リットル 付属機器:緩速撹拌機 第一固液分離装置(沈澱槽):容量180リットル 第三反応槽:容量0.8リットル 付属機器:急速撹拌機及びpH計 第四反応槽:容量10リットル 付属機器:急速撹拌機及びpH計 第五反応槽:容量10リットル 付属機器:急速撹拌機、pH計及び曝気2リットル/m
in. 第六反応槽:容量10リットル 付属機器:急速撹拌機、pH計及び気曝(Fe2+の酸
化) 第七反応槽:容量10リットル 付属機器:緩速撹拌機 第二固液分離装置(沈澱槽):容量180リットル 第八反応槽:容量0.8リットル 付属機器:急速撹拌機及びpH計The processing equipment for the test is as follows. First reaction tank: 10 liter capacity Auxiliary equipment: rapid stirrer, pH meter and aeration (decarboxylation) Second reaction tank: 10 liter capacity Auxiliary equipment: slow stirrer First solid-liquid separator (precipitation tank): 180 liter capacity Third reaction tank: 0.8 liter capacity Auxiliary equipment: rapid stirrer and pH meter Fourth reaction tank: 10 liter capacity Auxiliary equipment: rapid stirrer and pH meter Fifth reaction tank: 10 liter capacity Auxiliary equipment: Rapid stirrer, pH meter and aeration 2 liter / m
in. Sixth reaction tank: 10 liter capacity Attached equipment: rapid stirrer, pH meter and aeration (Fe 2+ oxidation) Seventh reaction tank: 10 liter capacity Attached equipment: slow stirrer Second solid-liquid separator (precipitation) Tank): 180 liter capacity Eighth reaction tank: 0.8 liter capacity Attached equipment: rapid stirrer and pH meter
【0041】先ず上記原水を、第一反応槽に60リット
ル/Hrの割合で導入し、第一、第二、第四、第五、第
六及び第七反応槽の滞留量を夫々8リットルとし、最終
的に第二固液分離装置から処理水が放流される様に設定
した。第一反応槽には、撹拌機を作動させつつ、濃度が
200mg/リットル(Fe3+として)となる様に塩化
第二鉄を加え、第三反応槽から戻される汚泥のpHを考
慮しつつ、硫酸又は消石灰乳を第一反応槽のpHが4.
0〜4.5の範囲に保たれる様にpH計と連動させて注
入し、第二反応槽では撹拌機を作動させつつ、濃度が1
mg/リットルになる様に高分子凝集剤を添加した。更
に第一固液分離装置の底部から汚泥を引き抜き、その一
部を第一反応槽において加えた鉄(Fe2+)の10倍に
なる量の鉄を含む汚泥を第三反応槽に導く。撹拌機を作
動させつつ、濃度15重量%の消石灰乳を該反応槽のp
Hが7〜8の範囲に保たれる様にpH計と連動させて注
入し、該汚泥を第一反応槽に戻した。First, the raw water was introduced into the first reaction tank at a rate of 60 liters / Hr, and the retention amounts of the first, second, fourth, fifth, sixth and seventh reaction tanks were each set to 8 liters. It was set so that the treated water was finally discharged from the second solid-liquid separation device. While operating the stirrer, ferric chloride was added to the first reaction tank so that the concentration became 200 mg / liter (as Fe 3+ ), and the pH of the sludge returned from the third reaction tank was taken into consideration. , Sulfuric acid or slaked lime milk with a pH of 4 in the first reaction tank.
Injection is carried out in conjunction with a pH meter so that the concentration is maintained in the range of 0 to 4.5.
The polymer flocculant was added so as to be mg / liter. Further, sludge is withdrawn from the bottom of the first solid-liquid separator, and a portion of the sludge containing iron in an amount of 10 times the amount of iron (Fe 2+ ) added in the first reaction tank is led to the third reaction tank. While operating the stirrer, slaked lime milk having a concentration of 15% by weight
The sludge was injected in conjunction with the pH meter so that H was maintained in the range of 7 to 8, and the sludge was returned to the first reaction tank.
【0042】第一固液分離装置からの処理水を第四反応
槽に導き、第四反応槽では、撹拌機を作動させつつ、濃
度が200mg/リットル(Fe2+として)となる様に
塩化第一鉄溶液及び有効酸素換算で酸素濃度が40mg
/リットルになる様に過酸化水素を添加し、反応槽のp
Hが2.8前後の保たれる様にpH計と連動させながら
硫酸を注入し、処理水中のCOD、BOD及び色度成分
をフェントン反応により酸化分解した。第五反応槽で
は、第五反応槽のpH計で第八反応槽に注入する10重
量%消石灰乳の量を制御して第五反応槽のpHを4〜5
に調整した。第六反応槽では、撹拌しながら空気を送り
込みFe2+イオンをFe3+イオンに酸化し、pH計で制
御しながら10重量%消石灰乳を加えてpHを7〜8に
制御し、第七反応槽では撹拌機を作動させつつ濃度が1
mg/リットルになる様に高分子凝集剤を添加した。更
に第二固液分離装置の底部から汚泥を引き抜き、その一
部を第四反応槽においる加えた鉄(Fe+2)の20倍に
なる量の汚泥を第八反応槽に導く。撹拌機を作動させつ
つ、濃度10重量%の消石灰乳を第五反応槽のpHが4
〜5の範囲に保たれる様に、第五反応槽のpH計と連動
させて注入し、該汚泥の50重量%を第五反応槽に戻
し、残りの50重量%を第六反応槽に戻した。The treated water from the first solid-liquid separation device is led to a fourth reaction tank. In the fourth reaction tank, the concentration is adjusted to 200 mg / liter (as Fe 2+ ) while operating a stirrer. Oxygen concentration of 40mg in terms of ferrous solution and available oxygen
Per liter of hydrogen peroxide, and add
Sulfuric acid was injected while interlocking with a pH meter so that H was maintained at around 2.8, and COD, BOD and chromaticity components in the treated water were oxidatively decomposed by the Fenton reaction. In the fifth reaction tank, the pH of the fifth reaction tank is adjusted to 4 to 5 by controlling the amount of 10% by weight slaked lime milk to be injected into the eighth reaction tank with the pH meter of the fifth reaction tank.
Was adjusted. In the sixth reaction tank, air was fed into the reactor while stirring to oxidize Fe 2+ ions into Fe 3+ ions, and while controlling with a pH meter, 10% by weight slaked lime milk was added to control the pH to 7 to 8; In the reaction tank, the concentration was 1 while operating the stirrer.
The polymer flocculant was added so as to be mg / liter. Further, the sludge is drawn out from the bottom of the second solid-liquid separator, and a part of the sludge is guided to the eighth reaction tank in an amount 20 times as much as the added iron (Fe +2 ) in the fourth reaction tank. While operating the stirrer, slaked lime milk having a concentration of 10 wt%
The sludge is injected in conjunction with the pH meter of the fifth reaction tank so that the sludge is maintained in the range of ~ 5, 50% by weight of the sludge is returned to the fifth reaction tank, and the remaining 50% by weight is transferred to the sixth reaction tank. I put it back.
【0043】以上の全工程が定常状態になった時点で、
第一及び第二固液分離装置の底部から引き抜いた汚泥を
1リットルのメスシリンダーに採って静置沈澱を行い下
記表8に記載の時間経過後上澄み液をデカンテーション
で除き、残った沈降汚泥の濃度を測定し下記表8の結果
を得た。 比較例4 汚泥返送(1)及び(2)を行なわず、第一反応槽と、
第五及び第六反応槽に10重量%消石灰乳を注入してp
H調整を行った他は上記と同一の操作を繰り返し、同様
に評価し、その結果を表8に示した。When all of the above steps have reached a steady state,
The sludge pulled out from the bottoms of the first and second solid-liquid separators is collected in a 1-liter graduated cylinder, and allowed to stand for sedimentation. After a lapse of time shown in Table 8 below, the supernatant liquid is removed by decantation and the remaining settled sludge is removed. Was measured to obtain the results shown in Table 8 below. Comparative Example 4 Sludge return (1) and (2) were not performed,
Inject 10% by weight slaked lime milk into the fifth and sixth reaction tanks.
The same operation as described above was repeated except that the H adjustment was performed, and the same evaluation was performed. The results are shown in Table 8.
【0044】[0044]
【表8】汚泥の沈降性 [Table 8] Sedimentation of sludge
【0045】実施例5 図4に示す工程で行った。被処理原水は廃棄物埋め立て
場浸出汚水の嫌気好気循環型活性汚泥法による処理水で
あり、汚染物質として下記成分を含有している。 BOD:15mg/リットル COD:310mg/リットル 全窒素:18mg/リットル pH:7.7 色度:590° 試験用処理設備は下記の通りである。 第一反応槽:容量10リットル 付属機器:急速撹拌機、pH計及び気曝2リットル/m
in. (脱炭酸) 第二反応槽:容量10リットル 付属機器:緩速撹拌機 第一固液分離装置(沈澱槽):容量180リットルExample 5 The procedure shown in FIG. 4 was performed. The raw water to be treated is treated water by the anaerobic aerobic circulation type activated sludge method of the leaching wastewater discharged from a waste landfill, and contains the following components as pollutants. BOD: 15 mg / liter COD: 310 mg / liter Total nitrogen: 18 mg / liter pH: 7.7 Chromaticity: 590 ° The processing equipment for the test is as follows. First reaction tank: capacity 10 liters Attached equipment: rapid stirrer, pH meter and air exposure 2 liters / m
in. (Decarbonation) Second reaction tank: 10 liter capacity Auxiliary equipment: slow stirrer First solid-liquid separator (precipitation tank): 180 liter capacity
【0046】第三反応槽:容量10リットル 付属機器:急速撹拌機及びpH計 第四反応槽:容量10リットル 付属機器:急速撹拌機及びpH計、気曝2リットル/m
in. 第五反応槽:容量10リットル 付属機器:急速撹拌機及びpH計、気曝2リットル/m
in. 第六反応槽:容量10リットル 付属機器:緩速撹拌機 第二固液分離装置(沈澱槽):容量180リットルThird reaction tank: 10 liter capacity Auxiliary equipment: rapid stirrer and pH meter Fourth reaction tank: 10 liter capacity Auxiliary equipment: rapid stirrer and pH meter, air exposure 2 liter / m
in. Fifth reaction tank: capacity 10 liters Attached equipment: rapid stirrer and pH meter, air exposure 2 liters / m
in. Sixth reaction tank: 10 liter capacity Auxiliary equipment: slow stirrer Second solid-liquid separator (precipitation tank): 180 liter capacity
【0047】先ず上記原水を、第一反応槽に60リット
ル/Hrの割合で導入し、第一、第二、第三、第四、第
五及び第六反応槽の滞留量を夫々8リットルとし、最終
的に第二固液分離装置から処理水が放流される様に設定
した。第一反応槽には、撹拌機及び曝気を作動させつ
つ、濃度が100mg/リットル(Fe3+として)と
なる様に塩化第二鉄を加え、25重量%の苛性ソーダを
第一反応槽のpHが4.0〜4.5の範囲に保たれる様
にpH計と連動させて注入し、第二反応槽では撹拌機を
作動させつつ、濃度が1mg/リットルになる様にノニ
オン系高分子凝集剤を添加した。更に第一固液分離装置
の底部から汚泥を引き抜き、その一部を返送汚泥(1)
として第一反応槽において加えた鉄(Fe3+)の10
倍になる量の鉄を含む汚泥を第一反応槽に導く。第一反
応槽では撹拌機及び曝気を作動させつつ、第一反応槽内
のpHが4.0〜4.5の範囲に保つ。First, the raw water was introduced into the first reaction tank at a rate of 60 liters / Hr, and the retention amounts in the first, second, third, fourth, fifth, and sixth reaction tanks were each set to 8 liters. It was set so that the treated water was finally discharged from the second solid-liquid separation device. While the stirrer and the aeration were operated, ferric chloride was added to the first reaction tank so that the concentration became 100 mg / liter (as Fe 3+ ), and 25% by weight of caustic soda was added to the first reaction tank to adjust the pH of the first reaction tank. Injection is carried out in conjunction with a pH meter so as to be maintained in the range of 4.0 to 4.5. In the second reaction tank, while operating the stirrer, the nonionic polymer aggregation is performed so that the concentration becomes 1 mg / liter. The agent was added. Furthermore, sludge is drawn out from the bottom of the first solid-liquid separation device, and a part thereof is returned sludge (1).
Of iron (Fe 3+ ) added in the first reactor as
Sludge containing twice the amount of iron is led to the first reaction tank. In the first reaction tank, the pH in the first reaction tank is maintained in the range of 4.0 to 4.5 while operating the stirrer and the aeration.
【0048】第一固液分離装置からの処理水を第三反応
槽に導き、第三反応槽では、撹拌機を作動させつつ、濃
度が200mg/リットル(Fe2+として)となる様
に塩化第一鉄溶液及び有効酸素換算で酸素濃度が40m
g/リットルになる様に過酸化水素を添加し、反応槽の
pHが2.8前後の保たれる様にpH計と連動させなが
ら硫酸を注入し、処理水中のCOD及び色度成分をフェ
ントン反応により酸化分解した。第四反応槽では、撹拌
及び曝気しながら、25重量%苛性ソーダを加えてpH
を4〜5に制御し、空気曝気を2リットル/min.の
割合で行い第一鉄を第二鉄に酸化した。第五反応槽では
撹拌機及び曝気作動させつつ、濃度が25重量%の苛性
ソーダを加えてpHを7〜8に調整した。第六反応槽で
は撹拌機を作動させつつ、濃度が1mg/リットルにな
る様に弱アニオン系高分子凝集剤を添加した。更に第二
固液分離装置の底部から汚泥を引き抜き、その一部を返
送汚泥(2)として、第三反応槽において加えた鉄(F
e2 +)の10倍になる量の汚泥を第四反応槽に導き、
且つ返送汚泥(3)として第一反応槽に加えた鉄と同量
の鉄を含む汚泥を第一反応槽に導き、第一反応槽のpH
が4.0〜4.5の範囲に保つ。The treated water from the first solid-liquid separation device is guided to the third reaction tank. In the third reaction tank, while the stirrer is operated, the concentration of the water is adjusted to 200 mg / liter (as Fe 2+ ). Oxygen concentration is 40m in terms of ferrous solution and available oxygen
g / liter, add hydrogen peroxide and inject sulfuric acid in conjunction with a pH meter so that the pH of the reaction tank is maintained at around 2.8. It was oxidatively decomposed by the reaction. In the fourth reaction tank, 25% by weight of caustic soda was added while stirring and aerating to adjust the pH.
Is controlled to 4 to 5 and the air aeration is 2 liter / min. Oxidized ferrous to ferric. In the fifth reactor, the pH was adjusted to 7 to 8 by adding caustic soda having a concentration of 25% by weight while operating a stirrer and aeration. In the sixth reaction tank, a weak anionic polymer flocculant was added so that the concentration became 1 mg / liter while operating the stirrer. Further, the sludge is drawn out from the bottom of the second solid-liquid separation device, and a part of the sludge is returned as sludge (2), and the iron (F) added in the third reaction tank is removed.
e 2 + ) to the fourth reactor,
And sludge containing the same amount of iron as iron added to the first reaction tank as returned sludge (3) is led to the first reaction tank, and the pH of the first reaction tank is adjusted.
Is kept in the range of 4.0 to 4.5.
【0049】以上の全工程が定常状態になった時点で、
第一及び第二固液分離装置の底部から引き抜いた夫々汚
泥(1)及び(2)を1リットルのメスシリンダーに採
って静置沈澱を行い下記表9に記載の時間経過後上澄み
液をデカンテーションで除き、残った沈降汚泥の濃度を
測定し下記表9の結果を得た。 比較例5 汚泥返送(1)、(2)及び(3)を行なわず、第一反
応槽と第五反応槽にアリカリ剤でpH調整を行った他
は、実施例5と同一の操作を繰り返し、同様に評価し、
その結果を表9に示した。When all of the above steps have reached a steady state,
The sludges (1) and (2) drawn out from the bottoms of the first and second solid-liquid separators, respectively, were placed in a 1-liter graduated cylinder and allowed to stand for sedimentation, and after a lapse of time shown in Table 9 below, the supernatant was decanted. The concentration of the remaining settled sludge was measured and the results shown in Table 9 below were obtained. Comparative Example 5 The same operation as in Example 5 was repeated, except that the pH was adjusted with an alkaline agent in the first and fifth reaction tanks without returning the sludge (1), (2) and (3). , Evaluate similarly,
Table 9 shows the results.
【0050】[0050]
【表9】汚泥の沈降性 実施例6 汚泥返送(3)のみを行わず他は実施例5と同じ処理を
行った。実施例5と同様に0.5時間静置沈澱した後の
汚泥濃度、及び第一固液分離装置及び第二固液分離装置
から得られた水質を、実施例5及び比較例5と共に下記
10表に示す。[Table 9] Sedimentation of sludge Example 6 The same processing as in Example 5 was performed except that only the sludge return (3) was not performed. The sludge concentration after settling for 0.5 hour in the same manner as in Example 5 and the water quality obtained from the first solid-liquid separator and the second solid-liquid separator were determined by the following 10 along with Example 5 and Comparative Example 5. It is shown in the table.
【0051】[0051]
【表10】汚泥の沈降性と水質 [Table 10] Sedimentation of sludge and water quality
【0052】実施例7 実施例5において、第一反応槽、第三及び第五反応槽の
pH値をそれぞれ単独で変化させた(即ち実施例5にお
ける処理操作の中で1箇所のpHのみを変化させ、他の
箇所pH及びその他の条件は実施例5と同じ)場合にお
けるpHと、引き抜き汚泥を0.5時間1リットルメス
シリンダー内で静置沈澱させた時の汚泥濃度との関係を
図5に示した。尚、図5は第一反応槽と第一固液分離装
置の汚泥との関係を、第三反応槽、第四反応槽及び第五
反応槽と第二固液分離装置の汚泥についての関係を示し
た。Example 7 In Example 5, the pH values of the first, third and fifth reaction tanks were changed independently (that is, only one pH was changed in the treatment operation in Example 5). The relationship between the pH in the case where the pH was changed and the other conditions and the other conditions were the same as in Example 5) and the sludge concentration when the extracted sludge was allowed to settle in a 1-liter graduated cylinder for 0.5 hour. 5 is shown. FIG. 5 shows the relation between the first reaction tank and the sludge of the first solid-liquid separation device, and the relation between the third reaction tank, the fourth reaction tank, the fifth reaction tank, and the sludge of the second solid-liquid separation device. Indicated.
【0053】図5からして、第一反応槽と第四反応槽で
はpH3.0〜5.5の範囲において高い汚泥濃縮性を
示し、第三反応槽ではpH3.5以下において高い汚泥
濃縮性が得られた。第五反応槽ではpH4以上において
高い汚泥濃縮性が得られた。これらの結果は第五反応槽
のpH値が第四反応槽のpHと同じか、或は高い場合に
本発明の目的が最適に達成されており、第五反応槽は最
終処理水のpHを放流基準値に調整する目的だけて設置
されており、本発明では重要な構成要件ではない。実施
例5において第三反応槽に注入した塩化第一鉄に代えて
塩化第二鉄を使用した場合も、最終処理水のCOD及び
色度の値は若干悪化したが、第三反応槽及び第四反応槽
の最適pHは第一鉄の場合と同様な結果となった。As shown in FIG. 5, the first and fourth reaction tanks show high sludge concentrating properties in the pH range of 3.0 to 5.5, and the third reaction tank shows high sludge concentrating properties in the pH range of 3.5 or less. was gotten. In the fifth reaction tank, a high sludge thickening property was obtained at pH 4 or more. These results show that the objective of the present invention is optimally achieved when the pH value of the fifth reactor is the same as or higher than the pH of the fourth reactor, and the fifth reactor adjusts the pH of the final treated water. It is installed only for the purpose of adjusting to the discharge reference value, and is not an important component in the present invention. When ferric chloride was used instead of ferrous chloride injected into the third reaction tank in Example 5, the COD and chromaticity values of the final treated water were slightly deteriorated. The optimum pH for the four reactors was similar to that for ferrous iron.
【0054】[0054]
【効果】以上の如き本発明によれば、排水の凝集沈澱方
法において、発生した汚泥の一部を被処理原水側に戻し
て循環処理することにより、最終的に得られる処理水の
浄化度が高く且つ発生する汚泥の沈降速度、濃度及び脱
水性が高く、汚泥の最終処理が容易な排水処理方法を提
供することが出来る。According to the present invention as described above, in the method for coagulating and sedimenting wastewater, a part of the generated sludge is returned to the raw water to be treated and circulated, thereby increasing the degree of purification of the finally obtained treated water. It is possible to provide a wastewater treatment method which is high and has high sedimentation speed, concentration and dewatering property of generated sludge, and can easily perform final treatment of sludge.
【0055】[0055]
【図1】本発明の方法を図解的に説明する図。FIG. 1 is a diagram schematically illustrating a method of the present invention.
【図2】本発明の方法を図解的に説明する図。FIG. 2 is a diagram schematically illustrating the method of the present invention.
【図3】本発明の方法を図解的に説明する図。FIG. 3 is a diagram schematically illustrating the method of the present invention.
【図4】本発明の方法を図解的に説明する図。FIG. 4 is a diagram schematically illustrating the method of the present invention.
【図5】第一反応槽と第一固液分離装置の汚泥との関係
を、第三反応槽、第四反応槽及び第五反応槽と第二固液
分離装置の汚泥についての関係を示す図。FIG. 5 shows the relationship between the first reactor and the sludge of the first solid-liquid separator, and the relationship between the third reactor, the fourth reactor, the fifth reactor, and the sludge of the second solid-liquid separator. FIG.
フロントページの続き (72)発明者 菅家 能成 東京都千代田区鍛冶町1−5−7 環境 エンジニアリング株式会社内 (56)参考文献 特開 昭57−4287(JP,A) 特開 昭53−84355(JP,A) 特開 昭60−94197(JP,A) 特開 昭60−488189(JP,A)Continuation of the front page (72) Inventor Yoshinari Sugaya 1-5-7 Kaji-cho, Chiyoda-ku, Tokyo Environmental Engineering Co., Ltd. (56) References JP-A-57-4287 (JP, A) JP-A-53-84355 ( JP, A) JP-A-60-94197 (JP, A) JP-A-60-488189 (JP, A)
Claims (6)
てpH調整し、凝集剤として金属塩を添加して原水中の
固形分を凝集させ、該処理水を固液分離する排水処理方
法において、分離された汚泥の一部を凝集剤として添加
された金属塩(金属原子として)の2〜50倍量の該金
属原子を含む量、前記反応槽に戻す工程を繰り返し又は
連続的に行うことを特徴とする排水処理方法。1. A wastewater treatment method in which raw water containing an organic pollutant is introduced into a reaction tank to adjust pH, a metal salt is added as a coagulant to coagulate solids in the raw water, and the treated water is subjected to solid-liquid separation. A part of the separated sludge is added as a flocculant
2 to 50 times the amount of the metal salt (as a metal atom)
A method for treating wastewater , comprising repeating or continuously performing the step of returning the amount of a metal atom to the reaction tank.
してpH調整し、一次凝集剤として金属塩を添加して原
水中の固形分を凝集させ、次いで第二反応槽において二
次凝集剤として高分子凝集剤を添加して更に固形分の凝
集を行い、該処理水を固液分離する排水処理方法におい
て、分離された汚泥の一部を第三反応槽においてpH調
整した後、該汚泥を凝集剤として添加された金属塩(金
属原子として)の2〜50倍量の該金属原子を含む量、
前記第一反応槽に戻す工程を繰り返し又は連続的に行う
ことを特徴とする排水処理方法。2. A raw water containing organic contaminants is introduced into a first reaction tank to adjust pH, and a metal salt is added as a primary flocculant to coagulate solids in the raw water. A polymer coagulant is added as a coagulant to further coagulate the solids, and in a wastewater treatment method for solid-liquid separation of the treated water, after adjusting the pH of a part of the separated sludge in the third reaction tank, A metal salt (gold) added with the sludge as a flocculant
An amount containing the metal atom in an amount of 2 to 50 times the amount of the metal atom) .
A wastewater treatment method, wherein the step of returning to the first reaction tank is repeatedly or continuously performed.
して一次凝集剤として金属塩を添加した後pH調整し、
第二反応槽においてpH調整して前記金属塩を一次凝集
剤として原水中の固形分を凝集させ、次いで第三反応槽
において二次凝集剤として高分子凝集剤を添加して更に
固形分の凝集を行い、該処理水を固液分離する排水処理
方法において、分離された汚泥の一部を第四反応槽にお
いてpH調整した後、該汚泥を凝集剤として添加された
金属塩(金属原子として)の2〜50倍量の該金属原子
を含む量、前記第二反応槽に戻す工程を繰り返し又は連
続的に行うことを特徴とする排水処理方法。3. An organic contaminant-containing raw water is introduced into a first reaction tank, a metal salt is added as a primary coagulant, and the pH is adjusted.
In the second reaction tank, the pH is adjusted to aggregate the solids in the raw water using the metal salt as a primary flocculant, and then in the third reaction tank, a polymer flocculant is added as a secondary flocculant to further aggregate the solids. In the wastewater treatment method for solid-liquid separation of the treated water, after the pH of a part of the separated sludge was adjusted in the fourth reaction tank, the sludge was added as a flocculant.
2 to 50 times the amount of the metal salt (as a metal atom)
The amount, waste water treatment method, which comprises carrying out steps repeatedly or continuously returned to the second reaction vessel containing.
して、請求項2に記載の処理工程を行うことを特徴とす
る排水処理方法。4. A wastewater treatment method, wherein the treatment step according to claim 2 is performed on the treated water treated in claim 1.
染物質を酸化する請求項1〜4項のいずれか1項に記載
の排水処理方法。5. A waste water treatment method according to claim 1 wherein the oxidizing any contaminants with an oxidizing agent added to the reaction vessel.
理水である請求項1〜5のいずれか1項に記載の排水処
理方法。6. A waste water treatment method for raw water according to claim 1 is a process water secondarily treated with the active sludge method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5309687A JP2601441B2 (en) | 1993-11-17 | 1993-11-17 | Wastewater treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5309687A JP2601441B2 (en) | 1993-11-17 | 1993-11-17 | Wastewater treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07136408A JPH07136408A (en) | 1995-05-30 |
JP2601441B2 true JP2601441B2 (en) | 1997-04-16 |
Family
ID=17996077
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5309687A Expired - Fee Related JP2601441B2 (en) | 1993-11-17 | 1993-11-17 | Wastewater treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2601441B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160014606A (en) | 2013-06-04 | 2016-02-11 | 쿠리타 고교 가부시키가이샤 | Method and device for treating water containing hardly biodegradable organic substances |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4696713B2 (en) | 2005-06-17 | 2011-06-08 | 富士ゼロックス株式会社 | Wastewater treatment method |
JP2009066508A (en) * | 2007-09-12 | 2009-04-02 | Kurita Water Ind Ltd | Coagulation treatment method for water containing organic matter |
JP5218082B2 (en) * | 2009-01-16 | 2013-06-26 | 栗田工業株式会社 | Method and apparatus for coagulating sedimentation of low organic matter concentration wastewater |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5384355A (en) * | 1976-12-29 | 1978-07-25 | Daido Steel Co Ltd | Coagulating sedimentation treatment of waste water |
JPS5519643A (en) * | 1978-07-28 | 1980-02-12 | Hino Motors Ltd | Correction of radial runout of wheel |
JPS574287A (en) * | 1980-06-12 | 1982-01-09 | Ebara Infilco Co Ltd | Treatment of organic waste water |
JPS6048189A (en) * | 1983-08-24 | 1985-03-15 | Kurita Water Ind Ltd | Wastewater treatment method |
JPS6094197A (en) * | 1983-10-27 | 1985-05-27 | Japan Organo Co Ltd | Treatment of organic waste water |
JPS6339307A (en) * | 1986-08-04 | 1988-02-19 | Nippon Kentetsu Co Ltd | Preventive apparatus against mold break |
JP2910346B2 (en) * | 1991-08-29 | 1999-06-23 | 栗田工業株式会社 | Treatment method for wastewater containing heavy metals |
-
1993
- 1993-11-17 JP JP5309687A patent/JP2601441B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160014606A (en) | 2013-06-04 | 2016-02-11 | 쿠리타 고교 가부시키가이샤 | Method and device for treating water containing hardly biodegradable organic substances |
Also Published As
Publication number | Publication date |
---|---|
JPH07136408A (en) | 1995-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4765900A (en) | Process for the treatment of waste | |
JP5951986B2 (en) | Biological treatment method of organic wastewater | |
US4208283A (en) | Process for treatment of waste waters | |
CN112794555A (en) | Novel method for treating wastewater by reinforced coagulation | |
CN111320317A (en) | Treatment method of aged landfill leachate | |
EP2701827A1 (en) | Method for treatment of sludge from water and wastewater treatment plants with chemical treatment | |
EP0189155A1 (en) | Method for reduction of sewage sludge from sewage clarification plants | |
JP4610640B2 (en) | Method and apparatus for treating organic wastewater | |
JP2601441B2 (en) | Wastewater treatment method | |
KR100707975B1 (en) | Treatment method for livestock wastewater containing high concentration of organic matter | |
KR20030053498A (en) | The method and equipment of wastewater treatment contained organic compound of high concentration | |
KR0168827B1 (en) | How to Clean Organic Wastewater | |
US12286366B2 (en) | Anolyte as an additive for wastewater treatment | |
JPH0366036B2 (en) | ||
Leentvaar et al. | Physico-chemical treatment of municipal wastewater. Coagulation-flocculation | |
JPH0698360B2 (en) | Method and apparatus for treating night soil wastewater | |
JPH0124558B2 (en) | ||
JP2621090B2 (en) | Advanced wastewater treatment method | |
JP3449864B2 (en) | Method and apparatus for reducing organic sludge | |
KR100315434B1 (en) | Wastewater Disposal Process | |
KR100503632B1 (en) | Method and apparatus for treating metal finishing waste which contains high nitrogen and phosphorus | |
JPH09187787A (en) | Treatment method for organic foul water | |
JPH10249376A (en) | Treatment of organic waste water such as sewage | |
JPH02172598A (en) | Treatment of organic sewage | |
JP2873968B2 (en) | Wastewater treatment method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19961119 |
|
LAPS | Cancellation because of no payment of annual fees |