JP2020032412A - Method and equipment for treating cyanide-containing water - Google Patents

Method and equipment for treating cyanide-containing water Download PDF

Info

Publication number
JP2020032412A
JP2020032412A JP2019152639A JP2019152639A JP2020032412A JP 2020032412 A JP2020032412 A JP 2020032412A JP 2019152639 A JP2019152639 A JP 2019152639A JP 2019152639 A JP2019152639 A JP 2019152639A JP 2020032412 A JP2020032412 A JP 2020032412A
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
water
reaction
treated
reaction solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019152639A
Other languages
Japanese (ja)
Other versions
JP7290511B2 (en
Inventor
慎吾 盛一
Shingo Morikazu
慎吾 盛一
康平 市川
Kohei Ichikawa
康平 市川
裕基 藤原
Hiroki Fujiwara
裕基 藤原
一晃 長井
Kazuaki Nagai
一晃 長井
菜穂 ▲吉▼竹
菜穂 ▲吉▼竹
Naho Yoshitake
勇摩 鈴木
Yuma Suzuki
勇摩 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Eco Tech Corp
Original Assignee
Nippon Steel Eco Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=69666452&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2020032412(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Eco Tech Corp filed Critical Nippon Steel Eco Tech Corp
Publication of JP2020032412A publication Critical patent/JP2020032412A/en
Priority to JP2023069729A priority Critical patent/JP7398021B2/en
Application granted granted Critical
Publication of JP7290511B2 publication Critical patent/JP7290511B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Separation Of Particles Using Liquids (AREA)

Abstract

To provide a method for treating cyanide-containing water possible to carry out stable and sufficient removal of a cyan component from water to be treated even in a case of various concentration of cyanide ions and concentration of iron cyano complexes in the water to be treated.SOLUTION: There is provided a method for treating cyanide-containing water, including: a step (A) of reacting water to be treated containing cyanide ions and iron cyano complexes by adding hydrogen peroxide; a step (B1) of measuring the concentration of the hydrogen peroxide remaining in a reaction solution obtained in the step (A); a step (C) of adding a copper (I) compound to the reaction solution obtained in the step (A) to cause a reaction; and a step (D) of subjecting the reaction solution obtained in the step (C) to a solid-liquid separation treatment, in which an amount of the hydrogen peroxide added to the water to be treated in the step (A) is controlled to an amount such that the hydrogen peroxide concentration measured in the step (B1) is 10 mg-HO/L or less.SELECTED DRAWING: None

Description

本発明は、シアン含有水の処理方法、及びシアン含有水の処理設備に関する。   The present invention relates to a method for treating cyanide-containing water and a facility for treating cyanide-containing water.

シアン化物イオン等のシアン成分を含有する廃水から、シアン成分を除去するための処理方法として、廃水中のシアン成分を酸化分解するアルカリ塩素法が広く適用されている。アルカリ塩素法では、一般的に次亜塩素酸ナトリウムをシアン含有廃水にアルカリ性下で添加することで、廃水中のシアン化物イオンや、易分解性のシアノ錯体(亜鉛及び銅等のシアノ錯体)を酸化分解することができる。   BACKGROUND ART As a treatment method for removing a cyan component from waste water containing a cyan component such as cyanide ions, an alkali chlorine method for oxidatively decomposing a cyan component in waste water is widely applied. In the alkali chlorine method, generally, sodium hypochlorite is added to a cyanide-containing wastewater under alkaline conditions to convert cyanide ions in the wastewater and easily decomposable cyano complexes (cyano complexes such as zinc and copper). Can be oxidatively decomposed.

一方、アルカリ塩素法では、例えば鉄シアノ錯体等のような難分解性のシアノ錯体を分解することは難しいことから、廃水中のシアン成分と金属塩を反応させて難溶性塩を生成させ、それを沈殿法で分離除去する方法(難溶性塩沈殿法)も提案されている。また、特許文献1では、錯シアン含有廃水に、該廃水をpH6〜9の条件下で特定の第一銅化合物および過酸化水素を共存させ、廃水中に生成した水不溶性塩を除去することで、廃水中の錯シアンを処理する錯シアン含有廃水の処理方法が提案されている。   On the other hand, in the alkali chlorine method, since it is difficult to decompose a hardly decomposable cyano complex such as an iron cyano complex, a cyanide component in wastewater is reacted with a metal salt to generate a hardly soluble salt. Has also been proposed for separating and removing phenol by a precipitation method (a sparingly soluble salt precipitation method). In Patent Literature 1, a specific cuprous compound and hydrogen peroxide are allowed to coexist with complex cyanide-containing wastewater under conditions of pH 6 to 9 to remove water-insoluble salts generated in the wastewater. A method of treating complex cyanide-containing wastewater for treating complex cyanide in wastewater has been proposed.

特開2017−80699号公報JP 2017-80699 A

本発明者らは、特許文献1で提案された方法を参考に、シアン化物イオン及び鉄シアノ錯体を含有し、それらの濃度が異なる様々な被処理水に、過酸化水素及び銅(I)化合物を共存させて処理するビーカー試験を行ったところ、被処理水によっては、シアン成分を十分に除去できない場合があることがわかった。   The present inventors referred to the method proposed in Patent Document 1 and added hydrogen peroxide and a copper (I) compound to various treated waters containing cyanide ions and iron cyano complexes and having different concentrations thereof. A beaker test was conducted in which co-presence was carried out. As a result, it was found that the cyan component could not be sufficiently removed depending on the water to be treated.

そこで本発明は、処理対象となる被処理水中のシアン化物イオンの濃度及び鉄シアノ錯体の濃度が様々な場合においても、被処理水からのシアン成分の除去処理を安定して十分に行うことが可能なシアン含有水の処理方法を提供しようとするものである。   Therefore, the present invention can stably and sufficiently perform the removal process of the cyan component from the water to be treated even when the concentration of cyanide ion and the concentration of the iron cyano complex in the water to be treated are various. It is intended to provide a possible method of treating cyanide-containing water.

上述の通り、本発明者らは、シアン化物イオン及び鉄シアノ錯体を含有する様々な被処理水に、過酸化水素及び銅(I)化合物を共存させる処理をビーカー試験にて行った際、被処理水からのシアン成分の除去性能が低下する問題があった原因について、詳細に検討した。具体的には、そのような問題が生じた被処理水について、その被処理水の性状を分析し、また、その被処理水に過酸化水素及び銅(I)化合物を同時に添加した場合や過酸化水素を添加した後に銅(I)化合物を添加した場合との処理性能の違い等を検討し、上記原因を究明した。その結果、被処理水に銅(I)化合物を添加する際に、被処理水中に過酸化水素が比較的多めに残っていると、被処理水からのシアン成分の除去性能が低下しやすいことがわかった。   As described above, the present inventors found that when various treatment waters containing a cyanide ion and an iron cyano complex were treated with hydrogen peroxide and a copper (I) compound in the beaker test, the treatment was carried out. The cause of the problem that the performance of removing the cyan component from the treated water was reduced was examined in detail. Specifically, the properties of the water to be treated that have caused such a problem are analyzed, and when hydrogen peroxide and a copper (I) compound are simultaneously added to the water to be treated, The difference in treatment performance between the case where a copper (I) compound was added after the addition of hydrogen oxide, and the like were examined, and the above-mentioned causes were clarified. As a result, when the copper (I) compound is added to the water to be treated, the performance of removing the cyan component from the water to be treated is likely to decrease if a relatively large amount of hydrogen peroxide remains in the water to be treated. I understood.

このような知見から、本発明者らは、被処理水に過酸化水素を添加して反応させた後の反応液に銅(I)化合物を添加する際、反応液中の残留過酸化水素の濃度が十分に低い値となるようにするか、残留過酸化水素をほぼなくすことができれば、上述の問題を解決できると考え、本発明を完成するに至った。   Based on such findings, the present inventors have found that when adding a copper (I) compound to a reaction solution obtained by adding hydrogen peroxide to water to be treated and reacting the same, residual hydrogen peroxide in the reaction solution is reduced. The inventors thought that the above-mentioned problem could be solved if the concentration was set to a sufficiently low value or if the residual hydrogen peroxide could be substantially eliminated, and completed the present invention.

すなわち、本発明は、シアン化物イオン及び鉄シアノ錯体を含有する被処理水に、過酸化水素を添加して反応させる工程(A)と、前記工程(A)で得られた反応液中に残留する前記過酸化水素の濃度を測定する工程(B1)と、前記工程(A)で得られた前記反応液に、銅(I)化合物を添加して反応させる工程(C)と、前記工程(C)で得られた反応液を固液分離処理する工程(D)と、を含み、前記工程(A)における前記被処理水への前記過酸化水素の添加量を、前記工程(B1)で測定される過酸化水素濃度の値が10mg−H/L以下となる量に制御する、シアン含有水の処理方法を提供する。 That is, the present invention provides a process (A) in which hydrogen peroxide is added to water to be treated containing a cyanide ion and an iron cyano complex to cause a reaction, and a process in which the reaction solution obtained in the process (A) remains. A step (B1) of measuring the concentration of the hydrogen peroxide, a step (C) of adding a copper (I) compound to the reaction solution obtained in the step (A) and causing the reaction, (D) performing a solid-liquid separation treatment on the reaction solution obtained in (C), wherein the amount of the hydrogen peroxide added to the water to be treated in the step (A) is determined in the step (B1). the value of the hydrogen peroxide concentration to be measured is controlled to an amount equal to or less than 10mg-H 2 O 2 / L , to provide a method of processing cyan-containing water.

また、本発明は、シアン化物イオン及び鉄シアノ錯体を含有する被処理水に、過酸化水素を添加して反応させる工程(A)と、前記工程(A)で得られた反応液と、その反応液中に残留する前記過酸化水素の濃度を低減する過酸化水素除去剤とを接触させて反応させる工程(B2)と、前記工程(B2)で得られた反応液に、銅(I)化合物を添加して反応させる工程(C)と、前記工程(C)で得られた反応液を固液分離処理する工程(D)と、を含む、シアン含有水の処理方法を提供する。   Further, the present invention provides a step (A) of reacting water to be treated containing cyanide ion and iron cyano complex by adding hydrogen peroxide thereto, and a reaction solution obtained in the step (A), A step (B2) of contacting with a hydrogen peroxide removing agent for reducing the concentration of the hydrogen peroxide remaining in the reaction solution to cause a reaction, and copper (I) added to the reaction solution obtained in the step (B2). Provided is a method for treating cyanide-containing water, which comprises a step (C) of adding a compound to react and a step (D) of subjecting the reaction solution obtained in the step (C) to a solid-liquid separation treatment.

本発明によれば、被処理水中のシアン化物イオンの濃度及び鉄シアノ錯体の濃度が様々な場合においても、被処理水からのシアン成分の除去処理を安定して十分に行うことが可能なシアン含有水の処理方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, even if the density | concentration of cyanide ion and the density | concentration of an iron cyano complex in to-be-processed water are various, the cyan component which can remove the cyan component from to-be-processed water stably and sufficiently can be performed. A method for treating the contained water can be provided.

本発明の第一の実施形態のシアン含有水の処理方法を実行し得る処理設備及び処理フローの概略構成の一例を表す説明図である。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing showing an example of the schematic structure of the processing equipment which can perform the processing method of the cyan containing water of 1st Embodiment of this invention, and a processing flow. 本発明の第二の実施形態のシアン含有水の処理方法を実行し得る処理設備及び処理フローの概略構成の一例を表す説明図である。It is explanatory drawing showing an example of the schematic structure of the processing equipment which can perform the processing method of the cyan containing water of 2nd Embodiment of this invention, and a processing flow. 本発明の一実施形態のシアン含有水の処理方法を適用することを想定した場合の排出ガスの処理設備及び処理フローの一例の概略構成を表す説明図である。BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory diagram illustrating a schematic configuration of an example of an exhaust gas treatment facility and a process flow when it is assumed that a method for treating cyanide-containing water according to an embodiment of the present invention is applied.

以下、本発明の実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではない。   Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to the following embodiments.

本発明者らは、特許文献1で提案された方法を参考に、シアン化物イオン及び鉄シアノ錯体を含有し、それらの濃度が異なる様々な被処理水に、過酸化水素及び銅(I)化合物を共存させて処理するビーカー試験を行い、処理性能について検討した。その結果、被処理水によっては、被処理水からシアン成分を十分有効に除去しきれない問題が生じることがわかった。   The present inventors referred to the method proposed in Patent Document 1 and added hydrogen peroxide and a copper (I) compound to various treated waters containing cyanide ions and iron cyano complexes and having different concentrations thereof. A beaker test was carried out in which coexisting was treated, and the processing performance was examined. As a result, it was found that depending on the water to be treated, there was a problem that the cyan component could not be sufficiently removed from the water to be treated.

上記鉄シアノ錯体とは、Fe及びCNを含む錯体をいう。鉄シアノ錯体としては、フェロシアン化物イオン([Fe(CN)4−;ヘキサシアノ鉄(II)酸イオン)及びフェリシアン化物イオン([Fe(CN)3−;ヘキサシアノ鉄(III)酸イオン)、並びに鉄カルボニルシアノ錯体([Fe(CN)(CO)]3−及び[Fe(CN)(CO)2−)等が挙げられる。 The iron cyano complex refers to a complex containing Fe and CN. Examples of the iron cyano complex include ferrocyanide ion ([Fe (CN) 6 ] 4- ; hexacyanoferrate (II) ion) and ferricyanide ion ([Fe (CN) 6 ] 3- ; hexacyanoiron (III) Acid ions), and iron carbonyl cyano complexes ([Fe (CN) 5 (CO)] 3- and [Fe (CN) 4 (CO) 2 ] 2- ).

上記問題が生じる原因について、本発明者らは、その問題が生じた被処理水の性状を分析したり、その被処理水に過酸化水素及び銅(I)化合物を同時に添加した場合や過酸化水素を添加した後に銅(I)化合物を添加した場合との処理性能の違い等を確認したりして、検討を行った。その検討の中で、例えば、被処理水中のシアン化物イオンの濃度及び鉄シアノ錯体の濃度がいずれも低い場合には、上述の問題が生じ難いことがわかった。その一方、例えば、被処理水中のシアン化物イオン濃度に比べて鉄シアノ錯体濃度が高い場合には、上述の問題が生じ易いことがわかった。また、被処理水に含有されている鉄シアノ錯体が、フェロシアン化物イオン及び/又はフェリシアン化物イオンを含み、かつ、[Fe(CN)(CO)]3−及び/又は[Fe(CN)(CO)2−を含む場合にも、上述の問題が生じ易いことがわかった。このように、被処理水の性状によって、その被処理水の性状に応じて過酸化水素や銅(I)化合物の添加量を調整したとしても、処理性能に違いが出ることが判明した。 Regarding the cause of the above-mentioned problem, the present inventors analyzed the properties of the water to be treated that caused the problem, and examined the case where hydrogen peroxide and a copper (I) compound were added to the water to be treated at the same time. Investigations were made by confirming the difference in processing performance between the case where a copper (I) compound was added after adding hydrogen, and the like. In the study, it was found that, for example, when the concentration of cyanide ion and the concentration of iron cyano complex in the water to be treated are both low, the above-described problem hardly occurs. On the other hand, it has been found that, for example, when the iron cyano complex concentration is higher than the cyanide ion concentration in the water to be treated, the above problem is likely to occur. In addition, the iron cyano complex contained in the water to be treated contains ferrocyanide ions and / or ferricyanide ions, and [Fe (CN) 5 (CO)] 3- and / or [Fe (CN) ) 4 (CO) 2 ] 2- was also found to easily cause the above problem. As described above, it has been found that even if the addition amount of hydrogen peroxide or the copper (I) compound is adjusted depending on the property of the water to be treated, the treatment performance varies.

一般に、実際のシアン含有廃水(被処理水)においては、その廃水中のシアン化物イオンや鉄シアノ錯体等のシアン成分の濃度は刻々と変動する。そのため、実際の廃水処理設備において、シアン含有廃水に過酸化水素及び銅(I)化合物を共存させて処理を行うと、上記廃水処理設備に流入してくるシアン含有廃水によっては、一時的に、シアン成分の除去性能が低下する可能性があると考えられる。実際の廃水処理設備において、上述の問題が生じ難いシアン含有廃水が継続している場合には、その問題に気が付かないまま継続して処理が行われるが、ある日突然、上述の問題が生じ易いシアン含有廃水が流入してきた場合、混乱を招きかねない。   Generally, in the actual wastewater containing cyanide (the water to be treated), the concentration of cyanide ions and cyanide components such as iron cyano complex in the wastewater fluctuates every moment. Therefore, in an actual wastewater treatment facility, when hydrogen cyanide and a copper (I) compound coexist in cyanide-containing wastewater for treatment, depending on the cyanide-containing wastewater flowing into the wastewater treatment facility, It is considered that the performance of removing the cyan component may be reduced. In the actual wastewater treatment equipment, when the cyan-containing wastewater in which the above-described problem is unlikely to occur continues, the treatment is continuously performed without noticing the problem, but one day suddenly, the above-described problem easily occurs. The inflow of cyanide-containing wastewater can be confusing.

したがって、上述の問題が生じ難いか生じ易いかに関わらず、処理対象となる被処理水中のシアン化物イオンの濃度及び鉄シアノ錯体の濃度が様々な場合にも、被処理水からのシアン成分の除去処理を安定して十分に行うことが可能な方法は、実際に有用となる。   Therefore, irrespective of whether or not the above-mentioned problem is likely to occur, even when the concentration of cyanide ion and the concentration of iron cyano complex in the water to be treated are various, the removal of the cyan component from the water to be treated A method capable of performing the treatment stably and sufficiently is actually useful.

本発明者らは、上記問題が生じる原因究明のための検討を行った結果、被処理水に銅(I)化合物を添加する際に、被処理水中に過酸化水素が比較的多めに存在していると、被処理水からのシアン成分の除去性能が低下しやすいことがわかった。このような知見から、本発明者らは、被処理水に過酸化水素を添加して反応させた後の反応液に銅(I)化合物を添加する際、反応液中の残留過酸化水素の濃度が十分に低い値となるようにするか、残留過酸化水素をほぼなくすことができれば、上述の問題を解決できるとの着想を経て、本発明を完成するに至った。   The present inventors have conducted studies to determine the cause of the above problem, and as a result, when adding a copper (I) compound to the water to be treated, a relatively large amount of hydrogen peroxide was present in the water to be treated. It was found that the performance of removing the cyan component from the water to be treated was liable to decrease. Based on such findings, the present inventors have found that when adding a copper (I) compound to a reaction solution obtained by adding hydrogen peroxide to water to be treated and reacting the same, residual hydrogen peroxide in the reaction solution is reduced. The present invention has been completed based on the idea that the above-mentioned problem can be solved if the concentration is set to a sufficiently low value or if the residual hydrogen peroxide can be substantially eliminated.

<シアン含有水の処理方法>
本発明の第一の実施形態のシアン含有水の処理方法は、シアン化物イオン及び鉄シアノ錯体を含有する被処理水に、過酸化水素を添加して反応させる工程(A)と、その工程(A)で得られた反応液中に残留する過酸化水素の濃度を測定する工程(B1)と、上記工程(A)で得られた反応液に、銅(I)化合物を添加して反応させる工程(C)と、その工程(C)で得られた反応液を固液分離処理する工程(D)とを含み、上記工程(A)における被処理水への過酸化水素の添加量を、上記工程(B1)で測定される過酸化水素濃度の値が10mg−H/L以下となる量に制御することにある。
<Method of treating cyanide-containing water>
The method for treating cyanide-containing water according to the first embodiment of the present invention comprises a step (A) of adding hydrogen peroxide to water to be treated containing cyanide ions and an iron cyano complex to cause a reaction, and the step (A). Step (B1) of measuring the concentration of hydrogen peroxide remaining in the reaction solution obtained in A), and reacting the reaction solution obtained in the above step (A) by adding a copper (I) compound to the reaction solution. The method includes a step (C) and a step (D) of subjecting the reaction solution obtained in the step (C) to a solid-liquid separation treatment, wherein the amount of hydrogen peroxide added to the water to be treated in the step (A) is: The purpose of the present invention is to control the value of the concentration of hydrogen peroxide measured in the above step (B1) to 10 mg-H 2 O 2 / L or less.

また、本発明の第二の実施形態のシアン含有水の処理方法は、シアン化物イオン及び鉄シアノ錯体を含有する被処理水に、過酸化水素を添加して反応させる工程(A)と、その工程(A)で得られた反応液と、その反応液中に残留する過酸化水素の濃度を低減する過酸化水素除去剤とを接触させて反応させる工程(B2)と、その工程(B2)で得られた反応液に、銅(I)化合物を添加して反応させる工程(C)と、その工程(C)で得られた反応液を固液分離処理する工程(D)とを含むことにある。   Further, the method for treating cyanide-containing water according to the second embodiment of the present invention comprises the steps of: (A) adding hydrogen peroxide to water to be treated containing cyanide ions and an iron cyano complex to cause a reaction; A step (B2) of bringing the reaction solution obtained in the step (A) into contact with a hydrogen peroxide removing agent for reducing the concentration of hydrogen peroxide remaining in the reaction solution to cause a reaction, and the step (B2) (C) adding a copper (I) compound to the reaction solution obtained in (c) and reacting it, and (D) performing a solid-liquid separation treatment on the reaction solution obtained in the step (C). It is in.

上記第一及び第二の実施形態(以下、それらをまとめて単に「本実施形態」と記載することがある。)のシアン含有水の処理方法によれば、まず、シアン化物イオン及び鉄シアノ錯体を含有する被処理水(以下、単に「被処理水」と記載することがある。)に過酸化水素を添加して反応させる工程(A)を行う。これによって、過酸化水素が、被処理水中のシアン化物イオン(CN)と酸化反応し、シアン化物イオンを分解することができる。被処理水に、CNに加えて、例えば、亜鉛シアノ錯体、ニッケルシアノ錯体、及び銅シアノ錯体等の易分解性のシアノ錯体が含有されている場合には、そのようなシアノ錯体も工程(A)によって分解することが期待できる。工程(A)における反応時間は、3〜60分であることが好ましく、5〜30分であることがより好ましい。また、工程(A)における反応温度は、15〜80℃であることが好ましく、35〜60℃であることがより好ましい。 According to the method for treating cyan-containing water in the first and second embodiments (these may be collectively simply referred to as “the present embodiment”), first, a cyanide ion and an iron cyano complex (A) is performed by adding hydrogen peroxide to water to be treated (hereinafter, may be simply referred to as “water to be treated”). Thereby, the hydrogen peroxide undergoes an oxidation reaction with cyanide ions (CN ) in the water to be treated, and can decompose the cyanide ions. In the case where the water to be treated contains an easily decomposable cyano complex such as a zinc cyano complex, a nickel cyano complex, and a copper cyano complex in addition to CN , such a cyano complex is also subjected to the step ( Decomposition can be expected according to A). The reaction time in the step (A) is preferably from 3 to 60 minutes, more preferably from 5 to 30 minutes. Further, the reaction temperature in the step (A) is preferably from 15 to 80 ° C, more preferably from 35 to 60 ° C.

また、本実施形態の処理方法では、上記工程(A)で得られた反応液や、上記工程(B2)で得られた反応液に、銅(I)化合物を添加して反応させる工程(C)を行う。これによって、被処理水から存在していた鉄シアノ錯体を難溶化し、上記反応液中に鉄シアノ錯体の難溶化物を生成することができる。工程(C)における反応時間は、3〜60分であることが好ましく、5〜30分であることがより好ましい。また、工程(C)における反応温度は、15〜80℃であることが好ましく、35〜60℃であることがより好ましい。   In the treatment method of the present embodiment, a step (C) of adding a copper (I) compound to the reaction solution obtained in the above step (A) or the reaction liquid obtained in the above step (B2) to cause a reaction. )I do. As a result, the iron cyano complex existing from the water to be treated is made hardly soluble, and a hardly soluble iron cyano complex can be produced in the reaction solution. The reaction time in the step (C) is preferably from 3 to 60 minutes, and more preferably from 5 to 30 minutes. Further, the reaction temperature in the step (C) is preferably from 15 to 80 ° C, more preferably from 35 to 60 ° C.

上記工程(C)によって生成され得る上記難溶化物については、上記工程(C)で得られた反応液を固液分離処理する工程(D)によって、分離除去することができる。また、この工程(D)によって、シアン成分が除去された処理水を得ることができる。   The hardly soluble material that can be produced in the step (C) can be separated and removed in the step (D) of subjecting the reaction solution obtained in the step (C) to a solid-liquid separation treatment. Further, by this step (D), treated water from which the cyan component has been removed can be obtained.

上述の通り、本実施形態の処理方法では、被処理水への銅(I)化合物の添加前に、被処理水に過酸化水素を添加して反応させる工程(A)を行うため、銅(I)化合物の添加によって難溶化物を生じさせた際に、難溶化物中に含有されるシアンの量を適度に低くすることができる。そのため、難溶化物中に含有されるシアンの量が低減されることから、難溶化物を処分する際に、シアンの溶出の可能性やその程度を低減できるという利点にもつながる。   As described above, in the treatment method of the present embodiment, before the addition of the copper (I) compound to the water to be treated, the step (A) of adding and reacting hydrogen peroxide to the water to be treated is performed. I) When a hardly soluble material is produced by adding a compound, the amount of cyan contained in the hardly soluble material can be reduced appropriately. Therefore, the amount of cyan contained in the hardly soluble material is reduced, which leads to an advantage that the possibility and the degree of elution of cyan can be reduced when the hardly soluble material is disposed.

(第一の実施形態)
そして、上記第一の実施形態の処理方法では、上記工程(A)における被処理水への過酸化水素の添加量を、上記工程(B1)で測定される、上記工程(A)で得られる反応液中の過酸化水素濃度の値が10mg−H/L以下となる量に制御する。これにより、被処理水に過酸化水素を添加して反応させた後の反応液に銅(I)化合物を添加する際、その反応液中の残留過酸化水素の濃度が十分に低い状態にできる。そのため、被処理水中のシアン化物イオンの濃度及び鉄シアノ錯体の濃度が様々な場合においても、被処理水からのシアン成分の除去処理を安定して十分に行うことが可能となる。
(First embodiment)
Then, in the treatment method of the first embodiment, the amount of hydrogen peroxide added to the water to be treated in the step (A) is obtained in the step (A), which is measured in the step (B1). The concentration of the hydrogen peroxide in the reaction solution is controlled to be 10 mg-H 2 O 2 / L or less. Thus, when the copper (I) compound is added to the reaction solution after the reaction by adding hydrogen peroxide to the water to be treated, the concentration of the residual hydrogen peroxide in the reaction solution can be made sufficiently low. . Therefore, even when the concentration of cyanide ion and the concentration of the iron cyano complex in the water to be treated are various, it is possible to stably and sufficiently remove the cyan component from the water to be treated.

第一の実施形態の処理方法では、工程(B1)で測定される過酸化水素濃度の値を確認しつつ、その値が10mg−H/L以下まで、工程(A)における被処理水への過酸化水素の添加量を調整できる。そのため、被処理水に過酸化水素を添加することによる有効な処理をより確実に行うことができ、被処理水中のシアン化物イオンの酸化分解等による処理効率を高めることができる。 In the processing method of the first embodiment, the value of the concentration of hydrogen peroxide measured in the step (B1) is checked and the value of the hydrogen peroxide concentration in the step (A) is reduced to 10 mg-H 2 O 2 / L or less. The amount of hydrogen peroxide added to water can be adjusted. Therefore, effective treatment by adding hydrogen peroxide to the water to be treated can be performed more reliably, and treatment efficiency by oxidative decomposition of cyanide ions in the water to be treated can be increased.

工程(A)における被処理水への過酸化水素の添加量は、工程(B1)で測定される過酸化水素濃度の値が、好ましくは5mg−H/L以下、より好ましくは3mg−H/L以下となる量に制御するのが良い。これにより、銅(I)化合物を添加する際の反応液中の残留過酸化水素の濃度が十分に低い状態にできることで、様々な被処理水について、シアン成分の除去処理をさらに安定して十分に行い易くなる。工程(B1)で測定される過酸化水素濃度の値の下限は、被処理水に過酸化水素を添加することによる有効な処理をより確実に行うことができるように、0.1mg−H/L以上であることが好ましく、0.5mg−H/L以上であることがより好ましい。 The amount of hydrogen peroxide added to the water to be treated in the step (A) is such that the value of the hydrogen peroxide concentration measured in the step (B1) is preferably 5 mg-H 2 O 2 / L or less, more preferably 3 mg-H 2 O 2 / L. It is preferable to control the amount to be −H 2 O 2 / L or less. As a result, the concentration of the residual hydrogen peroxide in the reaction solution at the time of adding the copper (I) compound can be made sufficiently low, so that the cyan component can be more stably removed from various waters to be treated. Easier to do. The lower limit of the value of the hydrogen peroxide concentration measured in the step (B1) is set to 0.1 mg-H 2 so that an effective treatment by adding hydrogen peroxide to the water to be treated can be more reliably performed. It is preferably at least O 2 / L, more preferably at least 0.5 mg-H 2 O 2 / L.

工程(B1)における過酸化水素濃度の測定は、バッチ式で行ってもよく、連続式で行ってもよい。工程(B1)で測定される過酸化水素濃度の値を監視しながら、工程(A)における被処理水への過酸化水素の添加を行えば、過酸化水素濃度の測定値を確認しつつ、工程(A)における被処理水への過酸化水素の添加量を調整し易いため、好ましい。このような方法を採り易い観点から、工程(B1)において、工程(A)で得られた反応液中に残留する過酸化水素の濃度を連続式で測定することが好ましい。工程(B1)で測定される過酸化水素濃度の値の監視は、バッチ式で間歇的(所定間隔をおいて)に測定を行うことでも可能である。   The measurement of the hydrogen peroxide concentration in the step (B1) may be performed by a batch method or a continuous method. If hydrogen peroxide is added to the water to be treated in the step (A) while monitoring the value of the hydrogen peroxide concentration measured in the step (B1), while confirming the measured value of the hydrogen peroxide concentration, This is preferable because the amount of hydrogen peroxide added to the water to be treated in the step (A) can be easily adjusted. From the viewpoint of easily adopting such a method, in the step (B1), it is preferable to continuously measure the concentration of hydrogen peroxide remaining in the reaction solution obtained in the step (A). Monitoring of the value of the concentration of hydrogen peroxide measured in the step (B1) can also be performed intermittently (at predetermined intervals) in a batch system.

(第二の実施形態)
そして、上記第二の実施形態の処理方法では、上記工程(A)で得られた反応液に銅(I)化合物を添加する前に、上記工程(A)で得られた反応液と、その反応液中に残留する過酸化水素の濃度を低減する過酸化水素除去剤とを接触させて反応させる工程(B2)を行う。これによって、銅(I)化合物を添加する対象となる反応液(工程(A)を経た反応液)を、その反応液中の残留過酸化水素の濃度が十分に低い状態にできる。そのため、被処理水中のシアン化物イオンの濃度及び鉄シアノ錯体の濃度が様々な場合においても、被処理水からのシアン成分の除去処理を安定して十分に行うことが可能となる。
(Second embodiment)
Then, in the treatment method of the second embodiment, before adding the copper (I) compound to the reaction solution obtained in the step (A), the reaction solution obtained in the step (A) and The step (B2) of contacting with a hydrogen peroxide removing agent that reduces the concentration of hydrogen peroxide remaining in the reaction solution to cause a reaction is performed. As a result, the reaction solution to which the copper (I) compound is added (the reaction solution after the step (A)) can be brought to a state where the concentration of the residual hydrogen peroxide in the reaction solution is sufficiently low. Therefore, even when the concentration of cyanide ion and the concentration of the iron cyano complex in the water to be treated are various, it is possible to stably and sufficiently remove the cyan component from the water to be treated.

工程(B2)において、工程(A)で得られた反応液と、過酸化水素除去剤との接触は、工程(A)で得られた反応液に、過酸化水素除去剤を接触させてもよく、過酸化水素除去剤に、工程(A)で得られた反応液を接触させてもよく、それら両方を行ってもよい。工程(B2)における反応時間は、1〜30分であることが好ましく、1〜15分であることがより好ましい。また、工程(B2)における反応温度は、15〜80℃であることが好ましく、35〜60℃であることがより好ましい。   In the step (B2), the contact between the reaction solution obtained in the step (A) and the hydrogen peroxide removing agent may be performed by contacting the reaction solution obtained in the step (A) with the hydrogen peroxide removing agent. The reaction solution obtained in the step (A) may be brought into contact with the hydrogen peroxide removing agent, or both may be carried out. The reaction time in the step (B2) is preferably from 1 to 30 minutes, more preferably from 1 to 15 minutes. In addition, the reaction temperature in the step (B2) is preferably from 15 to 80 ° C, more preferably from 35 to 60 ° C.

第二の実施形態では、工程(A)で得られた反応液と、過酸化水素除去剤とを接触させて反応させる工程(B2)によって、工程(A)で得られた反応液中の過酸化水素濃度を低減できるため、工程(A)における被処理水への過酸化水素の添加量は特に制限されない。この工程(A)における過酸化水素の添加量は、被処理水中のシアン化物イオンを酸化分解等によって十分に処理し得る量とすることができる。その過酸化水素の添加量は、例えば、10〜300mg−H/Lであることが好ましく、10〜200mg−H/Lであることがより好ましく、10〜100mg−H/Lであることがさらに好ましい。 In the second embodiment, the reaction in the reaction solution obtained in the step (A) is carried out by the step (B2) in which the reaction solution obtained in the step (A) is brought into contact with the hydrogen peroxide removing agent to cause a reaction. Since the concentration of hydrogen oxide can be reduced, the amount of hydrogen peroxide added to the water to be treated in the step (A) is not particularly limited. The amount of hydrogen peroxide added in this step (A) can be an amount that can sufficiently treat cyanide ions in the water to be treated by oxidative decomposition or the like. The addition amount of the hydrogen peroxide, for example, is preferably 10~300mg-H 2 O 2 / L , more preferably 10~200mg-H 2 O 2 / L , 10~100mg-H 2 More preferably, it is O 2 / L.

第二の実施形態の処理方法では、上述の第一の実施形態の処理方法における工程(B1)と同様に、工程(A)で得られた反応液中に残留する過酸化水素の濃度を測定する工程(B1)をさらに含むことが好ましい。この工程(B1)で測定される過酸化水素濃度の値が10mg−H/L以下であれば、上記工程(B2)を省略することもでき、その場合には、前述の第一の実施形態の処理方法を採ることができる。このことから、工程(B1)で測定される過酸化水素濃度の値が10mg−H/L超である場合に、特に上記工程(B2)を行う意義がある。また、工程(B1)で測定される過酸化水素濃度の値が0.1〜10mg−H/Lの場合に上記工程(B2)を行うことも十分に意義がある。工程(B2)によって、工程(C)における銅(I)化合物を添加する対象となる反応液中の過酸化水素濃度をさらに低減でき、それにより、様々な被処理水について、シアン成分の除去処理をさらに安定して十分に行い易くなるためである。 In the treatment method of the second embodiment, the concentration of hydrogen peroxide remaining in the reaction solution obtained in the step (A) is measured in the same manner as in the step (B1) in the treatment method of the first embodiment. It is preferable that the method further includes a step (B1). If the value of the hydrogen peroxide concentration measured in this step (B1) is 10 mg-H 2 O 2 / L or less, the above step (B2) can be omitted. The processing method of the embodiment can be adopted. For this reason, when the value of the hydrogen peroxide concentration measured in the step (B1) is more than 10 mg-H 2 O 2 / L, it is particularly significant to perform the step (B2). Further, when the value of the concentration of hydrogen peroxide measured in the step (B1) is 0.1 to 10 mg-H 2 O 2 / L, it is sufficiently significant to perform the step (B2). By the step (B2), the concentration of hydrogen peroxide in the reaction solution to which the copper (I) compound is added in the step (C) can be further reduced, whereby the cyan component can be removed from various water to be treated. Is more stably and easily performed.

また、第二の実施形態の処理方法では、工程(B2)で得られた反応液中に残留する過酸化水素の濃度を測定する工程(B3)をさらに含むことが好ましい。この工程(B3)によって、工程(B2)における過酸化水素除去剤による過酸化水素濃度の低減効果を確認することができる。また、工程(B3)によって、工程(B3)で測定される過酸化水素濃度の値が10mg−H/L以下(好ましくは5mg−H/L以下、より好ましくは3mg−H/L以下)となるように、工程(B2)において、過酸化水素除去剤の使用量を調整することができる。 Further, the treatment method of the second embodiment preferably further includes a step (B3) of measuring the concentration of hydrogen peroxide remaining in the reaction solution obtained in the step (B2). By this step (B3), the effect of reducing the concentration of hydrogen peroxide by the hydrogen peroxide removing agent in step (B2) can be confirmed. In the step (B3), the value of the concentration of hydrogen peroxide measured in the step (B3) is 10 mg-H 2 O 2 / L or less (preferably 5 mg-H 2 O 2 / L or less, more preferably 3 mg-H 2 O 2 / L or less). (H 2 O 2 / L or less) In the step (B2), the amount of the hydrogen peroxide remover used can be adjusted.

工程(B3)における過酸化水素濃度の測定も、前述の工程(B1)と同様、バッチ式及び連続式のいずれで行ってもよい。工程(B3)で測定される過酸化水素濃度の値を監視しながら、工程(B2)において、工程(A)で得られた反応液と過酸化水素除去剤とを接触させれば、過酸化水素除去剤による効果を確認しつつ、過酸化水素除去剤の使用量を調整し易いため、好ましい。このような方法を採り易い観点から、工程(B3)において、工程(B2)で得られた反応液中に残留する過酸化水素の濃度を連続式で測定することが好ましい。工程(B3)で測定される過酸化水素濃度の値の監視は、バッチ式で間歇的(所定間隔をおいて)に測定を行うことでも可能である。   The measurement of the concentration of hydrogen peroxide in the step (B3) may be performed by either a batch method or a continuous method as in the step (B1). In step (B2), the reaction solution obtained in step (A) is brought into contact with the hydrogen peroxide removing agent while monitoring the value of the hydrogen peroxide concentration measured in step (B3). This is preferable because the amount of the hydrogen peroxide remover can be easily adjusted while confirming the effect of the hydrogen remover. From the viewpoint of easily adopting such a method, in the step (B3), it is preferable to measure the concentration of hydrogen peroxide remaining in the reaction solution obtained in the step (B2) by a continuous method. The monitoring of the value of the hydrogen peroxide concentration measured in the step (B3) can also be performed by performing the measurement intermittently (at predetermined intervals) in a batch system.

第二の実施形態の処理方法において、上述の工程(B1)及び工程(B3)を行う場合、同じ場所で同じ測定装置を用いて、各工程における過酸化水素濃度の測定を行うことも可能である。また、工程(B1)及び工程(B3)における過酸化水素濃度の測定を、工程(B1)及び工程(B3)で連続して行うことも可能であり、工程(B1)及び工程(B3)で区別することなく連続して行うことも可能である。   In the processing method of the second embodiment, when performing the above steps (B1) and (B3), it is also possible to measure the concentration of hydrogen peroxide in each step using the same measuring device at the same place. is there. Further, the measurement of the hydrogen peroxide concentration in the step (B1) and the step (B3) can be continuously performed in the step (B1) and the step (B3). It is also possible to carry out continuously without distinction.

第二の実施形態の処理方法における工程(B2)で用いられる過酸化水素除去剤は、過酸化水素の還元剤、及び過酸化水素の分解触媒のいずれか一方又は両方を含むことが好ましい。過酸化水素の還元剤としては、例えば、亜硫酸ナトリウム(NaSO)及び亜硫酸カリウム(KSO)等の亜硫酸塩;亜硫酸水素ナトリウム(NaHSO)及び亜硫酸水素カリウム(KHSO)等の亜硫酸水素塩(別名:重亜硫酸塩);硫酸鉄(II)及び硝酸鉄(II)等の鉄(II)塩(別名:2価の鉄塩、第一鉄塩);アスコルビン酸及びその塩等を挙げることができる。これらのような、過酸化水素の還元剤を過酸化水素除去剤として用いる場合、工程(A)で得られた反応液に、過酸化水素除去剤(過酸化水素の還元剤)を添加することにより、工程(A)で得られた反応液に、過酸化水素除去剤を接触させることが好ましい。過酸化水素の還元剤を添加する際の形態としては、粉末状や溶媒に溶かした溶液状等を挙げることができ、溶液状が好ましい。 The hydrogen peroxide removing agent used in the step (B2) in the treatment method of the second embodiment preferably includes one or both of a reducing agent for hydrogen peroxide and a catalyst for decomposing hydrogen peroxide. Examples of the reducing agent for hydrogen peroxide include sulfites such as sodium sulfite (Na 2 SO 3 ) and potassium sulfite (K 2 SO 3 ); and sodium hydrogen sulfite (NaHSO 3 ) and potassium hydrogen sulfite (KHSO 3 ). Bisulfite (also called bisulfite); iron (II) salts such as iron (II) sulfate and iron (II) nitrate (also called divalent iron and ferrous salts); ascorbic acid and its salts Can be mentioned. When a hydrogen peroxide reducing agent such as these is used as a hydrogen peroxide removing agent, a hydrogen peroxide removing agent (hydrogen peroxide reducing agent) is added to the reaction solution obtained in step (A). It is preferable that the reaction solution obtained in the step (A) is brought into contact with a hydrogen peroxide removing agent. Examples of the form in which the reducing agent for hydrogen peroxide is added include a powder form and a solution form dissolved in a solvent, and a solution form is preferable.

過酸化水素の分解触媒としては、液体状の分解触媒や、固体状の分解触媒を用いることができる。液体状の分解触媒としては、例えば、カタラーゼや下水処理場で使用される活性汚泥等を挙げることができる。固体状の分解触媒としては、例えば、粉末状又は粒状の二酸化マンガンや、粒状又はペレット状の活性炭等を挙げることができる。上述のような過酸化水素の分解触媒を過酸化水素除去剤として用いる場合、工程(A)で得られた反応液に、過酸化水素除去剤(過酸化水素の分解触媒)を添加することにより、工程(A)で得られた反応液に、過酸化水素除去剤を接触させることが好ましい。また、過酸化水素の分解触媒を基材に担持させたものを反応液に浸漬させたり、固体状の分解触媒にあっては、繊維状やメッシュ状に加工したものを反応液に浸漬させたり、固体状の分解触媒を充填した槽に反応液を通過させたりすることにより、工程(A)で得られた反応液と、過酸化水素除去剤(過酸化水素の分解触媒)とを接触させることも好ましい。   As a decomposition catalyst for hydrogen peroxide, a liquid decomposition catalyst or a solid decomposition catalyst can be used. Examples of the liquid decomposition catalyst include catalase and activated sludge used in sewage treatment plants. Examples of the solid decomposition catalyst include powdered or granular manganese dioxide, and granular or pelletized activated carbon. When the hydrogen peroxide decomposition catalyst as described above is used as a hydrogen peroxide remover, a hydrogen peroxide remover (hydrogen peroxide decomposition catalyst) is added to the reaction solution obtained in the step (A). Preferably, the reaction solution obtained in the step (A) is brought into contact with a hydrogen peroxide removing agent. In addition, a catalyst in which a hydrogen peroxide decomposition catalyst is supported on a base material is immersed in the reaction liquid, or a solid decomposition catalyst, which is processed into a fibrous or mesh shape, is immersed in the reaction liquid. The reaction solution obtained in step (A) is brought into contact with the hydrogen peroxide removing agent (hydrogen peroxide decomposition catalyst) by passing the reaction solution through a tank filled with a solid decomposition catalyst. It is also preferred.

次に上記第一の実施形態の処理方法及び第二の実施形態の処理方法に共通する好適な構成について、説明する。   Next, a preferred configuration common to the processing method of the first embodiment and the processing method of the second embodiment will be described.

本実施形態の処理方法を行うのに好適な被処理水としては、前述の通り、シアン化物イオン濃度に比べて鉄シアノ錯体濃度が高い被処理水を挙げることができる。また、好適な被処理水としては、被処理水に含有される鉄シアノ錯体が、フェロシアン化物イオン及びフェリシアン化物イオンのいずれか一方又は両方を含むとともに、[Fe(CN)(CO)]3−及び[Fe(CN)(CO)2−のいずれか一方又は両方を含むものを挙げることができる。鉄カルボニルシアノ錯体を含有する廃水は、例えば、特開2018−39004号公報や特開2018−69227号公報に開示されている。 As described above, the water to be treated suitable for performing the treatment method of the present embodiment may be the water to be treated having a higher iron cyano complex concentration than the cyanide ion concentration. Further, as a preferable water to be treated, the iron cyano complex contained in the water to be treated contains one or both of a ferrocyanide ion and a ferricyanide ion, and [Fe (CN) 5 (CO) ] 3- and [Fe (CN) 4 (CO) 2 ] 2- . Wastewater containing an iron carbonyl cyano complex is disclosed, for example, in JP-A-2018-39004 and JP-A-2018-69227.

上記鉄カルボニルシアノ錯体は、ペンタカルボニル鉄(Fe(CO))等の鉄カルボニル錯体と、シアン化水素(HCN)又はCNとが共存する環境;鉄(II)イオン(Fe2+)、一酸化炭素(CO)、及びHCN又はCNが共存する環境;[Fe(CN)4−及びCOが共存する環境;等のような環境下でそれらが反応して生成すると考えられる。例えば、メッキを行う工場から排出される廃水では、CNと鉄塩が共存する可能性はあるものの、COやペンタカルボニル鉄が存在する可能性は低いと考えられ、上述のような環境はまれであると考えられる。それゆえ、従来のシアン含有水の処理技術においては、上述のような環境から生じ得る鉄カルボニルシアノ錯体が処理対象となることもまれであったと考えられる。本発明者らの検討により、コークスを燃料とする炉から発生する排出ガス中にペンタカルボニル鉄が含有されていたことが確認され、それは、炉の操業状態に応じて大きく変動し得ることがわかった。ペンタカルボニル鉄は100℃以下の低温領域で分解を開始する性質があるとされているため、炉内の温度分布によってペンタカルボニル鉄の排出ガス中の含有量が変動するものと考えられる。この温度分布はコークスの性状(及びコークス原料である石炭の性状)が支配因子の一つとなっている可能性がある。上述のようなことから、好適な被処理水の一例としては、排出ガスの洗浄廃水を挙げることができる。より好適な被処理水の一例としては、懸濁物質を含む排出ガスを湿式集塵処理して得られた集塵水から、懸濁物質を除去するための固液分離処理がなされた、排出ガスの洗浄廃水を挙げることができる。 The iron carbonyl cyano complex is an environment in which an iron carbonyl complex such as iron pentacarbonyl (Fe (CO) 5 ) and hydrogen cyanide (HCN) or CN coexist; iron (II) ion (Fe 2+ ), carbon monoxide. (CO) and an environment where HCN or CN coexists; an environment where [Fe (CN) 6 ] 4− and CO coexist; For example, in waste water discharged from factories for performing plating, CN - and although iron is likely to coexist, possibly CO and iron pentacarbonyl is present is considered to be low, environmental as described above rare It is considered to be. Therefore, it is considered that in the conventional technology for treating cyanide-containing water, an iron carbonyl cyano complex that can be generated from the above-described environment is rarely treated. The present inventors have confirmed that iron pentacarbonyl was contained in the exhaust gas generated from a furnace using coke as a fuel, and it was found that it could fluctuate greatly depending on the operating conditions of the furnace. Was. Since iron pentacarbonyl is considered to have a property of initiating decomposition in a low-temperature region of 100 ° C. or less, it is considered that the content of iron pentacarbonyl in the exhaust gas fluctuates depending on the temperature distribution in the furnace. There is a possibility that the properties of the coke (and the properties of the coal as the coke raw material) are one of the controlling factors in this temperature distribution. From the above, as an example of a suitable to-be-processed water, a washing wastewater of exhaust gas can be mentioned. As an example of a more preferable water to be treated, the exhaust gas containing a suspended substance is subjected to a wet dust collection treatment, and a solid-liquid separation treatment for removing the suspended substance is performed. Gas cleaning wastewater can be mentioned.

本実施形態の処理方法では、各工程における処理を行う際の処理対象液のpHは、5〜10が好ましく、5.5〜9.5がより好ましく、6〜8がさらに好ましい。各工程での処理対象液のpHを調整してもよい。その際、例えば、塩酸及び水酸化ナトリウム等のpH調整剤を用いることができる。   In the treatment method of this embodiment, the pH of the liquid to be treated when performing the treatment in each step is preferably 5 to 10, more preferably 5.5 to 9.5, and still more preferably 6 to 8. The pH of the liquid to be treated in each step may be adjusted. At that time, for example, a pH adjuster such as hydrochloric acid and sodium hydroxide can be used.

本実施形態の処理方法における工程(C)で用いる銅(I)化合物は、1価の銅化合物(第一銅化合物)である。銅(I)化合物としては、例えば、塩化銅(I)、酸化銅(I)(亜酸化銅)、及び硫酸銅(I)等を挙げることができる。これらの銅(I)化合物の1種又は2種以上を用いることができる。銅(I)化合物を添加する際の銅(I)化合物の形態としては、粉末状や溶媒に溶かした溶液状等を挙げることができ、溶液状が好ましい。本実施形態の工程(C)では、銅(I)化合物として、亜酸化銅(酸化銅(I))を用いることがより好ましい。   The copper (I) compound used in step (C) in the treatment method of the present embodiment is a monovalent copper compound (cuprous compound). Examples of the copper (I) compound include copper (I) chloride, copper (I) oxide (cuprous oxide), and copper (I) sulfate. One or more of these copper (I) compounds can be used. Examples of the form of the copper (I) compound when the copper (I) compound is added include a powder form and a solution form dissolved in a solvent, and a solution form is preferable. In step (C) of the present embodiment, it is more preferable to use cuprous oxide (copper (I) oxide) as the copper (I) compound.

工程(C)で得られた反応液を固液分離処理する工程(D)では、前述の通り、銅(I)化合物の添加により鉄シアノ錯体の難溶化物が生成した場合に、それを分離除去することができる。また、被処理水や工程(C)で得られた反応液にその他の浮遊物質(SS)が含まれている場合には、工程(D)でSSを除去することもできる。工程(D)における固液分離処理の手法としては、沈殿処理、膜分離処理、及びろ過処理等を挙げることができ、これらのなかでも沈殿処理が好ましい。固液分離処理の際には、固液分離処理を行う対象となる反応液に、凝集剤を添加してもよい。凝集剤としては、例えば、ポリ塩化アルミニウム、硫酸アルミニウム、ポリ硫酸第二鉄、及び塩化第二鉄等の無機凝集剤、並びに高分子凝集剤等を挙げることができ、これらの1種又は2種以上を用いることができる。   In the step (D) of subjecting the reaction solution obtained in the step (C) to a solid-liquid separation treatment, as described above, when a poorly solubilized iron cyano complex is produced by the addition of the copper (I) compound, it is separated. Can be removed. Further, when other suspended solids (SS) are contained in the water to be treated and the reaction solution obtained in the step (C), the SS can be removed in the step (D). Examples of the method of the solid-liquid separation treatment in the step (D) include a precipitation treatment, a membrane separation treatment, a filtration treatment and the like, and among them, the precipitation treatment is preferable. At the time of the solid-liquid separation treatment, a coagulant may be added to the reaction liquid to be subjected to the solid-liquid separation treatment. Examples of the coagulant include inorganic coagulants such as polyaluminum chloride, aluminum sulfate, ferric polysulfate, and ferric chloride; and polymer coagulants. The above can be used.

前述の集塵水を固液分離処理して得られた排出ガスの洗浄廃水について、本実施形態のシアン含有水の処理方法を適用する場合、その処理方法は、次の工程(E)及び(F)を含むことが好ましい。すなわち、工程(D)で液分とは分離された固形分を含むスラリーについて、濃縮処理及び脱水処理のいずれか一方又は両方を行う工程(E)と、工程(E)で得られた分離水を、排出ガスの洗浄廃水を得るための上記固液分離処理に送る工程(F)とを行うことが好ましい。工程(D)で得られる固形分を含むスラリーには、前述の工程(C)によって生じ得る難溶化物等が含まれ、そのスラリー中の水分に、酸化、pH変化、及び温度変化等の影響により、シアン成分が溶出する可能性がある。これに対して、上記工程(E)及び(F)を行うことによって、被処理水からのシアン成分の除去処理をさらに安定して行うことが可能となる。懸濁物質を含む排出ガスを湿式集塵処理して得られた集塵水から懸濁物質を除去するための固液分離処理としては、沈降分離処理、膜分離処理、及びろ過処理等を挙げることができ、これらのなかでも沈降分離処理が好ましい。   When the method for treating cyan-containing water of the present embodiment is applied to the cleaning wastewater of the exhaust gas obtained by performing the solid-liquid separation treatment on the above-mentioned dust collection water, the treatment method includes the following steps (E) and ( It is preferable to include F). That is, the slurry containing the solid content separated from the liquid component in the step (D) is subjected to one or both of the concentration treatment and the dehydration treatment, and the separated water obtained in the step (E). (F) to the above-mentioned solid-liquid separation treatment for obtaining exhaust gas washing wastewater. The slurry containing a solid content obtained in the step (D) contains a hardly-solubilized substance or the like that can be generated in the above-mentioned step (C). May elute the cyan component. On the other hand, by performing the steps (E) and (F), it is possible to more stably remove the cyan component from the water to be treated. Examples of solid-liquid separation processing for removing suspended substances from dust water obtained by performing wet dust collection processing on exhaust gas containing suspended substances include sedimentation separation processing, membrane separation processing, and filtration processing. Of these, sedimentation separation is preferred.

本実施形態の処理方法では、工程(A)における過酸化水素を添加する対象となる被処理水、及び工程(C)における銅(I)化合物を添加する対象となる反応液のいずれか一方又は両方に、さらに還元剤を添加することが好ましい。還元剤としては、例えば、チオ硫酸塩、亜硫酸塩、重亜硫酸塩、塩化第一鉄、並びに硫化ナトリウム及び四硫化ナトリウム等のアルカリ金属硫化物等を挙げることができ、これらの1種又は2種以上を用いることができる。チオ硫酸塩、亜硫酸塩、及び重亜硫酸塩における塩を形成する陽イオンとしては、例えば、ナトリウムイオン、カリウムイオン、カルシウムイオン、アンモニウムイオン、及び有機アンモニウムイオン等を挙げることができる。被処理水に添加する際の還元剤の形態としては、粉末状や溶媒に溶かした溶液状等を挙げることができ、溶液状が好ましい。   In the treatment method of the present embodiment, either one of the water to be treated to which the hydrogen peroxide is added in the step (A) and the reaction solution to which the copper (I) compound is to be added in the step (C) or It is preferable to add a reducing agent to both. Examples of the reducing agent include thiosulfate, sulfite, bisulfite, ferrous chloride, and alkali metal sulfides such as sodium sulfide and sodium tetrasulfide. The above can be used. Examples of cations that form salts in thiosulfate, sulfite, and bisulfite include sodium ion, potassium ion, calcium ion, ammonium ion, and organic ammonium ion. Examples of the form of the reducing agent when added to the water to be treated include a powder form, a solution form dissolved in a solvent, and the like, and a solution form is preferable.

本実施形態の処理方法では、工程(C)における銅(I)化合物を添加する対象となる反応液に、さらに第4級アンモニウム化合物を添加することが好ましい。第4級アンモニウム化合物は、第4級アンモニウムカチオンを有する化合物であり、モノマーでもよいし、ポリマーでもよい。第4級アンモニウム化合物としては、テトラアルキルアンモニウム化合物、及びカチオン性ポリマー等を好適に用いることができる。第4級アンモニウム化合物を添加する際の形態としては、粉末状や溶媒に溶かした溶液状等を挙げることができ、溶液状が好ましい。   In the treatment method of the present embodiment, it is preferable to further add a quaternary ammonium compound to the reaction solution to which the copper (I) compound is added in the step (C). The quaternary ammonium compound is a compound having a quaternary ammonium cation, and may be a monomer or a polymer. As the quaternary ammonium compound, a tetraalkylammonium compound, a cationic polymer and the like can be suitably used. Examples of the form in which the quaternary ammonium compound is added include a powder form and a solution form dissolved in a solvent, and a solution form is preferable.

テトラアルキルアンモニウム化合物としては、ジデシルジメチルアンモニウム塩、ヘキサデシルトリメチルアンモニウム塩、ジオクチルジメチルアンモニウム塩、ジドデシルジメチルアンモニウム塩、トリオクチルメチルアンモニウム塩、及びベンジルドデシルジメチルアンモニウム塩が好ましい。さらに、これらにおける第4級アンモニウムカチオンと対となる陰イオンが、ハロゲン化物イオンであるものが好ましく、塩化物イオン及び臭化物イオンであるものがより好ましい。   As the tetraalkylammonium compound, didecyldimethylammonium salt, hexadecyltrimethylammonium salt, dioctyldimethylammonium salt, didodecyldimethylammonium salt, trioctylmethylammonium salt, and benzyldodecyldimethylammonium salt are preferable. Further, the anion paired with the quaternary ammonium cation in these is preferably a halide ion, more preferably a chloride ion and a bromide ion.

カチオン性ポリマーとしては、第4級アンモニウムカチオンを有するポリマーであればよく、例えば、ポリアクリル酸エステル系化合物、ポリメタクリル酸エステル系化合物、ポリアミン系化合物、ポリジアリルジアルキルアンモニウム塩系化合物、ジアリルジアルキルアンモニウム塩−アクリルアミド共重合体系化合物、ジメチルアミンとエピクロロヒドリンの重縮合物、並びにジメチルアミン、エピクロロヒドリン及びアンモニアの重縮合物等を挙げることできる。   As the cationic polymer, any polymer having a quaternary ammonium cation may be used. Examples thereof include a salt-acrylamide copolymer-based compound, a polycondensate of dimethylamine and epichlorohydrin, and a polycondensate of dimethylamine, epichlorohydrin and ammonia.

本実施形態の処理方法では、過酸化水素を用いる工程(A)と、銅(I)化合物を用いる工程(C)とを、共通の反応槽で行ってもよく、別々の反応槽で行ってもよい。例えば、前述の第一の実施形態の処理方法において、工程(A)及び工程(C)を共通の反応槽で行う場合、その共通の反応槽にて、過酸化水素の添加、並びに過酸化水素の反応後に得られた反応液に対しての残留過酸化水素濃度の測定及び銅(I)化合物の添加を行うことができる。工程(A)における過酸化水素による反応を終了させた後(より好ましくは当該反応により過酸化水素が消費された後)に、次工程に進むことが好ましいことから、工程(A)と工程(C)とを別々の反応槽で行うことが好ましい。   In the treatment method of the present embodiment, the step (A) using hydrogen peroxide and the step (C) using the copper (I) compound may be performed in a common reaction tank, or may be performed in separate reaction tanks. Is also good. For example, in the processing method of the first embodiment, when the steps (A) and (C) are performed in a common reaction tank, the addition of hydrogen peroxide and the addition of hydrogen peroxide are performed in the common reaction tank. Can be measured and the copper (I) compound can be added to the reaction solution obtained after the reaction. After terminating the reaction with hydrogen peroxide in the step (A) (more preferably, after the hydrogen peroxide is consumed by the reaction), it is preferable to proceed to the next step, so that the steps (A) and ( And C) are preferably performed in separate reaction tanks.

また、前述の第二の実施形態の処理方法において、工程(B2)で過酸化水素除去剤を添加する態様で用いる場合には、過酸化水素を添加する工程(A)と、過酸化水素除去剤を添加する工程(B2)とを共通の槽で行ってもよい。同様に、この場合、過酸化水素除去剤を添加する工程(B2)と、銅(I)化合物を添加する工程(C)とを共通の槽で行ってもよく、それらの工程(A)、(B2)、及び(C)を共通の槽で行ってもよく、それぞれ、別々の槽で行ってもよい。例えば、前述の第二の実施形態の処理方法において、工程(A)及び工程(B2)を共通の槽で行う場合、その共通の槽にて、過酸化水素の添加、過酸化水素除去剤の添加、並びに必要に応じて、過酸化水素による反応後や過酸化水素除去剤による反応後の反応液中の残留過酸化水素濃度の測定を行うことができる。工程(B2)及び工程(C)を共通の槽で行う場合には、その共通の槽にて、過酸化水素除去剤の添加、銅(I)化合物の添加、並びに必要に応じて、過酸化水素除去剤の添加前や過酸化水素除去剤による反応後の反応液中の残留過酸化水素濃度の測定を行うことができる。工程(A)、工程(B2)、及び工程(C)を共通の槽で行う場合には、過酸化水素の添加、過酸化水素除去剤の添加、銅(I)化合物の添加、並びに必要に応じて、過酸化水素による反応後や過酸化水素除去剤による反応後の反応液中の残留過酸化水素濃度の測定を行うことができる。工程(A)における過酸化水素による反応を終了させた後に、次工程に進むことが好ましく、また、工程(B2)における過酸化水素除去剤による反応を終了させた後、次工程に進むことが好ましいことから、工程(A)、工程(B2)、及び工程(C)をそれぞれ別々の槽で行うことが好ましい。   In addition, in the treatment method of the second embodiment described above, when used in a mode in which a hydrogen peroxide removing agent is added in the step (B2), a step (A) of adding hydrogen peroxide and a step of removing hydrogen peroxide are included. The step (B2) of adding the agent may be performed in a common tank. Similarly, in this case, the step (B2) of adding the hydrogen peroxide removing agent and the step (C) of adding the copper (I) compound may be performed in a common tank. (B2) and (C) may be performed in a common tank, or may be performed in separate tanks. For example, in the processing method of the second embodiment, when the step (A) and the step (B2) are performed in a common tank, the addition of hydrogen peroxide and the removal of the hydrogen peroxide removing agent are performed in the common tank. Addition, and if necessary, measurement of the concentration of residual hydrogen peroxide in the reaction solution after the reaction with hydrogen peroxide or after the reaction with the hydrogen peroxide removing agent can be performed. When the step (B2) and the step (C) are performed in a common tank, the addition of a hydrogen peroxide removing agent, the addition of a copper (I) compound, and the The concentration of the residual hydrogen peroxide in the reaction solution before the addition of the hydrogen remover or after the reaction with the hydrogen peroxide remover can be measured. When the steps (A), (B2), and (C) are performed in a common tank, addition of hydrogen peroxide, addition of a hydrogen peroxide remover, addition of a copper (I) compound, and Accordingly, the concentration of residual hydrogen peroxide in the reaction solution after the reaction with hydrogen peroxide or after the reaction with the hydrogen peroxide removing agent can be measured. It is preferable to proceed to the next step after terminating the reaction with hydrogen peroxide in step (A), and to proceed to the next step after terminating the reaction with the hydrogen peroxide removing agent in step (B2). From the viewpoint of being preferable, it is preferable that the step (A), the step (B2), and the step (C) are performed in separate tanks.

以下、第一の実施形態及び第二の実施形態のシアン含有水の処理方法における各工程について、それらの処理方法を実行し得る処理設備及び処理フローの概略構成を表す図面を参照しながら、さらに述べる。なお、図面における各図で共通する部分については同一の符号を付し、その説明を省略することがある。また、図1及び図2中の太線矢印は、処理対象である被処理水とその処理過程を表す。   Hereinafter, with respect to each step in the method for treating cyanide-containing water of the first embodiment and the second embodiment, referring to the drawings showing a schematic configuration of a treatment facility and a treatment flow capable of executing the treatment method, State. Note that the same reference numerals are given to parts common to the drawings in the drawings, and description thereof may be omitted. 1 and 2 indicate the water to be treated and the treatment process thereof.

図1は、前述の第一の実施形態のシアン含有水の処理方法を実行し得る処理設備及び処理フローの概略構成の一例を表す説明図である。図1に示すように、処理設備10は、第1の反応槽(a)11、過酸化水素濃度の測定装置(b1)13、第2の反応槽(c)12、固液分離装置(d)16、及び制御部17を備える。第1の反応槽(a)11にて前述の工程(A)を、測定装置(b1)13にて前述の工程(B1)を、第2の反応槽(c)12にて前述の工程(C)を、固液分離装置(d)16にて前述の工程(D)を行うことができる。以下では、(a)、(b1)、(c)、及び(d)の記載を省略する。   FIG. 1 is an explanatory diagram illustrating an example of a schematic configuration of a processing facility and a processing flow capable of executing the method of treating cyan-containing water according to the first embodiment. As shown in FIG. 1, the processing equipment 10 includes a first reaction tank (a) 11, a hydrogen peroxide concentration measuring device (b1) 13, a second reaction tank (c) 12, and a solid-liquid separation device (d). ) 16 and a control unit 17. The above-mentioned step (A) is performed in the first reaction tank (a) 11, the above-described step (B1) is performed in the measuring device (b1) 13, and the above-described step (B) is performed in the second reaction tank (c) 12. The above-mentioned step (D) can be performed on the solid-liquid separator (d) 16 for the step C). Hereinafter, descriptions of (a), (b1), (c), and (d) will be omitted.

第1の反応槽11は、流入されてきた被処理水W10に過酸化水素を添加して反応させる槽である。第1の反応槽11には、過酸化水素を添加するための装置(過酸化水素添加装置)111を設けることができる。第2の反応槽12は、第1の反応槽11で得られた反応液W11に銅(I)化合物を添加して反応させる槽である。第2の反応槽12には、銅(I)化合物を添加するための装置(銅(I)化合物添加装置)121を設けることができる。固液分離装置16は、第2の反応槽12で得られた反応液W12を固液分離する装置である。固液分離装置16としては、例えば、シックナー等の沈殿装置や、各種のろ過器及び膜分離機等を用いることができる。固液分離装置16による処理の際に、凝集剤を用いる場合には、固液分離装置16に、凝集剤を添加するための装置(凝集剤添加装置)を設けてもよい。過酸化水素添加装置111、銅(I)化合物添加装置121、及び凝集剤添加装置は、例えば、各材料を貯留するためのタンク、並びに各材料を供給するためのポンプ及び供給管等を備えることができる。処理設備10は、第2の反応槽12と固液分離装置16との間等に中継槽を備えていてもよい。 The first reaction vessel 11, the water to be treated W 10 that has been flowing a bath and reacted with hydrogen peroxide. The first reaction tank 11 can be provided with a device (hydrogen peroxide addition device) 111 for adding hydrogen peroxide. The second reaction vessel 12 is a bath with the addition of copper (I) compound is reacted in the reaction liquid W 11 obtained in the first reaction vessel 11. The second reaction tank 12 can be provided with a device (copper (I) compound addition device) 121 for adding a copper (I) compound. Solid-liquid separator 16 is a device for solid-liquid separation of the reaction liquid W 12 obtained in the second reaction vessel 12. As the solid-liquid separator 16, for example, a sedimentation device such as a thickener, various filters, a membrane separator, and the like can be used. When a coagulant is used in the treatment by the solid-liquid separation device 16, a device (coagulant addition device) for adding the coagulant may be provided in the solid-liquid separation device 16. The hydrogen peroxide addition device 111, the copper (I) compound addition device 121, and the flocculant addition device include, for example, a tank for storing each material, and a pump and a supply pipe for supplying each material. Can be. The processing equipment 10 may include a relay tank, for example, between the second reaction tank 12 and the solid-liquid separation device 16.

工程(A)において、過酸化水素とともに、前述のチオ硫酸塩等の還元剤を用いる場合、第1の反応槽11には、その第1の反応槽11に還元剤を添加するための装置(還元剤添加装置)を設けることができる。また、工程(C)において、銅(I)化合物とともに、前述の還元剤や前述の第4級アンモニウム化合物を用いる場合、第2の反応槽12には、還元剤添加装置や、第2の反応槽に第4級アンモニウム化合物を添加するための装置を設けることができる。   In the case where the reducing agent such as the above-mentioned thiosulfate is used together with hydrogen peroxide in the step (A), the first reaction tank 11 is provided with an apparatus for adding the reducing agent to the first reaction tank 11 ( A reducing agent addition device). In the case where the above-mentioned reducing agent or the above-mentioned quaternary ammonium compound is used together with the copper (I) compound in the step (C), the second reaction tank 12 may be provided with a reducing agent addition device or a second reaction device. An apparatus for adding a quaternary ammonium compound to the tank can be provided.

過酸化水素濃度の測定装置13は、第1の反応槽11で得られた反応液W11中に残留する過酸化水素の濃度を測定する装置である。過酸化水素濃度の測定装置13は、バッチ式の測定装置、及び連続式の測定装置のいずれを用いることもでき、連続式の測定装置がより好ましい。バッチ式の測定装置としては、例えば、商品名「RQフレックス」及び「リフレクトクァント 過酸化物テスト」(関東化学社製)を用いることができる。また、連続式の測定装置としては、例えば、商品名「Q46/84型 過酸化水素計」(ATI社製)を用いることができる。 Hydrogen peroxide concentration of the measurement device 13 is a device for measuring the concentration of hydrogen peroxide remaining in the reaction liquid W 11 obtained in the first reaction vessel 11. As the hydrogen peroxide concentration measuring device 13, any of a batch-type measuring device and a continuous-type measuring device can be used, and a continuous-type measuring device is more preferable. As the batch type measuring device, for example, trade names “RQ Flex” and “Reflectant peroxide test” (manufactured by Kanto Chemical Co., Ltd.) can be used. Further, as the continuous measuring device, for example, a product name “Q46 / 84 type hydrogen peroxide meter” (manufactured by ATI) can be used.

制御部17は、第1の反応槽11における被処理水W10への過酸化水素の添加量を、過酸化水素濃度の測定装置13で測定される過酸化水素濃度の値が10mg−H/L以下となる量に制御する。この制御を行い易い観点から、制御部17は、過酸化水素濃度の測定装置13、及び第1の反応槽11(それに設けられる過酸化水素添加装置111)に協働することが好ましい。例えば、測定装置13で測定される過酸化水素濃度の値が所定範囲(例えば、0〜5mg−H/Lの範囲)のときに過酸化水素添加装置111(注入ポンプ)が稼働し、上記所定範囲の上限値を超えたら、過酸化水素添加装置111(注入ポンプ)が停止するように、測定装置13と過酸化水素添加装置111(注入ポンプ)とを制御部17によって連動させることができる。制御部17は、例えば、電源ユニット、CPUユニット、入力ユニット、出力ユニット、及び記憶ユニット等を備えて構成することができ、パーソナルコンピューターを用いることができる。 Control unit 17, the first reaction vessel the amount of hydrogen peroxide to water to be treated W 10 in 11, the value of the hydrogen peroxide concentration is 10 mg-H 2 as measured by the measuring device 13 of the hydrogen peroxide concentration The amount is controlled so as to be O 2 / L or less. From the viewpoint of easy control, the control unit 17 preferably cooperates with the hydrogen peroxide concentration measuring device 13 and the first reaction tank 11 (the hydrogen peroxide adding device 111 provided therein). For example, when the value of the hydrogen peroxide concentration measured by the measuring device 13 is within a predetermined range (for example, in the range of 0 to 5 mg-H 2 O 2 / L), the hydrogen peroxide adding device 111 (injection pump) operates. The measuring unit 13 and the hydrogen peroxide adding device 111 (injection pump) are linked by the control unit 17 so that the hydrogen peroxide adding device 111 (injection pump) is stopped when the upper limit of the predetermined range is exceeded. Can be. The control unit 17 can be configured to include, for example, a power supply unit, a CPU unit, an input unit, an output unit, and a storage unit, and can use a personal computer.

なお、図1では、過酸化水素を用いる工程(A)、及び銅(I)化合物を用いる工程(C)を説明し易いように、第1の反応槽11と第2の反応槽12とを別々に示したが、第1の反応槽11及び第2の反応槽12は同一(共通)の反応槽であってもよい。一方、工程(A)における過酸化水素による反応を終了させた後(より好ましくは当該反応により過酸化水素が消費された後)に、次工程に進むことが好ましいことから、第1の反応槽11と第2の反応槽12とは別々の槽であることが好ましい。また、工程(A)で得られた反応液中に残留する過酸化水素の濃度を測定する工程(B1)を説明し易いように、図1では、過酸化水素濃度の測定装置13は、第1の反応槽11と第2の反応槽12との間(その間の流路)に設けられているが、第1の反応槽11に設置されてもよく、上記の共通の反応槽に設置されてもよい。   In FIG. 1, the first reaction tank 11 and the second reaction tank 12 are separated so that the step (A) using hydrogen peroxide and the step (C) using a copper (I) compound can be easily described. Although shown separately, the first reaction tank 11 and the second reaction tank 12 may be the same (common) reaction tank. On the other hand, after the reaction with hydrogen peroxide in step (A) is completed (more preferably, after hydrogen peroxide is consumed by the reaction), it is preferable to proceed to the next step. It is preferable that 11 and the second reaction tank 12 be separate tanks. In addition, in FIG. 1, the hydrogen peroxide concentration measuring device 13 is provided in FIG. 1 so that the step (B1) of measuring the concentration of hydrogen peroxide remaining in the reaction solution obtained in the step (A) can be easily described. Although provided between the first reaction tank 11 and the second reaction tank 12 (flow path therebetween), it may be provided in the first reaction tank 11 or may be provided in the above-described common reaction tank. You may.

図2は、前述の第二の実施形態のシアン含有水の処理方法を実行し得る処理設備及び処理フローの概略構成の一例を表す説明図である。図2に示すように、処理設備20は、第1の反応槽(a)21、除去槽(b2)24、第2の反応槽(c)22、及び固液分離装置(d)26を備える。第1の反応槽(a)21にて前述の工程(A)を、除去槽(b2)24にて前述の工程(B2)を、第2の反応槽(c)22にて前述の工程(C)を、固液分離装置(d)26にて前述の工程(D)を行うことができる。以下では、(a)、(b2)、(c)、及び(d)の記載を省略する。   FIG. 2 is an explanatory diagram illustrating an example of a schematic configuration of a processing facility and a processing flow capable of executing the method of treating cyan-containing water according to the second embodiment. As shown in FIG. 2, the processing equipment 20 includes a first reaction tank (a) 21, a removal tank (b2) 24, a second reaction tank (c) 22, and a solid-liquid separation device (d) 26. . The first step (A) is performed in the first reaction tank (a) 21, the step (B2) is performed in the removal tank (b2) 24, and the second step is performed in the second reaction tank (c) 22. The above-mentioned step (D) can be performed on C) in the solid-liquid separation device (d) 26. Hereinafter, description of (a), (b2), (c), and (d) will be omitted.

図2に示す処理設備20における第1の反応槽21は、前述の処理設備10における第1の反応槽11と同様である。また、処理設備20における第2の反応槽22で得られた反応液W22を固液分離する固液分離装置26は、前述の処理設備10における固液分離装置16と同様である。さらに、図2に示す処理設備20における第2の反応槽22は、そこに流入される液が異なること以外は図1に示す処理設備10における第2の反応槽12と同様である。処理設備20も、第2の反応槽22と固液分離装置26との間等に中継槽を備えていてもよい。 The first reaction tank 21 in the processing equipment 20 shown in FIG. 2 is the same as the first reaction tank 11 in the processing equipment 10 described above. Further, solid-liquid separator 26 for solid-liquid separation of the reaction liquid W 22 obtained in the second reaction tank 22 in the processing equipment 20 is similar to the solid-liquid separator 16 in the processing equipment 10 described above. Further, the second reaction tank 22 in the processing equipment 20 shown in FIG. 2 is the same as the second reaction tank 12 in the processing equipment 10 shown in FIG. 1 except that the liquid flowing therein is different. The processing equipment 20 may also include a relay tank, for example, between the second reaction tank 22 and the solid-liquid separation device 26.

除去槽24は、第1の反応槽21で得られた反応液W21が流入される槽であり、その反応液W21と、前述の過酸化水素除去剤とを接触させて反応させる槽である。この除去槽24にて、反応液W21中に残留する過酸化水素の濃度が低減された反応液W24を得ることができる。除去槽24には、第1の反応槽21で得られた反応液W21に過酸化水素除去剤を添加するための装置241(タンク、ポンプ、及び供給管等)を設けることができる。また、過酸化水素除去剤として前述の分解触媒を用いる場合には、その分解触媒を担持させた基材を、除去槽24内に設けることもできる。その除去槽24に第1の反応槽21で得られた反応液W21を通過せることにより、分解触媒を担持させた基材が反応液W21に浸漬するようにしてもよい。さらに、過酸化水素除去剤として前述の固体状の分解触媒を用いる場合には、除去槽24を、固体状の分解触媒を充填した槽とすることもできる。その除去槽24に、第1の反応槽21で得られた反応液W21を通過させることにより、反応液W21と過酸化水素除去剤とを接触させてもよい。 Removing tank 24 is a tank reaction liquid W 21 obtained in the first reaction tank 21 is introduced, and the reaction solution W 21, a bath is reacted by contacting the above-mentioned hydrogen peroxide removers is there. At this removing tank 24, it is possible that the concentration of hydrogen peroxide remaining in the reaction solution W 21 to obtain a reaction liquid W 24 with reduced. The removing tank 24 may be provided with a device 241 for the reaction liquid W 21 obtained in the first reaction vessel 21 to addition of hydrogen peroxide removal agent (tank, pump, and supply tube, etc.). When the above-mentioned decomposition catalyst is used as the hydrogen peroxide removing agent, a substrate supporting the decomposition catalyst may be provided in the removal tank 24. By causing pass through the reaction liquid W 21 obtained in the first reaction tank 21 to the removing tank 24, a substrate having supported thereon the cracking catalyst may be immersed in the reaction liquid W 21. Further, when the above-mentioned solid decomposition catalyst is used as the hydrogen peroxide removing agent, the removal tank 24 may be a tank filled with the solid decomposition catalyst. Its removing tank 24, by passing the reaction liquid W 21 obtained in the first reaction vessel 21, it may be brought into contact with the reaction liquid W 21 and hydrogen peroxide scavenging agent.

処理設備20は、第1の反応槽21で得られた反応液W21中に残留する過酸化水素濃度の測定装置(b1)23や、除去槽24で得られた反応液W24中に残留する過酸化水素濃度の測定装置(b3)25を備えることが好ましい。測定装置(b1)23にて前述の工程(B1)を、測定装置(b3)25にて前述の工程(B3)を行うことができる。これらの測定装置23、25も、前述の図1に示す処理設備10における過酸化水素濃度の測定装置13と同様のものを用いることができ、また、前述した制御部と協働させることも可能である。 Processing equipment 20, the residual and the first measuring device of the hydrogen peroxide concentration remaining in the reaction liquid W 21 obtained in reaction vessel 21 (b1) 23, to the reaction solution W 24 obtained in removing tank 24 It is preferable to provide a measuring device (b3) 25 for measuring the concentration of hydrogen peroxide. The above-described step (B1) can be performed by the measuring device (b1) 23, and the above-described step (B3) can be performed by the measuring device (b3) 25. These measuring devices 23 and 25 can be the same as the hydrogen peroxide concentration measuring device 13 in the processing equipment 10 shown in FIG. 1 described above, and can also cooperate with the control unit described above. It is.

前述の工程(B1)及び工程(B3)を説明し易いように、過酸化水素濃度の測定装置23、25を設ける例を説明したが、測定装置23、25の代わりに、工程(B1)及び工程(B3)のそれぞれで同一(共通)の測定装置27を用いることもできる。この場合、その過酸化水素濃度の測定装置27を除去槽24に設置し、除去槽24において、反応液W21中の残留過酸化水素濃度の測定(工程(B1))や、反応液W24中の残留過酸化水素濃度の測定(工程(B3))を行うことができる。 The example in which the hydrogen peroxide concentration measuring devices 23 and 25 are provided to facilitate the description of the above-described steps (B1) and (B3) has been described. However, instead of the measuring devices 23 and 25, the steps (B1) and The same (common) measuring device 27 can be used in each of the steps (B3). In this case, installing the measuring apparatus 27 of the hydrogen peroxide concentration in removing tank 24, in removing tank 24, and measurement of the residual hydrogen peroxide concentration in the reaction solution W 21 (step (B1)), the reaction liquid W 24 The measurement of the concentration of residual hydrogen peroxide therein (step (B3)) can be performed.

過酸化水素濃度の測定装置27も前述した制御部と協働させることが可能である。具体的には、測定装置27で測定される過酸化水素濃度の値が所定値以下(例えば、10mg−H/L以下、より好ましくは5mg−H/L以下、さらに好ましくは3mg−H/L以下、特に好ましくは0mg−H/L)となるように、上記制御部によって、測定装置27と、過酸化水素除去剤の添加装置241(注入ポンプ)とを連動させることが好ましい。例えば、測定装置27で測定される過酸化水素濃度の値が上記所定値を超えたら、過酸化水素除去剤の添加装置241(注入ポンプ)が稼働し、測定装置27で測定される過酸化水素濃度の値が上記所定値以下になると過酸化水素除去剤の添加装置241(注入ポンプ)が停止するように、測定装置27と、過酸化水素除去剤の添加装置241(注入ポンプ)とを連動させることができる。 The hydrogen peroxide concentration measuring device 27 can also cooperate with the control unit described above. Specifically, the value of the concentration of hydrogen peroxide measured by the measuring device 27 is equal to or less than a predetermined value (for example, 10 mg-H 2 O 2 / L or less, more preferably 5 mg-H 2 O 2 / L or less, and still more preferably The control unit controls the measuring device 27 and the hydrogen peroxide removing agent addition device 241 (injection pump) so that the pressure is 3 mg-H 2 O 2 / L or less, particularly preferably 0 mg-H 2 O 2 / L. ) Is preferably linked. For example, when the value of the hydrogen peroxide concentration measured by the measuring device 27 exceeds the above-mentioned predetermined value, the hydrogen peroxide removing agent adding device 241 (injection pump) is operated, and the hydrogen peroxide measured by the measuring device 27 is measured. The measuring device 27 and the hydrogen peroxide remover adding device 241 (injection pump) are linked so that the hydrogen peroxide removing agent adding device 241 (injection pump) stops when the concentration value becomes equal to or less than the predetermined value. Can be done.

なお、図2では、過酸化水素を用いる工程(A)、過酸化水素除去剤を用いる工程(B2)、及び銅(I)化合物を用いる工程(C)を説明し易いように、第1の反応槽21、除去槽24、及び第2の反応槽22をそれぞれ別々に示したが、第1の反応槽21及び除去槽24;除去槽24及び第2の反応槽22;並びに第1の反応槽21、除去槽24、及び第2の反応槽22;は、同一(共通)の槽であってもよい。一方、工程(A)における過酸化水素による反応を終了させた後(より好ましくは当該反応により過酸化水素が消費された後)に、次工程に進むことが好ましく、また、工程(B2)における過酸化水素除去剤による反応を終了させた後、次工程に進むことが好ましいことから、第1の反応槽21、除去槽24、及び第2の反応槽22は、それぞれ別々の槽であることが好ましい。   In FIG. 2, the first step (A) using hydrogen peroxide, the step (B2) using a hydrogen peroxide remover, and the first step (C) using a copper (I) compound are described in order to facilitate the explanation. Although the reaction tank 21, the removal tank 24, and the second reaction tank 22 are shown separately, the first reaction tank 21 and the removal tank 24; the removal tank 24 and the second reaction tank 22; The tank 21, the removal tank 24, and the second reaction tank 22; may be the same (common) tank. On the other hand, after terminating the reaction with hydrogen peroxide in the step (A) (more preferably, after the hydrogen peroxide is consumed by the reaction), it is preferable to proceed to the next step, and in the step (B2) Since it is preferable to proceed to the next step after terminating the reaction with the hydrogen peroxide removing agent, the first reaction tank 21, the removal tank 24, and the second reaction tank 22 should be separate tanks, respectively. Is preferred.

また、必要に応じて行い得る工程(B1)を説明し易いように、図2では、過酸化水素濃度の測定装置23を第1の反応槽21と除去槽24との間(その間の流路)に設けた例を示したが、測定装置23は、第1の反応槽21に設置されてもよく、第1の反応槽21を兼ねる上記共通の槽に設置されてもよい。さらに、必要に応じて行い得る工程(B3)を説明し易いように、図2では、過酸化水素濃度の測定装置25を除去槽24と第2の反応槽22との間(その間の流路)に設けた例を示したが、測定装置25は、除去槽24に設置されてもよく、除去槽24を兼ねる上記共通の槽に設置されてもよい。   In addition, in FIG. 2, the hydrogen peroxide concentration measuring device 23 is provided between the first reaction tank 21 and the removal tank 24 (the flow path therebetween) so that the step (B1) that can be performed as necessary is easily described. 2), the measuring device 23 may be installed in the first reaction tank 21 or may be installed in the above-mentioned common tank that also serves as the first reaction tank 21. Further, in FIG. 2, a hydrogen peroxide concentration measuring device 25 is provided between the removal tank 24 and the second reaction tank 22 (the flow path therebetween) so that the step (B3) that can be performed as necessary is easily described. 2), the measuring device 25 may be installed in the removal tank 24, or may be installed in the common tank that also serves as the removal tank 24.

前述の通り、被処理水としては、排出ガスの洗浄廃水が好適であることから、本実施形態のシアン含有水の処理方法を、排出ガスの洗浄廃水の処理設備に適用することもできる。図3は、本実施形態のシアン含有水の処理方法を適用することを想定した場合の排出ガスの処理設備及び処理フローの一例の概略構成を表す説明図である。   As described above, since the wastewater to be treated is preferably the wastewater for cleaning the exhaust gas, the method for treating cyanide-containing water according to the present embodiment can also be applied to a facility for treating the wastewater for cleaning the exhaust gas. FIG. 3 is an explanatory diagram illustrating a schematic configuration of an example of an exhaust gas treatment facility and a process flow when it is assumed that the method for treating cyanide-containing water of the present embodiment is applied.

図3に示す排出ガスGの処理設備300は、排出ガスGを連続的に洗浄する湿式集塵機(ベンチュリスクラバー)301と、湿式集塵機301から得られた集塵水W301を沈降分離処理する沈殿槽302と、沈降分離により得られた上澄み液W302を一次処理水として貯留する一次処理水槽303とを備える。また、一次処理水槽303に送られた上澄み液(一次処理水)の一部は、循環水W303として、補給水W304が加えられつつ湿式集塵機301に戻されて、排出ガスGの洗浄に循環使用されてもよい。さらに、沈殿槽302で沈降分離により得られた沈殿物S302を脱水処理する脱水機38を設けてもよく、脱水機38により処理された一部は脱水ケーキCとして処理され、また別の一部は脱離液(脱水ろ液)W38として沈殿槽302に再送されてもよい。 The exhaust gas G treatment equipment 300 shown in FIG. 3 includes a wet dust collector (Venturi scrubber) 301 for continuously cleaning the exhaust gas G, and a sedimentation tank for sedimenting and separating the collected water W 301 obtained from the wet dust collector 301. It includes a 302, a primary treating tank 303 for storing a supernatant W 302 obtained by sedimentation as the primary treatment water. In addition, a part of the supernatant liquid (primary treatment water) sent to the primary treatment water tank 303 is returned to the wet dust collector 301 as the circulating water W 303 while the makeup water W 304 is added thereto, and is used for cleaning the exhaust gas G. It may be used repeatedly. Further, a dehydrator 38 for dehydrating the sediment S 302 obtained by sedimentation and separation in the sedimentation tank 302 may be provided, and a part of the dehydrated water treated by the dehydrator 38 is processed as a dewatered cake C. parts may be retransmitted to the settling tank 302 as releasing liquid (dehydrated filtrate) W 38.

上述の一次処理水槽303における一次処理水に、シアン化物イオン及び鉄シアノ錯体が含有されている場合に、その一次処理水を、本実施形態のシアン含有水の処理方法における処理対象である被処理水W10とすることができる。図3では、一次処理水槽303内の一次処理水をブロー水(被処理水W10)として、前述した処理設備10、20(それらにおける第1の反応槽11、21)に送り、本実施形態のシアン含有水の処理方法を行う場合が例示されている。処理設備10、20における固液分離装置16、26で液分とは分離された固形分を含むスラリーを脱水機38に送って脱水処理し、脱水機38で得られた分離水(脱離液、脱水ろ液)を、沈殿槽302に送ることが好ましい。図3に示す脱水機38は、濃縮槽であってもよく、濃縮槽と脱水機38とを併用してもよい。また、沈殿槽302には、脱水ろ液のほか、上記濃縮槽で得られた分離水が送られてもよく、余剰の上記スラリーが送られてもよい。なお、沈殿槽302の代わりに、各種の膜分離装置及びろ過器等が使用されてもよい。 When the primary treated water in the primary treated water tank 303 contains cyanide ions and an iron cyano complex, the primary treated water is treated in the method for treating cyanogen-containing water according to the present embodiment. it can be water W 10. In FIG. 3, the primary treatment water in the primary treatment water tank 303 is sent to the above-described treatment facilities 10 and 20 (the first reaction tanks 11 and 21 thereof) as blow water (water to be treated W 10 ), and this embodiment is performed. The case of performing the method for treating cyanogen-containing water described above is exemplified. The slurry containing the solid content separated from the liquid component by the solid-liquid separation devices 16 and 26 in the processing facilities 10 and 20 is sent to a dehydrator 38 for dehydration treatment, and the separated water (desorbed liquid) obtained by the dehydrator 38 , Dehydration filtrate) to the precipitation tank 302. The dehydrator 38 shown in FIG. 3 may be a concentration tank, and the concentration tank and the dehydrator 38 may be used in combination. Further, in addition to the dehydrated filtrate, the separated water obtained in the concentration tank or the excess slurry may be sent to the precipitation tank 302. Note that, instead of the sedimentation tank 302, various types of membrane separation devices, filters, and the like may be used.

以上詳述したシアン含有水の処理技術は、次の構成をとることが可能である。
[1]シアン化物イオン及び鉄シアノ錯体を含有する被処理水に、過酸化水素を添加して反応させる工程(A)と、前記工程(A)で得られた反応液中に残留する前記過酸化水素の濃度を測定する工程(B1)と、前記工程(A)で得られた前記反応液に、銅(I)化合物を添加して反応させる工程(C)と、前記工程(C)で得られた反応液を固液分離処理する工程(D)と、を含み、前記工程(A)における前記被処理水への前記過酸化水素の添加量を、前記工程(B1)で測定される過酸化水素濃度の値が10mg−H/L以下となる量に制御する、シアン含有水の処理方法。
[2]前記工程(A)における前記被処理水への前記過酸化水素の添加量を、前記工程(B1)で測定される前記過酸化水素濃度の値が5mg−H/L以下となる量に制御する上記[1]に記載のシアン含有水の処理方法。
[3]前記工程(B1)で測定される前記過酸化水素濃度の値を監視しながら、前記工程(A)における前記被処理水への前記過酸化水素の添加を行う上記[1]又は[2]に記載のシアン含有水の処理方法。
[4]シアン化物イオン及び鉄シアノ錯体を含有する被処理水に、過酸化水素を添加して反応させる工程(A)と、前記工程(A)で得られた反応液と、その反応液中に残留する前記過酸化水素の濃度を低減する過酸化水素除去剤とを接触させて反応させる工程(B2)と、前記工程(B2)で得られた反応液に、銅(I)化合物を添加して反応させる工程(C)と、前記工程(C)で得られた反応液を固液分離処理する工程(D)と、を含む、シアン含有水の処理方法。
[5]前記工程(A)で得られた前記反応液中に残留する前記過酸化水素の濃度を測定する工程(B1)をさらに含む上記[4]に記載のシアン含有水の処理方法。
[6]前記工程(B2)で得られた前記反応液中に残留する前記過酸化水素の濃度を測定する工程(B3)をさらに含む上記[4]又は[5]に記載のシアン含有水の処理方法。
[7]前記過酸化水素除去剤は、過酸化水素の還元剤、及び過酸化水素の分解触媒のいずれか一方又は両方を含む上記[4]〜[6]のいずれかに記載のシアン含有水の処理方法。
[8]前記工程(A)において、前記被処理水中の前記シアン化物イオンを前記過酸化水素により分解し、前記工程(C)において、前記銅(I)化合物によって、前記工程(C)で得られる前記反応液中に前記鉄シアノ錯体の難溶化物を生成し、前記工程(D)において、前記難溶化物を分離除去する上記[1]〜[7]のいずれかに記載のシアン含有水の処理方法。
[9]前記被処理水は、懸濁物質を含む排出ガスを湿式集塵処理して得られた集塵水から前記懸濁物質を除去するための固液分離処理がなされた、排出ガスの洗浄廃水であり、前記工程(D)で液分とは分離された固形分を含むスラリーについて、濃縮処理及び脱水処理のいずれか一方又は両方を行う工程(E)と、前記工程(E)で得られた分離水を、前記排出ガスの洗浄廃水を得るための前記固液分離処理に送る工程(F)と、をさらに含む上記[1]〜[8]のいずれかに記載のシアン含有水の処理方法。
[10]前記工程(A)における前記過酸化水素を添加する対象となる前記被処理水、及び前記工程(C)における前記銅(I)化合物を添加する対象となる前記反応液のいずれか一方又は両方に、さらに還元剤を添加する上記[1]〜[9]のいずれかに記載のシアン含有水の処理方法。
[11]前記工程(C)における前記銅(I)化合物を添加する対象となる前記反応液に、さらに第4級アンモニウム化合物を添加する上記[1]〜[10]のいずれかに記載のシアン含有水の処理方法。
[12]前記工程(A)と前記工程(C)とを別々の反応槽にて行う上記[1]〜[11]のいずれかに記載のシアン含有水の処理方法。
[13]前記鉄シアノ錯体は、フェロシアン化物イオン及びフェリシアン化物イオンのいずれか一方又は両方を含むとともに、[Fe(CN)(CO)]3−及び[Fe(CN)(CO)2−のいずれか一方又は両方を含む上記[1]〜[12]のいずれかに記載のシアン含有水の処理方法。
[14]シアン化物イオン及び鉄シアノ錯体を含有する被処理水に、過酸化水素を添加して反応させる反応槽(a)と、前記反応槽(a)で得られた反応液中に残留する前記過酸化水素の濃度を測定する測定装置(b1)と、前記反応槽(a)で得られた前記反応液に、銅(I)化合物を添加して反応させる反応槽(c)と、前記反応槽(c)で得られた反応液を固液分離する固液分離装置(d)と、前記反応槽(a)における前記被処理水への前記過酸化水素の添加量を、前記測定装置(b1)で測定される過酸化水素濃度の値が10mg−H/L以下となる量に制御する制御部と、を備える、シアン含有水の処理設備。
[15]シアン化物イオン及び鉄シアノ錯体を含有する被処理水に、過酸化水素を添加して反応させる反応槽(a)と、前記反応槽(a)で得られた反応液中に残留する前記過酸化水素の濃度を低減する過酸化水素除去剤を添加して反応させる除去槽(b2)と、前記除去槽(b2)で得られた反応液に、銅(I)化合物を添加して反応させる反応槽(c)と、前記反応槽(c)で得られた反応液を固液分離する固液分離装置(d)と、を備える、シアン含有水の処理設備。
The treatment technology for cyan-containing water described above can have the following configuration.
[1] A step (A) in which hydrogen peroxide is added to water to be treated containing cyanide ions and an iron cyano complex to cause a reaction, and the reaction time remaining in the reaction solution obtained in the step (A). A step (B1) of measuring the concentration of hydrogen oxide, a step (C) of adding a copper (I) compound to the reaction solution obtained in the step (A) to cause a reaction, and a step (C) of the reaction. (D) performing a solid-liquid separation treatment on the obtained reaction solution, and the amount of the hydrogen peroxide added to the water to be treated in the step (A) is measured in the step (B1). controlling the amount of the value of the hydrogen peroxide concentration of less than 10mg-H 2 O 2 / L , the processing method of the cyan-containing water.
[2] The addition amount of the hydrogen peroxide to the water to be treated in the step (A) is adjusted so that the value of the hydrogen peroxide concentration measured in the step (B1) is 5 mg-H 2 O 2 / L or less. The method for treating cyan-containing water according to the above [1], wherein the amount is controlled to be:
[3] The above-mentioned [1] or [1], wherein the hydrogen peroxide is added to the water to be treated in the step (A) while monitoring the value of the hydrogen peroxide concentration measured in the step (B1). 2] The method for treating cyan-containing water according to [2].
[4] Step (A) of adding hydrogen peroxide to water to be treated containing cyanide ion and iron cyano complex to cause a reaction, the reaction solution obtained in the step (A), and the reaction solution (B2) contacting with a hydrogen peroxide removing agent for reducing the concentration of the hydrogen peroxide remaining in the step (B2), and adding a copper (I) compound to the reaction solution obtained in the step (B2). And a step (D) of subjecting the reaction solution obtained in the step (C) to a solid-liquid separation treatment.
[5] The method for treating cyan-containing water according to the above [4], further comprising a step (B1) of measuring a concentration of the hydrogen peroxide remaining in the reaction solution obtained in the step (A).
[6] The cyan-containing water according to the above [4] or [5], further including a step (B3) of measuring the concentration of the hydrogen peroxide remaining in the reaction solution obtained in the step (B2). Processing method.
[7] The cyan-containing water according to any of the above [4] to [6], wherein the hydrogen peroxide removing agent contains one or both of a hydrogen peroxide reducing agent and a hydrogen peroxide decomposition catalyst. Processing method.
[8] In the step (A), the cyanide ion in the water to be treated is decomposed by the hydrogen peroxide, and in the step (C), the compound is obtained in the step (C) by the copper (I) compound. The cyan-containing water according to any one of the above [1] to [7], wherein a hardly soluble product of the iron cyano complex is generated in the obtained reaction solution, and the hardly soluble material is separated and removed in the step (D). Processing method.
[9] The water to be treated is obtained by subjecting the exhaust gas containing suspended substances to a solid-liquid separation treatment for removing the suspended substances from dust collected water obtained by wet dust collection. A step (E) of performing one or both of a concentration treatment and a dehydration treatment on the slurry containing the solid content which is the washing wastewater and is separated from the liquid component in the step (D); A step (F) of sending the obtained separated water to the solid-liquid separation treatment for obtaining the washing wastewater of the exhaust gas, the cyan-containing water according to any one of the above [1] to [8]. Processing method.
[10] One of the water to be treated to which the hydrogen peroxide is added in the step (A) and the reaction solution to which the copper (I) compound is added in the step (C) Alternatively, the method for treating cyan-containing water according to any one of the above [1] to [9], wherein a reducing agent is further added to both.
[11] The cyan according to any of [1] to [10] above, wherein a quaternary ammonium compound is further added to the reaction solution to which the copper (I) compound is added in the step (C). How to treat contained water.
[12] The method of treating cyan-containing water according to any one of [1] to [11], wherein the step (A) and the step (C) are performed in separate reaction tanks.
[13] The iron cyano complex contains one or both of a ferrocyanide ion and a ferricyanide ion, and [Fe (CN) 5 (CO)] 3- and [Fe (CN) 4 (CO) 2 ] The method for treating cyan-containing water according to any one of the above [1] to [12], including one or both of 2- .
[14] A reaction tank (a) in which hydrogen peroxide is added to water to be treated containing a cyanide ion and an iron cyano complex to cause a reaction, and remains in the reaction solution obtained in the reaction tank (a). A measuring device (b1) for measuring the concentration of the hydrogen peroxide, a reaction tank (c) for adding and reacting a copper (I) compound to the reaction solution obtained in the reaction tank (a), A solid-liquid separation device (d) for solid-liquid separation of the reaction solution obtained in the reaction tank (c), and an amount of the hydrogen peroxide added to the water to be treated in the reaction tank (a) is measured by the measurement device A control unit that controls the value of the concentration of hydrogen peroxide measured in (b1) to be equal to or less than 10 mg-H 2 O 2 / L.
[15] A reaction tank (a) in which hydrogen peroxide is added to water to be treated containing a cyanide ion and an iron cyano complex to cause a reaction, and remains in the reaction solution obtained in the reaction tank (a). A removal tank (b2) for adding and reacting a hydrogen peroxide removing agent for reducing the concentration of hydrogen peroxide, and a copper (I) compound added to the reaction solution obtained in the removal tank (b2). A facility for treating cyanogen-containing water, comprising: a reaction tank (c) for reacting; and a solid-liquid separation device (d) for solid-liquid separation of the reaction solution obtained in the reaction tank (c).

以下、試験例を挙げて、本発明の一実施形態のシアン含有水の処理方法の効果等をさらに具体的に説明するが、本発明は以下の試験例に限定されるものではない。   Hereinafter, the effects of the method for treating cyanide-containing water of one embodiment of the present invention will be described more specifically with reference to Test Examples, but the present invention is not limited to the following Test Examples.

<試験例1>
(被処理水)
シアン化物イオン(溶解性F−CN)を2.0mg−CN/L、及び溶解性のシアノ錯体(溶解性錯CN)を11.6mg−CN/L含有する被処理水(溶解性全シアン(T−CN)濃度13.6mg−CN/L)を用意した。具体的には、所定の工場における排出ガスの洗浄を行う排出ガス処理装置から排出された、未燃カーボン、鉄分、及び亜鉛分等の懸濁物質を含有する廃水を沈降分離処理して得られた上澄水(懸濁物質濃度=48mg/L)を被処理水として用意した。なお、この被処理水について、特開2018−69227号公報に記載の装置(液体クロマトグラフィー−誘導結合プラズマ質量分析(LC−ICP−MS)装置)及び条件にて分析したところ、この被処理水には、0.9mg−CN/Lのフェロシアン化物イオン([Fe(CN)4−)、0.3mg−CN/Lのフェリシアン化物イオン([Fe(CN)3−)、9.1mg−CN/Lの鉄カルボニルシアノ錯体(5.8mg−CN/Lの[Fe(CN)(CO)]3−及び3.3mg−CN/Lの[Fe(CN)(CO)2−)、並びに1.3mg−CN/Lの[Cu(CN)3−が含まれていたことが確認された。さらに、上記被処理水は、pHが7.7、懸濁物質(SS)が36mg/L、CODが11mg/L、T−N(全窒素)が130mg/L、T−P(全りん)が0.1mg/L、無機体炭素が310mg/Lであった。これらと、上記溶解性F−CN及び溶解性T−CNは、JIS K0102:2013に記載の方法により測定した。
<Test Example 1>
(Water to be treated)
Water to be treated containing 2.0 mg-CN / L of cyanide ion (soluble F-CN) and 11.6 mg-CN / L of soluble cyano complex (soluble complex CN) (soluble total cyanide ( T-CN) concentration of 13.6 mg-CN / L). Specifically, it is obtained by settling and separating wastewater containing suspended substances such as unburned carbon, iron, and zinc, which is discharged from an exhaust gas treatment device that cleans exhaust gas in a predetermined factory. Supernatant water (suspended substance concentration = 48 mg / L) was prepared as water to be treated. The water to be treated was analyzed using the apparatus (liquid chromatography-inductively coupled plasma mass spectrometry (LC-ICP-MS)) and conditions described in JP-A-2018-69227. Include 0.9 mg-CN / L ferrocyanide ion ([Fe (CN) 6 ] 4− ) and 0.3 mg-CN / L ferricyanide ion ([Fe (CN) 6 ] 3− ) , 9.1 mg-CN / L iron carbonyl cyano complex (5.8 mg-CN / L [Fe (CN) 5 (CO)] 3- and 3.3 mg-CN / L [Fe (CN) 4 ( CO) 2 ] 2- ) and 1.3 mg-CN / L of [Cu (CN) 3 ] 3- . Further, the water to be treated has a pH of 7.7, a suspended substance (SS) of 36 mg / L, a COD of 11 mg / L, a TN (total nitrogen) of 130 mg / L, and a TP (total phosphorus). Was 0.1 mg / L and inorganic carbon was 310 mg / L. These and the above-mentioned soluble F-CN and soluble T-CN were measured by the method described in JIS K0102: 2013.

(試験例1.1〜1.3)
pH6.8及び温度50℃に調整した上記被処理水500mLをビーカーにとり、35質量%過酸化水素水を添加し、撹拌しながら、15分間反応させ、反応液を得た(工程(A))。過酸化水素水の添加量は、反応液中に残留する過酸化水素濃度が10mg−H/L以下となるように制御し、Hとして、表1に示す添加量(以下、「H添加量」と記す。)とした。試験例1.3では、過酸化水素とともに、チオ硫酸ナトリウムを20mg/L添加した。また、反応液中に残留する過酸化水素濃度(以下、「残留H濃度」と記す。)を測定した(工程(B1))。この測定には、商品名「RQフレックス」及び「リフレクトクァント 過酸化物テスト」(関東化学社製)を用いた。
(Test Examples 1.1 to 1.3)
500 mL of the water to be treated, which was adjusted to pH 6.8 and a temperature of 50 ° C., was placed in a beaker, 35% by mass of hydrogen peroxide solution was added, and the mixture was reacted for 15 minutes with stirring to obtain a reaction solution (step (A)). . The addition amount of the aqueous hydrogen peroxide, hydrogen peroxide concentration remaining in the reaction solution is controlled to be less than 10mg-H 2 O 2 / L , as H 2 O 2, the addition amount (hereinafter shown in Table 1 , “H 2 O 2 addition amount”). In Test Example 1.3, 20 mg / L of sodium thiosulfate was added together with hydrogen peroxide. The concentration of hydrogen peroxide remaining in the reaction solution (hereinafter, referred to as “residual H 2 O 2 concentration”) was measured (step (B1)). For this measurement, trade names "RQ Flex" and "Reflectquant peroxide test" (manufactured by Kanto Chemical Co., Ltd.) were used.

次いで、上記反応液に対して、亜酸化銅溶液を、銅(Cu)として表1に示す添加量にて添加し、撹拌しながら、15分間反応させた(工程(C))。亜酸化銅溶液には、亜酸化銅を35質量%塩酸に溶解し、銅(Cu)濃度を5質量%に調整した溶液を用いた。試験例1.2及び1.3では、上記反応液に、亜酸化銅とともに、第4級アンモニウム化合物であるジデシルジメチルアンモニウムクロリドを30mg/L添加した。   Next, a cuprous oxide solution was added to the above reaction solution as copper (Cu) in an amount shown in Table 1, and reacted with stirring for 15 minutes (step (C)). As the cuprous oxide solution, a solution prepared by dissolving cuprous oxide in 35% by mass hydrochloric acid and adjusting the copper (Cu) concentration to 5% by mass was used. In Test Examples 1.2 and 1.3, 30 mg / L of a quaternary ammonium compound, didecyldimethylammonium chloride, was added to the above reaction solution together with cuprous oxide.

亜酸化銅等を添加して反応させた後に得られた反応液に、撹拌下で、アニオン性高分子凝集剤(商品名「KEA−730」、日鉄環境社製)を1mg/L添加した。凝集剤を添加した反応液を静置させ、反応液中に生じた難溶性(水に対する難溶性)のシアン化合物を沈殿させることで固液分離し、得られた上澄水を処理水とした(工程(D))。この処理水について、JIS K0102:2013に規定される全シアンの分析方法に基づいて、処理水の全シアン濃度(表1中、「処理水T−CN」と記す。)を測定した。なお、上記の各反応を生じさせている際の撹拌は、マグネティックスターラを用いることにより行った。   1 mg / L of an anionic polymer flocculant (trade name "KEA-730", manufactured by Nippon Steel Environment Co., Ltd.) was added to the reaction solution obtained after adding and reacting cuprous oxide and the like under stirring. . The reaction solution to which the coagulant was added was allowed to stand, and the hardly soluble (poorly soluble in water) cyanide compound generated in the reaction solution was precipitated to perform solid-liquid separation, and the resulting supernatant water was used as treated water ( Step (D)). With respect to this treated water, the total cyanide concentration of the treated water (referred to as “treated water T-CN” in Table 1) was measured based on the method for analyzing all the cyan specified in JIS K0102: 2013. The stirring during the above-described reactions was performed by using a magnetic stirrer.

(試験例1.4〜1.6)
試験例1.4では、H添加量を表1に示す量に変更したこと、及び亜酸化銅を用いなかったこと以外は、試験例1.1と同様の手順及び方法にて処理を行った。試験例1.5では、残留H濃度が10mg/L以下となるように制御することなく過酸化水素水を添加し、H添加量、及び亜酸化銅の添加量を表1に示す通りに変更したこと以外は、試験例1.1と同様の手順及び方法にて処理を行った。試験例1.6では、残留H濃度が10mg/L以下となるように制御することなく過酸化水素水を添加し、H添加量を表1に示す通りに変更したこと以外は、試験例1.3と同様の手順及び方法にて処理を行った。そして、試験例1.4〜1.6で得られた処理水についても、前述の分析方法に基づいて、処理水T−CNを測定した。
(Test Examples 1.4 to 1.6)
In Test Example 1.4, the treatment was performed in the same procedure and method as in Test Example 1.1, except that the added amount of H 2 O 2 was changed to the amount shown in Table 1 and that cuprous oxide was not used. Was done. In Test Example 1.5, an aqueous solution of hydrogen peroxide was added without controlling the residual H 2 O 2 concentration to be 10 mg / L or less, and the added amount of H 2 O 2 and the added amount of cuprous oxide were shown in a table. Except having changed as shown in No. 1, it processed by the procedure and method similar to Experiment 1.1. In Test Example 1.6, a hydrogen peroxide solution was added without controlling the residual H 2 O 2 concentration to be 10 mg / L or less, and the amount of H 2 O 2 added was changed as shown in Table 1. Except for the above, the treatment was performed in the same procedure and method as in Test Example 1.3. And about the treated water obtained by Test Examples 1.4 to 1.6, the treated water T-CN was measured based on the above-mentioned analysis method.

試験例1.1〜1.6の試験条件及び処理水T−CNを表1に示す。   Table 1 shows test conditions and treated water T-CN of Test Examples 1.1 to 1.6.

Figure 2020032412
Figure 2020032412

表1に示すように、試験例1.1〜1.3では、過酸化水素及び銅(I)化合物を添加し、かつ、H添加量を、過酸化水素による反応後に得られた反応液中の残留H濃度が10mg−H/L(さらには5mg−H/L)以下となるように制御したことによって、処理水T−CNを十分に低減することができ、被処理水からシアン成分を高度に除去できたことが確認された。 As shown in Table 1, in Test Examples 1.1 to 1.3, hydrogen peroxide and a copper (I) compound were added, and the added amount of H 2 O 2 was obtained after the reaction with hydrogen peroxide. By controlling the residual H 2 O 2 concentration in the reaction solution to be 10 mg-H 2 O 2 / L (and further 5 mg-H 2 O 2 / L) or less, the treated water T-CN is sufficiently reduced. It was confirmed that the cyan component could be highly removed from the water to be treated.

これに対して、試験例1.4では銅(I)化合物を用いなかったため、被処理水からのシアン成分の除去能はほとんど認められなかった。試験例1.5では、過酸化水素及び銅(I)化合物を用い、また、試験例1.6では、過酸化水素とともにさらにチオ硫酸ナトリウムを用い、かつ、銅(I)化合物とともにさらに第4級アンモニウム塩を用いたものの、銅(I)化合物等を添加する際の反応液中の残留H濃度が30mg−H/L以上であったため、処理水T−CNを十分に低減することができず、被処理水からシアン成分を高度に除去することはできなかった。 On the other hand, in Test Example 1.4, since the copper (I) compound was not used, the ability to remove the cyan component from the water to be treated was hardly recognized. In Test Example 1.5, hydrogen peroxide and a copper (I) compound were used. In Test Example 1.6, sodium thiosulfate was further used together with hydrogen peroxide, and the fourth compound was further used together with the copper (I) compound. Although the quaternary ammonium salt was used, the concentration of the residual H 2 O 2 in the reaction solution when the copper (I) compound or the like was added was 30 mg-H 2 O 2 / L or more, so that the treated water T-CN was sufficiently And the cyan component could not be highly removed from the water to be treated.

<試験例2>
試験例2では、表2の「被処理水」欄に示すように、シアン成分の濃度が異なる4種類の被処理水を用意した。それらの被処理水についても、前述の試験例1で用いた被処理水と同様に分析したところ、試験例2で用いた被処理水のいずれにも、[Fe(CN)4−、[Fe(CN)3−、[Fe(CN)(CO)]3−、及び[Fe(CN)(CO)2−が含まれていたことが確認された。
<Test Example 2>
In Test Example 2, four types of water to be treated having different cyan component concentrations were prepared, as shown in the “treatment water” column of Table 2. The water to be treated was also analyzed in the same manner as the water to be used in Test Example 1 described above. As a result, [Fe (CN) 6 ] 4− , It was confirmed that [Fe (CN) 6 ] 3- , [Fe (CN) 5 (CO)] 3- , and [Fe (CN) 4 (CO) 2 ] 2- were contained.

(試験例2.1〜2.6)
表2に示す被処理水に対して、H、チオ硫酸ナトリウム、亜酸化銅、及びジデシルジメチルアンモニウムクロリド(第4級アンモニウム化合物)の各添加量を表2に示す通りにしたこと以外は、試験例1.1〜1.3と同様の手順及び方法にて処理を行い、処理水を得た。
(Test Examples 2.1 to 2.6)
The amounts of H 2 O 2 , sodium thiosulfate, cuprous oxide, and didecyldimethylammonium chloride (quaternary ammonium compound) added to the water to be treated shown in Table 2 were as shown in Table 2. Except for the above, treatment was performed in the same procedure and method as in Test Examples 1.1 to 1.3 to obtain treated water.

(試験例2.7〜2.11)
試験例2.7〜2.11では、残留H濃度が10mg/L以下となるように制御することなく過酸化水素水を添加し、H、チオ硫酸ナトリウム、亜酸化銅、及びジデシルジメチルアンモニウムクロリド(第4級アンモニウム化合物)の各添加量を表2に示す通りにしたこと以外は、試験例1.1〜1.3と同様の手順及び方法にて処理を行い、処理水を得た。
(Test Examples 2.7 to 2.11)
In Test Examples 2.7 to 2.11, aqueous hydrogen peroxide was added without controlling the residual H 2 O 2 concentration to be 10 mg / L or less, and H 2 O 2 , sodium thiosulfate, and cuprous oxide were added. And didecyldimethylammonium chloride (quaternary ammonium compound) were treated according to the same procedures and methods as in Test Examples 1.1 to 1.3, except that the addition amounts were as shown in Table 2. To obtain treated water.

試験例2.1〜2.11で得られた各処理水について、試験例1で述べた方法と同様の方法にて、処理水の全シアン濃度(表2中、「処理水T−CN」と記す。)を測定した。その結果を表2にあわせて示す。   For each of the treated waters obtained in Test Examples 2.1 to 2.11, the total cyanide concentration of the treated water (in Table 2, “treated water T-CN”) was determined in the same manner as described in Test Example 1. This was measured.) The results are shown in Table 2.

Figure 2020032412
Figure 2020032412

表2に示すように、溶解性F−CN及び溶解性錯CNの各濃度がいずれも低い被処理水はもちろん、溶解性F−CN濃度に比べて溶解性錯CN濃度が高い被処理水についても、H添加量を、残留H濃度が10mg/L以下となるように制御することによって、処理水T−CNを十分に低減することができ、被処理水からシアン成分を高度に除去できたことが確認された。 As shown in Table 2, not only the water to be treated having a low concentration of each of the soluble F-CN and the soluble complex CN, but also the water to be treated having a higher concentration of the soluble complex CN than the concentration of the soluble F-CN. Also, by controlling the added amount of H 2 O 2 so that the residual H 2 O 2 concentration is 10 mg / L or less, the treated water T-CN can be sufficiently reduced, and the cyan component from the treated water can be reduced. Was confirmed to have been highly removed.

<試験例3>
排出ガスの洗浄設備から排出された廃水であって、シアン化物イオン(溶解性F−CN)を2.0mg−CN/L、鉄シアノ錯体(溶解性錯CN)を5.2mg−CN/L含有する廃水を採取した。この廃水についても、前述の試験例1で用いた被処理水と同様に分析したところ、[Fe(CN)4−、[Fe(CN)3−、[Fe(CN)(CO)]3−、及び[Fe(CN)(CO)2−が含まれていたことが確認された。この廃水にKCNを添加し、表3に示すF−CN濃度を調整した模擬廃水を用いた。
<Test Example 3>
Wastewater discharged from the exhaust gas cleaning equipment, containing 2.0 mg-CN / L of cyanide ion (soluble F-CN) and 5.2 mg-CN / L of iron cyano complex (soluble complex CN). The wastewater contained was collected. This wastewater was also analyzed in the same manner as the water to be treated used in Test Example 1 described above. As a result, [Fe (CN) 6 ] 4- , [Fe (CN) 6 ] 3- , [Fe (CN) 5 ( CO)] <3- > and [Fe (CN) 4 (CO) 2 ] 2- . KCN was added to this wastewater, and a simulated wastewater in which the F-CN concentration shown in Table 3 was adjusted was used.

試験例3では、上記模擬廃水を被処理水として用い、被処理水に過酸化水素を添加して反応させた後に得られた反応液中の残留H濃度と、処理水T−CNの測定結果から、被処理水に応じた最適なH添加量を検討する試験を行った。 In Test Example 3, the simulated wastewater was used as the water to be treated, the concentration of residual H 2 O 2 in the reaction solution obtained after adding hydrogen peroxide to the water to be treated, and the treated water T-CN. From the measurement results, a test was conducted to study the optimum amount of added H 2 O 2 according to the water to be treated.

表3に示す溶解性F−CN濃度の被処理水に、Hを15mg/L、30mg/L、又は70mg/Lの添加量にて添加するとともに、チオ硫酸ナトリウムを20mg/L添加し、マグネティックスターラで撹拌しながら、15分間反応させて反応液を得た後、その反応液中の残留H濃度を測定した。その結果を表3−1に示す。 H 2 O 2 was added to the water to be treated having a soluble F-CN concentration shown in Table 3 at an addition amount of 15 mg / L, 30 mg / L, or 70 mg / L, and 20 mg / L of sodium thiosulfate was added. Then, the mixture was reacted for 15 minutes while stirring with a magnetic stirrer to obtain a reaction solution, and the residual H 2 O 2 concentration in the reaction solution was measured. The results are shown in Table 3-1.

Figure 2020032412
Figure 2020032412

被処理水に過酸化水素及びチオ硫酸ナトリウムを添加して反応させた後に得られた反応液に、亜酸化銅を20mg−Cu/L、ジデシルジメチルアンモニウムクロリドを30mg/L添加し、マグネティックスターラで撹拌しながら、15分間反応させ、反応液を得た。この反応液について、試験例1.1〜1.3の説明で述べた方法と同様の方法によって、処理水を得て、処理水T−CNを測定した。その結果を表3−2に示す。   After adding hydrogen peroxide and sodium thiosulfate to the water to be treated and reacting, 20 mg-Cu / L of cuprous oxide and 30 mg / L of didecyldimethylammonium chloride were added to the reaction solution, and a magnetic stirrer was added. The mixture was reacted for 15 minutes while stirring at, to obtain a reaction solution. For this reaction solution, treated water was obtained by the same method as described in the description of Test Examples 1.1 to 1.3, and treated water T-CN was measured. The results are shown in Table 3-2.

Figure 2020032412
Figure 2020032412

試験例3の結果から、溶解性錯CNを5mg−CN/L程度含有する被処理水の場合、その被処理水中の溶解性F−CN濃度に応じて、好適な過酸化水素の添加量を推測することができると考えられる。その一例を表3−3に示す。   From the results of Test Example 3, in the case of the water to be treated containing the soluble complex CN of about 5 mg-CN / L, a suitable amount of hydrogen peroxide to be added is determined according to the concentration of the soluble F-CN in the water to be treated. It is thought that it can be inferred. An example is shown in Table 3-3.

Figure 2020032412
Figure 2020032412

<試験例4>
(試験例4.1及び4.2)
試験例1で用いたものと同じ被処理水に、pH6.8及び水温50℃において、表4に示すH添加量となる量の35質量%過酸化水素水、及びチオ硫酸ナトリウム20mg/Lを添加し、マグネティックスターラで撹拌しながら、5分間反応させ、反応液を得た(工程(A))。また、試験例1と同様に、反応液中の残留H濃度を測定した(工程(B1))。
<Test Example 4>
(Test Examples 4.1 and 4.2)
In the same water to be treated as that used in Test Example 1, at pH 6.8 and a water temperature of 50 ° C., an amount of 35% by mass of hydrogen peroxide and an amount of H 2 O 2 shown in Table 4 and 20 mg of sodium thiosulfate were added. / L was added thereto and reacted for 5 minutes while stirring with a magnetic stirrer to obtain a reaction solution (step (A)). Further, in the same manner as in Test Example 1, the concentration of residual H 2 O 2 in the reaction solution was measured (step (B1)).

次いで、H及びチオ硫酸ナトリウムの添加及び反応後に得られた上記反応液に対して、過酸化水素(H)除去剤として、亜硫酸ナトリウムを表4に示す添加量(NaSOとしての添加量)にて添加し、マグネティックスターラで撹拌しながら、5分間反応させた(工程(B2))。そして、得られた反応液中の残留H濃度を上記同様に測定した(工程(B3))。亜硫酸ナトリウムの添加には、30質量%亜硫酸ナトリウム水溶液を用いた。 Next, sodium sulfite was added to the reaction solution obtained after the addition and reaction of H 2 O 2 and sodium thiosulfate as an agent for removing hydrogen peroxide (H 2 O 2 ) shown in Table 4 (Na 2 (Amount added as SO 3 ), and reacted for 5 minutes while stirring with a magnetic stirrer (step (B2)). Then, the residual H 2 O 2 concentration in the obtained reaction solution was measured in the same manner as described above (step (B3)). For the addition of sodium sulfite, a 30% by mass aqueous solution of sodium sulfite was used.

NaSOの添加及び反応後に得られた上記反応液に、亜酸化銅を20mg−Cu/L添加し、15分間反応させた(工程(C))。その後、試験例1で述べた方法と同様に、処理水を得た後(工程(D))、処理水T−CNを測定した。 20 mg-Cu / L of cuprous oxide was added to the above reaction solution obtained after the addition and reaction of Na 2 SO 3 and reacted for 15 minutes (step (C)). Then, similarly to the method described in Test Example 1, after obtaining treated water (step (D)), the treated water T-CN was measured.

(試験例4.3)
試験例4.3では、工程(B2)において、亜硫酸ナトリウム等のH除去剤を使用せずに、Hの添加及び反応後に得られた反応液に亜酸化銅を添加したこと以外は、試験例4.2と同様の手順及び方法にて、処理を行い、処理水T−CNを測定した。
(Test Example 4.3)
In Test Example 4.3, in the step (B2), cuprous oxide was added to the reaction solution obtained after the addition and reaction of H 2 O 2 without using an H 2 O 2 remover such as sodium sulfite. Except for this, the treatment was performed in the same procedure and method as in Test Example 4.2, and the treated water T-CN was measured.

(試験例4.4〜4.17)
試験例4.4〜4.17では、工程(A)においてチオ硫酸ナトリウムを使用しなかったこと、並びに工程(A)におけるH添加量、工程(B2)におけるH除去剤の種類及びその添加量、工程(C)における亜酸化銅添加量を、表4に示す条件としたこと以外は、試験例4.1と同様の手順及び方法にて、処理を行い、処理水T−CNを測定した。なお、H除去剤として、試験例4.4〜4.10では「カタラーゼ(ウシ肝臓由来)」(東京化成工業社製)を純水により0.1質量%に調整した溶液を使用した。試験例4.11〜4.13では粉末状の二酸化マンガン(MnO)をそのまま使用した。試験例4.14〜4.17では粉末状の活性炭を純水と混合して1質量%濃度に調整し、撹拌状態にあるスラリーを使用した。
(Test Examples 4.4 to 4.17)
In Test Examples 4.4 to 4.17, sodium thiosulfate was not used in step (A), the amount of H 2 O 2 added in step (A), and the H 2 O 2 remover in step (B2) The treatment was carried out in the same procedure and method as in Test Example 4.1, except that the type and the amount of addition thereof and the amount of cuprous oxide added in step (C) were set to the conditions shown in Table 4. T-CN was measured. In Test Examples 4.4 to 4.10, a solution prepared by adjusting “catalase (derived from bovine liver)” (manufactured by Tokyo Chemical Industry Co., Ltd.) to 0.1% by mass with pure water was used as the H 2 O 2 remover. did. In Test Examples 4.11 to 4.13, powdered manganese dioxide (MnO 2 ) was used as it was. In Test Examples 4.14 to 4.17, powdered activated carbon was mixed with pure water to adjust the concentration to 1% by mass, and a slurry in a stirring state was used.

試験例4.1〜4.17の試験条件及び処理水T−CNの結果を表4に示す。   Table 4 shows the test conditions of Test Examples 4.1 to 4.17 and the results of the treated water T-CN.

Figure 2020032412
Figure 2020032412

試験例4の結果から、被処理水への過酸化水素の添加及び反応後に得られた反応液には、過酸化水素が残留していたものの、過酸化水素除去剤(亜硫酸ナトリウム、カタラーゼ、二酸化マンガン、及び活性炭)を添加することにより、上記反応液中の残留H濃度を低減できたことが確認された。また、それによって、銅(I)化合物の添加及び反応後に得られた反応液からの処理水の全シアン濃度を十分に低減することができ、被処理水からシアン成分を高度に除去できたことが確認された。 From the results of Test Example 4, although the hydrogen peroxide remained in the reaction solution obtained after the addition and reaction of hydrogen peroxide to the water to be treated, the hydrogen peroxide removing agent (sodium sulfite, catalase, It was confirmed that the addition of manganese and activated carbon) could reduce the residual H 2 O 2 concentration in the reaction solution. In addition, by this, the total cyanide concentration of the treated water from the reaction solution obtained after the addition and reaction of the copper (I) compound can be sufficiently reduced, and the cyanide component can be highly removed from the water to be treated. Was confirmed.

10 シアン含有水の処理設備
11 第1の反応槽
12 第2の反応槽
13 過酸化水素濃度の測定装置
16 固液分離装置
17 制御部
20 シアン含有水の処理設備
21 第1の反応槽
22 第2の反応槽
23、25、27 過酸化水素濃度の測定装置
24 除去槽
26 固液分離装置

DESCRIPTION OF SYMBOLS 10 Cyan-containing water treatment equipment 11 1st reaction tank 12 2nd reaction tank 13 Measuring device of hydrogen peroxide concentration 16 Solid-liquid separation device 17 Control unit 20 Cyan-containing water treatment equipment 21 1st reaction tank 22nd 2 reaction tank 23, 25, 27 Hydrogen peroxide concentration measuring device 24 Removal tank 26 Solid-liquid separation device

Claims (15)

シアン化物イオン及び鉄シアノ錯体を含有する被処理水に、過酸化水素を添加して反応させる工程(A)と、
前記工程(A)で得られた反応液中に残留する前記過酸化水素の濃度を測定する工程(B1)と、
前記工程(A)で得られた前記反応液に、銅(I)化合物を添加して反応させる工程(C)と、
前記工程(C)で得られた反応液を固液分離処理する工程(D)と、を含み、
前記工程(A)における前記被処理水への前記過酸化水素の添加量を、前記工程(B1)で測定される過酸化水素濃度の値が10mg−H/L以下となる量に制御する、シアン含有水の処理方法。
A step (A) of adding hydrogen peroxide to water to be treated containing cyanide ions and an iron cyano complex to cause a reaction,
Measuring the concentration of the hydrogen peroxide remaining in the reaction solution obtained in the step (A) (B1);
A step (C) of adding a copper (I) compound to the reaction solution obtained in the step (A) to cause a reaction,
And (D) performing a solid-liquid separation treatment on the reaction solution obtained in the step (C).
The amount of the hydrogen peroxide added to the water to be treated in the step (A) is adjusted so that the value of the hydrogen peroxide concentration measured in the step (B1) becomes 10 mg-H 2 O 2 / L or less. A method for controlling cyanide-containing water.
前記工程(A)における前記被処理水への前記過酸化水素の添加量を、前記工程(B1)で測定される前記過酸化水素濃度の値が5mg−H/L以下となる量に制御する請求項1に記載のシアン含有水の処理方法。 The amount of the hydrogen peroxide added to the water to be treated in the step (A) is determined so that the value of the hydrogen peroxide concentration measured in the step (B1) becomes 5 mg-H 2 O 2 / L or less. The method for treating cyan-containing water according to claim 1, wherein 前記工程(B1)で測定される前記過酸化水素濃度の値を監視しながら、前記工程(A)における前記被処理水への前記過酸化水素の添加を行う請求項1又は2に記載のシアン含有水の処理方法。   The cyanide according to claim 1 or 2, wherein the hydrogen peroxide is added to the water to be treated in the step (A) while monitoring the value of the hydrogen peroxide concentration measured in the step (B1). How to treat contained water. シアン化物イオン及び鉄シアノ錯体を含有する被処理水に、過酸化水素を添加して反応させる工程(A)と、
前記工程(A)で得られた反応液と、その反応液中に残留する前記過酸化水素の濃度を低減する過酸化水素除去剤とを接触させて反応させる工程(B2)と、
前記工程(B2)で得られた反応液に、銅(I)化合物を添加して反応させる工程(C)と、
前記工程(C)で得られた反応液を固液分離処理する工程(D)と、を含む、シアン含有水の処理方法。
A step (A) of adding hydrogen peroxide to water to be treated containing cyanide ions and an iron cyano complex to cause a reaction,
A step (B2) of bringing the reaction solution obtained in the step (A) into contact with a hydrogen peroxide removing agent that reduces the concentration of the hydrogen peroxide remaining in the reaction solution to cause a reaction;
A step (C) of adding a copper (I) compound to the reaction solution obtained in the step (B2) to cause a reaction,
A step (D) of subjecting the reaction solution obtained in the step (C) to a solid-liquid separation treatment.
前記工程(A)で得られた前記反応液中に残留する前記過酸化水素の濃度を測定する工程(B1)をさらに含む請求項4に記載のシアン含有水の処理方法。   The method for treating cyanogen-containing water according to claim 4, further comprising a step (B1) of measuring a concentration of the hydrogen peroxide remaining in the reaction solution obtained in the step (A). 前記工程(B2)で得られた前記反応液中に残留する前記過酸化水素の濃度を測定する工程(B3)をさらに含む請求項4又は5に記載のシアン含有水の処理方法。   The method for treating cyanogen-containing water according to claim 4 or 5, further comprising a step (B3) of measuring a concentration of the hydrogen peroxide remaining in the reaction solution obtained in the step (B2). 前記過酸化水素除去剤は、過酸化水素の還元剤、及び過酸化水素の分解触媒のいずれか一方又は両方を含む請求項4〜6のいずれか1項に記載のシアン含有水の処理方法。   The method for treating cyanogen-containing water according to any one of claims 4 to 6, wherein the hydrogen peroxide removing agent includes one or both of a reducing agent for hydrogen peroxide and a catalyst for decomposing hydrogen peroxide. 前記工程(A)において、前記被処理水中の前記シアン化物イオンを前記過酸化水素により分解し、
前記工程(C)において、前記銅(I)化合物によって、前記工程(C)で得られる前記反応液中に前記鉄シアノ錯体の難溶化物を生成し、
前記工程(D)において、前記難溶化物を分離除去する請求項1〜7のいずれか1項に記載のシアン含有水の処理方法。
In the step (A), the cyanide ion in the water to be treated is decomposed by the hydrogen peroxide,
In the step (C), the copper (I) compound generates a hardly soluble iron cyano complex in the reaction solution obtained in the step (C);
The method of treating cyan-containing water according to any one of claims 1 to 7, wherein, in the step (D), the hardly soluble material is separated and removed.
前記被処理水は、懸濁物質を含む排出ガスを湿式集塵処理して得られた集塵水から前記懸濁物質を除去するための固液分離処理がなされた、排出ガスの洗浄廃水であり、
前記工程(D)で液分とは分離された固形分を含むスラリーについて、濃縮処理及び脱水処理のいずれか一方又は両方を行う工程(E)と、
前記工程(E)で得られた分離水を、前記排出ガスの洗浄廃水を得るための前記固液分離処理に送る工程(F)と、をさらに含む請求項1〜8のいずれか1項に記載のシアン含有水の処理方法。
The water to be treated is a wastewater cleaning wastewater that has been subjected to a solid-liquid separation treatment for removing the suspended substances from the dust collected water obtained by performing a wet dust collection treatment on the exhaust gas containing the suspended substances. Yes,
A step (E) of performing one or both of a concentration treatment and a dehydration treatment on the slurry containing the solid content separated from the liquid component in the step (D);
The method according to any one of claims 1 to 8, further comprising: (F) sending the separated water obtained in the step (E) to the solid-liquid separation treatment for obtaining the washing wastewater of the exhaust gas. A method for treating cyan-containing water as described in the above.
前記工程(A)における前記過酸化水素を添加する対象となる前記被処理水、及び前記工程(C)における前記銅(I)化合物を添加する対象となる前記反応液のいずれか一方又は両方に、さらに還元剤を添加する請求項1〜9のいずれか1項に記載のシアン含有水の処理方法。   Either or both of the water to be treated to which the hydrogen peroxide is added in the step (A) and the reaction solution to which the copper (I) compound is added in the step (C) The method for treating cyan-containing water according to any one of claims 1 to 9, further comprising adding a reducing agent. 前記工程(C)における前記銅(I)化合物を添加する対象となる前記反応液に、さらに第4級アンモニウム化合物を添加する請求項1〜10のいずれか1項に記載のシアン含有水の処理方法。   The treatment of cyan-containing water according to any one of claims 1 to 10, wherein a quaternary ammonium compound is further added to the reaction solution to which the copper (I) compound is added in the step (C). Method. 前記工程(A)と前記工程(C)とを別々の反応槽にて行う請求項1〜11のいずれか1項に記載のシアン含有水の処理方法。   The method according to any one of claims 1 to 11, wherein the step (A) and the step (C) are performed in separate reaction tanks. 前記鉄シアノ錯体は、フェロシアン化物イオン及びフェリシアン化物イオンのいずれか一方又は両方を含むとともに、[Fe(CN)(CO)]3−及び[Fe(CN)(CO)2−のいずれか一方又は両方を含む請求項1〜12のいずれか1項に記載のシアン含有水の処理方法。 The iron cyano complex contains one or both of a ferrocyanide ion and a ferricyanide ion, and [Fe (CN) 5 (CO)] 3- and [Fe (CN) 4 (CO) 2 ] 2. The method for treating cyan-containing water according to any one of claims 1 to 12, comprising one or both of-. シアン化物イオン及び鉄シアノ錯体を含有する被処理水に、過酸化水素を添加して反応させる反応槽(a)と、
前記反応槽(a)で得られた反応液中に残留する前記過酸化水素の濃度を測定する測定装置(b1)と、
前記反応槽(a)で得られた前記反応液に、銅(I)化合物を添加して反応させる反応槽(c)と、
前記反応槽(c)で得られた反応液を固液分離する固液分離装置(d)と、
前記反応槽(a)における前記被処理水への前記過酸化水素の添加量を、前記測定装置(b1)で測定される過酸化水素濃度の値が10mg−H/L以下となる量に制御する制御部と、
を備える、シアン含有水の処理設備。
A reaction tank (a) for reacting water to be treated containing cyanide ion and iron cyano complex by adding hydrogen peroxide thereto;
A measuring device (b1) for measuring the concentration of the hydrogen peroxide remaining in the reaction solution obtained in the reaction tank (a),
A reaction tank (c) in which a copper (I) compound is added to and reacted with the reaction solution obtained in the reaction tank (a);
A solid-liquid separator (d) for solid-liquid separation of the reaction solution obtained in the reaction tank (c),
The addition amount of the hydrogen peroxide to the water to be treated in the reaction tank (a) is such that the value of the hydrogen peroxide concentration measured by the measuring device (b1) is 10 mg-H 2 O 2 / L or less. A control unit for controlling the amount;
A facility for treating cyanide-containing water, comprising:
シアン化物イオン及び鉄シアノ錯体を含有する被処理水に、過酸化水素を添加して反応させる反応槽(a)と、
前記反応槽(a)で得られた反応液中に残留する前記過酸化水素の濃度を低減する過酸化水素除去剤を添加して反応させる除去槽(b2)と、
前記除去槽(b2)で得られた反応液に、銅(I)化合物を添加して反応させる反応槽(c)と、
前記反応槽(c)で得られた反応液を固液分離する固液分離装置(d)と、
を備える、シアン含有水の処理設備。

A reaction tank (a) for reacting water to be treated containing cyanide ion and iron cyano complex by adding hydrogen peroxide thereto;
A removing tank (b2) for adding and reacting a hydrogen peroxide removing agent for reducing the concentration of the hydrogen peroxide remaining in the reaction solution obtained in the reaction tank (a),
A reaction tank (c) in which a copper (I) compound is added to and reacted with the reaction solution obtained in the removal tank (b2);
A solid-liquid separator (d) for solid-liquid separation of the reaction solution obtained in the reaction tank (c),
A facility for treating cyanide-containing water, comprising:

JP2019152639A 2018-08-24 2019-08-23 Cyanogen-containing water treatment method and treatment equipment Active JP7290511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023069729A JP7398021B2 (en) 2018-08-24 2023-04-21 Treatment method and treatment equipment for cyanide-containing water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018157627 2018-08-24
JP2018157627 2018-08-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023069729A Division JP7398021B2 (en) 2018-08-24 2023-04-21 Treatment method and treatment equipment for cyanide-containing water

Publications (2)

Publication Number Publication Date
JP2020032412A true JP2020032412A (en) 2020-03-05
JP7290511B2 JP7290511B2 (en) 2023-06-13

Family

ID=69666452

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019152639A Active JP7290511B2 (en) 2018-08-24 2019-08-23 Cyanogen-containing water treatment method and treatment equipment
JP2023069729A Active JP7398021B2 (en) 2018-08-24 2023-04-21 Treatment method and treatment equipment for cyanide-containing water

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023069729A Active JP7398021B2 (en) 2018-08-24 2023-04-21 Treatment method and treatment equipment for cyanide-containing water

Country Status (1)

Country Link
JP (2) JP7290511B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021137802A (en) * 2020-03-04 2021-09-16 日鉄環境株式会社 Water treatment method
JP2022190676A (en) * 2021-06-14 2022-12-26 日鉄環境株式会社 Method for treating dust-collected water
JP2023010580A (en) * 2021-07-08 2023-01-20 日鉄環境株式会社 Method for treating dust-collected water
JP7448129B2 (en) 2022-07-29 2024-03-12 株式会社片山化学工業研究所 How to treat wastewater

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05169071A (en) * 1991-12-17 1993-07-09 Kurita Water Ind Ltd Treatment of cyanide containing waste water
JP2017080699A (en) * 2015-10-29 2017-05-18 株式会社片山化学工業研究所 Treatment method of complex cyan-containing waste water, and treatment agent used therefor
JP2018069227A (en) * 2016-10-21 2018-05-10 日鉄住金環境株式会社 Treatment method of effluent

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05169071A (en) * 1991-12-17 1993-07-09 Kurita Water Ind Ltd Treatment of cyanide containing waste water
JP2017080699A (en) * 2015-10-29 2017-05-18 株式会社片山化学工業研究所 Treatment method of complex cyan-containing waste water, and treatment agent used therefor
JP2018069227A (en) * 2016-10-21 2018-05-10 日鉄住金環境株式会社 Treatment method of effluent

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021137802A (en) * 2020-03-04 2021-09-16 日鉄環境株式会社 Water treatment method
JP7157192B2 (en) 2020-03-04 2022-10-19 日鉄環境株式会社 water treatment method
JP2022190676A (en) * 2021-06-14 2022-12-26 日鉄環境株式会社 Method for treating dust-collected water
JP7299381B2 (en) 2021-06-14 2023-06-27 日鉄環境株式会社 How to treat collected dust
JP2023010580A (en) * 2021-07-08 2023-01-20 日鉄環境株式会社 Method for treating dust-collected water
JP7299380B2 (en) 2021-07-08 2023-06-27 日鉄環境株式会社 How to treat collected dust
JP7448129B2 (en) 2022-07-29 2024-03-12 株式会社片山化学工業研究所 How to treat wastewater

Also Published As

Publication number Publication date
JP7290511B2 (en) 2023-06-13
JP2023093640A (en) 2023-07-04
JP7398021B2 (en) 2023-12-13

Similar Documents

Publication Publication Date Title
JP7398021B2 (en) Treatment method and treatment equipment for cyanide-containing water
JP5637713B2 (en) Wastewater treatment method and treatment apparatus
CN109205846A (en) A kind of chemical nickel wastewater treatment method
JP4382556B2 (en) Treatment method of wastewater containing cyanide
JP5945682B2 (en) Treatment method of wastewater containing cyanide
CN108137358B (en) Method for treating cyanide complex-containing wastewater and treating agent used in method
JP7157192B2 (en) water treatment method
CN108779008B (en) Cyanide-containing wastewater treatment agent and method for treating cyanide-containing wastewater by using same
JP2014091115A (en) Method and device of treating heavy metal-containing waste fluid
JP2013056328A (en) Treatment method and treatment apparatus of cyanide-containing water
JP2020025955A (en) Treatment method of cyan-containing water
JP6239442B2 (en) Organic wastewater treatment method and treatment apparatus
JP4639309B2 (en) Treatment method of wastewater containing cyanide
JP7358202B2 (en) Wastewater treatment method and wastewater treatment system
JPS6274438A (en) Method for purifying industrial gas or exhaust gas
JP2001300553A (en) Method for treating cyanide-containing wastewater
JP6226719B2 (en) Wastewater treatment method
JP2006026496A (en) Method and equipment for treating cyanide-containing waste water
JP7454096B1 (en) Wastewater treatment method
JP7454092B1 (en) How to treat collected dust water
JP2005081170A (en) Treatment method of cyanide compound-containing wastewater
JPH11207366A (en) Chlorine treatment and chlorine treatment device
JP2009039637A (en) Method for purifying cyanide-containing wastewater
JP2008149309A (en) Method for treating heavy metal-containing waste liquid
JPH0128629B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230601

R150 Certificate of patent or registration of utility model

Ref document number: 7290511

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150