JP7299380B2 - How to treat collected dust - Google Patents

How to treat collected dust Download PDF

Info

Publication number
JP7299380B2
JP7299380B2 JP2022084684A JP2022084684A JP7299380B2 JP 7299380 B2 JP7299380 B2 JP 7299380B2 JP 2022084684 A JP2022084684 A JP 2022084684A JP 2022084684 A JP2022084684 A JP 2022084684A JP 7299380 B2 JP7299380 B2 JP 7299380B2
Authority
JP
Japan
Prior art keywords
water
dust
solid
liquid separation
collected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022084684A
Other languages
Japanese (ja)
Other versions
JP2023010580A (en
Inventor
亨 西内
綾 井上
隼人 天田
真希 大土橋
慎吾 盛一
康平 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Eco Tech Corp
Original Assignee
Nippon Steel Eco Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=85119106&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP7299380(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Eco Tech Corp filed Critical Nippon Steel Eco Tech Corp
Publication of JP2023010580A publication Critical patent/JP2023010580A/en
Application granted granted Critical
Publication of JP7299380B2 publication Critical patent/JP7299380B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

本発明は、集塵水の処理方法に関し、より詳しくは、排ガスを湿式集塵処理することで得られる、懸濁物質、及びペンタシアノカルボニル鉄錯体を含有する集塵水の処理方法に関する。 TECHNICAL FIELD The present invention relates to a method for treating collected dust, and more particularly to a method for treating collected dust containing suspended solids and pentacyanocarbonyl iron complex obtained by subjecting exhaust gas to wet dust collection.

例えば製鉄所における高炉や転炉等から発生するガスはダストを含むことから、図6に示すように、ガスに含有されるダストを湿式集塵機2により捕集する処理(湿式集塵処理)が行われている。この湿式集塵処理により、ダストを懸濁物質として含有する集塵水が得られる。その集塵水については、集塵水の処理システム1において、集塵水が湿式集塵機2から第1の沈殿槽(シックナー)4に送られ、第1の沈殿槽4で集塵水中の懸濁物質を分離除去する処理が行われている。 For example, gas generated from a blast furnace, a converter, or the like in a steel plant contains dust. Therefore, as shown in FIG. It is By this wet dust collection treatment, dust collection water containing dust as suspended matter is obtained. Regarding the collected dust water, in the collected dust water treatment system 1, the collected dust water is sent from the wet dust collector 2 to the first sedimentation tank (thickener) 4, and suspended in the collected dust water in the first sedimentation tank 4. A process is carried out to separate and remove the material.

集塵水には、ガスに含まれていたダスト由来の微細な懸濁物質や塩類等が懸濁又は溶解していることが多いことから、ガスに含まれていたダスト(懸濁物質)を除去するための固液分離処理だけでは、集塵水を清浄化することは難しい。そのため、固液分離処理によりダストとは分離された液分(分離液)は、図6に示すように、循環設備5にて湿式集塵機2に循環される方式で用いられたり、微細な懸濁物質や溶解性の物質を除去するためのさらなる処理が行われたりしている。 Fine suspended matter and salts derived from the dust contained in the gas are often suspended or dissolved in collected dust water, so the dust (suspended matter) contained in the gas is It is difficult to purify collected dust water only by solid-liquid separation treatment for removal. Therefore, the liquid component (separated liquid) separated from the dust by the solid-liquid separation process is used in a method of being circulated to the wet dust collector 2 in the circulation equipment 5 as shown in FIG. Additional treatments are sometimes used to remove matter and soluble materials.

例えば、上記分離液(集塵水)にシアン化物イオン及びシアノ錯体等のシアン成分が含有されている場合、分離液からシアン成分を除去し、シアン成分が除去された処理水を得るための処理が必要となる。水中のシアン成分を除去する技術としては、次亜塩素酸ナトリウムを用いるアルカリ塩素法、鉄塩を用いる紺青法、並びに銅塩及び還元剤を用いる還元銅塩法(図6参照)等が知られている。還元銅塩法として、例えば特許文献1には、遊離シアン及びシアン錯塩を含有する廃水に銅塩及び還元剤を存在させ、難溶性の沈殿を生成させて分離するシアン含有廃水の処理方法が開示されている。 For example, when the separated liquid (collected water) contains cyan components such as cyanide ions and cyano complexes, the cyan components are removed from the separated liquid to obtain treated water from which the cyan components have been removed. Is required. Known techniques for removing cyanide components in water include the alkaline chlorine method using sodium hypochlorite, the Prussian blue method using iron salt, and the reduced copper salt method using copper salt and a reducing agent (see FIG. 6). ing. As a reduced copper salt method, for example, Patent Document 1 discloses a method for treating cyanide-containing wastewater in which a copper salt and a reducing agent are present in wastewater containing free cyanide and a cyanide complex salt to generate and separate a sparingly soluble precipitate. It is

特開昭63-39693号公報JP-A-63-39693

上述したアルカリ塩素法では、シアン化ナトリウム等のアルカリ金属塩や、亜鉛シアノ錯体及び銅シアノ錯体等の易分解性のシアノ錯体を除去することができる一方、鉄シアノ錯体を除去することはできない。 The above-described alkali chlorine method can remove alkali metal salts such as sodium cyanide and easily decomposable cyano complexes such as zinc cyano complexes and copper cyano complexes, but cannot remove iron cyano complexes.

また、紺青法や還元銅塩法では、廃水中のフェロシアン化物イオン及びフェリシアン化物イオン等の鉄シアノ錯体についても、難溶性塩を生成させることで廃水から除去することができるといわれている。しかし、本発明者らの検討の結果、紺青法や還元銅塩法では、廃水からの除去処理が困難なシアノ錯体もあることがわかっている。例えば、紺青法では、廃水からペンタシアノカルボニル鉄錯体([FeII(CN)(CO)]3-、[FeIII(CN)(CO)]2-等)を有効に除去することができないことがわかっている。 In the Prussian blue method and the reduced copper salt method, ferrocyanide ions and iron cyano complexes such as ferricyanide ions in wastewater are also said to be able to be removed from wastewater by generating sparingly soluble salts. . However, as a result of studies by the present inventors, it has been found that some cyano complexes are difficult to remove from wastewater by the Prussian blue method or the reduced cuprate method. For example, the Prussian blue method can effectively remove pentacyanocarbonyl iron complexes ([Fe II (CN) 5 (CO)] 3− , [Fe III (CN) 5 (CO)] 2− etc.) from wastewater. I know you can't.

さらに、還元銅塩法では、廃水に銅塩と還元剤を添加して反応させた後に固液分離処理するという2段階の工程が必要である。そのため一般的に、図6に示すように、銅塩及び還元剤を添加して反応させるための反応槽6と、その後に、反応により生成した難溶性塩を除去するための第2の沈殿槽7が必要であり、処理水を得るまでに必要な設備の設置費用が高くなる。 Furthermore, the reduced copper salt method requires a two-step process of adding a copper salt and a reducing agent to the waste water and allowing them to react, followed by solid-liquid separation treatment. Therefore, generally, as shown in FIG. 6, a reaction tank 6 for adding and reacting a copper salt and a reducing agent, followed by a second sedimentation tank for removing sparingly soluble salts produced by the reaction. 7 is required, and the installation cost of the equipment required to obtain treated water is high.

本発明は、上記の従来技術に鑑みて、集塵水中の懸濁物質を固液分離設備にて固液分離した後にさらなる沈殿槽を必要としなくても、上記懸濁物質の固液分離処理時に集塵水中のシアン成分をも除去可能な集塵水の処理方法を提供しようとするものである。 In view of the above prior art, the present invention provides a solid-liquid separation treatment of the suspended matter without requiring an additional sedimentation tank after solid-liquid separation of the suspended matter in the collected water by solid-liquid separation equipment. To provide a method for treating dust-collected water capable of removing even the cyanide component in the dust-collected water.

本発明によれば、排ガスの湿式集塵処理により得られる集塵水中の懸濁物質を固液分離する固液分離設備と、前記固液分離設備で得られた分離液の一部を洗浄水として前記湿式集塵処理に供する循環設備とを用いて、前記集塵水を処理する方法であって、前記集塵水は、さらにペンタシアノカルボニル鉄錯体を含有し、前記集塵水中の前記懸濁物質が亜鉛及び銅の一方又は両方を含む条件1、及び前記集塵水にさらに亜鉛塩及び銅塩の一方又は両方を添加する条件2のうちの少なくとも一方を満たす条件下、前記集塵水に、アミン構造を有するカチオン性化合物を添加して、前記固液分離設備で固液分離処理することを含む、集塵水の処理方法が提供される。 According to the present invention, solid-liquid separation equipment for solid-liquid separation of suspended matter in dust collection water obtained by wet dust collection treatment of exhaust gas; and a circulation facility for the wet dust collection treatment as a method for treating the collected dust water, wherein the collected dust water further contains a pentacyanocarbonyl iron complex, and the suspension in the collected dust water The dust-collected water satisfies at least one of Condition 1 in which turbidity substances contain one or both of zinc and copper, and Condition 2 in which one or both of zinc salts and copper salts are further added to the dust-collected water. and adding a cationic compound having an amine structure to solid-liquid separation treatment in the solid-liquid separation equipment.

本発明によれば、集塵水中の懸濁物質を固液分離設備にて固液分離した後にさらなる沈殿槽を必要としなくても、上記懸濁物質の固液分離処理時に集塵水中のシアン成分をも除去可能な集塵水の処理方法を提供することができる。 According to the present invention, even if an additional sedimentation tank is not required after the solid-liquid separation of the suspended solids in the collected dust water by the solid-liquid separation equipment, the cyanide in the collected dust water is removed during solid-liquid separation of the suspended solids. It is possible to provide a method for treating collected dust that can also remove components.

本発明の一実施形態の集塵水の処理方法に用いうる集塵水処理システムの第1例を示す模式構成図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic configuration diagram showing a first example of a collected water treatment system that can be used in a collected water treatment method according to an embodiment of the present invention; 本発明の一実施形態の集塵水の処理方法に用いうる集塵水処理システムの第2例を示す模式構成図である。FIG. 2 is a schematic configuration diagram showing a second example of a collected water treatment system that can be used in the collected water treatment method of one embodiment of the present invention. 本発明の一実施形態の集塵水の処理方法に用いうる集塵水処理システムの第3例を示す模式構成図である。FIG. 3 is a schematic configuration diagram showing a third example of a collected water treatment system that can be used in the method for processing collected water according to one embodiment of the present invention. 本発明の一実施形態の集塵水の処理方法に用いうる集塵水処理システムの第4例を示す模式構成図である。FIG. 4 is a schematic configuration diagram showing a fourth example of a collected water treatment system that can be used in the collected water treatment method of one embodiment of the present invention. 本発明の一実施形態の集塵水の処理方法に用いうる集塵水処理システムの第5例を示す模式構成図である。FIG. 10 is a schematic configuration diagram showing a fifth example of a collected water treatment system that can be used in the method for processing collected water according to one embodiment of the present invention. シアン成分を含有する集塵水の処理方法に用いうる従来の処理システムの一例を示す模式構成図である。1 is a schematic configuration diagram showing an example of a conventional treatment system that can be used in a method for treating collected dust containing a cyan component. FIG.

以下、図面を参照しながら、本発明の実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではない。なお、図面における各図で共通する部分については同一の符号を付し、その説明を省略することがある。また、図中の矢印は、物質の流れを表し、当該矢印の線を当該物質の流路として示すこともある。 BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings, but the present invention is not limited to the following embodiments. In addition, the same code|symbol is attached|subjected about the part which is common in each figure in drawing, and the description may be abbreviate|omitted. Also, the arrows in the drawing represent the flow of substances, and the lines of the arrows are sometimes shown as the flow paths of the substances.

図1~図5は、本発明の一実施形態の集塵水の処理方法に用いうる集塵水処理システムの一例として、それぞれ、第1例乃至第5例の集塵水処理システム11、12、13、14、15を表す模式構成図である。本実施形態の集塵水の処理方法は、排ガスの湿式集塵処理により得られる集塵水中の懸濁物質を固液分離する固液分離設備40と、固液分離設備40で得られた分離液の一部を洗浄水として湿式集塵処理に供する循環設備50とを用いる。以下、本実施形態の集塵水の処理方法について、固液分離設備40と循環設備50とを備える集塵水処理システム11~15における集塵水の処理方法を例示して説明する。なお、集塵水処理システム11~15は、排ガスを湿式集塵処理して得られる集塵水を処理するシステムであることから、図1~図5においては、ガス及び湿式集塵機2を破線(長破線)で示している。集塵水処理システム11~15は、湿式集塵機2を備える排ガス処理システムの一部として構成されていてもよい。 1 to 5 show dust-collected water treatment systems 11 and 12 of first to fifth examples, respectively, as examples of dust-collected water treatment systems that can be used in the dust-collected water treatment method of one embodiment of the present invention. , 13, 14, and 15. FIG. The method for treating dust-collected water according to the present embodiment includes solid-liquid separation equipment 40 for solid-liquid separation of suspended substances in dust-collected water obtained by wet dust collection treatment of exhaust gas, and separation obtained by the solid-liquid separation equipment 40. A circulating facility 50 is used in which part of the liquid is used as washing water for wet dust collection. Hereinafter, the method for treating collected water in the collected water treatment system 11 to 15 including the solid-liquid separation equipment 40 and the circulation equipment 50 will be described as an example of the method for treating collected dust water according to the present embodiment. Since the dust collection water treatment systems 11 to 15 are systems for processing dust water obtained by wet dust collection treatment of exhaust gas, the gas and the wet dust collector 2 are indicated by dashed lines ( long dashed line). The dust collection water treatment systems 11 to 15 may be configured as part of an exhaust gas treatment system including the wet dust collector 2 .

本実施形態の集塵水の処理方法では、排ガスの湿式集塵処理により得られる集塵水であって、懸濁物質、及びペンタシアノカルボニル鉄錯体を含有する集塵水を処理対象とする。集塵水は、排ガスを湿式集塵機2にて湿式集塵処理することにより得られる。また、集塵水中の懸濁物質を固液分離処理により除去するために、集塵水を湿式集塵機2から流路(第1の流路)31を通って固液分離設備40に供給することができる。 In the method for treating dust-collected water of the present embodiment, the object of treatment is dust-collected water obtained by wet-type dust-collecting treatment of exhaust gas and containing suspended solids and pentacyanocarbonyl iron complex. Collected water is obtained by subjecting the exhaust gas to wet dust collection by the wet dust collector 2 . In addition, in order to remove suspended matter in the dust collection water by solid-liquid separation treatment, the dust collection water is supplied from the wet dust collector 2 through the flow path (first flow path) 31 to the solid-liquid separation equipment 40. can be done.

排ガスとしては、湿式集塵機2での洗浄水との接触により、ペンタシアノカルボニル鉄錯体を生じる可能性があることから、例えば、鉄等を含むダスト、シアン化水素等のシアン成分、及び一酸化炭素を含有する排ガスが好適である。このような排ガスとしては、例えば、製鉄所から生じる排ガス、溶融炉(精錬炉)等の金属精錬設備から生じる排ガス、セメント製造設備から生じる排ガス、及び各種ごみ等の廃棄物を焼却する廃棄物焼却施設から生じる排ガス等を挙げることができる。 Exhaust gas contains, for example, dust containing iron, cyan components such as hydrogen cyanide, and carbon monoxide, since contact with the washing water in the wet dust collector 2 may produce a pentacyanocarbonyl iron complex. exhaust gas is preferred. Such exhaust gas includes, for example, exhaust gas generated from ironworks, exhaust gas generated from metal refining equipment such as melting furnaces (refining furnaces), exhaust gas generated from cement manufacturing equipment, and waste incineration for incinerating waste such as various garbage. Exhaust gas etc. which arise from a facility can be mentioned.

排ガス中の気体成分としては、例えば、一酸化炭素(CO)、シアン成分の他、二酸化炭素(CO)、及び窒素(N)等が挙げられるが、これらに限られない。また、排ガス中のダストに含まれる固体成分としては、例えば、鉄分(例えば、鉄、酸化鉄、及び水酸化鉄等)、亜鉛、及び銅等が挙げられるが、これらに限られない。これらのなかでも、集塵水中の懸濁物質が亜鉛及び銅の一方又は両方を含む場合、後述の通り、集塵水に、アミン構造を有するカチオン性化合物(以下、単に「カチオン性化合物」と記載することがある。)を添加するだけで、集塵水を有効に処理しうることから、ダスト及び懸濁物質は、亜鉛及び銅の一方又は両方を含むことが好ましい。 Examples of gas components in the exhaust gas include, but are not limited to, carbon monoxide (CO), cyanide components, carbon dioxide (CO 2 ), nitrogen (N 2 ), and the like. Solid components contained in the dust in the exhaust gas include, but are not limited to, iron (such as iron, iron oxide, and iron hydroxide), zinc, and copper. Among these, when the suspended matter in the dust collection water contains one or both of zinc and copper, a cationic compound having an amine structure (hereinafter simply referred to as a "cationic compound") is added to the dust collection water as described later. The dust and suspended solids preferably contain one or both of zinc and copper, because the collected water can be treated effectively simply by adding .

懸濁物質が亜鉛及び銅の一方又は両方を含む場合、集塵水中の亜鉛及び銅の合計含有量は、1~1000mg(Zn+Cu)/Lであることが好ましく、2~200mg(Zn+Cu)/Lであることがより好ましく、10~100mg(Zn+Cu)/Lであることがさらに好ましい。 When the suspended solids contain one or both of zinc and copper, the total content of zinc and copper in the collected water is preferably 1 to 1000 mg (Zn+Cu)/L, and 2 to 200 mg (Zn+Cu)/L. and more preferably 10 to 100 mg (Zn+Cu)/L.

本方法における処理対象である集塵水は、排ガスに含まれていたダストとしての懸濁物質(SS)を含有する。集塵水中の懸濁物質(SS)濃度は、100~10000mg/Lであることが好ましく、200~5000mg/Lであることがより好ましく、500~3000mg/Lであることがさらに好ましい。 The dust collection water to be treated in this method contains suspended solids (SS) as dust contained in the exhaust gas. The suspended solids (SS) concentration in the collected water is preferably 100 to 10000 mg/L, more preferably 200 to 5000 mg/L, even more preferably 500 to 3000 mg/L.

また、集塵水は、懸濁物質のほか、ペンタシアノカルボニル鉄錯体を含有する。本明細書において、ペンタシアノカルボニル鉄錯体には、[FeII(CN)(CO)]3-及び[FeIII(CN)(CO)]2-、並びにそれら錯イオンの塩(錯塩)及びその水和物が含まれる。集塵水は、ペンタシアノカルボニル鉄錯体以外のシアン成分を含有してもよい。他のシアン成分としては、例えば、シアン化物イオン(CN;遊離シアン、フリーシアンとも称される。)、フェロシアン化物イオン([Fe(CN)4-;ヘキサシアノ鉄(II)酸イオンとも称される。)、フェリシアン化物イオン([Fe(CN)3-;ヘキサシアノ鉄(III)酸イオンとも称される)、及び[Fe(CN)(CO)2-等を挙げることができる。 In addition, the collected dust water contains a pentacyanocarbonyl iron complex in addition to suspended solids. As used herein, pentacyanocarbonyl iron complexes include [Fe II (CN) 5 (CO)] 3− and [Fe III (CN) 5 (CO)] 2− , and salts of their complex ions (complex salts). and its hydrates. The collected water may contain a cyan component other than the pentacyanocarbonyl iron complex. Other cyanide components include, for example, cyanide ion (CN ; also called free cyanide or free cyanide), ferrocyanide ion ([Fe(CN) 6 ] 4− ; hexacyanoferrate(II) ion ), ferricyanide ion ([Fe(CN) 6 ] 3- ; also called hexacyanoferrate(III) ion), and [Fe(CN) 4 (CO) 2 ] 2- etc. can be mentioned.

集塵水のpHは、特に限定されないが、集塵水に後述するカチオン性化合物を添加する際に、5.0~10.0が好ましく、5.5~9.5がより好ましく、6.5~9.0がさらに好ましい。集塵水にpH調整剤を添加して、集塵水のpHを上記範囲内に調整してもよい。pH調整剤は特に限定されず、例えば、塩酸及び硫酸等の酸、並びに水酸化ナトリウム、水酸化カルシウム、及び炭酸ナトリウム等の塩基等の公知のpH調整剤を適宜用いうる。 The pH of the dust collection water is not particularly limited, but is preferably 5.0 to 10.0, more preferably 5.5 to 9.5, when adding the cationic compound described later to the dust collection water. 5 to 9.0 is more preferred. A pH adjuster may be added to the dust collection water to adjust the pH of the dust collection water within the above range. The pH adjuster is not particularly limited, and known pH adjusters such as acids such as hydrochloric acid and sulfuric acid and bases such as sodium hydroxide, calcium hydroxide and sodium carbonate can be used as appropriate.

集塵水の温度も特に限定されない。前述の好適な排ガスは比較的高温状態にあることが多く、そのような排ガスを湿式集塵処理して得られる集塵水が好適である観点から、集塵水の温度は、集塵水に後述するカチオン性化合物を添加する際に、20~80℃であることが好ましく、35~80℃であることがより好ましい。集塵水の温度が上記範囲にあることにより、後述のカチオン性化合物や、必要に応じて用いられる亜鉛塩及び/又は銅塩を集塵水に対して十分に反応させることも可能である。 The temperature of the dust collection water is also not particularly limited. The above-mentioned suitable exhaust gas is often in a relatively high temperature state, and from the viewpoint that the dust-collected water obtained by wet dust collection treatment of such exhaust gas is preferable, the temperature of the dust-collected water is The temperature is preferably 20 to 80°C, more preferably 35 to 80°C, when the cationic compound described later is added. By keeping the temperature of the dust collection water within the above range, it is possible to sufficiently react the cationic compound described later and the optionally used zinc salt and/or copper salt with the dust collection water.

本方法では、集塵水中の懸濁物質が亜鉛及び銅の一方又は両方を含む条件1、及び集塵水に亜鉛塩及び銅塩を添加する条件2のうちの少なくとも一方を満たす条件下、集塵水に、アミン構造を有するカチオン性化合物を添加する。すなわち、集塵水中の懸濁物質が亜鉛及び銅の一方又は両方を含む場合、少なくとも上記条件1を満たすこととなるため、集塵水にカチオン性化合物を添加すればよい。また、集塵水中の懸濁物質が亜鉛及び銅のいずれも含まない場合、上記条件2を満たすように、集塵水にカチオン性化合物と、亜鉛塩及び銅塩の一方又は両方を添加すればよい。上記の条件下、アミン構造を有するカチオン性化合物を集塵水に添加することにより、集塵水中のペンタシアノカルボニル鉄錯体を難溶化及び/又は不溶化し、集塵水中にペンタシアノカルボニル鉄錯体の難溶化物及び/又は不溶化物(以下、難溶化物も含めて単に「不溶化物」と記載することがある。)を生じさせることができる。 In this method, at least one of Condition 1 in which suspended solids in the dust collection water contain zinc and/or copper, and Condition 2 in which zinc salts and copper salts are added to the dust collection water is collected. A cationic compound having an amine structure is added to the dust. That is, when the suspended solids in the dust collection water contain one or both of zinc and copper, at least Condition 1 above is satisfied, so a cationic compound may be added to the dust collection water. If the suspended matter in the dust collection water contains neither zinc nor copper, a cationic compound and one or both of a zinc salt and a copper salt may be added to the dust collection water so as to satisfy the condition 2 above. good. Under the above conditions, by adding a cationic compound having an amine structure to the dust collection water, the pentacyanocarbonyl iron complex in the dust collection water is rendered insoluble and/or insoluble. Poorly soluble substances and/or insoluble substances (hereinafter, including poorly soluble substances may be simply referred to as “insolubilized substances”) can be produced.

上述の通り、集塵水にカチオン性化合物、及び必要に応じてさらに亜鉛塩及び/又は銅塩を添加して、それらが添加された集塵水を対象として、固液分離設備40にて集塵水中の懸濁物質の固液分離処理を行う。これにより、集塵水中に生じさせた不溶化物を懸濁物質とともに固体成分として固液分離し、除去することが可能となる。このように、集塵水中の懸濁物質を除去するための固液分離処理と同時に、集塵水中のペンタシアノカルボニル鉄錯体を不溶化物として固液分離処理により分離除去することが可能となる。集塵水は刻々と変動しうるために懸濁物質が亜鉛及び銅の一方又は両方を含むか否かも変わる可能性があること、また、それらの濃度も変わる可能性があること、さらに除去性能が高まりやすいことから、上記条件1及び条件2の両方を満たすことが好ましい。すなわち、集塵水中の懸濁物質が亜鉛及び銅の一方又は両方を含み、かつ、その集塵水にカチオン性化合物、並びに亜鉛塩及び銅塩の一方又は両方を添加することが好ましい。 As described above, a cationic compound and, if necessary, a zinc salt and/or a copper salt are added to the dust collection water, and the dust collection water to which they are added is collected by the solid-liquid separation equipment 40. Solid-liquid separation processing of suspended matter in dust water is performed. As a result, the insolubilized matter generated in the dust collection water can be solid-liquid separated together with the suspended matter as a solid component and removed. Thus, it is possible to separate and remove the pentacyanocarbonyl iron complex in the dust collection water as an insolubilized substance by the solid-liquid separation treatment simultaneously with the solid-liquid separation treatment for removing the suspended matter in the dust collection water. Since the dust collection water can fluctuate from moment to moment, it is possible that the suspended solids may change whether or not they contain zinc and/or copper, and their concentrations may also change. is likely to increase, it is preferable to satisfy both conditions 1 and 2 above. That is, it is preferable that the suspended matter in the dust collection water contains one or both of zinc and copper, and the cationic compound and one or both of the zinc salt and the copper salt are added to the dust collection water.

懸濁物質等の固液分離に用いる固液分離設備40としては、例えば、沈殿処理を行い得るシックナー等の沈殿装置、膜分離処理を行い得る膜分離装置、及びろ過処理を行い得るろ過装置等を挙げることができる。これらのなかでも、沈殿装置を用いた沈殿処理が好ましい。固液分離設備40には、撹拌機構48が設けられていてもよい(図2~図5参照)。 The solid-liquid separation equipment 40 used for solid-liquid separation of suspended solids and the like includes, for example, a sedimentation device such as a thickener capable of performing a sedimentation treatment, a membrane separation device capable of performing a membrane separation treatment, a filtration device capable of performing a filtration treatment, and the like. can be mentioned. Among these, precipitation treatment using a precipitation apparatus is preferred. The solid-liquid separation equipment 40 may be provided with a stirring mechanism 48 (see FIGS. 2 to 5).

集塵水へのカチオン性化合物及び必要に応じて用いられる亜鉛塩及び/又は銅塩の添加場所は、固液分離処理の対象となる集塵水にカチオン性化合物や、亜鉛塩及び/又は銅塩が添加されればよいことから、固液分離設備40、及び/又は固液分離設備40の前であればよい。固液分離設備40の前としては、湿式集塵機2と固液分離設備40との間であればよく、例えば、第1の流路31の途中にカチオン性化合物や、亜鉛塩及び/又は銅塩の添加位置を設けてもよい。 The place where the cationic compound and optionally used zinc salt and/or copper salt are added to the dust collection water is the cationic compound, zinc salt and/or copper salt in the dust collection water to be subjected to solid-liquid separation treatment. Since it is sufficient that the salt is added, it may be added before the solid-liquid separation equipment 40 and/or the solid-liquid separation equipment 40 . Before the solid-liquid separation equipment 40, it may be between the wet dust collector 2 and the solid-liquid separation equipment 40, for example, a cationic compound, a zinc salt and / or a copper salt in the middle of the first flow path 31 may be provided.

また、図示しないが、湿式集塵機2と固液分離設備40との間に、湿式集塵機2から第1の流路31を流れる集塵水を受け入れる受入槽や、その受入槽から集塵水を固液分離設備40に送るための流路等が設けられてもよい。その受入槽や、受入槽から固液分離設備40への流路等を、カチオン性化合物等の添加位置としてもよい。 Although not shown, a receiving tank for receiving the collected dust flowing through the first flow path 31 from the wet dust collector 2 and solidifying the collected dust from the receiving tank are provided between the wet dust collector 2 and the solid-liquid separation equipment 40. A channel or the like for sending to the liquid separation equipment 40 may be provided. The receiving tank, the flow path from the receiving tank to the solid-liquid separation equipment 40, or the like may be used as the addition position of the cationic compound or the like.

さらに、図2~図5に示すように、固液分離設備40には、集塵水を湿式集塵機2から固液分離設備40に送るための樋や配管等の流路(第2の流路)32を敷設することが好ましい。その第2の流路32をカチオン性化合物や、亜鉛塩及び/又は銅塩の添加位置とし、当該第2の流路32において、集塵水に対して、カチオン性化合物、さらには必要に応じて亜鉛塩及び/又は銅塩を接触させ、それらを第2の流路32で流して固液分離設備40に送ることが好ましい。第2の流路32は、第1の流路31と同一流路として構成されていてもよいし、第1の流路31に接続されていてもよい。 Furthermore, as shown in FIGS. 2 to 5, the solid-liquid separation equipment 40 includes a channel (second channel ) 32 is preferably laid. The second flow path 32 is used as the addition position of the cationic compound, zinc salt and / or copper salt, and in the second flow path 32, the cationic compound and, if necessary, the dust collection water Preferably, the zinc and/or copper salts are brought into contact with each other and flowed through the second flow path 32 to the solid-liquid separation facility 40 . The second flow path 32 may be configured as the same flow path as the first flow path 31 or may be connected to the first flow path 31 .

図1~図5に示すように、固液分離設備40や第2の流路32等には、集塵水にカチオン性化合物を添加するための装置(カチオン性化合物添加装置)42を設けることができる。カチオン性化合物添加装置42は、例えば、カチオン性ポリマーを貯留するためのタンク、並びにカチオン性化合物を供給するためのポンプ及び供給管等を備えることができる。 As shown in FIGS. 1 to 5, a device (cationic compound addition device) 42 for adding a cationic compound to the collected water is provided in the solid-liquid separation equipment 40, the second flow path 32, and the like. can be done. The cationic compound addition device 42 can include, for example, a tank for storing the cationic polymer, a pump and a supply pipe for supplying the cationic compound, and the like.

集塵水中の懸濁物質が亜鉛及び銅を含まない場合、集塵水に亜鉛塩を添加するための装置(亜鉛塩添加装置)44、及び銅塩を添加するための装置(銅塩添加装置)46の少なくとも一方を、固液分離設備40や第2の流路32等に設けることが好ましい。図3に示すように、第2の流路32が亜鉛塩や銅塩の添加位置となるように、亜鉛塩添加装置44及び銅塩添加装置46の少なくとも一方を設けることがより好ましい。亜鉛塩添加装置44や銅塩添加装置46は、例えば、各材料(亜鉛塩又は銅塩)を貯留するためのタンク、並びに各材料を供給するためのポンプ及び供給管等を備えることができる。 When the suspended matter in the dust collection water does not contain zinc and copper, a device for adding zinc salt to the dust collection water (zinc salt addition device) 44 and a device for adding copper salt (copper salt addition device) ) 46 is preferably provided in the solid-liquid separation equipment 40, the second channel 32, or the like. As shown in FIG. 3, it is more preferable to provide at least one of the zinc salt addition device 44 and the copper salt addition device 46 so that the second flow path 32 becomes the addition position of the zinc salt and the copper salt. The zinc salt addition device 44 and the copper salt addition device 46 can include, for example, a tank for storing each material (zinc salt or copper salt), and a pump and supply pipe for supplying each material.

集塵水中の懸濁物質が亜鉛及び銅の一方又は両方を含む場合には、亜鉛塩添加装置44や銅塩添加装置46を設けなくてもよい(図1及び図2参照)が、上述の通り、上記の条件1及び条件2の両方を満たすことが好ましいことから、亜鉛塩添加装置44及び/又は銅塩添加装置46を設けることが好ましい(図3~図5参照)。なお、図3では、亜鉛塩添加装置44及び銅塩添加装置46の両方が示されているが、いずれか一方でもよい。また、集塵水中の懸濁物質が亜鉛及び銅の一方又は両方を含む場合に、亜鉛塩添加装置44及び銅塩添加装置46を設けなくてもよいことを表すように、図4及び図5では、亜鉛塩添加装置44及び銅塩添加装置46を破線で示している。 If the suspended matter in the dust collection water contains one or both of zinc and copper, the zinc salt addition device 44 and the copper salt addition device 46 may not be provided (see FIGS. 1 and 2), but the above-described As described above, since it is preferable to satisfy both the above conditions 1 and 2, it is preferable to provide the zinc salt addition device 44 and/or the copper salt addition device 46 (see FIGS. 3 to 5). Although both the zinc salt addition device 44 and the copper salt addition device 46 are shown in FIG. 3, either one may be used. 4 and 5 to show that the zinc salt addition device 44 and the copper salt addition device 46 may not be provided when the suspended solids in the dust collection water contain one or both of zinc and copper. , the zinc salt addition device 44 and the copper salt addition device 46 are indicated by dashed lines.

カチオン性化合物におけるアミン構造は、第1級アミン、第2級アミン、第3級アミン、及び第4級アンモニウムからなる群より選ばれる少なくとも1種の構造であればよい。アミン構造を有するカチオン性化合物は、水中で水溶性カチオンとして利用される。本明細書において、アミン構造とは、アンモニア(NH)の構造中の水素原子を原子団(ヘテロ原子を含んでもよい炭化水素基)に置換した構造をいう。そして、置換した数が1つの場合を第1級アミンの構造、2つの場合を第2級アミンの構造、3つの場合を第3級アミンの構造、第3級アミンの構造中の窒素原子にさらに炭化水素基が結合した構造を第4級アンモニウムの構造という。 The amine structure in the cationic compound may be at least one structure selected from the group consisting of primary amines, secondary amines, tertiary amines, and quaternary ammoniums. A cationic compound having an amine structure is utilized as a water-soluble cation in water. As used herein, an amine structure refers to a structure in which hydrogen atoms in the structure of ammonia (NH 3 ) are substituted with atomic groups (hydrocarbon groups that may contain heteroatoms). Then, when the number of substitutions is one, the structure of the primary amine, when two, the structure of the secondary amine, when three, the structure of the tertiary amine, the nitrogen atom in the structure of the tertiary amine A structure in which a hydrocarbon group is further bonded is called a quaternary ammonium structure.

アミン構造を有するカチオン性化合物は、モノマー、オリゴマー、及びポリマーのいずれでもよい。これらのなかでも、集塵水にカチオン性化合物を添加し、混合した際の発泡を抑制しやすい観点から、第1級、第2級、及び第3級アミンの構造からなる群より選ばれる少なくとも1種の構造を有するカチオン性モノマー、並びにアミン構造を有するカチオン性ポリマーが好ましく、第1級アミンの構造を有するカチオン性モノマー、及びアミン構造を有するカチオン性ポリマーがより好ましい。なお、以下のアミン構造を有するカチオン性ポリマーには、オリゴマーも含まれるものとする。 A cationic compound having an amine structure may be a monomer, an oligomer, or a polymer. Among these, at least one selected from the group consisting of primary, secondary, and tertiary amine structures from the viewpoint of easily suppressing foaming when a cationic compound is added to the collected water and mixed. A cationic monomer having one structure and a cationic polymer having an amine structure are preferred, and a cationic monomer having a primary amine structure and a cationic polymer having an amine structure are more preferred. Oligomers are also included in the following cationic polymers having an amine structure.

第1級~第3級アミン構造を有するカチオン性モノマーとしては、例えば、n-オクチルアミン、2-エチルへキシルアミン、3-(2-エチルへキシルオキシ)プロピルアミン、ドデシルアミン、オレイルアミン、ヤシアルキルアミン、牛脂アルキルアミン、及び大豆アルキルアミン等の炭素原子数7以上の炭化水素基を有する脂肪族アミン、並びにN-オレオイルエチレンジアミン等の炭素原子数7以上の炭化水素基を有する脂肪酸アミドアミン等の炭素原子数7以上の炭化水素基を有する1級アミン化合物;ジ(2-エチルヘキシル)アミン、ジ(n-オクチル)アミン、ジデシルアミン、N-(2-ヒドロキシエチル)ドデシルアミン、及びN-(2-ヒドロキシエチル)オレイルアミン等の炭素原子数7以上の炭化水素基を有する2級アミン化合物;ジメチルオクチルアミン、ジメチルデシルアミン、ジメチルドデシルアミン、トリ-n-オクチルアミン、N,N-ビス(2-ヒドロキシエチル)ドデシルアミン、N,N-ビス(2-ヒドロキシエチル)オレイルアミン等の炭素原子数7以上の炭化水素基を有する3級アミン化合物;等を挙げることができる。また、第1級~第3級アミン構造を有するカチオン性モノマーとしては、第1級アミン構造、第2級アミン構造、及び第3級アミン構造のうちの2以上の構造と、炭素原子数7以上の炭化水素基とを一分子内に有する化合物も用いることができる。そのようなカチオン性モノマーとしては、例えば、N,N-ビス(アミノプロピル)ドデシルアミン、N-オレイルプロピレンジアミン、及びN-オレイルエチレンジアミン等を挙げることができる。さらに、上記に挙げたカチオン性モノマーの具体例は、塩(例えば、塩酸塩、硫酸塩、酢酸塩、スルファミン酸塩、炭酸塩、及びクエン酸塩等)であってもよい。これらの塩のうち、塩酸塩及び硫酸塩がより好ましい。また、第4級アンモニウムの構造(第4級アンモニウムカチオン)を有するカチオン性モノマーとしては、例えば、ジデシルジメチルアンモニウム塩、ヘキサデシルトリメチルアンモニウム塩、ジオクチルジメチルアンモニウム塩、ジドデシルジメチルアンモニウム塩、トリオクチルメチルアンモニウム塩、及びベンジルドデシルジメチルアンモニウム塩等を挙げることができる。これらにおける第4級アンモニウムカチオンと対となる陰イオンは、ハロゲン化物イオンが好ましく、塩化物イオン及び臭化物イオンがより好ましい。 Cationic monomers having primary to tertiary amine structures include, for example, n-octylamine, 2-ethylhexylamine, 3-(2-ethylhexyloxy)propylamine, dodecylamine, oleylamine, palm alkylamine. , beef tallow alkylamines, and soybean alkylamines having a hydrocarbon group of 7 or more carbon atoms, and fatty acid amidoamines having a hydrocarbon group of 7 or more carbon atoms such as N-oleoylethylenediamine. Primary amine compounds having a hydrocarbon group of 7 or more atoms; di(2-ethylhexyl)amine, di(n-octyl)amine, didecylamine, N-(2-hydroxyethyl)dodecylamine, and N-(2- Secondary amine compounds having a hydrocarbon group of 7 or more carbon atoms such as hydroxyethyl)oleylamine; dimethyloctylamine, dimethyldecylamine, dimethyldodecylamine, tri-n-octylamine, N,N-bis(2-hydroxy tertiary amine compounds having a hydrocarbon group of 7 or more carbon atoms such as ethyl)dodecylamine and N,N-bis(2-hydroxyethyl)oleylamine; Further, the cationic monomer having a primary to tertiary amine structure includes two or more structures selected from a primary amine structure, a secondary amine structure, and a tertiary amine structure, and a structure having 7 carbon atoms. Compounds having the above hydrocarbon groups in one molecule can also be used. Examples of such cationic monomers include N,N-bis(aminopropyl)dodecylamine, N-oleylpropylenediamine, N-oleylethylenediamine, and the like. Further, specific examples of the cationic monomers listed above may be salts (eg, hydrochlorides, sulfates, acetates, sulfamates, carbonates, citrates, etc.). Of these salts, hydrochlorides and sulfates are more preferred. Examples of cationic monomers having a quaternary ammonium structure (quaternary ammonium cation) include didecyldimethylammonium salt, hexadecyltrimethylammonium salt, dioctyldimethylammonium salt, didodecyldimethylammonium salt, trioctyl Methylammonium salt, benzyldodecyldimethylammonium salt and the like can be mentioned. The anion paired with the quaternary ammonium cation in these is preferably a halide ion, more preferably a chloride ion and a bromide ion.

カチオン性化合物としてポリマー(カチオン性ポリマー)を用いる場合、カチオン性ポリマーの重量平均分子量(Mw)は、1,000~1,000,000であることが好ましく、5,000~800,000であることがより好ましく、10,000~500,000であることがさらに好ましい。カチオン性ポリマーのMwは、サイズ排除クロマトグラフィー(SEC)(ゲル浸透クロマトグラフィー(GPC)若しくはゲルろ過クロマトグラフィー(GFC))、又は粘度測定からの類推法により測定される、標準試料としてのポリエチレングリコール換算の値をとることができる。 When a polymer (cationic polymer) is used as the cationic compound, the weight average molecular weight (Mw) of the cationic polymer is preferably 1,000 to 1,000,000, and is 5,000 to 800,000. is more preferable, and 10,000 to 500,000 is even more preferable. Mw of the cationic polymer is determined by size exclusion chromatography (SEC) (gel permeation chromatography (GPC) or gel filtration chromatography (GFC)), or by analogy from viscosity measurements, polyethylene glycol as a standard It can take conversion values.

アミン構造を有するカチオン性ポリマーとしては、例えば、アリルアミン重合体、アリルアミン塩酸塩重合体、及びアリルアミンアミド硫酸塩重合体等のアリルアミン系重合体;ジアリルアミン重合体、ジアリルアミン塩酸塩重合体、メチルジアリルアミン塩酸塩重合体、メチルジアリルアミン酢酸塩重合体、メチルジアリルアミンアミド硫酸塩重合体、ジアリルアミン塩酸塩・二酸化硫黄共重合体、ジアリルアミン酢酸塩・二酸化硫黄共重合体、ジアリルアミン・アクリルアミド共重合体、ジアリルアミン塩酸塩・アクリルアミド共重合体、メチルジアリルアミン塩酸塩・二酸化硫黄共重合体、ジアリルジメチルアンモニウムクロリド重合体、ジアリルメチルエチルアンモニウムエチルサルフェイト重合体、ジアリルメチルエチルアンモニウムエチルサルフェイト・二酸化硫黄共重合体、ジアリルジメチルアンモニウムクロリド・二酸化硫黄共重合体、ジアリルジメチルアンモニウムクロリド・アクリルアミド共重合体、メチルジアリルアミン・ジアリルジメチルアンモニウムクロリド共重合体、ジアリルジメチルアンモニウムクロリド-ジアリルアミン塩酸塩誘導体共重合体等のジアリルアミン系重合体;アリルアミン・ジアリルアミン重合体、アリルアミン塩酸塩・ジアリルアミン塩酸塩共重合体、アリルアミン酢酸塩・ジアリルアミン酢酸塩共重合体、アリルアミン・ジアリルジメチルアンモニウムクロリド共重合体等のアリルアミン・ジアリルアミン系共重合体;部分メトキシカルボニル化アリルアミン重合体、部分メチルカルボニル化アリルアミン酢酸塩重合体、部分尿素化アリルアミン重合体、及び部分カルボキシルメチル化ポリアリルアミン重合体等の変性アリルアミン系重合体;等を挙げることができる。 Cationic polymers having an amine structure include, for example, allylamine polymers such as allylamine polymers, allylamine hydrochloride polymers, and allylamineamide sulfate polymers; diallylamine polymers, diallylamine hydrochloride polymers, and methyldiallylamine hydrochloride. Polymer, methyldiallylamine acetate polymer, methyldiallylamine amide sulfate polymer, diallylamine hydrochloride/sulfur dioxide copolymer, diallylamine acetate/sulfur dioxide copolymer, diallylamine/acrylamide copolymer, diallylamine hydrochloride/acrylamide Copolymer, methyldiallylamine hydrochloride/sulfur dioxide copolymer, diallyldimethylammonium chloride polymer, diallylmethylethylammonium ethylsulfate polymer, diallylmethylethylammonium ethylsulfate/sulfur dioxide copolymer, diallyldimethylammonium chloride・Sulfur dioxide copolymer, diallyldimethylammonium chloride/acrylamide copolymer, methyldiallylamine/diallyldimethylammonium chloride copolymer, diallyldimethylammonium chloride-diallylamine hydrochloride derivative copolymer, and other diallylamine polymers; allylamine/diallylamine Allylamine/diallylamine copolymers such as polymers, allylamine hydrochloride/diallylamine hydrochloride copolymers, allylamine acetate/diallylamine acetate copolymers, and allylamine/diallyldimethylammonium chloride copolymers; Modified allylamine polymers such as coalescence, partially methylcarbonylated allylamine acetate polymer, partially ureaized allylamine polymer, and partially carboxylmethylated polyallylamine polymer;

また、アミン構造を有するカチオン性ポリマーとしては、例えば、ジシアンジアミド・ジエチレントリアミン重縮合物;ジシアンジアミド・ホルムアルデヒド重縮合物;ジメチルアミン・エピクロロヒドリン重縮合物;ジメチルアミン・アンモニア・エピクロロヒドリン重縮合物;ジメチルアミン・エチレンジアミン・エピクロロヒドリン重縮合物;ジメチルアミン・エピクロロヒドリン・ポリエチレンポリアミン重縮合物;ポリアミドポリアミン-エピクロロヒドリン重縮合物;ポリエチレンイミン;等を挙げることもできる。 Examples of the cationic polymer having an amine structure include dicyandiamide/diethylenetriamine polycondensate; dicyandiamide/formaldehyde polycondensate; dimethylamine/epichlorohydrin polycondensate; dimethylamine/ammonia/epichlorohydrin polycondensate. dimethylamine/ethylenediamine/epichlorohydrin polycondensate; dimethylamine/epichlorohydrin/polyethylenepolyamine polycondensate; polyamidepolyamine-epichlorohydrin polycondensate; polyethyleneimine;

上記に挙げたカチオン性化合物は、1種又は2種以上を用いることができる。それらのなかでも、集塵水中のペンタシアノカルボニル鉄錯体を不溶化しやすく、かつ、集塵水に混合した際の発泡を抑制しやすい観点から、カチオン性化合物は、アミン構造を有するカチオン性ポリマーを含むことが好ましい。なかでも、カチオン性化合物は、ジメチルアミン・エピクロロヒドリン重縮合物、ジシアンジアミド・ホルムアルデヒド重縮合物、ジアリルジメチルアンモニウムクロリド重合体、ジメチルアミン・エピクロロヒドリン・ポリエチレンポリアミン重縮合物、アリルアミン塩酸塩重合体、及びアリルアミン塩酸塩・ジアリルアミン塩酸塩共重合体からなる群より選ばれる少なくとも1種を含むことがより好ましい。 One or more of the cationic compounds listed above can be used. Among them, the cationic compound is a cationic polymer having an amine structure from the viewpoint of easily insolubilizing the pentacyanocarbonyl iron complex in the dust collection water and easily suppressing foaming when mixed with the dust collection water. preferably included. Among them, cationic compounds include dimethylamine/epichlorohydrin polycondensate, dicyandiamide/formaldehyde polycondensate, diallyldimethylammonium chloride polymer, dimethylamine/epichlorohydrin/polyethylene polyamine polycondensate, and allylamine hydrochloride. More preferably, it contains at least one selected from the group consisting of polymers and allylamine hydrochloride/diallylamine hydrochloride copolymers.

上記のカチオン性ポリマーのなかでも、集塵水中のペンタシアノカルボニル鉄錯体をより不溶化しやすい観点から、カチオン性化合物は、ジアリルジメチルアンモニウムクロリド重合体を含むことがさらに好ましい。また、上記のカチオン性ポリマーのなかでも、粘度が比較的低いことでポンプ等による送液及び添加等が行いやすい観点から、カチオン性化合物は、ジメチルアミン・エピクロロヒドリン重縮合物、ジシアンジアミド・ホルムアルデヒド重縮合物、及びアリルアミン塩酸塩・ジアリルアミン塩酸塩共重合体からなる群より選ばれる少なくとも1種を含むこともさらに好ましい。 Among the above cationic polymers, the cationic compound more preferably contains a diallyldimethylammonium chloride polymer from the viewpoint of making the pentacyanocarbonyl iron complex in the collected water easier to insolubilize. In addition, among the cationic polymers described above, the cationic compounds are dimethylamine/epichlorohydrin polycondensates, dicyandiamide, and It is more preferable to contain at least one selected from the group consisting of formaldehyde polycondensates and allylamine hydrochloride/diallylamine hydrochloride copolymers.

また、カチオン性化合物としては、集塵水中のペンタシアノカルボニル鉄錯体を不溶化しやすいこと、集塵水に混合した際の発泡を抑制しやすいこと、及び粘度が比較的低く、ポンプ等による送液及び添加等が行いやすいことから、オレイルアミンもさらに好ましい。さらには、集塵水中のペンタシアノカルボニル鉄錯体をさらに不溶化しやすいこと、及び粘度が比較的低く、ポンプ等による送液及び添加等が行いやすいことから、オレイルアミンとジデシルジメチルアンモニウムクロリドの混合物を用いることもさらに好ましい。オレイルアミンとジデシルジメチルアンモニウムクロリドの混合比率としては、オレイルアミンによる上記効果を維持しつつ、不溶化処理能をさらに高める観点から、オレイルアミンの質量に対するジデシルジメチルアンモニウムクロリドの質量の比が0.5~2の範囲が好ましく、1~2の範囲がより好ましい。 In addition, as a cationic compound, it is easy to insolubilize the pentacyanocarbonyl iron complex in the dust collection water, it is easy to suppress foaming when mixed with the dust collection water, and it has a relatively low viscosity and can be sent by a pump or the like. Oleylamine is also more preferable because addition and the like are easy to perform. Furthermore, the mixture of oleylamine and didecyldimethylammonium chloride is used because it is easier to insolubilize the pentacyanocarbonyl iron complex in the dust collection water, and because it has a relatively low viscosity and can be easily fed and added by a pump or the like. It is also more preferable to use As for the mixing ratio of oleylamine and didecyldimethylammonium chloride, the ratio of the mass of didecyldimethylammonium chloride to the mass of oleylamine is 0.5 to 2 from the viewpoint of further enhancing the insolubilizing ability while maintaining the above effects of oleylamine. is preferred, and a range of 1 to 2 is more preferred.

集塵水にカチオン性化合物を添加する際のカチオン性化合物の形態としては、粉末状や、水等に溶かした溶液(水溶液等)状などを挙げることができ、水溶液の形態で用いることが好ましい。 Examples of the form of the cationic compound when adding the cationic compound to the collected water include a powder form and a solution (aqueous solution, etc.) form in which the compound is dissolved in water or the like, and it is preferably used in the form of an aqueous solution. .

集塵水にカチオン性化合物とともに必要に応じて添加される亜鉛塩には、水中で亜鉛イオン(Zn2+)を生じうる化合物を好適に用いることができる。好適な亜鉛塩としては、例えば、硫酸亜鉛、酢酸亜鉛、硝酸亜鉛、塩化亜鉛、炭酸亜鉛、及び亜硫酸亜鉛等を挙げることができる。これらの1種又は2種以上を用いることができる。これらのなかでも、硫酸亜鉛が好ましい。集塵水に亜鉛塩を添加する際の亜鉛塩の形態としては、粉末状や、水等に溶かした溶液(水溶液等)状などを挙げることができ、水溶液の形態で用いることが好ましい。 A compound capable of generating zinc ions (Zn 2+ ) in water can be suitably used as the zinc salt that is optionally added to the dust collection water together with the cationic compound. Suitable zinc salts include, for example, zinc sulfate, zinc acetate, zinc nitrate, zinc chloride, zinc carbonate, zinc sulfite, and the like. These 1 type(s) or 2 or more types can be used. Among these, zinc sulfate is preferred. The form of the zinc salt when it is added to the collected water may be powder, or a solution (aqueous solution, etc.) dissolved in water or the like, and it is preferably used in the form of an aqueous solution.

集塵水にカチオン性化合物とともに必要に応じて添加される銅塩には、銅(I)塩及び銅(II)塩のいずれも用いることができ、水中で銅(I)イオン(Cu)又は銅(II)イオン(Cu2+)を生じうる化合物を好適に用いることができる。好適な銅(I)塩としては、例えば、塩化銅(I)、酸化銅(I)(亜酸化銅)、臭化銅(I)、酢酸銅(I)、及び硫化銅(I)等を挙げることができる。好適な銅(II)塩としては、例えば、塩化銅(II)、硫酸銅(II)、酢酸銅(II)、酸化銅(II)、及び硝酸銅(II)等を挙げることができる。銅(I)塩及び銅(II)塩のうちの1種又は2種以上を用いることができ、なかでも、酸化銅(I)、硫酸銅(II)が好ましい。集塵水に銅塩を添加する際の銅塩の形態としては、粉末状や、溶液状などを挙げることができ、溶液状の形態で用いることが好ましい。溶液状の形態で用いる場合の溶媒としては、水;希塩酸及び希硫酸等の酸;アンモニア水等の塩基;等を挙げることができる。 Both copper (I) salts and copper (II) salts can be used as the copper salt that is optionally added to the dust collection water together with the cationic compound . Alternatively, a compound capable of generating copper (II) ions (Cu 2+ ) can be preferably used. Suitable copper(I) salts include, for example, copper(I) chloride, copper(I) oxide (cuprous oxide), copper(I) bromide, copper(I) acetate, and copper(I) sulfide. can be mentioned. Suitable copper(II) salts include, for example, copper(II) chloride, copper(II) sulfate, copper(II) acetate, copper(II) oxide, and copper(II) nitrate. One or more of copper(I) salts and copper(II) salts can be used, with copper(I) oxide and copper(II) sulfate being preferred. The form of the copper salt to be added to the dust collection water may be a powder form, a solution form, or the like, and it is preferably used in the form of a solution form. Examples of the solvent when used in the form of a solution include water; acids such as dilute hydrochloric acid and dilute sulfuric acid; bases such as aqueous ammonia;

集塵水に対するカチオン性化合物の添加量(集塵水中のカチオン性化合物の濃度)は、カチオン性化合物(有効成分量)として、1~500mg/Lであることが好ましく、2~100mg/Lであることがより好ましく、3~25mg/Lであることがさらに好ましい。また、集塵水に亜鉛塩を添加する場合、集塵水に対する亜鉛塩の添加量(集塵水中の亜鉛塩の濃度)は、亜鉛塩として、0.1~100mg/Lであることが好ましく、0.5~40mg/Lであることがより好ましく、1~20mg/Lであることがさらに好ましい。さらに、集塵水に銅塩を添加する場合、集塵水に対する銅塩の添加量(集塵水中の銅塩の濃度)は、銅塩として、0.1~100mg/Lであることが好ましく、0.5~40mg/Lであることがより好ましく、1~15mg/Lであることがさらに好ましい。上記のカチオン性化合物、亜鉛塩、及び銅塩の各添加量は、それらの2種以上が用いられる場合には当該2種以上の合計の添加量を表す。 The amount of the cationic compound added to the dust collection water (concentration of the cationic compound in the dust collection water) is preferably 1 to 500 mg/L, more preferably 2 to 100 mg/L, as the cationic compound (active ingredient amount). more preferably 3 to 25 mg/L. In addition, when zinc salt is added to dust-collected water, the amount of zinc salt added to dust-collected water (concentration of zinc salt in dust-collected water) is preferably 0.1 to 100 mg/L as zinc salt. , more preferably 0.5 to 40 mg/L, more preferably 1 to 20 mg/L. Furthermore, when a copper salt is added to the dust-collected water, the amount of the copper salt added to the dust-collected water (the concentration of the copper salt in the dust-collected water) is preferably 0.1 to 100 mg/L as the copper salt. , more preferably 0.5 to 40 mg/L, more preferably 1 to 15 mg/L. When two or more of the above cationic compound, zinc salt, and copper salt are used, the total amount of the two or more added is indicated.

なお、固液分離処理の際には、上述したカチオン性化合物、亜鉛塩、及び銅塩のほか、さらに凝集剤が用いられてもよい。凝集剤の種類は特に限定されず、例えば、ポリ塩化アルミニウム、硫酸アルミニウム、ポリ硫酸第二鉄、及び塩化第二鉄等の無機凝集剤、並びにアニオン性高分子凝集剤等の高分子凝集剤等の1種又は2種以上を用いることができる。 In the solid-liquid separation treatment, a flocculating agent may be used in addition to the above-described cationic compound, zinc salt, and copper salt. The type of flocculant is not particularly limited, and examples include inorganic flocculants such as polyaluminum chloride, aluminum sulfate, polyferric sulfate, and ferric chloride, and polymer flocculants such as anionic polymer flocculants. 1 type or 2 types or more can be used.

アミン構造を有するカチオン性化合物、並びに必要に応じて亜鉛塩及び/又は銅塩が添加された集塵水を固液分離設備で固液分離処理するに当たり、集塵水、カチオン性化合物、並びに必要に応じて添加された亜鉛塩及び/又は銅塩は、所定時間混合されることが好ましい。混合の時間としては、例えば、2秒~20分間が好ましく、5秒~10分間がより好ましく、10秒~5分間がさらに好ましい。このような短時間でも、集塵水に対するカチオン性化合物、並びに亜鉛塩及び/又は銅塩の添加効果を得ることができる。上述した第2の流路32が敷設された固液分離設備(より好適には沈殿装置)40を用いれば、第2の流路32において、集塵水、カチオン性化合物、並びに必要に応じて用いられる亜鉛塩及び/又は銅塩を混合することができる(図2~図5参照)。 In solid-liquid separation treatment of collected dust water to which a cationic compound having an amine structure and optionally zinc salt and/or copper salt have been added, the collected dust water, the cationic compound, and necessary The zinc salt and/or copper salt added according to is preferably mixed for a predetermined time. The mixing time is, for example, preferably 2 seconds to 20 minutes, more preferably 5 seconds to 10 minutes, even more preferably 10 seconds to 5 minutes. Even in such a short time, the effect of adding the cationic compound and zinc salt and/or copper salt to the collected water can be obtained. If the solid-liquid separation equipment (more preferably, the precipitation device) 40 in which the second flow path 32 described above is laid is used, in the second flow path 32, the collected water, the cationic compound, and, if necessary, The zinc and/or copper salts used can be mixed (see Figures 2-5).

固液分離設備40において、固形分(懸濁物質、及び不溶化物等)とは分離された液分(分離液)の一部は、循環設備50により、排ガスの洗浄水として湿式集塵処理(湿式集塵機2)に供給される。これにより、分離液中にペンタシアノカルボニル鉄錯体等のシアン成分が僅かに残留する場合でも、循環して繰り返して処理を行うことで、水中シアン濃度をさらに低減することが可能となる。 In the solid-liquid separation equipment 40, part of the liquid (separated liquid) separated from the solid content (suspended solids, insoluble matter, etc.) is subjected to a wet dust collection process ( It is supplied to the wet dust collector 2). As a result, even when a cyan component such as a pentacyanocarbonyl iron complex remains slightly in the separated liquid, the concentration of cyanide in water can be further reduced by circulating and repeating the treatment.

固液分離設備40で固形分とは分離された分離液の一部は、配管等の流路(第3の流路)33を通って循環設備50に供給することができる。循環設備50は、固液分離設備40で得られた分離液を貯留する貯槽52、並びに貯槽52内の分離液の一部を湿式集塵処理に送るための配管等の流路(第4の流路)54及び循環ポンプ56を備えて構成されることが好ましい。 Part of the separated liquid separated from the solid content in the solid-liquid separation equipment 40 can be supplied to the circulation equipment 50 through a channel (third channel) 33 such as a pipe. The circulation equipment 50 includes a storage tank 52 for storing the separated liquid obtained in the solid-liquid separation equipment 40, and a flow path (fourth It is preferably configured with a flow path 54 and a circulation pump 56 .

また、本実施形態の集塵水の処理方法では、固液分離処理(固液分離設備40)により得られた分離液の一部を、湿式集塵処理に供される洗浄水とは別にブロー水として循環設備外に排出することができる。例えば、固液分離処理により得られた分離液を第3の流路33を通じて循環設備50の貯槽52に送り、その貯槽52内の分離液の一部をブロー水として、配管等の流路(第5の流路)35を通じて排出することができる。また、図示しないが、固液分離設備40と第5の流路(35)とを接続し、循環設備50に送る分離液とは別に、固液分離設備40から第5の流路(35)を通じてブロー水を排出してもよい。 In addition, in the method for treating collected dust water of the present embodiment, part of the separated liquid obtained by the solid-liquid separation process (the solid-liquid separation equipment 40) is blown separately from the washing water used for the wet dust collection process. It can be discharged outside the circulation facility as water. For example, the separated liquid obtained by the solid-liquid separation process is sent to the storage tank 52 of the circulation facility 50 through the third flow path 33, and part of the separated liquid in the storage tank 52 is used as blow water, and a flow path such as piping ( 5th channel) 35 can be discharged. In addition, although not shown, the solid-liquid separation equipment 40 and the fifth flow path (35) are connected, and apart from the separated liquid sent to the circulation equipment 50, the solid-liquid separation equipment 40 to the fifth flow path (35) Blow water may be discharged through

本方法では、固液分離処理により、集塵水中の懸濁物質とともに、ペンタシアノカルボニル鉄も不溶化物として分離除去することが可能であることから、上記ブロー水を、全シアン濃度が排水基準の1mg(CN)/L以下である処理水とすることが可能である(図1~図3参照)。しかも、循環設備50の貯槽52の後には、前述した還元銅塩法で必要となるようなさらなる沈殿槽7(図6参照)は不要であるため、設備の設置費用を還元銅塩法の場合と比べて低く抑えることができる。 In this method, it is possible to separate and remove suspended solids in the dust collection water as well as pentacyanocarbonyl iron as insolubilized substances by solid-liquid separation treatment. It is possible to obtain treated water with a concentration of 1 mg(CN)/L or less (see FIGS. 1 to 3). Moreover, after the storage tank 52 of the circulation equipment 50, a further sedimentation tank 7 (see FIG. 6) that is required in the above-described reduction copper salt method is unnecessary, so the installation cost of the equipment is reduced to can be kept lower than

一方、集塵水がシアン成分としてペンタシアノカルボニル鉄とともにシアン化物イオンを含有する場合、固液分離処理により得られた分離液中にシアン化物イオンが含有されている可能性もある。そこで、集塵水がさらシアン化物イオンを含有する場合、本実施形態の集塵水の処理方法は、集塵水、並びに固液分離設備40で得られた分離液であって、循環設備50に供給される前の分離液、及び循環設備50に供給された分離液(より好ましくは貯槽52内の分離液)のうちの少なくともいずれかに、酸化剤を添加することを含むことが好ましい。これにより、集塵水又は分離液中にシアン化物イオンが残留している場合に、シアン化物イオンを酸化分解することできる。また、そのように処理された分離液の一部を循環設備で循環利用することで、集塵水がシアン化物イオンを含有する場合にも、それらシアン成分が有効に低減された処理水、例えば全シアン濃度が排水基準の1mg(CN)/L以下である処理水を得ることができる。しかもこの場合にも、循環設備50の貯槽52の後には、前述した還元銅塩法で必要となるようなさらなる沈殿槽7(図6参照)は不要であるため、設備の設置費用を還元銅塩法の場合と比べて低く抑えることができる。 On the other hand, when the dust collection water contains cyanide ions as well as pentacyanocarbonyl iron as a cyan component, the separated liquid obtained by the solid-liquid separation treatment may contain cyanide ions. Therefore, when the dust-collected water further contains cyanide ions, the method for treating the dust-collected water of the present embodiment is to use the dust-collected water and the separated liquid obtained in the solid-liquid separation equipment 40, and the circulation equipment 50 and/or the separated liquid supplied to the circulation facility 50 (more preferably the separated liquid in the storage tank 52). As a result, when cyanide ions remain in the dust collection water or separated liquid, the cyanide ions can be oxidatively decomposed. In addition, by circulating a part of the separated liquid thus treated in a circulation facility, even if the collected water contains cyanide ions, the treated water in which the cyanide components are effectively reduced, such as Treated water having a total cyanide concentration of 1 mg(CN)/L or less of the wastewater standard can be obtained. Moreover, in this case also, after the storage tank 52 of the circulation equipment 50, a further sedimentation tank 7 (see FIG. 6) that is required in the above-described reduced copper salt method is unnecessary, so the installation cost of the equipment can be reduced. It can be kept lower than in the case of the salt method.

集塵水、循環設備50に供給される前の分離液、及び循環設備50に供給された分離液のうちの少なくともいずれかに、酸化剤を添加する場合、図4及び図5に示すように、酸化剤を添加するための装置(酸化剤添加装置)62を用いることができる。集塵水や、循環設備50に供給される前の分離液、循環設備50に供給された分離液(好ましくは貯槽52内の分離液)に酸化剤を添加するために、例えば、前述の第2の流路32、固液分離設備40、第3の流路33、及び貯槽52の少なくともいずれかが酸化剤の添加位置となるように、酸化剤添加装置62を設けることが好ましい。酸化剤添加装置62は、例えば、酸化剤を貯留するためのタンク、並びに酸化剤を供給するためのポンプ及び供給管等を備えることができる。酸化剤添加装置62は、使用する酸化剤の種類に応じて、複数設けられてもよい。なお、集塵水がシアン化物イオンを含有しない場合、酸化剤添加装置62を設けなくてもよい(図1~図3参照)ことを表すように、図5では、酸化剤添加装置62を破線で示している。 When an oxidizing agent is added to at least one of the collected water, the separated liquid before being supplied to the circulation system 50, and the separated liquid supplied to the circulation system 50, as shown in FIGS. , a device for adding an oxidant (oxidant addition device) 62 can be used. In order to add an oxidizing agent to the dust collection water, the separated liquid before being supplied to the circulation facility 50, and the separated liquid supplied to the circulation facility 50 (preferably the separated liquid in the storage tank 52), for example, It is preferable to provide the oxidant addition device 62 so that at least one of the second flow path 32, the solid-liquid separation equipment 40, the third flow path 33, and the storage tank 52 serves as the oxidant addition position. The oxidant addition device 62 can include, for example, a tank for storing the oxidant, a pump and a supply pipe for supplying the oxidant, and the like. A plurality of oxidant addition devices 62 may be provided according to the type of oxidant to be used. In FIG. 5, the oxidant addition device 62 is indicated by a dashed line so as to indicate that the oxidant addition device 62 may not be provided when the dust collection water does not contain cyanide ions (see FIGS. 1 to 3). is shown.

酸化剤としては、過酸化水素、酸素、オゾン、次亜塩素酸又はその塩、亜塩素酸又はその塩、塩素酸又はその塩、次亜臭素酸又はその塩、亜臭素酸又はその塩、及びヨウ素化合物等を挙げることができる。これらの1種又は2種以上を用いることができる。これらのなかでも、シアン化物イオンに対する酸化分解能、及び設備の腐食が生じ難い観点から、使用する酸化剤は、少なくとも過酸化水素を含むことが好ましい。また、酸化剤とともに、酸化剤の反応助剤を用いてもよい。反応助剤としては、例えば、触媒量としての銅塩や、還元性硫黄化合物等を挙げることができ、それらの1種又は2種以上を用いることができる。 The oxidizing agent includes hydrogen peroxide, oxygen, ozone, hypochlorous acid or its salts, chlorous acid or its salts, chloric acid or its salts, hypobromous acid or its salts, bromous acid or its salts, and An iodine compound etc. can be mentioned. These 1 type(s) or 2 or more types can be used. Among these, the oxidizing agent to be used preferably contains at least hydrogen peroxide from the viewpoints of oxidative decomposition of cyanide ions and less corrosion of equipment. A reaction aid for the oxidant may also be used together with the oxidant. As the reaction aid, for example, a copper salt as a catalytic amount, a reducing sulfur compound, and the like can be mentioned, and one or more of them can be used.

また、集塵水や分離液中のシアン化物イオンをより酸化分解し易い観点から、酸化剤としては、過酸化水素と、次亜塩素酸又はその塩との組み合わせ;過酸化水素と、触媒量としての銅塩との組み合わせ;過酸化水素と、還元性硫黄化合物との組み合わせ;次亜塩素酸又はその塩と、還元性硫黄化合物との組み合わせ;からなる群より選ばれる少なくとも1種の組み合わせを用いることが好ましい。これらのなかでも、酸化剤は、過酸化水素と、次亜塩素酸又はその塩との組み合わせ;及び過酸化水素と、触媒量としての銅塩との組み合わせ;のうちの少なくとも1種の組み合わせを含むことがさらに好ましい。上記の各組み合わせの酸化剤は、水等に溶かした溶液(水溶液等)状の形態で用いることがより好ましい。 In addition, from the viewpoint of oxidizing and decomposing cyanide ions in the dust collection water and the separated liquid more easily, the oxidizing agent is a combination of hydrogen peroxide and hypochlorous acid or a salt thereof; A combination with a copper salt as; a combination of hydrogen peroxide and a reducing sulfur compound; a combination of hypochlorous acid or a salt thereof and a reducing sulfur compound; at least one combination selected from the group consisting of It is preferable to use Among these, the oxidizing agent is a combination of hydrogen peroxide and hypochlorous acid or a salt thereof; and a combination of hydrogen peroxide and a copper salt as a catalytic amount. More preferably, it contains It is more preferable to use the oxidizing agents in each combination described above in the form of a solution (aqueous solution, etc.) dissolved in water or the like.

次亜塩素酸塩としては、例えば、次亜塩素酸ナトリウム、次亜塩素酸カリウム、次亜塩素酸カルシウム、及び次亜塩素酸マグネシウム等を挙げることができる。触媒量としての銅塩とは、銅がシアン化物イオン及び/又はシアノ錯体に対してモル比1:1より少ない量のことを指す。銅塩としては、例えば、塩化銅(I)、酸化銅(I)(亜酸化銅)、臭化銅(I)、酢酸銅(I)、及び硫化銅(I)等の銅(I)塩、並びに硫酸銅(II)、塩化銅(II)、酸化銅(II)、酢酸銅(II)、及び硝酸銅(II)等の銅(II)塩を挙げることができる。還元性硫黄化合物としては、例えば、チオ硫酸塩、硫化物塩、多硫化物塩、チオシアン酸塩、メルカプト酢酸、メルカプトエタノール、システイン、システイン塩酸塩、チオグリコール酸、チオジグリコール、チオエタノール、チオリンゴ酸、チオリンゴ酸塩、及びメルカプトベンゾイミダゾール等を挙げることができる。チオ硫酸塩としては、例えば、チオ硫酸ナトリウム、チオ硫酸カリウム、チオ硫酸アンモニウム、チオ硫酸カルシウム、及びチオ硫酸マグネシウム等を挙げることができる。硫化物塩としては、例えば、硫化水素ナトリウム、硫化水素カリウム、硫化ナトリウム、硫化カリウム、硫化アンモニウム、及び硫化鉄(II)等を挙げることができる。多硫化物塩としては、例えば、多硫化ナトリウム、多硫化カルシウム、多硫化カリウム、及び多硫化マグネシウム等を挙げることができる。チオシアン酸塩としては、例えば、チオシアン酸カリウム、チオシアン酸ナトリウム、チオシアン酸アンモニウム、及びチオシアン酸カルシウム等を挙げることができる。 Examples of hypochlorite include sodium hypochlorite, potassium hypochlorite, calcium hypochlorite, and magnesium hypochlorite. A catalytic amount of copper salt refers to an amount of copper to cyanide ion and/or cyano complex in a molar ratio of less than 1:1. Copper salts include, for example, copper (I) salts such as copper (I) chloride, copper (I) oxide (cuprous oxide), copper (I) bromide, copper (I) acetate, and copper (I) sulfide. , and copper(II) salts such as copper(II) sulfate, copper(II) chloride, copper(II) oxide, copper(II) acetate, and copper(II) nitrate. Examples of reducing sulfur compounds include thiosulfate, sulfide salt, polysulfide salt, thiocyanate, mercaptoacetic acid, mercaptoethanol, cysteine, cysteine hydrochloride, thioglycolic acid, thiodiglycol, thioethanol, and thiolingo. Acids, thiomalates, and mercaptobenzimidazoles can be mentioned. Examples of thiosulfates include sodium thiosulfate, potassium thiosulfate, ammonium thiosulfate, calcium thiosulfate, and magnesium thiosulfate. Examples of sulfide salts include sodium hydrogen sulfide, potassium hydrogen sulfide, sodium sulfide, potassium sulfide, ammonium sulfide, and iron (II) sulfide. Examples of polysulfide salts include sodium polysulfide, calcium polysulfide, potassium polysulfide, and magnesium polysulfide. Thiocyanates include, for example, potassium thiocyanate, sodium thiocyanate, ammonium thiocyanate, and calcium thiocyanate.

集塵水又は分離液に対する酸化剤の添加量(集塵水又は分離液中の酸化剤の濃度)は、酸化剤(有効成分量)として、1~1000mg/Lであることが好ましく、2~500mg/Lであることがより好ましく、5~160mg/Lであることがさらに好ましい。上記の酸化剤の添加量は、2種以上の酸化剤が用いられる場合には、当該2種以上の合計の添加量を表す。 The amount of the oxidizing agent added to the dust collection water or the separated liquid (concentration of the oxidizing agent in the dust collection water or the separated liquid) is preferably 1 to 1000 mg/L as the oxidizing agent (active ingredient amount), and is preferably 2 to 1000 mg/L. More preferably 500 mg/L, even more preferably 5 to 160 mg/L. When two or more oxidizing agents are used, the amount of the oxidizing agent added indicates the total amount of the two or more oxidizing agents added.

酸化剤を添加する際の集塵水又は分離液のpHは、特に限定されないが、5.0~10.0であることが好ましく、5.5~9.5であることがより好ましく、6.0~9.0であることがさらに好ましい。酸化剤を添加する前の集塵水又は分離液にpH調整剤を添加して、集塵水又は分離液のpHを上記範囲内に調整してもよい。pH調整には、上述の通り、公知のpH調整剤を適宜用いうる。 The pH of the dust collection water or the separated liquid when adding the oxidizing agent is not particularly limited, but is preferably 5.0 to 10.0, more preferably 5.5 to 9.5. .0 to 9.0 is more preferable. A pH adjuster may be added to the dust collection water or the separated liquid before adding the oxidizing agent to adjust the pH of the dust collection water or the separated liquid within the above range. For pH adjustment, as described above, a known pH adjuster can be used as appropriate.

集塵水又は分離液に酸化剤を添加した後、集塵水又は分離液中のシアン化物イオンと酸化剤とが十分に反応しうるように、酸化剤が添加された集塵水又は分離液を所定時間撹拌することが好ましい。撹拌の時間としては、例えば、1~60分間が好ましく、2~45分間がより好ましく、5~30分間がさらに好ましい。集塵水に酸化剤を添加する場合には、固液分離設備40にて撹拌を行うことが好ましく、分離液に酸化剤を添加する場合には、循環設備50の貯槽52にて撹拌を行うことが好ましい。例えば、撹拌機構48を備えた固液分離設備40や、撹拌機構(不図示)を設けた貯槽52にて撹拌を行うことができる。 After adding an oxidizing agent to the dust collection water or separation liquid, the dust collection water or separation liquid is added with an oxidizing agent so that the cyanide ions in the dust collection water or separation liquid can sufficiently react with the oxidizing agent. is preferably stirred for a predetermined period of time. The stirring time is, for example, preferably 1 to 60 minutes, more preferably 2 to 45 minutes, even more preferably 5 to 30 minutes. When the oxidizing agent is added to the collected water, it is preferable to stir in the solid-liquid separation equipment 40, and when adding the oxidizing agent to the separated liquid, it is stirred in the storage tank 52 of the circulation equipment 50. is preferred. For example, stirring can be performed in a solid-liquid separation facility 40 equipped with a stirring mechanism 48 or in a storage tank 52 equipped with a stirring mechanism (not shown).

固液分離設備40で液分とは分離された固形分(懸濁物質、及び不溶化物等)を含むスラリーについて、濃縮処理及び脱水処理のいずれか一方又は両方を行い、脱水ケーキと分離水を得ることが好ましい。また、得られた分離水を前述の固液分離処理(固液分離設備40)に送ることが好ましい。これにより、集塵水中のシアン成分の除去処理をさらに安定して行うことが可能となる。 Either one or both of concentration treatment and dehydration treatment are performed on the slurry containing the solid content (suspended matter, insolubilized matter, etc.) separated from the liquid content in the solid-liquid separation equipment 40, and the dehydrated cake and the separated water are separated. It is preferable to obtain Moreover, it is preferable to send the obtained separated water to the above-mentioned solid-liquid separation treatment (solid-liquid separation equipment 40). This makes it possible to more stably remove the cyan component in the dust collection water.

例えば図5に示すように、固液分離設備40で液分とは分離された固形分を含むスラリーを、配管等の流路(第6の流路)36を介して脱水機80に送り、脱水処理することにより、脱水ケーキ及び分離水を得ることができる。脱水機80による脱水処理の代わりに濃縮槽(不図示)による濃縮処理であってもよく、濃縮槽による濃縮処理と脱水機80による脱水処理とを併用してもよい。脱水機80で得られた分離水(脱水ろ液)は、配管等の流路(第7の流路)37を通って、より好ましくはさらに第2の流路32を通って固液分離設備40に送られることが好ましい。この場合、第7の流路37と第2の流路32とが接続されていることが好ましい。固液分離設備40には、脱水機80で得られた分離水(脱水ろ液)のほか、濃縮槽で得られた分離水が送られてもよく、余剰のスラリーが送られてもよい。 For example, as shown in FIG. 5, the slurry containing the solid content separated from the liquid content in the solid-liquid separation equipment 40 is sent to the dehydrator 80 through a channel (sixth channel) 36 such as a pipe, A dehydrated cake and separated water can be obtained by the dehydration treatment. Concentration processing by a concentration tank (not shown) may be used instead of the dehydration processing by the dehydrator 80, and the concentration processing by the concentration tank and the dehydration processing by the dehydrator 80 may be used together. The separated water (dehydrated filtrate) obtained by the dehydrator 80 passes through a flow path (seventh flow path) 37 such as piping, and more preferably further through the second flow path 32, to the solid-liquid separation equipment. 40 preferably. In this case, it is preferable that the seventh channel 37 and the second channel 32 are connected. The separated water (dehydrated filtrate) obtained by the dehydrator 80 may be sent to the solid-liquid separation equipment 40, as well as the separated water obtained by the concentration tank, or surplus slurry may be sent.

本実施形態の集塵水の処理方法は、集塵水又は分離液中の全シアン濃度と、集塵水、分離液、又は処理水中のシアン化物イオン濃度を測定することを含んでいてもよい。集塵水又は分離液中の全シアン濃度の測定値、及び集塵水、分離液、又は処理水中のシアン化物イオン濃度の測定値に応じて、カチオン性化合物、亜鉛塩、銅塩、及び酸化剤の各添加量を調整することもできる。 The method for treating dust-collected water according to the present embodiment may include measuring the total cyanide concentration in the dust-collected water or the separated liquid and the cyanide ion concentration in the dust-collected water, the separated liquid, or the treated water. . Cationic compounds, zinc salts, copper salts, and oxidation The amount of each agent added can also be adjusted.

以上詳述した通り、本実施形態の集塵水の処理方法によれば、特定の条件下、アミン構造を有するカチオン性化合物を集塵水に添加することにより、集塵水中にペンタシアノカルボニル鉄錯体の不溶化物を生じさせることができる。そして、集塵水中に生じさせたペンタシアノカルボニル鉄錯体の不溶化物、及び懸濁物質を一緒に、固液分離処理により分離除去することができる。したがって、本方法によれば、集塵水中の懸濁物質を固液分離した後にさらなる沈殿槽を必要としなくても、集塵水中の懸濁物質を分離除去するのと同時に、集塵水中のシアン成分(ペンタシアノカルボニル鉄錯体)をも有効に除去処理することができる。よって、従来技術と比べて、設備の設置費用を低く抑えつつ、シアン濃度が有効に低減された処理水を得ることができる。 As described in detail above, according to the method for treating dust-collected water of the present embodiment, by adding a cationic compound having an amine structure to dust-collected water under specific conditions, iron pentacyanocarbonyl is added to dust-collected water. An insolubilized product of the complex can be produced. Then, the insolubilized pentacyanocarbonyl iron complex and the suspended matter generated in the collected water can be separated and removed together by solid-liquid separation treatment. Therefore, according to the present method, the suspended solids in the dust-collected water are separated and removed at the same time without requiring an additional sedimentation tank after the solid-liquid separation of the suspended solids in the dust-collected water. A cyan component (pentacyanocarbonyl iron complex) can also be effectively removed. Therefore, it is possible to obtain treated water in which the concentration of cyanide is effectively reduced while keeping the installation cost of equipment low as compared with the conventional technology.

また、本実施形態の集塵水の処理方法では、その一態様として、集塵水、又は固液分離処理で得られた分離液のうちの少なくとも一方に、酸化剤を添加することができる。そのため、集塵水又は分離液中にシアン化物イオンが残留している場合に、シアン化物イオンを酸化分解により除去した分離液を得ることができ、その分離液の一部を循環設備で循環利用することで、シアン化物イオンもより有効に低減された処理水を得ることができる。 In addition, as one aspect of the method for treating dust-collected water of the present embodiment, an oxidizing agent can be added to at least one of the dust-collected water and the separated liquid obtained by the solid-liquid separation treatment. Therefore, when cyanide ions remain in the dust collection water or the separated liquid, a separated liquid can be obtained by removing the cyanide ions by oxidative decomposition, and a part of the separated liquid can be recycled in the circulation equipment. By doing so, it is possible to obtain treated water in which cyanide ions are also more effectively reduced.

なお、本発明の一実施形態の集塵水の処理方法は、次の構成をとることが可能である。
[1]排ガスの湿式集塵処理により得られる集塵水中の懸濁物質を固液分離する固液分離設備と、前記固液分離設備で得られた分離液の一部を洗浄水として前記湿式集塵処理に供する循環設備とを用いて、前記集塵水を処理する方法であって、
前記集塵水は、さらにペンタシアノカルボニル鉄錯体を含有し、
前記集塵水中の前記懸濁物質が亜鉛及び銅の一方又は両方を含む条件1、及び前記集塵水にさらに亜鉛塩及び銅塩の一方又は両方を添加する条件2のうちの少なくとも一方を満たす条件下、前記集塵水に、アミン構造を有するカチオン性化合物を添加して、前記固液分離設備で固液分離処理することを含む、集塵水の処理方法。
[2]前記集塵水中の前記懸濁物質が亜鉛及び銅の一方又は両方を含み、
少なくとも前記条件1を満たす条件下、前記集塵水に前記カチオン性化合物を添加することを含む上記[1]に記載の集塵水の処理方法。
[3]前記条件2として、前記集塵水に、前記亜鉛塩及び前記銅塩の一方又は両方を添加することを含む上記[1]又は[2]に記載の集塵水の処理方法。
[4]前記カチオン性化合物は、ジメチルアミン・エピクロロヒドリン重縮合物、ジシアンジアミド・ホルムアルデヒド重縮合物、ジアリルジメチルアンモニウムクロリド重合体、ジメチルアミン・エピクロロヒドリン・ポリエチレンポリアミン重縮合物、アリルアミン塩酸塩重合体、及びアリルアミン塩酸塩・ジアリルアミン塩酸塩共重合体からなる群より選ばれる少なくとも1種を含む上記[1]~[3]のいずれかに記載の集塵水の処理方法。
[5]前記カチオン性化合物は、ジアリルジメチルアンモニウムクロリド重合体を含む上記[1]~[4]のいずれかに記載の集塵水の処理方法。
[6]前記カチオン性化合物は、オレイルアミンを含む上記[1]~[3]のいずれかに記載の集塵水の処理方法。
[7]前記カチオン性化合物は、オレイルアミンとジデシルジメチルアンモニウムクロリドの混合物を含む上記[1]~[3]のいずれかに記載の集塵水の処理方法。
[8]前記集塵水は、さらにシアン化物イオンを含有し、
前記集塵水;前記循環設備に供給される前の前記分離液;及び前記循環設備に供給された前記分離液;のうちの少なくともいずれかに、酸化剤を添加することを含む上記[1]~[7]のいずれかに記載の集塵水の処理方法。
[9]前記酸化剤は、少なくとも過酸化水素を含む上記[8]に記載の集塵水の処理方法。
[10]前記酸化剤は、過酸化水素と、次亜塩素酸又はその塩との組み合わせ;過酸化水素と、触媒量としての銅塩との組み合わせ;過酸化水素と、還元性硫黄化合物との組み合わせ;次亜塩素酸又はその塩と、還元性硫黄化合物との組み合わせ;からなる群より選ばれる少なくとも1種の組み合わせを含む上記[8]に記載の集塵水の処理方法。
It should be noted that the method for treating collected dust according to one embodiment of the present invention can have the following configuration.
[1] solid-liquid separation equipment for solid-liquid separation of suspended solids in dust collection water obtained by wet dust collection treatment of exhaust gas; A method for treating the collected dust using a circulation facility for dust collection,
The dust collection water further contains a pentacyanocarbonyl iron complex,
Satisfies at least one of condition 1 that the suspended matter in the dust-collected water contains one or both of zinc and copper, and condition 2 that one or both of zinc salt and copper salt is further added to the dust-collected water. A method for treating collected dust, comprising adding a cationic compound having an amine structure to the collected dust under conditions and subjecting the collected water to solid-liquid separation treatment in the solid-liquid separation equipment.
[2] the suspended matter in the dust collection water contains one or both of zinc and copper;
The method for treating dust-collected water according to the above [1], comprising adding the cationic compound to the dust-collected water under conditions satisfying at least condition 1 above.
[3] The method for treating dust-collected water according to the above [1] or [2], wherein as the condition 2, one or both of the zinc salt and the copper salt are added to the dust-collected water.
[4] The cationic compound includes dimethylamine/epichlorohydrin polycondensate, dicyandiamide/formaldehyde polycondensate, diallyldimethylammonium chloride polymer, dimethylamine/epichlorohydrin/polyethylene polyamine polycondensate, and allylamine hydrochloride. The method for treating collected dust according to any one of [1] to [3] above, which contains at least one selected from the group consisting of a salt polymer and an allylamine hydrochloride/diallylamine hydrochloride copolymer.
[5] The method for treating collected dust according to any one of [1] to [4] above, wherein the cationic compound contains a diallyldimethylammonium chloride polymer.
[6] The method for treating collected dust water according to any one of [1] to [3] above, wherein the cationic compound contains oleylamine.
[7] The method for treating collected dust according to any one of [1] to [3] above, wherein the cationic compound contains a mixture of oleylamine and didecyldimethylammonium chloride.
[8] The dust collection water further contains cyanide ions,
The above [1] comprising adding an oxidizing agent to at least one of the dust collection water; the separated liquid before being supplied to the circulation facility; and the separated liquid supplied to the circulation facility. The method for treating collected dust according to any one of to [7].
[9] The method for treating dust collection water according to the above [8], wherein the oxidizing agent contains at least hydrogen peroxide.
[10] The oxidizing agent is a combination of hydrogen peroxide and hypochlorous acid or a salt thereof; a combination of hydrogen peroxide and a copper salt as a catalytic amount; a combination of hydrogen peroxide and a reducing sulfur compound combination; combination of hypochlorous acid or a salt thereof and a reducing sulfur compound; The method for treating dust collection water according to the above [8], comprising at least one combination selected from the group consisting of.

以下、試験例を挙げて、上述した本発明の一実施形態の集塵水の処理方法の効果等をさらに具体的に説明するが、本発明は以下の試験例に限定されるものではない。 Hereinafter, the effects of the method for treating collected dust according to one embodiment of the present invention will be described in more detail with reference to test examples, but the present invention is not limited to the following test examples.

<模擬集塵水>
本試験例では、処理対象である集塵水として、以下に述べる、シアン成分を含有する原水と、懸濁物質とを混合して調製した模擬集塵水を用いた。
<Simulated dust collection water>
In this test example, simulated dust water prepared by mixing raw water containing a cyanide component and suspended solids described below was used as the dust water to be treated.

(原水)
所定の工場における排ガスの洗浄を行う排ガス処理装置から排出された、未燃カーボン、鉄分、及び亜鉛分等の懸濁物質を含有する廃水を沈降分離して得られた上澄水を用意した。この上澄水を原水とし、採取した日が異なる3種の原水No.1~3を用意した。これらの原水について、JIS K0102:2013における全シアンの測定方法により、全シアン(T-CN)濃度を測定し、JIS K0102:2013におけるシアン化物の測定法のうちの通気法により、遊離シアン(F-CN)濃度を測定した。また、T-CN濃度の測定値からF-CN濃度の測定値を差し引いた値をシアノ錯体濃度として算出した。その結果を表1に示す。
(Raw water)
Supernatant water was prepared by sedimentation separation of wastewater containing suspended solids such as unburned carbon, iron and zinc discharged from an exhaust gas treatment apparatus for cleaning exhaust gas in a predetermined factory. Using this supernatant water as raw water, three types of raw water No. 1 to 3 were prepared. For these raw waters, the total cyanide (T-CN) concentration was measured by the total cyanide measurement method in JIS K0102: 2013, and the free cyanide (F -CN) concentrations were measured. Further, a value obtained by subtracting the measured value of the F-CN concentration from the measured value of the T-CN concentration was calculated as the cyano complex concentration. Table 1 shows the results.

Figure 0007299380000001
Figure 0007299380000001

また、原水No.1~3の各原水を5種Cろ紙でろ過して得られたろ液について、液体クロマトグラフィー(LC;商品名「Alliance 2695」、日本ウォーターズ社製)に、誘導結合プラズマ質量分析計(ICP-MS;商品名「ICP-MS7500」、アジレント・テクノロジー社製)を検出器として結合させた装置(LC-ICP-MS)を用い、以下の測定条件にて、原水中の溶解性のシアノ錯体の濃度を分析した。
(測定条件)
カラム;ODSカラム(商品名「L-Column2」;粒子径5μm、内径4.6mm、カラム長150mm、2連;化学物質評価研究機構製)
移動相;アセトニトリルと25mMリン酸緩衝液(pH7.0、イオンペア試薬として15mMリン酸二水素テトラブチルアンモニウムを含む)との体積比40:60の混合物
流速;0.8mL/分
カラム温度;40℃
検出器;ICP-MS及びフォトダイオードアレイ(PDA)(検出波長:210~400nm)
ICP-MSにおける検出対象元素:Fe(原子量56)、Cu(原子量63)、Ni(原子量60)、Co(原子量59)、Zn(原子量66)
注入量;50~100μL
In addition, raw water No. The filtrate obtained by filtering each raw water of 1 to 3 with 5 type C filter paper was subjected to liquid chromatography (LC; trade name "Alliance 2695", manufactured by Nippon Waters Co., Ltd.), and an inductively coupled plasma mass spectrometer (ICP- MS; product name "ICP-MS7500", manufactured by Agilent Technologies) as a detector (LC-ICP-MS), under the following measurement conditions, the soluble cyano complex in the raw water Concentration was analyzed.
(Measurement condition)
Column: ODS column (trade name “L-Column2”; particle size 5 μm, inner diameter 4.6 mm, column length 150 mm, 2 columns; manufactured by Chemicals Evaluation and Research Institute)
Mobile phase: A mixture of acetonitrile and 25 mM phosphate buffer (pH 7.0, containing 15 mM tetrabutylammonium dihydrogen phosphate as an ion pair reagent) at a volume ratio of 40:60 Flow rate: 0.8 mL/min Column temperature: 40°C
Detector; ICP-MS and photodiode array (PDA) (detection wavelength: 210-400 nm)
Elements to be detected in ICP-MS: Fe (atomic weight 56), Cu (atomic weight 63), Ni (atomic weight 60), Co (atomic weight 59), Zn (atomic weight 66)
Injection volume: 50 to 100 μL

上記分析の結果、原水No.1~3はいずれも[Fe(CN)(CO)]3-、[Fe(CN)(CO)2-、[Fe(CN)4-、及び[Fe(CN)3-を含有することが確認された。それらシアノ錯体の合計濃度は、原水No.1では3.0mg-CN/L、原水No.2では2.8mg-CN/L、原水No.3では1.2mg-CN/Lであった。これらの原水中のペンタシアノカルボニル鉄錯体の濃度は、表1に示すT-CN濃度からF-CN濃度を差し引いたシアノ錯体濃度と比較することで、原水中のシアノ錯体の過半(50質量%超)が、ペンタシアノカルボニル鉄錯体であることが認められた。なお、上記分析の結果、原水No.1のシアノ錯体濃度の内訳は、[Fe(CN)(CO)]3-:1.8mg/L、[Fe(CN)(CO)2-:0.3mg/L、[Fe(CN)4-:0.6mg/L、及び[Fe(CN)3-:0.3mg/Lであった。また、原水No.2のシアノ錯体濃度の内訳は、[Fe(CN)(CO)]3-:1.7mg/L、[Fe(CN)(CO)2-:0.3mg/L、[Fe(CN)4-:0.5mg/L、及び[Fe(CN)3-:0.3mg/Lであった。さらに、原水No.3のシアノ錯体濃度の内訳は、[Fe(CN)(CO)]3-:0.7mg/L、[Fe(CN)(CO)2-:0.1mg/L、[Fe(CN)4-:0.3mg/L、及び[Fe(CN)3-:0.1mg/Lであった。 As a result of the above analysis, raw water No. 1 to 3 are all [Fe(CN) 5 (CO)] 3− , [Fe(CN) 4 (CO) 2 ] 2− , [Fe(CN) 6 ] 4− , and [Fe(CN) 6 ] It was confirmed to contain 3- . The total concentration of these cyano complexes is the raw water No. 1 is 3.0 mg-CN/L, raw water No. 2, 2.8 mg-CN/L, raw water No. 3 was 1.2 mg-CN/L. The concentration of the pentacyanocarbonyl iron complex in these raw waters was compared with the cyano complex concentration obtained by subtracting the F-CN concentration from the T-CN concentration shown in Table 1, and the majority of the cyano complex in the raw water (50% by mass super) was found to be a pentacyanocarbonyl iron complex. As a result of the above analysis, raw water No. The breakdown of the cyano complex concentration of No. 1 is as follows: [Fe(CN) 5 (CO)] 3− : 1.8 mg/L, [Fe(CN) 4 (CO) 2 ] 2− : 0.3 mg/L, [Fe (CN) 6 ] 4− : 0.6 mg/L and [Fe(CN) 6 ] 3− : 0.3 mg/L. In addition, raw water No. The breakdown of the cyano complex concentration of 2 is as follows: [Fe(CN) 5 (CO)] 3− : 1.7 mg/L, [Fe(CN) 4 (CO) 2 ] 2− : 0.3 mg/L, [Fe (CN) 6 ] 4− : 0.5 mg/L and [Fe(CN) 6 ] 3− : 0.3 mg/L. Furthermore, raw water No. The breakdown of the cyano complex concentration of 3 is as follows: [Fe(CN) 5 (CO)] 3− : 0.7 mg/L, [Fe(CN) 4 (CO) 2 ] 2− : 0.1 mg/L, [Fe (CN) 6 ] 4− : 0.3 mg/L and [Fe(CN) 6 ] 3− : 0.1 mg/L.

(懸濁物質)
所定の工場における排ガスの洗浄を行う排ガス処理装置から排出された、未燃カーボン、鉄分、及び亜鉛等を含む懸濁物質(SSNo.1)と、亜鉛及び銅を含まない懸濁物質(SSNo.2)を用意した。これらの懸濁物質(SS)の元素組成を蛍光X線分析によって求め、表2に示した。後述する通り、これらの懸濁物質(SSNo.1又はSSNo.2)と、上述した原水(原水No.1~3のいずれか)とを混合して模擬集塵水を調製した。
(suspended solids)
Suspended solids containing unburned carbon, iron, zinc, etc. (SSNo. 1) and suspended solids free of zinc and copper (SSNo. 2) was prepared. The elemental compositions of these suspended solids (SS) were determined by fluorescent X-ray analysis and are shown in Table 2. As will be described later, these suspended solids (SS No. 1 or SS No. 2) were mixed with the above raw water (any of raw water Nos. 1 to 3) to prepare simulated dust collection water.

また、後述する通り、組成を変更したSSを用意するために、原水と、SSNo.2と、以下に述べる金属塩の溶液に水酸化ナトリウムを混合して調製した金属水酸化物懸濁液の所定量とを同時に混合し、模擬集塵水中のSS組成を表2のSSNo.3~13に示す通りに変更した模擬集塵水も用意した。上記金属塩の溶液として、SSNo.3~6ではZn2+源である硫酸亜鉛7水和物の水溶液、SSNo.7~10ではCu源である酸化第一銅を塩酸で溶解した溶液、SSNo.11ではFe2+源である塩化第一鉄の水溶液、SSNo.12ではNi2+源である硫酸ニッケル6水和物の水溶液、SSNo.13ではMn2+源である硫酸マンガン5水和物の水溶液を用いた。 In addition, as will be described later, in order to prepare SS with a different composition, raw water, SS No. 2 and a predetermined amount of a metal hydroxide suspension prepared by mixing sodium hydroxide with a metal salt solution described below. Simulated dust collection water modified as shown in 3-13 was also prepared. As a solution of the above metal salt, SSNo. 3 to 6, an aqueous solution of zinc sulfate heptahydrate, which is a Zn 2+ source; 7 to 10, a solution of cuprous oxide, a Cu + source, dissolved in hydrochloric acid; In SS No. 11, an aqueous solution of ferrous chloride, which is a Fe 2+ source, was used. In SS No. 12, an aqueous solution of nickel sulfate hexahydrate, which is a Ni 2+ source, was used. 13 used an aqueous solution of manganese sulfate pentahydrate, which is a source of Mn 2+ .

なお、表2には、各懸濁物質(SSNo.1~13)の概要として、SSNo.1は「Zn含有SS」、SSNo.2は「Zn,Cu不含SS」と記した。また、SSNo.3は、SSNo.2に硫酸亜鉛を添加したことでSS中のZn含有率(質量%)を0.1質量%に調整したことから、「Zn,Cu不含SS+Zn0.1%」と記した。SSNo.4~13についても、SSNo.3と同様に概要を記した。 In Table 2, SSNo. is shown as an overview of each suspended substance (SSNo. 1 is "Zn-containing SS", SSNo. 2 was described as "Zn and Cu-free SS". Also, SSNo. 3 is SS No. By adding zinc sulfate to 2, the Zn content (% by mass) in SS was adjusted to 0.1% by mass, so it was described as "Zn and Cu-free SS + Zn 0.1%". SS No. 4 to 13 also have SSNo. The outline is described in the same manner as in 3.

Figure 0007299380000002
Figure 0007299380000002

(模擬集塵水の調製)
原水(原水No.1~3のいずれか)を100mLビーカーにとり、50℃になるように加熱撹拌し、塩酸によりpH7.5に調整した。原水に対し、懸濁物質(SSNo.1又はSSNo.2)、又はSSNo.2と上記金属水酸化物懸濁液を、合計SS濃度が後述する試験例で示す通りになるように添加した。このようにして、シアン成分、及び懸濁物質(SSNo.1~13のいずれか)を含有する模擬集塵水を調製した。各試験例で処理対象とした模擬集塵水に使用した原水及び懸濁物質(SS)の種類(No.)、並びに当該集塵水中のSS濃度、及び亜鉛(Zn)、銅(Cu)、ニッケル(Ni)、又はマンガン(Mn)の濃度を、後記表5~10の模擬集塵水欄に示す。
(Preparation of simulated dust collection water)
Raw water (any of raw water Nos. 1 to 3) was placed in a 100 mL beaker, heated to 50° C. with stirring, and adjusted to pH 7.5 with hydrochloric acid. Suspended solids (SSNo.1 or SSNo.2) or SSNo. 2 and the above metal hydroxide suspension were added so that the total SS concentration was as shown in the test examples described later. In this manner, simulated dust collection water containing cyan components and suspended solids (any of SS Nos. 1 to 13) was prepared. The type (No.) of the raw water and suspended solids (SS) used in the simulated dust-collected water treated in each test example, the SS concentration in the dust-collected water, zinc (Zn), copper (Cu), The concentration of nickel (Ni) or manganese (Mn) is shown in the columns of simulated dust collection water in Tables 5 to 10 below.

<予備試験>
原水No.1を100mLビーカーにとり、50℃になるように加熱撹拌し、塩酸によりpH7.5に調整した。この原水にSSNo.2を2000mg/L添加して模擬集塵水とし、その模擬集塵水に対して、硫酸亜鉛7水和物の10質量%濃度水溶液を硫酸亜鉛(ZnSO)として10mg/L、後記表4に示すカチオン性化合物Aを10mg/L添加した。それらの添加後、予備試験1では20秒間、予備試験2では300秒間(5分間)撹拌して反応させ、反応液を得た。得られた反応液をろ紙(5種C)でろ過し、ろ液を得た。このろ液中の全シアン(T-CN)濃度を、後記の「処理水のT-CN濃度の測定」と同様の方法で測定した。予備試験1及び2の結果を、原水No.1のT-CN濃度値とともに表3に示す。
<Preliminary test>
Raw water no. 1 was placed in a 100 mL beaker, heated to 50° C. with stirring, and adjusted to pH 7.5 with hydrochloric acid. SSNo. 2 was added at 2000 mg/L to prepare simulated dust-collected water, and 10% by mass aqueous solution of zinc sulfate heptahydrate was added to the simulated dust-collected water at 10 mg/L as zinc sulfate (ZnSO 4 ), Table 4 below. 10 mg/L of the cationic compound A shown in was added. After these additions, the mixture was stirred for 20 seconds (preliminary test 1) and 300 seconds (5 minutes) for preliminary test 2, and reacted to obtain a reaction solution. The resulting reaction solution was filtered through filter paper (5 type C) to obtain a filtrate. The total cyanide (T--CN) concentration in this filtrate was measured in the same manner as in "Measurement of T--CN concentration in treated water" below. The results of preliminary tests 1 and 2 were compared with raw water no. Table 3 along with the T-CN concentration values of 1.

Figure 0007299380000003
Figure 0007299380000003

予備試験1及び2の結果より、模擬集塵水に亜鉛塩及びカチオン性化合物を添加した後、それらの混合時間が20秒間、及び5分間でも十分にT-CN濃度が低減された処理水が得られることが確認された。そのため、前述の集塵水処理システム12~15における第2の流路32(図2~図5参照)において、集塵水、カチオン性化合物、及び亜鉛塩を混合することで、十分に処理を行い得ることが認められる。予備試験1及び2の結果を踏まえ、以下の試験例では、模擬集塵水と、カチオン性化合物等との混合時間の条件を5分間に設定した。 From the results of preliminary tests 1 and 2, after adding zinc salt and cationic compound to simulated dust collection water, treated water with sufficiently reduced T-CN concentration was obtained even if the mixing time was 20 seconds or 5 minutes. confirmed to be obtained. Therefore, by mixing the dust collection water, the cationic compound, and the zinc salt in the second flow path 32 (see FIGS. 2 to 5) in the dust collection water treatment systems 12 to 15 described above, sufficient treatment can be achieved. It is recognized that it can be done. Based on the results of Preliminary Tests 1 and 2, in the following test examples, the conditions for the mixing time of the simulated dust collection water and the cationic compound and the like were set to 5 minutes.

<カチオン性化合物>
以下に述べる試験例では、カチオン性化合物として下記表4に示す化合物A~Lを用い、また、比較のための化合物Mとしてアクリルアミド・アクリル酸ナトリウム共重合物を用いた。化合物A~Hはアミン構造を有するカチオン性ポリマーである。化合物Iは第4級アンモニウムの構造を有するカチオン性モノマーであり、化合物Jは第1級アミンの構造を有するカチオン性モノマーである。また、化合物K及びLは、2種のカチオン性化合物(オレイルアミン及びジデシルジメチルアンモニウムクロリド)の混合物であるが、便宜上、化合物と記載する。
<Cationic compound>
In the test examples described below, compounds A to L shown in Table 4 below were used as cationic compounds, and an acrylamide/sodium acrylate copolymer was used as compound M for comparison. Compounds AH are cationic polymers having an amine structure. Compound I is a cationic monomer having a quaternary ammonium structure, and Compound J is a cationic monomer having a primary amine structure. Compounds K and L are mixtures of two cationic compounds (oleylamine and didecyldimethylammonium chloride), but are referred to as compounds for convenience.

Figure 0007299380000004
Figure 0007299380000004

<試験例1シリーズ>
(試験方法)
上記「模擬集塵水の調製」の通り、原水No.1にSSNo.2をSS濃度が2000mg/Lとなるように添加して調製した模擬集塵水を処理対象とした。この50℃、pH7.5の模擬集塵水に、表4に示すカチオン性化合物Aを10mg/L、及び金属塩溶液を下記表5の処理条件欄に示す金属としての添加濃度(金属塩中の金属元素換算の添加濃度)にて添加し、5分間撹拌した後、その模擬集塵水を含む液(以下、反応液)をろ紙(5種C)でろ過した。得られたろ液を処理水とした。ただし、試験例1-1では、ブランク試験として、模擬集塵水にカチオン性化合物A及び金属塩溶液のいずれも添加せずに試験を行い、試験例1-2では、金属塩を添加せずに試験を行った。上記金属塩溶液には、Zn2+源として硫酸亜鉛7水和物の水溶液、Cu源として酸化第一銅の塩酸溶液、Cu2+源として硫酸銅5水和物の水溶液、Ni2+源として硫酸ニッケル6水和物の水溶液、Mn2+源として硫酸マンガン5水和物の水溶液、及びFe2+源として塩化第一鉄の水溶液を用いた(それぞれ、表中、Zn2+、Cu、Cu2+、Ni2+、Mn2+、及びFe2+と記す。)。
<Test example 1 series>
(Test method)
As described in the above "preparation of simulated dust collection water", raw water No. 1 to SSNo. 2 was added so that the SS concentration was 2000 mg/L, and the simulated dust collection water prepared was treated. To this simulated dust collection water at 50°C and pH 7.5, 10 mg/L of the cationic compound A shown in Table 4 and a metal salt solution were added at concentrations of metals shown in the treatment conditions column of Table 5 below (in metal salt (addition concentration in terms of metal element) and stirred for 5 minutes, and then the liquid containing the simulated dust collection water (hereinafter referred to as the reaction liquid) was filtered with filter paper (Type 5 C). The obtained filtrate was used as treated water. However, in Test Example 1-1, as a blank test, the test was performed without adding either the cationic compound A or the metal salt solution to the simulated dust collection water, and in Test Example 1-2, no metal salt was added. was tested on. The above metal salt solutions include an aqueous solution of zinc sulfate heptahydrate as a Zn2 + source, a hydrochloric acid solution of cuprous oxide as a Cu + source, an aqueous solution of copper sulfate pentahydrate as a Cu2 + source, and sulfuric acid as a Ni2 + source. An aqueous solution of nickel hexahydrate, an aqueous solution of manganese sulfate pentahydrate as Mn 2+ source, and an aqueous solution of ferrous chloride as Fe 2+ source were used (Zn 2+ , Cu + , Cu 2+ , referred to as Ni 2+ , Mn 2+ and Fe 2+ ).

(処理水のT-CN濃度の測定)
得られた処理水について、JIS K0102の38.1.2で規定される「pH2以下で発生するシアン化水素」で前処理し、JIS K0102の38.3で規定される「4-ピリジンカルボン酸-ピラゾロン吸光光度法」に準じた方法を用いることで全シアン(T-CN)濃度を測定した。結果を表5の処理水欄に示す。
(Measurement of T-CN concentration in treated water)
The resulting treated water is pretreated with "hydrogen cyanide generated at pH 2 or less" defined in 38.1.2 of JIS K0102, and "4-pyridinecarboxylic acid-pyrazolone" defined in 38.3 of JIS K0102. The total cyan (T-CN) concentration was measured by using a method according to "Absorptiometry". The results are shown in the column of treated water in Table 5.

Figure 0007299380000005
Figure 0007299380000005

<試験例2シリーズ>
上記「模擬集塵水の調製」の通り、原水No.1に、下記表6の模擬集塵水欄に示す懸濁物質(SSNo.2~13のいずれか)を2000mg/L含むように調製した模擬集塵水を処理対象とした。この50℃、pH7.5の模擬集塵水に、表4に示すカチオン性化合物Aを下記表6の処理条件欄に示す添加濃度にて添加し、5分間撹拌した後、反応液をろ紙(5種C)でろ過した。得られたろ液を処理水とした。ただし、試験例2-1~2-8では、模擬集塵水にカチオン性化合物Aを添加せずに試験を行った。得られた処理水中の全シアン(T-CN)濃度を、上記の「処理水のT-CN濃度の測定」と同様の方法で測定した。その結果を表6の処理水欄に示す。
<Test example 2 series>
As described in the above "preparation of simulated dust collection water", raw water No. In 1, simulated dust water prepared to contain 2000 mg/L of suspended solids (any of SS No. 2 to 13) shown in the simulated dust water column of Table 6 below was treated. To this 50° C., pH 7.5 simulated dust collection water, the cationic compound A shown in Table 4 was added at the addition concentration shown in the treatment conditions column of Table 6 below, stirred for 5 minutes, and then the reaction solution was filtered with filter paper ( Filtration was carried out with 5 type C). The obtained filtrate was used as treated water. However, in Test Examples 2-1 to 2-8, tests were conducted without adding the cationic compound A to the simulated dust collection water. The total cyanide (T-CN) concentration in the resulting treated water was measured in the same manner as in "Measurement of T-CN concentration in treated water" above. The results are shown in the column of treated water in Table 6.

Figure 0007299380000006
Figure 0007299380000006

<試験例3シリーズ>
上記「模擬集塵水の調製」の通り、原水No.1に、下記表7の模擬集塵水欄に示す懸濁物質(SSNo.1又はSSNo.6)を当該欄に示すSS濃度にて含むように調製した模擬集塵水を処理対象とした。この50℃、pH7.5の模擬集塵水に、表4に示すカチオン性化合物Aを10mg/L添加し、5分間撹拌した後、反応液をろ紙(5種C)でろ過した。得られたろ液を処理水とした。ただし、試験例3-1~3-6では、模擬集塵水にカチオン性化合物Aを添加せずに試験を行った。得られた処理水中の全シアン(T-CN)濃度を、上記の「処理水のT-CN濃度の測定」と同様の方法で測定した。その結果を表7の処理水欄に示す。
<Test example 3 series>
As described in the above "preparation of simulated dust collection water", raw water No. In 1, simulated dust water prepared to contain suspended solids (SS No. 1 or SS No. 6) shown in the simulated dust water column of Table 7 below at the SS concentration shown in the relevant column was treated. 10 mg/L of the cationic compound A shown in Table 4 was added to the simulated dust collection water at 50° C. and pH 7.5, and after stirring for 5 minutes, the reaction solution was filtered through filter paper (Type 5 C). The obtained filtrate was used as treated water. However, in Test Examples 3-1 to 3-6, tests were conducted without adding the cationic compound A to the simulated dust collection water. The total cyanide (T-CN) concentration in the resulting treated water was measured in the same manner as in "Measurement of T-CN concentration in treated water" above. The results are shown in the column of treated water in Table 7.

Figure 0007299380000007
Figure 0007299380000007

<試験例4シリーズ>
上記「模擬集塵水の調製」の通り、原水No.1にSSNo.1を2500mg/L添加して調製した模擬集塵水を処理対象とした。この50℃、pH7.5の模擬集塵水に、下記表8の処理条件欄に示す化合物A~M(表4参照)のいずれかを15mg/L添加し、試験例4-3及び4-15~4-29ではさらに、試験例1シリーズで述べた「Zn2+源」又は「Cu源」の金属塩溶液を下記表8の処理条件欄に示す金属としての添加濃度(金属塩中の金属元素換算の添加濃度)にて添加し、5分間撹拌した後、反応液をろ紙(5種C)でろ過した。得られたろ液を処理水とした。ただし、試験例4-1では、模擬集塵水に化合物A~Mのいずれも添加せずに試験を行った。得られた処理水中の全シアン(T-CN)濃度を、上記の「処理水のT-CN濃度の測定」と同様の方法で測定した。その結果を表8の処理水欄に示す。
<Test example 4 series>
As described in the above "preparation of simulated dust collection water", raw water No. 1 to SSNo. A simulated dust collection water prepared by adding 2500 mg/L of 1 was treated. 15 mg/L of one of the compounds A to M (see Table 4) shown in the treatment conditions column of Table 8 below was added to the simulated dust collection water at 50°C and pH 7.5, and Test Examples 4-3 and 4- 15 to 4-29, the metal salt solution of the “Zn 2+ source” or “Cu + source” described in the Test Example 1 series was added at the concentration of the metal shown in the treatment conditions column of Table 8 below (the concentration in the metal salt added concentration in terms of metal element), stirred for 5 minutes, and then filtered through filter paper (Type 5 C). The obtained filtrate was used as treated water. However, in Test Example 4-1, the test was conducted without adding any of the compounds A to M to the simulated dust collection water. The total cyanide (T-CN) concentration in the resulting treated water was measured in the same manner as in "Measurement of T-CN concentration in treated water" above. The results are shown in the column of treated water in Table 8.

Figure 0007299380000008
Figure 0007299380000008

<試験例5シリーズ>
上記「模擬集塵水の調製」の通り、原水No.2にSSNo.1をSS濃度が2000mg/Lとなるように添加して調製した模擬集塵水を処理対象とした。この50℃、pH7.5の模擬集塵水に、下記表9の処理条件欄に示す化合物A~M(表4参照)のいずれかを20mg/L添加し、また、同欄中に示す薬剤を各試験例の条件に応じて添加し、5分間撹拌した。ただし、試験例5-1~5-3では、模擬集塵水に化合物A~Mのいずれも添加せずに試験を行った。上記薬剤には、35質量%濃度の過酸化水素水、12質量%濃度の次亜塩素酸水溶液、及び1質量%濃度の硫酸銅(II)5水和物の水溶液を用いた。各試験例における過酸化水素水のHとしての添加濃度(mg(H)/L)、次亜塩素酸水溶液のNaClOとしての添加濃度(mg(NaClO)/L)、硫酸銅(II)水溶液のCuとしての添加濃度(mg(Cu)/L)を、表9の薬剤欄に示す。
上記5分間の撹拌後、残存した過酸化水素及び次亜塩素酸を重亜硫酸ナトリウムの添加によって除去した上で、反応液をろ紙(5種C)でろ過して得られたろ液を処理水とした。得られた処理水中の全シアン(T-CN)濃度を、上記の「処理水のT-CN濃度の測定」と同様の方法で測定した。その結果を表9の処理水欄に示す。
<Test Example 5 series>
As described in the above "preparation of simulated dust collection water", raw water No. 2 to SS No. The simulated dust collection water prepared by adding 1 so that the SS concentration was 2000 mg/L was treated. To this 50° C., pH 7.5 simulated dust collection water, 20 mg/L of any of compounds A to M (see Table 4) shown in the treatment conditions column of Table 9 below was added, and the agent shown in the same column was added. was added according to the conditions of each test example and stirred for 5 minutes. However, Test Examples 5-1 to 5-3 were tested without adding any of the compounds A to M to the simulated dust collection water. As the above chemicals, 35% by mass hydrogen peroxide solution, 12% by mass hypochlorous acid aqueous solution, and 1% by mass aqueous copper (II) sulfate pentahydrate solution were used. Addition concentration of hydrogen peroxide water as H 2 O 2 in each test example (mg (H 2 O 2 ) / L), addition concentration of hypochlorous acid aqueous solution as NaClO (mg (NaClO) / L), sulfuric acid Addition concentration (mg(Cu)/L) of copper (II) aqueous solution as Cu is shown in Table 9 in the chemical column.
After stirring for 5 minutes, the remaining hydrogen peroxide and hypochlorous acid are removed by adding sodium bisulfite, and the reaction solution is filtered through filter paper (5 type C). The obtained filtrate is treated water. bottom. The total cyanide (T-CN) concentration in the resulting treated water was measured in the same manner as in "Measurement of T-CN concentration in treated water" above. The results are shown in the column of treated water in Table 9.

Figure 0007299380000009
Figure 0007299380000009

<試験例6シリーズ>
上記「模擬集塵水の調製」の通り、原水No.3にSSNo.1をSS濃度が2000mg/Lとなるように添加して調製した模擬集塵水を処理対象とした。この50℃、pH7.5の模擬集塵水に、下記表10の処理条件欄に示す化合物A~M(表4参照)のいずれかを20mg/L添加し、また、同欄中に示す薬剤を各試験例の条件に応じて添加し、5分間撹拌した。ただし、試験例6-1~6-3では、模擬集塵水に化合物A~Mのいずれも添加せずに試験を行った。上記薬剤には、35質量%濃度の過酸化水素水、12質量%濃度の次亜塩素酸水溶液、及び1質量%濃度の硫酸銅(II)5水和物の水溶液を用いた。各試験例における過酸化水素水のHとしての添加濃度(mg(H)/L)、次亜塩素酸水溶液のNaClOとしての添加濃度(mg(NaClO)/L)、硫酸銅(II)水溶液のCuとしての添加濃度(mg(Cu)/L)を、表10の薬剤欄に示す。
上記5分間の撹拌後、残存した過酸化水素及び次亜塩素酸を重亜硫酸ナトリウムの添加によって除去した上で、反応液をろ紙(5種C)でろ過して得られたろ液を処理水とした。得られた処理水中の全シアン(T-CN)濃度を、上記の「処理水のT-CN濃度の測定」と同様の方法で測定した。その結果を表10の処理水欄に示す。
<Test example 6 series>
As described in the above "preparation of simulated dust collection water", raw water No. 3 to SS No. The simulated dust collection water prepared by adding 1 so that the SS concentration was 2000 mg/L was treated. To this 50° C., pH 7.5 simulated dust collection water, 20 mg/L of one of the compounds A to M (see Table 4) shown in the treatment conditions column of Table 10 below was added, and the agent shown in the same column was added. was added according to the conditions of each test example and stirred for 5 minutes. However, Test Examples 6-1 to 6-3 were tested without adding any of the compounds A to M to the simulated dust collection water. As the above chemicals, 35% by mass hydrogen peroxide solution, 12% by mass hypochlorous acid aqueous solution, and 1% by mass aqueous copper (II) sulfate pentahydrate solution were used. Addition concentration of hydrogen peroxide water as H 2 O 2 in each test example (mg (H 2 O 2 ) / L), addition concentration of hypochlorous acid aqueous solution as NaClO (mg (NaClO) / L), sulfuric acid Addition concentration (mg(Cu)/L) of copper (II) aqueous solution as Cu is shown in Table 10, chemical agent column.
After stirring for 5 minutes, the remaining hydrogen peroxide and hypochlorous acid are removed by adding sodium bisulfite, and the reaction solution is filtered through filter paper (5 type C). The obtained filtrate is treated water. bottom. The total cyanide (T-CN) concentration in the resulting treated water was measured in the same manner as in "Measurement of T-CN concentration in treated water" above. The results are shown in the column of treated water in Table 10.

Figure 0007299380000010
Figure 0007299380000010

以上の試験例1~6シリーズの各試験例の結果、懸濁物質及びペンタシアノカルボニル鉄錯体を含有する模擬集塵水に対して、様々な条件で処理を行い、全シアン(T-CN)濃度が排水基準の1mg(CN)/L以下である処理水が得られた(試験例1-3~12、試験例2-13~24、試験例3-7~12、試験例4-4~29、試験例5-5~15、及び試験例6-5~17)。 As a result of each test example in the above test examples 1 to 6 series, the simulated dust collection water containing suspended solids and pentacyanocarbonyl iron complex was treated under various conditions, and total cyanide (T-CN) Treated water with a concentration of 1 mg (CN) / L or less of the wastewater standard was obtained (Test Examples 1-3 to 12, Test Examples 2-13 to 24, Test Examples 3-7 to 12, Test Example 4-4 ~29, Test Examples 5-5 to 15, and Test Examples 6-5 to 17).

具体的には、ペンタシアノカルボニル鉄等のシアノ錯体及び懸濁物質を含有する集塵水に対して、当該集塵水中の懸濁物質が亜鉛及び銅を含まない場合、アミン構造を有するカチオン性化合物と、亜鉛塩又は銅塩とを添加して固液分離処理することで、T-CN濃度が有効に低減された処理水が得られることが確認された(試験例1-3~12)。 Specifically, for collected dust containing a cyano complex such as pentacyanocarbonyl iron and suspended solids, when the suspended solids in the collected dust do not contain zinc and copper, a cationic compound having an amine structure It was confirmed that by adding a compound and a zinc salt or a copper salt and performing solid-liquid separation treatment, treated water in which the T-CN concentration was effectively reduced was obtained (Test Examples 1-3 to 1-12). .

また、ペンタシアノカルボニル鉄等のシアノ錯体及び懸濁物質を含有する集塵水に対して、当該集塵水中の懸濁物質が亜鉛又は銅を含む場合、アミン構造を有するカチオン性化合物を添加して固液分離処理することで、T-CN濃度が有効に低減された処理水が得られることが確認された(試験例2-13~24)。この場合の効果は、集塵水中のSS濃度が変わっても認められ(試験例3-7~12及び試験例4-4~29)、さらに亜鉛塩又は銅塩を集塵水に添加することで、T-CN濃度がより低減された処理水が得られやすいことが認められた(試験例4-15~29)。 Further, when the suspended matter in the dust-collected water contains zinc or copper, a cationic compound having an amine structure is added to the dust-collected water containing a cyano complex such as pentacyanocarbonyl iron and suspended matter. It was confirmed that treated water with effectively reduced T-CN concentration can be obtained by solid-liquid separation treatment (Test Examples 2-13 to 2-24). The effect in this case was observed even when the SS concentration in the dust collection water changed (Test Examples 3-7 to 12 and Test Examples 4-4 to 29), and furthermore zinc salt or copper salt was added to the dust collection water. , it was found that treated water with a lower T-CN concentration can be easily obtained (Test Examples 4-15 to 4-29).

さらに、ペンタシアノカルボニル鉄等のシアノ錯体、シアン化物イオン、及び懸濁物質を含有する集塵水に対して、当該集塵水中の懸濁物質が亜鉛を含む条件下、アミン構造を有するカチオン性化合物、及び酸化剤を添加して固液分離処理することで、T-CN濃度が有効に低減された処理水が得られることが確認された(試験例5-5~15及び試験例6-5~17)。 Furthermore, for collected water containing cyano complexes such as pentacyanocarbonyl iron, cyanide ions, and suspended solids, under the condition that the suspended solids in the collected water contain zinc, a cationic compound having an amine structure is used. It was confirmed that solid-liquid separation treatment by adding a compound and an oxidizing agent yields treated water in which the T-CN concentration is effectively reduced (Test Examples 5-5 to 15 and Test Example 6- 5-17).

以上の結果から、集塵水中の懸濁物質が亜鉛及び/又は銅を含む条件や集塵水にさらに亜鉛塩及び/又は銅塩を添加する条件下におけるカチオン性化合物の作用により、集塵水中のペンタシアノカルボニル鉄錯体の不溶化物を生じさせ、それを懸濁物質と一緒に固液分離処理で分離除去できると認められる。また、集塵水がさらにシアン化物イオンを含む場合、集塵水やその固液分離処理後に得られた分離液に酸化剤を添加することで集塵水中のシアン化物イオンも酸化分解できると認められる。 From the above results, it can be concluded that under conditions where suspended solids in the collected water contain zinc and/or copper, or under conditions where zinc salts and/or copper salts are further added to the collected water, of the pentacyanocarbonyl iron complex, which can be separated and removed together with suspended solids by solid-liquid separation treatment. In addition, when the dust collection water further contains cyanide ions, it was found that the cyanide ions in the dust collection water can be oxidatively decomposed by adding an oxidizing agent to the dust collection water or the separated liquid obtained after the solid-liquid separation treatment. be done.

さらに付言すると、化合物A~H及びJを用いた試験例(No.1-3~12;2-13~24;3-7~12;4-4~10、12、15~21、23及び25~27;5-5~12及び14;6-5~14及び16)では、化合物Iを用いた試験例(No.4-11、22及び28;5-13;6-15)に比べて、当該化合物を模擬集塵水に添加した際の発泡が抑制されていた。また、化合物C、E、H、J、K及びLを用いた試験例(No.4-5、7、10、12~14、16、18、21、23、24、26及び29;5-12、14及び15;6-14、16及び17)では、それら以外の化合物を用いた場合に比べて、粘度が低く、ポンプ送液がより容易であった。 Furthermore, test examples using compounds A to H and J (No. 1-3 to 12; 2-13 to 24; 3-7 to 12; 4-4 to 10, 12, 15 to 21, 23 and 25-27; 5-5-12 and 14; 6-5-14 and 16), compared to test examples using compound I (No. 4-11, 22 and 28; 5-13; 6-15) Therefore, foaming was suppressed when the compound was added to the simulated dust collection water. Also, test examples using compounds C, E, H, J, K and L (No. 4-5, 7, 10, 12-14, 16, 18, 21, 23, 24, 26 and 29; 5- 12, 14 and 15; 6-14, 16 and 17) were less viscous and easier to pump than the other compounds.

上記試験例の結果から、実際に、排ガスを湿式集塵処理して得られる集塵水について、前述の固液分離設備及び循環設備を用いる実施形態に係る集塵水の処理方法を適用することが非常に有用であることが確かめられた。固液分離設備により、集塵水中の懸濁物質とともにペンタシアノカルボニル鉄錯体を分離除去できるためである。また、それにより、集塵水中の懸濁物質を固液分離した後にさらなる沈殿槽を必要としなくても、集塵水中のペンタシアノカルボニル鉄錯体を有効に除去処理することができ、従来技術と比べて、設備の設置費用を低く抑えつつ、シアン濃度が有効に低減された処理水を得ることができるためである。 From the results of the above test examples, it was found that the method for treating dust water according to the embodiment using the above-described solid-liquid separation equipment and circulation equipment was actually applied to dust water obtained by wet dust collection treatment of exhaust gas. was found to be very useful. This is because the solid-liquid separation equipment can separate and remove the pentacyanocarbonyl iron complex together with the suspended matter in the collected water. Further, as a result, the pentacyanocarbonyl iron complex in the dust-collected water can be effectively removed without requiring an additional sedimentation tank after the solid-liquid separation of the suspended matter in the dust-collected water. This is because it is possible to obtain treated water in which the concentration of cyanide is effectively reduced while keeping installation costs of the equipment low.

11、12、13、14、15:集塵水処理システム
2:湿式集塵機
31、32、33、35、36、37:流路
40:固液分離設備
42:カチオン性化合物添加装置
44:亜鉛塩添加装置
46:銅塩添加装置
50:循環設備
52:貯槽
54:流路
56:循環ポンプ
62:酸化剤添加装置
11, 12, 13, 14, 15: Dust collection water treatment system 2: Wet dust collector 31, 32, 33, 35, 36, 37: Flow path 40: Solid-liquid separation equipment 42: Cationic compound addition device 44: Zinc salt Addition device 46: Copper salt addition device 50: Circulation equipment 52: Storage tank 54: Flow path 56: Circulation pump 62: Oxidant addition device

Claims (9)

排ガスの湿式集塵処理により得られる集塵水中の懸濁物質を固液分離する固液分離設備と、前記固液分離設備で得られた分離液の一部を洗浄水として前記湿式集塵処理に供する循環設備とを用いて、前記集塵水を処理する方法であって、
前記集塵水は、前記懸濁物質、及びさらにペンタシアノカルボニル鉄錯体を含有し、かつ、前記集塵水中の前記懸濁物質濃度が500~10000mg/Lであり、
前記集塵水中の前記懸濁物質が亜鉛及び銅の一方又は両方を含む条件1、及び前記集塵水にさらに亜鉛塩及び銅塩の一方又は両方を添加する条件2のうちの少なくとも一方を満たす条件下、前記固液分離設備での固液分離処理前の前記集塵水であって、前記固液分離設備に前記集塵水を供給するための流路における前記集塵水に、アミン構造を有するカチオン性化合物を添加して、前記集塵水中の前記ペンタシアノカルボニル鉄錯体を難溶化及び/又は不溶化し、前記集塵水中に前記ペンタシアノカルボニル鉄錯体の難溶化物及び/又は不溶化物を生じさせ、その難溶化物及び/又は不溶化物を前記懸濁物質とともに固体成分として前記固液分離設備で固液分離処理し、除去することを含み、
前記カチオン性化合物は、ジメチルアミン・エピクロロヒドリン重縮合物、ジシアンジアミド・ホルムアルデヒド重縮合物、ジアリルジメチルアンモニウムクロリド重合体、ジメチルアミン・エピクロロヒドリン・ポリエチレンポリアミン重縮合物、アリルアミン塩酸塩重合体、及びアリルアミン塩酸塩・ジアリルアミン塩酸塩共重合体からなる群より選ばれる少なくとも1種を含む、集塵水の処理方法。
Solid-liquid separation equipment for solid-liquid separation of suspended matter in dust collection water obtained by wet dust collection treatment of exhaust gas, and said wet dust collection treatment using a part of the separated liquid obtained by said solid-liquid separation equipment as washing water. A method of treating the collected dust water using a circulation facility provided for
The dust collection water contains the suspended solids and a pentacyanocarbonyl iron complex, and the concentration of the suspended solids in the dust collection water is 500 to 10000 mg/L,
Satisfies at least one of condition 1 that the suspended matter in the dust-collected water contains one or both of zinc and copper, and condition 2 that one or both of zinc salt and copper salt is further added to the dust-collected water. Under the condition, the dust-collected water before solid-liquid separation treatment in the solid-liquid separation equipment, wherein the dust-collected water in a flow path for supplying the dust-collected water to the solid-liquid separation equipment has an amine structure by adding a cationic compound having and solid-liquid separation treatment in the solid-liquid separation equipment to remove the poorly soluble matter and / or insoluble matter together with the suspended matter as a solid component,
The cationic compound includes a dimethylamine/epichlorohydrin polycondensate, a dicyandiamide/formaldehyde polycondensate, a diallyldimethylammonium chloride polymer, a dimethylamine/epichlorohydrin/polyethylene polyamine polycondensate, and an allylamine hydrochloride polymer. and at least one selected from the group consisting of allylamine hydrochloride/diallylamine hydrochloride copolymer .
排ガスの湿式集塵処理により得られる集塵水中の懸濁物質を固液分離する固液分離設備と、前記固液分離設備で得られた分離液の一部を洗浄水として前記湿式集塵処理に供する循環設備とを用いて、前記集塵水を処理する方法であって、
前記集塵水は、前記懸濁物質、及びさらにペンタシアノカルボニル鉄錯体を含有し、かつ、前記集塵水中の前記懸濁物質濃度が500~10000mg/Lであり、
前記集塵水中の前記懸濁物質が亜鉛及び銅の一方又は両方を含む条件1、及び前記集塵水にさらに亜鉛塩及び銅塩の一方又は両方を添加する条件2のうちの少なくとも一方を満たす条件下、前記固液分離設備での固液分離処理前の前記集塵水であって、前記固液分離設備に前記集塵水を供給するための流路における前記集塵水に、アミン構造を有するカチオン性化合物を添加して、前記集塵水中の前記ペンタシアノカルボニル鉄錯体を難溶化及び/又は不溶化し、前記集塵水中に前記ペンタシアノカルボニル鉄錯体の難溶化物及び/又は不溶化物を生じさせ、その難溶化物及び/又は不溶化物を前記懸濁物質とともに固体成分として前記固液分離設備で固液分離処理し、除去することを含み、
前記カチオン性化合物は、ジアリルジメチルアンモニウムクロリド重合体を含む、集塵水の処理方法。
Solid-liquid separation equipment for solid-liquid separation of suspended matter in dust collection water obtained by wet dust collection treatment of exhaust gas, and said wet dust collection treatment using a part of the separated liquid obtained by said solid-liquid separation equipment as washing water. A method of treating the collected dust water using a circulation facility provided for
The dust collection water contains the suspended solids and a pentacyanocarbonyl iron complex, and the concentration of the suspended solids in the dust collection water is 500 to 10000 mg/L,
Satisfies at least one of condition 1 that the suspended matter in the dust-collected water contains one or both of zinc and copper, and condition 2 that one or both of zinc salt and copper salt is further added to the dust-collected water. Under the condition, the dust-collected water before solid-liquid separation treatment in the solid-liquid separation equipment, wherein the dust-collected water in a flow path for supplying the dust-collected water to the solid-liquid separation equipment has an amine structure by adding a cationic compound having and solid-liquid separation treatment in the solid-liquid separation equipment to remove the poorly soluble matter and / or insoluble matter together with the suspended matter as a solid component,
A method for treating collected dust , wherein the cationic compound contains a diallyldimethylammonium chloride polymer .
排ガスの湿式集塵処理により得られる集塵水中の懸濁物質を固液分離する固液分離設備と、前記固液分離設備で得られた分離液の一部を洗浄水として前記湿式集塵処理に供する循環設備とを用いて、前記集塵水を処理する方法であって、
前記集塵水は、前記懸濁物質、及びさらにペンタシアノカルボニル鉄錯体を含有し、かつ、前記集塵水中の前記懸濁物質濃度が500~10000mg/Lであり、
前記集塵水中の前記懸濁物質が亜鉛及び銅の一方又は両方を含む条件1、及び前記集塵水にさらに亜鉛塩及び銅塩の一方又は両方を添加する条件2のうちの少なくとも一方を満たす条件下、前記固液分離設備での固液分離処理前の前記集塵水であって、前記固液分離設備に前記集塵水を供給するための流路における前記集塵水に、アミン構造を有するカチオン性化合物を添加して、前記集塵水中の前記ペンタシアノカルボニル鉄錯体を難溶化及び/又は不溶化し、前記集塵水中に前記ペンタシアノカルボニル鉄錯体の難溶化物及び/又は不溶化物を生じさせ、その難溶化物及び/又は不溶化物を前記懸濁物質とともに固体成分として前記固液分離設備で固液分離処理し、除去することを含み、
前記カチオン性化合物は、オレイルアミンを含む、集塵水の処理方法。
Solid-liquid separation equipment for solid-liquid separation of suspended matter in dust collection water obtained by wet dust collection treatment of exhaust gas, and said wet dust collection treatment using a part of the separated liquid obtained by said solid-liquid separation equipment as washing water. A method of treating the collected dust water using a circulation facility provided for
The dust collection water contains the suspended solids and a pentacyanocarbonyl iron complex, and the concentration of the suspended solids in the dust collection water is 500 to 10000 mg/L,
Satisfies at least one of condition 1 that the suspended matter in the dust-collected water contains one or both of zinc and copper, and condition 2 that one or both of zinc salt and copper salt is further added to the dust-collected water. Under the condition, the dust-collected water before solid-liquid separation treatment in the solid-liquid separation equipment, wherein the dust-collected water in a flow path for supplying the dust-collected water to the solid-liquid separation equipment has an amine structure by adding a cationic compound having and solid-liquid separation treatment in the solid-liquid separation equipment to remove the poorly soluble matter and / or insoluble matter together with the suspended matter as a solid component,
A method for treating collected dust , wherein the cationic compound contains oleylamine .
排ガスの湿式集塵処理により得られる集塵水中の懸濁物質を固液分離する固液分離設備と、前記固液分離設備で得られた分離液の一部を洗浄水として前記湿式集塵処理に供する循環設備とを用いて、前記集塵水を処理する方法であって、
前記集塵水は、前記懸濁物質、及びさらにペンタシアノカルボニル鉄錯体を含有し、かつ、前記集塵水中の前記懸濁物質濃度が500~10000mg/Lであり、
前記集塵水中の前記懸濁物質が亜鉛及び銅の一方又は両方を含む条件1、及び前記集塵水にさらに亜鉛塩及び銅塩の一方又は両方を添加する条件2のうちの少なくとも一方を満たす条件下、前記固液分離設備での固液分離処理前の前記集塵水であって、前記固液分離設備に前記集塵水を供給するための流路における前記集塵水に、アミン構造を有するカチオン性化合物を添加して、前記集塵水中の前記ペンタシアノカルボニル鉄錯体を難溶化及び/又は不溶化し、前記集塵水中に前記ペンタシアノカルボニル鉄錯体の難溶化物及び/又は不溶化物を生じさせ、その難溶化物及び/又は不溶化物を前記懸濁物質とともに固体成分として前記固液分離設備で固液分離処理し、除去することを含み、
前記カチオン性化合物は、オレイルアミンとジデシルジメチルアンモニウムクロリドの混合物を含む、集塵水の処理方法。
Solid-liquid separation equipment for solid-liquid separation of suspended matter in dust collection water obtained by wet dust collection treatment of exhaust gas, and said wet dust collection treatment using a part of the separated liquid obtained by said solid-liquid separation equipment as washing water. A method of treating the collected dust water using a circulation facility provided for
The dust collection water contains the suspended solids and a pentacyanocarbonyl iron complex, and the concentration of the suspended solids in the dust collection water is 500 to 10000 mg/L,
Satisfies at least one of condition 1 that the suspended matter in the dust-collected water contains one or both of zinc and copper, and condition 2 that one or both of zinc salt and copper salt is further added to the dust-collected water. Under the condition, the dust-collected water before solid-liquid separation treatment in the solid-liquid separation equipment, wherein the dust-collected water in a flow path for supplying the dust-collected water to the solid-liquid separation equipment has an amine structure by adding a cationic compound having and solid-liquid separation treatment in the solid-liquid separation equipment to remove the poorly soluble matter and / or insoluble matter together with the suspended matter as a solid component,
A method for treating collected dust , wherein the cationic compound contains a mixture of oleylamine and didecyldimethylammonium chloride .
前記集塵水中の前記懸濁物質が亜鉛及び銅の一方又は両方を含み、
少なくとも前記条件1を満たす条件下、前記集塵水に前記カチオン性化合物を添加することを含む請求項1~4のいずれか1項に記載の集塵水の処理方法。
the suspended matter in the dust collection water contains one or both of zinc and copper;
The method for treating dust-collected water according to any one of claims 1 to 4 , comprising adding the cationic compound to the dust-collected water under the condition that at least condition 1 is satisfied.
前記条件2として、前記集塵水に、前記亜鉛塩及び前記銅塩の一方又は両方を添加することを含む請求項1~4のいずれか1項に記載の集塵水の処理方法。 The method for treating dust-collected water according to any one of claims 1 to 4, wherein the condition 2 includes adding one or both of the zinc salt and the copper salt to the dust-collected water. 前記集塵水は、さらにシアン化物イオンを含有し、
前記集塵水;前記循環設備に供給される前の前記分離液;及び前記循環設備に供給された前記分離液;のうちの少なくともいずれかに、酸化剤を添加することを含む請求項1~のいずれか1項に記載の集塵水の処理方法。
The dust collection water further contains cyanide ions,
1-, comprising adding an oxidizing agent to at least one of the collected dust water; the separated liquid before being supplied to the circulation facility; and the separated liquid supplied to the circulation facility. 5. The method for treating collected dust water according to any one of 4 .
前記酸化剤は、少なくとも過酸化水素を含む請求項に記載の集塵水の処理方法。 The method for treating collected dust according to claim 7 , wherein the oxidizing agent contains at least hydrogen peroxide. 前記酸化剤は、過酸化水素と、次亜塩素酸又はその塩との組み合わせ;過酸化水素と、触媒量としての銅塩との組み合わせ;過酸化水素と、還元性硫黄化合物との組み合わせ;次亜塩素酸又はその塩と、還元性硫黄化合物との組み合わせ;からなる群より選ばれる少なくとも1種の組み合わせを含む請求項に記載の集塵水の処理方法。 The oxidizing agent is a combination of hydrogen peroxide and hypochlorous acid or a salt thereof; a combination of hydrogen peroxide and a copper salt as a catalytic amount; a combination of hydrogen peroxide and a reducing sulfur compound; The method for treating collected dust according to claim 7 , comprising at least one combination selected from the group consisting of a combination of chlorous acid or a salt thereof and a reducing sulfur compound.
JP2022084684A 2021-07-08 2022-05-24 How to treat collected dust Active JP7299380B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021113219 2021-07-08
JP2021113219 2021-07-08

Publications (2)

Publication Number Publication Date
JP2023010580A JP2023010580A (en) 2023-01-20
JP7299380B2 true JP7299380B2 (en) 2023-06-27

Family

ID=85119106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022084684A Active JP7299380B2 (en) 2021-07-08 2022-05-24 How to treat collected dust

Country Status (1)

Country Link
JP (1) JP7299380B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013094694A (en) 2011-10-28 2013-05-20 Vision Development Co Ltd Processing method for waste liquid containing metal atom, and adsorbent
JP2014004581A (en) 2012-05-28 2014-01-16 Nippon Steel & Sumikin Eco-Tech Corp Method for treating cyanide-containing wastewater and chemical used for the method
JP2020025955A (en) 2018-08-08 2020-02-20 日鉄環境株式会社 Treatment method of cyan-containing water
JP2020032412A (en) 2018-08-24 2020-03-05 日鉄環境株式会社 Method and equipment for treating cyanide-containing water

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6474470B2 (en) * 2016-09-02 2019-02-27 日鉄住金環境株式会社 Wastewater treatment method
JP6474472B2 (en) * 2016-10-21 2019-02-27 日鉄住金環境株式会社 Wastewater treatment method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013094694A (en) 2011-10-28 2013-05-20 Vision Development Co Ltd Processing method for waste liquid containing metal atom, and adsorbent
JP2014004581A (en) 2012-05-28 2014-01-16 Nippon Steel & Sumikin Eco-Tech Corp Method for treating cyanide-containing wastewater and chemical used for the method
JP2020025955A (en) 2018-08-08 2020-02-20 日鉄環境株式会社 Treatment method of cyan-containing water
JP2020032412A (en) 2018-08-24 2020-03-05 日鉄環境株式会社 Method and equipment for treating cyanide-containing water

Also Published As

Publication number Publication date
JP2023010580A (en) 2023-01-20

Similar Documents

Publication Publication Date Title
JP6474472B2 (en) Wastewater treatment method
JP7398021B2 (en) Treatment method and treatment equipment for cyanide-containing water
JP6474470B2 (en) Wastewater treatment method
CN108137358B (en) Method for treating cyanide complex-containing wastewater and treating agent used in method
JP4382556B2 (en) Treatment method of wastewater containing cyanide
JP7299380B2 (en) How to treat collected dust
JP5179242B2 (en) Waste water treatment method and waste water treatment equipment
JP7299381B2 (en) How to treat collected dust
KR102117850B1 (en) Treatment agent for cyanide-containing wastewater and method for treating cyanide-containing wastewater using the same
JP7157192B2 (en) water treatment method
JP2020025955A (en) Treatment method of cyan-containing water
JP6578561B2 (en) Cyanogen-containing wastewater treatment agent and cyanide-containing wastewater treatment method using the same
CN109621904A (en) The purification method of nickeliferous aqueous solution cleanser and nickeliferous aqueous solution
JP5990717B1 (en) Cyanogen-containing wastewater treatment agent and cyanide-containing wastewater treatment method using the same
JP6201114B2 (en) Treatment method of wastewater containing cyanide
CN108046382A (en) For the composite treating agent of oil gas field wastewater treatment
JP7448129B2 (en) How to treat wastewater
Bello et al. Vanadium removal and floc characteristics of tannin biocoagulants and iron sulphate in the treatment of mine effluent
JP3921695B2 (en) Treatment method for wastewater containing manganese
JP7454096B1 (en) Wastewater treatment method
JP6165898B1 (en) Method for treating water containing reducing sulfur component
JP7454092B1 (en) How to treat collected dust water
JP7440031B2 (en) Treatment method for cyanide-containing wastewater
JP2019076840A (en) Purification agent for heavy metal-containing aqueous solution, and method for purifying heavy metal-containing aqueous solution
CN112479389A (en) Novel sewage treatment agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220927

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230510

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230615

R150 Certificate of patent or registration of utility model

Ref document number: 7299380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150