JP2019076840A - Purification agent for heavy metal-containing aqueous solution, and method for purifying heavy metal-containing aqueous solution - Google Patents

Purification agent for heavy metal-containing aqueous solution, and method for purifying heavy metal-containing aqueous solution Download PDF

Info

Publication number
JP2019076840A
JP2019076840A JP2017206187A JP2017206187A JP2019076840A JP 2019076840 A JP2019076840 A JP 2019076840A JP 2017206187 A JP2017206187 A JP 2017206187A JP 2017206187 A JP2017206187 A JP 2017206187A JP 2019076840 A JP2019076840 A JP 2019076840A
Authority
JP
Japan
Prior art keywords
aqueous solution
heavy metal
containing aqueous
zinc
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017206187A
Other languages
Japanese (ja)
Inventor
正寛 服部
Masanori Hattori
正寛 服部
紗也佳 木佐貫
Sayaka Kisanuki
紗也佳 木佐貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2017206187A priority Critical patent/JP2019076840A/en
Publication of JP2019076840A publication Critical patent/JP2019076840A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

To provide a purification agent for aqueous solution containing heavy metals such as zinc and cadmium, and a method for purifying a heavy metal-containing aqueous solution using the purification agent, and a purification agent that suppresses clogging of pipes, strainers, etc., by suppressing a precipitation of poorly soluble salts at the time of mixing the purification agent with dilution water.SOLUTION: Heavy metals are removed from an aqueous solution containing heavy metals such as zinc and cadmium, by mixing: a purification agent for a heavy metal-containing aqueous solution containing 2 to 50 parts by weight of polyamine having a weight average molecular weight of 300 or more relative to 100 parts by weight of a salt of dithiocarbamic acid, and hydroxyaminocarboxylic acid having three or more carboxyl groups and/or a salt thereof; with dilution water such as drinking water, groundwater, industrial water and the like.SELECTED DRAWING: None

Description

本発明は、亜鉛、カドミウム等の重金属を含有する水溶液から、当該重金属を除去することを可能にする浄化剤、及びそれを用いた重金属含有水溶液の浄化方法に関するものであり、上水、地下水、工業用水等の希釈水との混合使用時においても、配管やストレーナー等の閉塞を抑制可能な重金属処理剤及び重金属含有水溶液の浄化方法を提供するものである。   The present invention relates to a purifying agent capable of removing heavy metals from an aqueous solution containing heavy metals such as zinc and cadmium, and a method for purifying a heavy metal-containing aqueous solution using the same. A heavy metal treating agent and a heavy metal-containing aqueous solution purification method capable of suppressing clogging of pipes, strainers and the like even when used in combination with dilution water such as industrial water.

亜鉛、カドミウム等の重金属を含有した水溶液は、排水処理設備に送り、例えば、鉄イオンを添加してアルカリ性にし、亜鉛イオン、カドミウムイオン等を鉄イオンやその他含有されるイオンと共に水酸化物として沈殿させるなどの処理を行い、水溶液から分離した後に放流される方法などが行われてきた。   The aqueous solution containing heavy metals such as zinc and cadmium is sent to waste water treatment equipment, for example, it is made alkaline by adding iron ions, and zinc ions, cadmium ions etc. are precipitated as hydroxides with iron ions and other contained ions. And the like, and separated from the aqueous solution and then discharged.

亜鉛含有量の排水基準は、従来5mg/Lと定められていたが、水生生物保全の観点から排水基準が強化され、平成18年には2mg/Lに変更されている。しかし、一律排水基準に対応することが著しく困難と認められる10業種に属する特定事業場に対しては、暫定排水基準として5mg/Lが適用されてきた。近年、亜鉛の排水基準である2mg/Lが要求されるようになった。   The drainage standard for zinc content was previously set at 5 mg / L, but the drainage standard was strengthened from the viewpoint of aquatic organism conservation, and changed to 2 mg / L in 2006. However, 5 mg / L has been applied as an interim drainage standard to specified business sites belonging to 10 industries where it is extremely difficult to meet uniform drainage standards. In recent years, 2 mg / L, which is the zinc drainage standard, has been required.

また、カドミウムは非常に有害な重金属であるため、近年、排水基準として0.03mg/L以下が要求されるようになり、排水処理の重要性が高まっている。   In addition, since cadmium is a very harmful heavy metal, in recent years, 0.03 mg / L or less has been required as a drainage standard, and the importance of wastewater treatment is increasing.

ところで、めっき工場、電子部品・機械部品製造工場、自動車工場、火力発電所、ごみ焼却場等からの排水には、クエン酸、グルコン酸などの有機酸、エチレンジアミン四酢酸(以下、EDTAと略す)、シアン、アミン、アンモニア、硫酸、ポリリン酸等の、亜鉛、カドミウム等の重金属と錯生成能力を持つ化合物が含まれ、上記した水酸化物法では浄化処理できない事例が多くなっている。   By the way, for drainage from plating plant, electronic parts / machine parts manufacturing plant, automobile plant, thermal power plant, waste incineration plant etc, organic acids such as citric acid and gluconic acid, ethylenediaminetetraacetic acid (hereinafter abbreviated as EDTA) And compounds such as cyanide, amine, ammonia, sulfuric acid, polyphosphoric acid and the like, which have a complexing ability with heavy metals such as zinc and cadmium, and there are many cases where the above-mentioned hydroxide method can not be purified.

これに対し、亜鉛、カドミウム等の重金属と錯生成能力を持つ化合物を化学的に処理した後に、これら重金属を不溶化処理する方法が知られている。しかしながら、例えば、塩素系薬剤による酸化法、電解酸化法、過酸化水素−第一鉄塩法、オゾン酸化法、湿式酸化法等の化学的処理を用いても、共存する重金属元素による酸化反応の阻害、スケールの生成等の問題から、十分な浄化処理が行えない状況である。   On the other hand, after chemically treating a compound having a complexing ability with heavy metals such as zinc and cadmium, a method is known in which these heavy metals are insolubilized. However, for example, even if chemical treatments such as chlorine based chemical methods, electrolytic oxidation methods, hydrogen peroxide-ferrous salt methods, ozone oxidation methods and wet oxidation methods are used, oxidation reactions due to coexisting heavy metal elements It is a situation where sufficient purification treatment can not be performed due to problems such as inhibition and scale formation.

排水中に含まれる各種の重金属元素を除去する技術としては、例えば、無機凝集剤又は有機凝集剤の添加による凝集分離除去法、電解による除去法、活性炭、無機吸着剤又は有機高分子材料による吸着除去法、排水を加熱蒸発させる乾固法、膜を用いた逆浸透法、電気透析又は限外ろ過法等が提案されている。   As a technique for removing various heavy metal elements contained in waste water, for example, flocculation separation removal method by addition of inorganic coagulant or organic coagulant, removal method by electrolysis, adsorption by activated carbon, inorganic adsorbent or organic polymer material Removal methods, drying to evaporate the waste water by heating, reverse osmosis using a membrane, electrodialysis or ultrafiltration, etc. have been proposed.

上記した諸方法を用いた場合であっても、以下のような問題が多々あり、いずれの方法もそれらに対する改善の必要性があった。例えば、
(1)凝集分離除去法では重金属を充分に処理できない、
(2)吸着除去法等は、例え重金属を吸着できたとしても処理後に多量の固形成分が発生する、
(3)逆浸透法、電気透析又は限外ろ過法等は、排水中に有機物を含有すると除去が困難であり、また、その処理コストが高い、
(4)加熱蒸発による乾固法は、処理法が煩雑かつ処理コストが高い、
等である。
Even when the above-described methods are used, there are many problems as described below, and there is a need to improve each method. For example,
(1) Agglomeration separation removal method can not fully process heavy metals,
(2) In the adsorption removal method, even if heavy metals can be adsorbed, a large amount of solid components are generated after treatment,
(3) In reverse osmosis, electrodialysis or ultrafiltration, etc., it is difficult to remove when organic matter is contained in the waste water, and the treatment cost is high,
(4) The drying method by heating evaporation is complicated processing method and high processing cost,
Etc.

一方、排水中に含まれる各種の重金属元素を除去する技術として、ジチオカルバミン酸の塩を排水中の重金属処理剤として使用する方法が提案されている(例えば、特許文献1〜4参照)。しかしながら、これら特許文献に記載の方法では、重金属と錯生成能力を持つ化合物を含む重金属含有排水からの、当該重金属の浄化処理効果が十分なものではなかった。   On the other hand, as a technique for removing various heavy metal elements contained in waste water, methods using a salt of dithiocarbamic acid as a heavy metal treatment agent in waste water have been proposed (see, for example, Patent Documents 1 to 4). However, in the methods described in these patent documents, the purification treatment effect of the heavy metal from the heavy metal-containing wastewater containing the compound having the ability to form a complex with the heavy metal is not sufficient.

また、分子内に三つ以上のアミノ基を有するポリアミンと、アミンのカルボジチオ酸塩を含む重金属処理剤が提案されている(例えば、特許文献5参照)。しかしながら、特許文献5に開示されている方法では、亜鉛、カドミウム等の重金属の浄化処理効果は不十分であった。   In addition, a heavy metal treating agent containing a polyamine having three or more amino groups in the molecule and a carbodithioate salt of an amine has been proposed (see, for example, Patent Document 5). However, in the method disclosed in Patent Document 5, the purification treatment effect of heavy metals such as zinc and cadmium is insufficient.

ところで、このジチオカルバミン酸の塩といったキレート薬剤の使用方法として、キレ−ト薬剤を重金属と錯生成能力を持つ化合物を含む重金属含有排水に直接添加する場合、上水、地下水、工業用水等の希釈水によって薬剤を所定濃度に希釈混合した後、重金属と錯生成能力を持つ化合物を含む重金属含有排水に添加される。これら希釈水にはマグネシウム、カルシウム、ケイ素、鉄等の種々の無機物が含まれており、希釈水とキレート薬剤との混合により、希釈水中の無機物が難溶性塩として析出し、配管やノズルの閉塞を引き起こす問題があった。   By the way, as a method of using a chelating agent such as a salt of dithiocarbamic acid, when the chelating agent is directly added to a heavy metal-containing wastewater containing a compound having the ability to form a complex with a heavy metal, diluted water such as fresh water, underground water, industrial water, etc. The agent is diluted and mixed to a predetermined concentration and then added to the heavy metal-containing waste water containing the heavy metal and the compound having a complexing ability. These dilution waters contain various inorganic substances such as magnesium, calcium, silicon, iron, etc. By mixing the dilution water and the chelating agent, the inorganic substances in the dilution water are precipitated as a sparingly soluble salt, and clogging of the piping and nozzles There was a problem that caused

この課題に対して、ヒドロキシアミノカルボン酸類とジチオカルボン酸塩を含むキレート系薬剤を用いることにより閉塞を抑制する方法が提案されている(例えば、特許文献6参照)。   In order to solve this problem, a method has been proposed for suppressing occlusion by using a chelating agent containing a hydroxyaminocarboxylic acid and a dithiocarboxylate (see, for example, Patent Document 6).

しかしながら、ヒドロキシアミノカルボン酸類とジチオカルボン酸塩を含むキレート薬剤は、配管やストレーナー等の閉塞に対する抑制効果は十分であるが、重金属と錯生成能力を持つ化合物を含む重金属含有排水からの、当該重金属の浄化処理効果が十分なものではなかった。   However, although the chelating agent containing hydroxyaminocarboxylic acids and dithiocarboxylic acid salts has a sufficient inhibitory effect on clogging of piping, strainers, etc., the heavy metals from the heavy metal-containing wastewater containing compounds having the ability to form a complex with heavy metals. The purification treatment effect was not enough.

特開2009−249399公報JP, 2009-249399, A 特開2011−074350公報JP, 2011-074350, A 特開2014−088477公報JP, 2014-88477, A 特開2002−177902公報JP, 2002-177902, A 特開2008−273995公報JP 2008-273995 A 特許第6048071号公報Patent No. 6048071

本発明は上記の課題に鑑みてなされたものであり、その目的は、希釈水等との混合使用時においても、配管やストレーナー等の閉塞を抑制可能な重金属処理剤、及びこれを用いた重金属と錯生成能力を持つ化合物を含む重金属含有排水から当該重金属を浄化する方法を提供するものである。   The present invention has been made in view of the above problems, and an object thereof is a heavy metal treating agent capable of suppressing clogging of piping, strainer and the like even when used in combination with dilution water and the like, and heavy metal using the same The present invention provides a method of purifying heavy metals from waste water containing heavy metals containing a compound having a complexing ability with

本発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、本発明の重金属含有水溶液用浄化剤、及びそれを用いた重金属含有水溶液の浄化方法を見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found the cleaning agent for a heavy metal-containing aqueous solution of the present invention and the method for purifying a heavy metal-containing aqueous solution using the same, and completed the present invention. It reached.

すなわち、本発明は、以下の要旨を有するものである。   That is, the present invention has the following gist.

[1]ジチオカルバミン酸の塩100重量部に対し、重量平均分子量300以上のポリアミンを2〜50重量部、並びにカルボキシル基を3つ以上有するヒドロキシアミノカルボン酸及び/又はその塩を含む重金属含有水溶液用浄化剤。   [1] For a heavy metal-containing aqueous solution containing 2 to 50 parts by weight of a polyamine having a weight average molecular weight of 300 or more, and 3 or more of carboxyl groups, with respect to 100 parts by weight of a salt of dithiocarbamic acid Purifier.

[2]ジチオカルバミン酸の塩が、1級アミノ基及び2級アミノ基からなる群より選ばれるアミノ基を少なくとも1つ有するアミン化合物と、二硫化炭素と、アルカリ金属水酸化物との反応生成物であることを特徴とする上記[1]に記載の重金属含有水溶液用浄化剤。   [2] Reaction product of an amine compound having at least one amino group selected from the group consisting of a primary amino group and a secondary amino group, a salt of dithiocarbamic acid, carbon disulfide, and an alkali metal hydroxide The heavy metal-containing aqueous solution purifying agent according to the above [1], which is characterized in that

[3]ジチオカルバミン酸の塩が、1級アミノ基及び2級アミノ基からなる群より選ばれるアミノ基を2つ以上有するアミン化合物と、二硫化炭素と、アルカリ金属水酸化物との反応生成物であることを特徴とする上記[1]に記載の重金属含有水溶液用浄化剤。   [3] Reaction product of an amine compound having two or more amino groups selected from the group consisting of a primary amino group and a secondary amino group with a dithiocarbamic acid salt, carbon disulfide, and an alkali metal hydroxide The heavy metal-containing aqueous solution purifying agent according to the above [1], which is characterized in that

[4]ジチオカルバミン酸の塩が、ピペラジン又はテトラエチレンペンタミンと、二硫化炭素と、アルカリ金属水酸化物との反応生成物であることを特徴とする上記[1]に記載の重金属含有水溶液用浄化剤。   [4] The heavy metal-containing aqueous solution according to the above [1], wherein the salt of dithiocarbamic acid is a reaction product of piperazine or tetraethylenepentamine, carbon disulfide, and an alkali metal hydroxide. Purifier.

[5]重量平均分子量300以上のポリアミンが、重量平均分子量300以上のポリエチレンイミンであることを特徴とする上記[1]〜[4]のいずれかに記載の重金属含有水溶液用浄化剤。   [5] The cleaning agent for a heavy metal-containing aqueous solution according to any one of the above [1] to [4], wherein the polyamine having a weight average molecular weight of 300 or more is a polyethyleneimine having a weight average molecular weight of 300 or more.

[6]重量平均分子量300以上のポリアミンが、重量平均分子量が1800〜200万のポリエチレンイミンであることを特徴とする上記[1]〜[4]のいずれかに記載の重金属含有水溶液用浄化剤。   [6] The cleaning agent for a heavy metal-containing aqueous solution according to any one of the above [1] to [4], wherein the polyamine having a weight average molecular weight of 300 or more is a polyethyleneimine having a weight average molecular weight of 1,800 to 200,000. .

[7]亜鉛、カドミウム、ニッケル、水銀、鉛、銅からなる群より選ばれる少なくとも一種の重金属を含む重金属含有水溶液に、上記[1]〜[6]のいずれかに記載の重金属含有水溶液用浄化剤を添加した後、生成した固形物を除去することを特徴とする重金属含有水溶液の浄化方法。   [7] Purification for a heavy metal-containing aqueous solution according to any one of the above [1] to [6] in a heavy metal-containing aqueous solution containing at least one heavy metal selected from the group consisting of zinc, cadmium, nickel, mercury, lead and copper A method of purifying a heavy metal-containing aqueous solution, comprising the steps of: removing the solid produced after adding the agent.

[8]亜鉛、カドミウム、ニッケル、水銀、鉛、銅からなる群より選ばれる少なくとも一種の重金属を含む重金属含有水溶液に、上記[1]〜[6]のいずれかに記載の重金属含有水溶液用浄化剤と希釈水を添加した後、生成した固形物を除去することを特徴とする重金属含有水溶液の浄化方法。   [8] Purification for a heavy metal-containing aqueous solution according to any one of the above [1] to [6] in a heavy metal-containing aqueous solution containing at least one heavy metal selected from the group consisting of zinc, cadmium, nickel, mercury, lead and copper A method for purifying a heavy metal-containing aqueous solution, which comprises removing the solid produced after adding an agent and dilution water.

[9]重金属含有水溶液が、さらに亜鉛、カドミウム、ニッケル、水銀、鉛、銅からなる群より選ばれる少なくとも一種の重金属と錯生成能力を持つ化合物を含むことを特徴とする上記[7]又は[8]に記載の重金属含有水溶液の浄化方法。   [9] The heavy metal-containing aqueous solution further comprises a compound having a complexing ability with at least one heavy metal selected from the group consisting of zinc, cadmium, nickel, mercury, lead, and copper [7] or [7] The heavy metal containing aqueous solution purification method as described in 8].

[10]亜鉛、カドミウム、ニッケル、水銀、鉛、銅からなる群より選ばれる少なくとも一種の重金属と錯生成能力を持つ化合物が、カルボキシル基及びアミノ基からなる群より選ばれる官能基を分子内に有する化合物であることを特徴とする上記[9]に記載の重金属含有水溶液の浄化方法。   [10] A compound having the ability to form a complex with at least one heavy metal selected from the group consisting of zinc, cadmium, nickel, mercury, lead and copper has in its molecule a functional group selected from the group consisting of a carboxyl group and an amino group It is a compound which it has, The purification method of heavy metal containing aqueous solution as described in said [9] characterized by the above-mentioned.

[11]固形物を除去する前に、無機凝集剤を添加することを特徴とする上記[7]〜[10]のいずれかに記載の重金属含有水溶液の浄化方法。   [11] The method for purifying a heavy metal-containing aqueous solution according to any one of the above [7] to [10], wherein an inorganic coagulant is added before removing a solid substance.

[12]固形物を除去する前に、無機凝集剤及び高分子凝集剤を添加することを特徴とする上記[7]〜[10]のいずれかに記載の重金属含有水溶液の浄化方法。   [12] The method for purifying a heavy metal-containing aqueous solution according to any one of the above [7] to [10], wherein an inorganic coagulant and a polymer coagulant are added before removing a solid substance.

[13]無機凝集剤が、鉄化合物及びアルミニウム化合物からなる群より選択されることを特徴とする上記[11]〜[12]に記載の重金属含有水溶液の浄化方法。   [13] The method for purifying a heavy metal-containing aqueous solution according to the above [11] to [12], wherein the inorganic coagulant is selected from the group consisting of an iron compound and an aluminum compound.

本発明の重金属水溶液用の浄化剤は、亜鉛の浄化処理が難しい亜鉛含有水溶液(例えば、亜鉛と錯生成能力を持つ化合物、及び亜鉛を含有する水溶液)であっても、亜鉛濃度を2mg/L以下に低減することができる。   The purification agent for a heavy metal aqueous solution of the present invention has a zinc concentration of 2 mg / L, even for a zinc-containing aqueous solution (for example, a compound having a complexing ability with zinc and an aqueous solution containing zinc) in which zinc purification treatment is difficult. It can be reduced to the following.

本発明の重金属水溶液用の浄化剤は、カドミウムの浄化処理が難しいカドミウム含有水溶液(例えば、カドミウムと錯生成能力を持つ化合物、及びカドミウムを含有する水溶液)であっても、カドミウム濃度を0.03mg/L以下に低減することができる。   The purification agent for a heavy metal aqueous solution of the present invention has a cadmium concentration of 0.03 mg even in a cadmium-containing aqueous solution (for example, a compound having a complexing ability with cadmium and a cadmium-containing solution) in which the purification treatment of cadmium is difficult It can be reduced to less than / L.

本発明の重金属水溶液用の浄化剤は、亜鉛、カドミウム以外に、ニッケル、水銀、鉛、銅、パラジウム等の重金属を含む水溶液(例えば、石炭火力発電所からの脱硫排水等)であっても、亜鉛濃度を2mg/L以下に低減でき、かつカドミウム濃度を0.03mg/L以下に低減できるとともに、ニッケル、水銀、鉛、銅、パラジウム等の重金属の濃度も大幅に低減できる。   The purification agent for a heavy metal aqueous solution according to the present invention is an aqueous solution containing heavy metals such as nickel, mercury, lead, copper, palladium and the like in addition to zinc and cadmium (for example, desulfurization waste water from a coal-fired power plant etc.) The zinc concentration can be reduced to 2 mg / L or less, the cadmium concentration can be reduced to 0.03 mg / L or less, and the concentration of heavy metals such as nickel, mercury, lead, copper, palladium and the like can be significantly reduced.

本発明の重金属水溶液用の浄化剤は、重量平均分子量300以上のポリアミンを所定量含有することにより、ジチオカルバミン酸塩を含めた薬剤の添加量を低減することができるため、経済的である。   The cleaning agent for an aqueous solution of heavy metal of the present invention is economical because the addition amount of a drug including dithiocarbamate can be reduced by containing a predetermined amount of polyamine having a weight average molecular weight of 300 or more.

本発明の重金属処理剤は、上水、地下水、工業用水等の希釈水と混合した場合でも、配管やストレーナー等の閉塞を起こすことなく、亜鉛、カドミウムといった重金属の浄化処理が難しい重金属含有水溶液を浄化することができる。   The heavy metal treating agent of the present invention does not cause clogging of piping, strainers, etc. even when it is mixed with diluting water such as fresh water, ground water, industrial water etc., heavy metal containing aqueous solution which is difficult to purify heavy metals such as zinc and cadmium. It can be cleaned up.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の重金属処理剤は、アミンのカルボジチオ酸塩100重量部に対し、重量平均分子量300以上のポリアミンを2〜50重量部、及びカルボキシル基を3つ以上有するヒドロキシアミノカルボン酸及び/又はその塩を含むことを特徴とする。   The heavy metal treating agent of the present invention comprises 2 to 50 parts by weight of a polyamine having a weight average molecular weight of 300 or more and 3 or more of carboxyl groups and / or a salt thereof with respect to 100 parts by weight of carbodithioate of amine. It is characterized by including.

アミンのカルボジチオ酸塩と重量平均分子量300以上のポリアミンを2〜50重量部、及びカルボキシル基を3つ以上有するヒドロキシアミノカルボン酸及び/又はその塩とを含んでなる重金属処理剤を用いることにより、上水、地下水、工業用水等の希釈水との混合を行った場合でも、希釈水中のマグネシウムイオンが難溶性の塩として析出することを抑制し、配管やストレーナー等の閉塞を起こすことなく、かつ亜鉛、カドミウムといった重金属の浄化処理が難しい重金属含有水溶液を浄化することができる。   By using a heavy metal treating agent comprising a carbodithioate salt of an amine, 2 to 50 parts by weight of a polyamine having a weight average molecular weight of 300 or more, and a hydroxyaminocarboxylic acid having three or more carboxyl groups and / or a salt thereof Even when mixed with dilution water such as tap water, ground water, industrial water, etc., precipitation of magnesium ions in the dilution water as a sparingly soluble salt is suppressed, and clogging of pipes, strainers, etc. does not occur, and It can purify heavy metal-containing aqueous solutions that are difficult to purify and process heavy metals such as zinc and cadmium.

カルボキシル基を3つ以上有するヒドロキシアミノカルボン酸及び/又はその塩が、アミンのカルボジチオ酸塩との組み合わせにおいて、配管等の閉塞防止に有効である理由は定かではないが、カルボキシル基を3つ以上有するヒドロキシアミノカルボン酸及び/又はその塩は、従来のアミノカルボン酸や、カルボキシル基が2つ以下のヒドロキシアミノカルボン酸及び/又はその塩に比べ、マグネシウムとの水溶性錯体を形成しやすく、かつその水溶性錯体の溶解度が高いため、アミンのカルボジチオ酸塩との共存下においても有効にマグネシウムイオンが難溶性の塩として析出することを抑制できるものと考えられる。   The reason why the hydroxyaminocarboxylic acid having three or more carboxyl groups and / or a salt thereof is effective for preventing clogging of piping etc. in combination with a carbodithioate of an amine is not clear, but three or more carboxyl groups The hydroxyaminocarboxylic acid and / or the salt thereof which is possessed is more likely to form a water-soluble complex with magnesium, as compared with the conventional aminocarboxylic acid and hydroxyaminocarboxylic acid having two or less carboxyl groups and / or the salt thereof. Since the solubility of the water-soluble complex is high, it is considered that the precipitation of magnesium ions as a poorly soluble salt can be effectively suppressed even in the presence of an amine carbodithioate.

アミンのカルボジチオ酸塩と重量平均分子量300以上のポリアミンを2〜50重量部、及びカルボキシル基を3つ以上有するヒドロキシアミノカルボン酸及び/又はその塩とを含んでなる重金属含有水溶液用の浄化剤は、マグネシウムのみならず、従来のスケール防止剤であるアミノカルボン酸が有効なカルシウムにおいても同様の効果を示す。   A cleaning agent for a heavy metal-containing aqueous solution comprising a carbodithioate salt of an amine, 2 to 50 parts by weight of a polyamine having a weight average molecular weight of 300 or more, and a hydroxyaminocarboxylic acid having three or more carboxyl groups and / or a salt thereof Not only magnesium but also the conventional antiscaling agent aminocarboxylic acid exhibits the same effect on effective calcium.

本発明の重金属含有水溶液用の浄化剤で用いるジチオカルバミン酸の塩としては、分子内にジチオカルバミル基を有する化合物であれば特に限定されない。例えば、1級アミノ基及び2級アミノ基からなる群より選ばれるアミノ基を少なくとも1つ有するアミン化合物と、二硫化炭素と、アルカリ金属水酸化物を反応させて得られる化合物が挙げられる。1級アミノ基及び2級アミノ基からなる群より選ばれるアミノ基を2つ以上有するアミン化合物と、二硫化炭素と、アルカリ金属水酸化物を反応させて得られる化合物がより好ましい。   The salt of dithiocarbamic acid used in the cleaning agent for a heavy metal-containing aqueous solution of the present invention is not particularly limited as long as it is a compound having a dithiocarbamyl group in the molecule. For example, a compound obtained by reacting an amine compound having at least one amino group selected from the group consisting of a primary amino group and a secondary amino group, carbon disulfide and an alkali metal hydroxide can be mentioned. An amine compound having two or more amino groups selected from the group consisting of a primary amino group and a secondary amino group, a compound obtained by reacting carbon disulfide and an alkali metal hydroxide is more preferable.

1級アミノ基及び2級アミノ基からなる群より選ばれるアミノ基を少なくとも1つ有するアミン化合物としては、具体的には、ジエチルアミン、ピペラジン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、ヘプタエチレンオクタミン等が例示される。   Specific examples of the amine compound having at least one amino group selected from the group consisting of a primary amino group and a secondary amino group include diethylamine, piperazine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine and pentaethylenehexamine. And hepta ethylene octamine and the like.

これらのうち、亜鉛、カドミウムの処理性能、及び化合物としての安定性の点で、ピペラジン又はテトラエチレンペンタミンと、二硫化炭素と、アルカリ金属水酸化物を反応させて得られる化合物が好ましい。ただし、テトラエチレンペンタミンのジチオカルバミン酸の塩は、原料であるテトラエチレンペンタミンが、主成分のリニア体[下記式(1)参照]以外に類縁体[下記式(2)〜(4)参照]を含む組成物のみが工業的に製造されているため、得られるジチオカルバミン酸の塩も組成物となり、品質管理上煩雑になる欠点がある。一方、ピペラジンのジチオカルバミン酸の塩はこのような欠点がなく、特に好ましい。   Among them, preferred are compounds obtained by reacting piperazine or tetraethylenepentamine, carbon disulfide and an alkali metal hydroxide in view of zinc and cadmium processing performance and stability as a compound. However, in the salt of dithiocarbamic acid of tetraethylene pentamine, tetraethylene pentamine which is a raw material is an analogue [refer to the following formulas (2) to (4) in addition to the linear body of the main component [see the following formula (1)]. Since only the composition containing [] is industrially manufactured, the salt of dithiocarbamic acid obtained also becomes a composition, and there is a drawback that the quality control becomes complicated. On the other hand, salts of dithiocarbamic acid of piperazine do not have such disadvantages and are particularly preferred.

Figure 2019076840
Figure 2019076840

Figure 2019076840
Figure 2019076840

Figure 2019076840
Figure 2019076840

Figure 2019076840
Figure 2019076840

アルカリ金属水酸化物としては、入手が容易な点で、水酸化ナトリウム、水酸化カリウムが特に好ましい。   As the alkali metal hydroxide, sodium hydroxide and potassium hydroxide are particularly preferable in terms of easy availability.

重量平均分子量300以上のポリアミンとしては、例えば、重量平均分子量300以上のポリエチレンイミン類、重量平均分子量300以上のポリエーテルアミン(ポリプロピレングリコール、ポリエチレングリコール等の末端水酸基を1級アミノ基に変換した化合物)等が挙げられる。これらのうち、亜鉛、カドミウム等の重金属の処理性能の点で、重量平均分子量300以上のポリエチレンイミン類が好ましい。   Examples of polyamines having a weight-average molecular weight of 300 or more include polyethyleneimines having a weight-average molecular weight of 300 or more and polyetheramines having a weight-average molecular weight of 300 or more (polypropylene glycol, polyethylene glycol, etc. compounds having terminal hydroxyl groups converted to primary amino groups) Etc.). Among these, polyethyleneimines having a weight average molecular weight of 300 or more are preferable in view of the processing performance of heavy metals such as zinc and cadmium.

ポリアミンの重量平均分子量としては、亜鉛、カドミウムの処理能力向上の点で1800以上が好ましい。重量平均分子量を1800以上とすることで、ジチオカルバミン酸塩を含めた薬剤使用量を低減できる場合がある。これらのうち、亜鉛、カドミウム等の重金属の処理性能の点で、重量平均分子量1800以上のポリエチレンイミン類がより好ましい。   The weight average molecular weight of the polyamine is preferably at least 1,800 from the viewpoint of improving the processing ability of zinc and cadmium. By setting the weight average molecular weight to 1800 or more, the amount of drug used including dithiocarbamate may be able to be reduced. Among these, polyethyleneimines having a weight average molecular weight of 1,800 or more are more preferable in terms of the treatment performance of heavy metals such as zinc and cadmium.

重量平均分子量300以上のポリアミンの添加量は、ジチオカルバミン酸の塩100重量部に対し2〜50重量部であり、好ましくは8〜25重量部である。2重量部以上添加することにより、十分な亜鉛の処理能力を得られるが、50重量部よりも過剰に添加した場合には亜鉛、カドミウムの処理効果が低下する。   The addition amount of the polyamine having a weight average molecular weight of 300 or more is 2 to 50 parts by weight, preferably 8 to 25 parts by weight with respect to 100 parts by weight of the dithiocarbamic acid salt. By adding 2 parts by weight or more, a sufficient zinc processing capacity can be obtained, but when it is added in excess of 50 parts by weight, the processing effect of zinc and cadmium is reduced.

本発明の重金属含有水溶液用の浄化剤で用いるカルボキシル基を3つ以上有するヒドロキシアミノカルボン酸及び/又はその塩としては、特に限定されるものではないが、ヒドロキシエチルエチレンジアミン三酢酸(HEDTA)、ジアミノヒドロキシプロパン四酢酸(DPTA)、ヒドロキシイミノジコハク酸(HIDS)又はその塩等が挙げられ、特に環境負荷の観点からヒドロキシイミノジコハク酸(HIDS)又はその塩等の生分解性を有するものが好ましい。   The hydroxyaminocarboxylic acid having three or more carboxyl groups and / or a salt thereof to be used in the cleaning agent for heavy metal-containing aqueous solution of the present invention is not particularly limited, and hydroxyethylethylenediaminetriacetic acid (HEDTA), diamino Hydroxypropane tetraacetic acid (DPTA), hydroxyimino disuccinic acid (HIDS) or a salt thereof, etc., and in particular, those having biodegradability such as hydroxyimino disuccinic acid (HIDS) or a salt thereof from the viewpoint of environmental load preferable.

本発明の重金属含有水溶液用の浄化剤で用いるカルボキシル基を3つ以上有するヒドロキシアミノカルボン酸の塩の種類としてはアルカリ金属塩が挙げられ、特に溶解度が高く、安価なことからナトリウム塩又はカリウム塩が好ましい。   Alkali metal salts may be mentioned as the type of hydroxyaminocarboxylic acid salt having three or more carboxyl groups used in the cleaning agent for heavy metal-containing aqueous solution of the present invention, and sodium salt or potassium salt because of high solubility and low cost. Is preferred.

本発明の重金属含有水溶液用の浄化剤で用いるカルボキシル基を3つ以上有するヒドロキシアミノカルボン酸及び/又はその塩の濃度は、希釈水等に含まれるマグネシウムの濃度等によって異なるため、一概には決定することはできないが、重金属処理剤中に0.01〜5重量%、さらに0.02〜2重量%、特に0.05〜1重量%の範囲が好ましい。   The concentration of the hydroxyaminocarboxylic acid having at least three carboxyl groups used in the cleaning agent for heavy metal-containing aqueous solution of the present invention and / or the salt thereof varies depending on the concentration of magnesium contained in dilution water etc. However, the range of 0.01 to 5% by weight, more preferably 0.02 to 2% by weight, and particularly 0.05 to 1% by weight in the heavy metal treating agent is preferable.

カルボキシル基を3つ以上有するヒドロキシアミノカルボン酸及び/又はその塩の濃度が0.01重量%より低い場合、希釈水等に含まれるマグネシウムの濃度等が高いと十分な効果が得られないことがある。カルボキシル基を3つ以上有するヒドロキシアミノカルボン酸及び/又はその塩の濃度が5重量%より高い場合、アミンのカルボジチオ酸塩が析出する可能性がある。   When the concentration of hydroxyaminocarboxylic acid having three or more carboxyl groups and / or a salt thereof is lower than 0.01% by weight, sufficient effects can not be obtained when the concentration of magnesium contained in dilution water or the like is high. is there. When the concentration of hydroxyaminocarboxylic acid having three or more carboxyl groups and / or a salt thereof is higher than 5% by weight, carbodithioate of amine may precipitate.

本発明の重金属含有水溶液用の浄化剤は、これらの3つの成分を含んでいれば他に制限はないが、取扱いの観点から水溶液で用いることが好ましい。   The cleaning agent for the heavy metal-containing aqueous solution of the present invention is not particularly limited as long as it contains these three components, but it is preferable to use an aqueous solution from the viewpoint of handling.

本発明の重金属含有水溶液用の浄化剤は、本発明の効果を妨げない範囲で他の成分を含んでいてもよい。他の成分としては、無機系重金属処理剤、pH調整剤、有機溶媒、アルカリ水酸化物等が挙げられる。   The cleaning agent for a heavy metal-containing aqueous solution of the present invention may contain other components as long as the effects of the present invention are not impaired. As other components, inorganic heavy metal processing agents, pH adjusters, organic solvents, alkali hydroxides and the like can be mentioned.

重金属含有水溶液用の浄化剤を希釈するための上水、地下水、工業用水等の希釈水の量は特に限定されるものではないが、通常、重金属含有水溶液用の浄化剤に対し0.1〜200倍程度の範囲で使用される。   Although the amount of dilution water such as fresh water, ground water, industrial water, etc. for diluting the purifying agent for heavy metal-containing aqueous solution is not particularly limited, it is usually 0.1 to the purifying agent for heavy metal-containing aqueous solution. It is used in the range of about 200 times.

本発明の重金属含有水溶液用の浄化剤は、亜鉛、カドミウム、ニッケル、水銀、鉛、銅からなる群より選ばれる少なくとも一種の重金属を含む重金属含有水溶液の浄化処理に特に有用である。   The purification agent for heavy metal-containing aqueous solution of the present invention is particularly useful for purification treatment of a heavy metal-containing aqueous solution containing at least one heavy metal selected from the group consisting of zinc, cadmium, nickel, mercury, lead and copper.

本発明の重金属含有水溶液の浄化方法は、亜鉛及びカドミウムからなる群より選ばれる少なくとも一種の重金属を含む重金属含有水溶液に、上記した本発明の浄化剤を添加した後、生成した固形物を除去することを特徴とする。ここで、生成した固形物には、本発明の浄化剤により固定化された重金属が含まれる。   The method of purifying heavy metal-containing aqueous solution according to the present invention removes the generated solid after adding the above-mentioned agent of the present invention to the heavy metal-containing aqueous solution containing at least one heavy metal selected from the group consisting of zinc and cadmium. It is characterized by Here, the generated solid contains heavy metals immobilized by the cleaning agent of the present invention.

本発明の浄化方法は、亜鉛の処理が難しい亜鉛含有水溶液(例えば、亜鉛と錯生成能力を持つ化合物、及び亜鉛を含有する水溶液)、カドミウムの処理が難しいカドミウム含有水溶液(例えば、カドミウムと錯生成能力を持つ化合物、及びカドミウムを含有する水溶液)に対して特に有効である。   The purification method of the present invention comprises a zinc-containing aqueous solution (for example, a compound capable of forming a complex with zinc and an aqueous solution containing zinc) in which zinc treatment is difficult, a cadmium-containing aqueous solution (for example, cadmium in complex with cadmium) Particularly effective against the compounds having the ability and the aqueous solution containing cadmium.

亜鉛、カドミウム、ニッケル、水銀、鉛、銅からなる群より選ばれる少なくとも一種の重金属と錯生成能力を持つ化合物としては、亜鉛、カドミウム、ニッケル、水銀、鉛、銅からなる群より選ばれる少なくとも一種の重金属と錯体を形成する化合物であれば特に限定されない。例えば、分子内にカルボキシル基及びアミノ基からなる群より選ばれる官能基を有する化合物が挙げられる。具体的には、EDTA、ポリ燐酸等が挙げられ、特に亜鉛、カドミウム、ニッケル、水銀、鉛、銅と強固な錯体を形成する化合物として、EDTAが挙げられる。   The compound having a complexing ability with at least one heavy metal selected from the group consisting of zinc, cadmium, nickel, mercury, lead and copper includes at least one selected from the group consisting of zinc, cadmium, nickel, mercury, lead and copper It is not particularly limited as long as it is a compound that forms a complex with heavy metal of For example, a compound having a functional group selected from the group consisting of a carboxyl group and an amino group in the molecule can be mentioned. Specifically, EDTA, polyphosphoric acid and the like can be mentioned, and in particular, EDTA can be mentioned as a compound which forms a strong complex with zinc, cadmium, nickel, mercury, lead and copper.

ジチオカルバミン酸の塩と重量平均分子量300以上のポリアミンとカルボキシル基を3つ以上有するヒドロキシアミノカルボン酸及び/又はその塩を重金属含有水溶液に添加する方法は、特に限定されるものではなく、本発明の重金属含有水溶液用の浄化剤をそれぞれ別々に添加する方法、事前に混合した薬剤溶液を添加する方法、事前に混合した薬剤溶液を上水、地下水、工業用水等の希釈水と混合して添加する方法が挙げられる。本発明の重金属含有水溶液用の浄化剤をそれぞれ別々に添加する場合、添加する順番は特に限定されない。   The method of adding the salt of dithiocarbamic acid, the polyamine having a weight average molecular weight of 300 or more, the hydroxyaminocarboxylic acid having three or more carboxyl groups and / or the salt thereof to the heavy metal-containing aqueous solution is not particularly limited. Method of separately adding cleaning agents for heavy metal-containing aqueous solution, method of adding pre-mixed drug solution, mixing pre-mixed drug solution with diluted water such as fresh water, ground water, industrial water, etc. The method is mentioned. When the cleaning agents for the heavy metal-containing aqueous solution of the present invention are separately added, the order of addition is not particularly limited.

本発明の重金属含有水溶液用の浄化剤を希釈する場所は、特に限定されるものではなく、タンク内、配管内等が例示される。   The place for diluting the cleaning agent for the heavy metal-containing aqueous solution of the present invention is not particularly limited, and examples thereof include the inside of a tank, the inside of piping, and the like.

固形物の除去を速やかに行うために、固形物を除去する前に、凝集剤を添加することが好ましい。凝集剤としては、例えば、無機凝集剤、高分子凝集剤が挙げられ、無機凝集剤と高分子凝集剤を併用することがより好ましい。   It is preferred to add a flocculant prior to removal of solids in order to facilitate removal of solids. As a coagulant | flocculant, an inorganic coagulant | flocculant and a polymer coagulant | flocculant are mentioned, for example, It is more preferable to use an inorganic coagulant | flocculant and a polymer coagulant | flocculant together.

無機凝集剤としては、市販されている無機凝集剤を使用でき、特に限定されない。例えば、塩化第二鉄等の鉄化合物、硫酸アルミニウム、ポリ塩化アルミニウム等のアルミニウム化合物等が挙げられる。   As an inorganic coagulant, the inorganic coagulant marketed can be used and it does not specifically limit. Examples include iron compounds such as ferric chloride, and aluminum compounds such as aluminum sulfate and polyaluminum chloride.

重金属含有水溶液が亜鉛、カドミウム、ニッケル、水銀、鉛、銅と錯生成能力を持つ化合物を含む場合、無機凝集剤の添加量は、重金属含有水溶液中に含まれる亜鉛、カドミウム、ニッケル、水銀、鉛、銅と錯生成能力を持つ化合物の含有量以上とすることが好ましい。無機凝集剤の添加量を亜鉛、カドミウム、ニッケル、水銀、鉛、銅と錯生成能力を持つ化合物の含有量以上とすることで、凝集性が増し、処理後の水溶液の亜鉛濃度、カドミウム濃度を排水基準以下に低減することが容易になる。   When the heavy metal-containing aqueous solution contains zinc, cadmium, nickel, mercury, lead, and a compound capable of forming a complex with copper, the addition amount of the inorganic coagulant is zinc, cadmium, nickel, mercury, lead contained in the heavy metal-containing aqueous solution It is preferable to make it more than content of the compound which has complexing ability with copper. By making the addition amount of the inorganic coagulant more than the content of zinc, cadmium, nickel, mercury, lead, and the compound having the complexing ability with copper, the cohesiveness is increased, and the zinc concentration and cadmium concentration of the aqueous solution after treatment are increased. It becomes easy to reduce below the drainage standard.

重金属含有水溶液中の亜鉛又はカドミウムと錯生成能力を持つ化合物の含有量は、重金属含有水溶液中の亜鉛又はカドミウムと錯生成能力を持つ化合物の濃度を、例えば、HPLC、ガスクロマトグラフィー、滴定等の分析を行うことで算出することができる。   The content of the compound having the ability to complex with zinc or cadmium in the heavy metal-containing aqueous solution is the concentration of the compound having the ability to complex with zinc or cadmium in the heavy metal-containing aqueous solution, such as HPLC, gas chromatography, titration, etc. It can be calculated by analysis.

高分子凝集剤は、市販されている高分子凝集剤を使用でき、特に限定されない。例えば、アクリル酸ポリマー、アクリルアミドポリマー、ジメチルアミノエチルメタアクリレートポリマー等が挙げられる。凝集性能の点で、弱アニオン性のアクリル酸ポリマーが好ましい。固形物を除去する前に高分子凝集剤を添加することにより、除去する固形物のハンドリングが容易となる場合がある。   As the polymer flocculant, commercially available polymer flocculants can be used without particular limitation. For example, acrylic acid polymer, acrylamide polymer, dimethylaminoethyl methacrylate polymer and the like can be mentioned. In view of aggregation performance, weak anionic acrylic acid polymers are preferred. The addition of the polymeric flocculant prior to removal of the solids may facilitate handling of the solids to be removed.

無機凝集剤と高分子凝集剤を併用する場合、これらの凝集剤を添加する順番は特に限定されないが、無機凝集剤を添加し、次に高分子凝集剤を添加することが好ましい。   When an inorganic coagulant and a polymer coagulant are used in combination, the order of adding these coagulants is not particularly limited, but it is preferable to add the inorganic coagulant and then add the polymer coagulant.

固形物を除去する方法としては特に限定されず、例えば、ろ過、遠心分離、及び固形物を沈降させた後、上澄み液と分離する方法等が挙げられる。   The method for removing the solid is not particularly limited, and examples thereof include filtration, centrifugation, and a method of separating the solid from the supernatant after sedimentation.

以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described by way of examples, but the present invention is not limited to these examples.

実施例、比較例で使用したジチオカルバミン酸の塩は、以下の方法に従って調製した。   The salts of dithiocarbamic acid used in Examples and Comparative Examples were prepared according to the following method.

(ジチオカルバミン酸の塩Aの調製)
ピペラジン(東ソー製)112gと純水386gを混合した後、25℃で、窒素気流中で攪拌しながら48重量%水酸化カリウム306g(キシダ化学製)と二硫化炭素196g(キシダ化学製)をそれぞれ4分割して交互に滴下した。1時間攪拌し、化学式(5)に示す化合物40重量%を含む水溶液を得た。
(Preparation of salt A of dithiocarbamic acid)
After mixing 112 g of piperazine (manufactured by Tosoh Corporation) and 386 g of pure water, 306 g of 48% by weight potassium hydroxide (manufactured by Kishida Chemical Co., Ltd.) and 196 g of carbon disulfide (manufactured by Kishida Chemical Co., It divided into four and was dripped alternately. The mixture was stirred for 1 hour to obtain an aqueous solution containing 40% by weight of the compound represented by the chemical formula (5).

Figure 2019076840
Figure 2019076840

(ジチオカルバミン酸の塩Bの調製)
テトラエチレンペンタミン(東ソー製)159gと純水331gを混合した後、25℃で、窒素気流中で攪拌しながら48重量%水酸化ナトリウム281g(キシダ化学製)と二硫化炭素230g(キシダ化学製)をそれぞれ4分割して交互に滴下した。1時間攪拌し、化学式(6)に示す化合物40重量%を含む水溶液を得た。
(Preparation of salt B of dithiocarbamic acid)
After mixing 159 g of tetraethylenepentamine (manufactured by Tosoh Corporation) and 331 g of pure water, 281 g of 48% by weight sodium hydroxide (manufactured by Kishida Chemical) and 230 g of carbon disulfide (manufactured by Kishida Chemical) while stirring in a nitrogen stream at 25 ° C. ) Were divided into four portions and dropped alternately. The mixture was stirred for 1 hour to obtain an aqueous solution containing 40% by weight of a compound represented by the chemical formula (6).

Figure 2019076840
Figure 2019076840

(ポリアミン)
ポリアミンとして、以下の日本触媒製ポリエチレンイミン類(重量平均分子量1800〜7万)、BASF製ポリエチレンイミン類(重量平均分子量75万〜200万)、ハンツマン製ポリエーテルアミン、及び東ソー製トリエチレンテトラミンを使用した。
(Polyamine)
As polyamines, the following Nippon Shokuhin polyethyleneimines (weight average molecular weight 1800 to 70,000), BASF polyethyleneimines (weight average molecular weight 750,000 to 2,000,000), Huntsman polyether amine, and Tosoh triethylenetetramine used.

ポリエチレンイミンの重量平均分子量1800品(以下、PEI(1800)と略す)。   Polyethyleneimine having a weight average molecular weight of 1,800 (hereinafter referred to as PEI (1800)).

ポリエチレンイミンの重量平均分子量1万品(以下、PEI(1万)と略す)。   A weight-average molecular weight of 10,000 polyethylenimine (hereinafter referred to as PEI (10,000)).

ポリエチレンイミンの重量平均分子量7万品(以下、PEI(7万)と略す)。   Polyethyleneimine having a weight average molecular weight of 70,000 (hereinafter referred to as PEI (70,000)).

ポリエチレンイミンの重量平均分子量75万品(以下、PEI(75万)と略す)。   Polyethyleneimine having a weight-average molecular weight of 750,000 (hereinafter referred to as PEI (750,000)).

ポリエチレンイミンの重量平均分子量200万品(以下、PEI(200万)と略す)。   Polyethyleneimine having a weight average molecular weight of 2,000,000 (hereinafter referred to as PEI (2,000,000)).

ポリエーテルアミンの重量平均分子量400品(グレード名、ジェファーミンD−400、以下、D−400と略す)。   A weight-average molecular weight 400 product of polyetheramine (grade name: Jeffamine D-400, hereinafter abbreviated as D-400).

ポリエーテルアミンの重量平均分子量3000品(グレード名、ジェファーミンT−3000、以下、T−3000と略す)。   A weight-average molecular weight of 3,000 articles of polyetheramine (grade name, Jeffamine T-3000, hereinafter abbreviated as T-3000).

トリエチレンテトラミン(重量平均分子量146)(以下、EA(146)と略す)。   Triethylenetetramine (weight average molecular weight 146) (hereinafter abbreviated as EA (146)).

ヘプタエチレンオクタミン(重量平均分子量320)(以下、EA(320)と略す)。   Hepta ethylene octamine (weight average molecular weight 320) (hereinafter abbreviated as EA (320)).

(カルボン酸の塩)
カルボン酸として以下を使用した。
(Salt of carboxylic acid)
The following was used as the carboxylic acid.

ナガセケムテックス製のヒドロキシイミノジコハク酸四ナトリウム(HIDS)、ヒドロキシエチルエチレンジアミン三酢酸三ナトリウム(以下、HEDTAと略す)、ジアミノヒドロキシプロパン四酢酸(以下、DPTAと略す)。   Tetrasodium hydroxyimino disuccinic acid (HIDS) manufactured by Nagase Chemtex, hydroxyethyl ethylenediamine triacetic acid trisodium (hereinafter abbreviated as HEDTA), diaminohydroxypropane tetraacetic acid (hereinafter abbreviated as DPTA).

キシダ化学製のクエン酸三ナトリウム、酒石酸二ナトリウム、エチレンジアミン四酢酸四ナトリウム(EDTA)。   Trisodium citrate, disodium tartrate, tetrasodium ethylenediaminetetraacetate (EDTA) manufactured by Kishda Chemical.

BASF製のメチルグリシン二酢酸三ナトリウム(MGDA)。   Methyl glycine diacetate trisodium (MGDA) manufactured by BASF.

キレスト製、エチレンジアミンジコハク酸三ナトリウム(EDDS)、ヒドロキシエチルイミノジ酢酸二ナトリウム(HIDA)、ジヒドロキシエチルグリシンナトリウム(DHEG)。   Manufactured by Chelest, trisodium ethylenediaminedisuccinate (EDDS), disodium hydroxyethyl iminodiacetate (HIDA), sodium dihydroxyethylglycine (DHEG).

昭和電工製のグルタミン酸二酢酸四ナトリウム(GLDA)。   Glutamate diacetate tetrasodium (GLDA) manufactured by Showa Denko.

(無機凝集剤)
無機凝集剤として、以下の水溶液を使用した。
(Inorganic coagulant)
The following aqueous solutions were used as inorganic coagulants.

キシダ化学製のポリ塩化アルミニウム(PAC)30gを水に加え、合計100gにした水溶液(30重量%ポリ塩化アルミニウム水溶液)。   An aqueous solution (30% by weight aqueous solution of polyaluminum chloride) obtained by adding 30 g of polyaluminum chloride (PAC) manufactured by Kishida Chemical Co., Ltd. to a total of 100 g.

キシダ化学製の38重量%塩化第二鉄水溶液。   38 wt% ferric chloride aqueous solution manufactured by Kishida Chemical.

(高分子凝集剤)
高分子凝集剤として、オルガノ製OA−23(弱アニオンポリマー)を使用した。
(Polymer coagulant)
Organo OA-23 (weak anion polymer) was used as a polymer flocculant.

(分析方法)
水溶液中の重金属イオン濃度(例えば、亜鉛イオン濃度、カドミウムイオン濃度等)は、ICP発光分光分析装置(OPTIsMA3300DV、Perkin Elmaer製)で測定した。
(Analytical method)
The heavy metal ion concentration (for example, zinc ion concentration, cadmium ion concentration, etc.) in the aqueous solution was measured by an ICP emission spectrophotometer (OPTIsMA3300DV, manufactured by Perkin Elmaer).

調製した薬剤を希釈水と混合した際の難溶性塩の発生の指標として、希釈水と混合した水溶液の透過率を測定した。すなわち、透過率が小さい程、難溶性塩の生成量が大きく、配管閉塞抑制効果が低いことを示す。透過率は、調製した薬剤10mLに対し、希釈水として35mg/Lマグネシウム水溶液を100mL加えた溶液を透過型デジタルレーザセンサ(LX2−02、キーエンス製)を用い、以下の計算式より算出した。   The permeability of the aqueous solution mixed with dilution water was measured as an index of the generation of the hardly soluble salt when the prepared drug was mixed with dilution water. That is, the smaller the permeability, the larger the amount of formation of the hardly soluble salt, and the lower the pipe blockage suppression effect. The permeability was calculated from the following equation using a transmission type digital laser sensor (LX2-02, manufactured by Keyence) with a solution prepared by adding 100 mL of 35 mg / L magnesium aqueous solution as dilution water to 10 mL of the prepared drug.

透過率=希釈水と混合後の水溶液の受光量(mV)/純水の受光量(mV)×100(%)。   Transmittance = light receiving amount of aqueous solution after mixing with dilution water (mV) / light receiving amount of pure water (mV) x 100 (%).

実施例1
<排水処理試験>
500mLビーカーに、ジャーテスター(Jar Tester)を設置し、亜鉛イオン10mg/LとEDTA260mg/Lを含む水溶液を500mL添加した。次いで、150rpmで攪拌しながら、ジチオカルバミン酸の塩Aを400mg/L、ポリアミンとしてPEI(1800)を12mg/L、カルボン酸のナトリウム塩としてHIDSを0.8mg/Lを加え、150rpmで10分間攪拌した。次いで、38重量%塩化第二鉄水溶液を800mg/L加え、150rpmで5分間攪拌した。水溶液のpHは、微量の塩酸及び水酸化ナトリウムを用いて、常にpH7となるよう調整した。攪拌終了後、10分間静置し、アドバンテック製5Aのろ紙で水溶液をろ別し、処理後の水溶液の亜鉛濃度を測定した。結果を表1に示す。
Example 1
<Drainage treatment test>
A jar tester (Jar Tester) was placed in a 500 mL beaker, and 500 mL of an aqueous solution containing 10 mg / L of zinc ions and 260 mg / L of EDTA was added. Then, while stirring at 150 rpm, add 400 mg / L of salt A of dithiocarbamic acid, 12 mg / L of PEI (1800) as polyamine, 0.8 mg / L of HIDS as sodium salt of carboxylic acid, and stir at 150 rpm for 10 minutes did. Then, 800 mg / L of a 38 wt% ferric chloride aqueous solution was added, and stirred at 150 rpm for 5 minutes. The pH of the aqueous solution was adjusted to be always pH 7 using a small amount of hydrochloric acid and sodium hydroxide. After completion of the stirring, the solution was allowed to stand for 10 minutes, the aqueous solution was filtered off with an Advantec 5A filter paper, and the zinc concentration of the treated aqueous solution was measured. The results are shown in Table 1.

<薬剤の希釈試験>
ジチオカルバミン酸の塩A、PEI(1800)、HIDSの混合比が、排水処理試験で使用した薬剤量比と同じとなるように混合した薬剤(ジチオカルバミン酸の塩A:PEI(1800):HIDS=400:12:0.8)を用い、透過率を測定した。
Drug dilution test
Drug mixed with dithiocarbamic acid salt A, PEI (1800), HIDS in the same ratio as the drug used in the waste water treatment test (dithiocarbamic acid salt A: PEI (1800): HIDS = 400 The transmittance was measured using 12: 0.8).

実施例2〜3
添加する薬剤を表1に示す薬剤に変更する以外、実施例1と同様にして、排水処理試験、薬剤の希釈試験を実施した。これらの結果を表1に併せて示す。
Examples 2-3
The wastewater treatment test and the drug dilution test were conducted in the same manner as in Example 1 except that the drug to be added was changed to the drug shown in Table 1. These results are shown together in Table 1.

実施例1〜3に示した通り、処理後の水溶液の亜鉛濃度は、排水基準である2.0mg/L以下であり、亜鉛の処理が十分であった。また、透過率は、いずれも100%であり、配管閉塞抑制効果が十分であった。   As shown in Examples 1 to 3, the zinc concentration of the aqueous solution after treatment was 2.0 mg / L or less which is the drainage standard, and the zinc treatment was sufficient. Moreover, all the transmittance | permeability was 100% and the piping obstruction | occlusion suppression effect was enough.

Figure 2019076840
Figure 2019076840

比較例1〜10
添加する薬剤を表2に示す薬剤に変更する以外、実施例1と同様にして、排水処理試験、薬剤の希釈試験を実施した。これらの結果を表2に併せて示す。
Comparative Examples 1 to 10
The wastewater treatment test and the drug dilution test were conducted in the same manner as in Example 1 except that the drug to be added was changed to the drug shown in Table 2. These results are shown together in Table 2.

Figure 2019076840
Figure 2019076840

比較例1は、カルボン酸の塩を添加しない例である。処理後の水溶液の亜鉛濃度は、排水基準である2.0mg/L以下であり、亜鉛の処理が十分であった。しかし、透過率は、80%であり配管閉塞抑制効果が不十分であった。   The comparative example 1 is an example which does not add the salt of carboxylic acid. The zinc concentration of the aqueous solution after the treatment was 2.0 mg / L or less, which is the drainage standard, and the zinc treatment was sufficient. However, the permeability was 80%, and the pipe blockage suppression effect was insufficient.

比較例2〜4は、本発明の範囲外のヒドロキシカルボン酸を利用した例である。処理後の水溶液の亜鉛濃度は、排水基準である2.0mg/L以下であり、亜鉛の処理が十分であった。しかし、透過率は、82%以下であり配管閉塞抑制効果が不十分であった。   Comparative Examples 2 to 4 are examples using hydroxycarboxylic acids outside the scope of the present invention. The zinc concentration of the aqueous solution after the treatment was 2.0 mg / L or less, which is the drainage standard, and the zinc treatment was sufficient. However, the permeability was 82% or less, and the pipe blockage suppression effect was insufficient.

比較例5〜8は、本発明の範囲外のアミノカルボン酸を利用した例である。処理後の水溶液の亜鉛濃度は、排水基準である2.0mg/L以下であり、亜鉛の処理が十分であった。しかし、透過率は、83%以下であり配管閉塞抑制効果が不十分であった。   Comparative Examples 5 to 8 are examples using an aminocarboxylic acid outside the scope of the present invention. The zinc concentration of the aqueous solution after the treatment was 2.0 mg / L or less, which is the drainage standard, and the zinc treatment was sufficient. However, the permeability was 83% or less, and the pipe blockage suppression effect was insufficient.

比較例9〜10は、本発明の範囲外のヒドロキシアミノカルボン酸を利用した例である。処理後の水溶液の亜鉛濃度は、排水基準である2.0mg/L以下であり、亜鉛の処理が十分であった。しかし、透過率は、82%以下であり配管閉塞抑制効果が不十分であった。   Comparative Examples 9 to 10 are examples using hydroxyaminocarboxylic acid outside the scope of the present invention. The zinc concentration of the aqueous solution after the treatment was 2.0 mg / L or less, which is the drainage standard, and the zinc treatment was sufficient. However, the permeability was 82% or less, and the pipe blockage suppression effect was insufficient.

実施例4〜10
添加する薬剤を表3に示す薬剤に変更する以外、実施例1と同様にして、排水処理試験、薬剤の希釈試験を実施した。これらの結果を表3に併せて示す。
Examples 4 to 10
The wastewater treatment test and the drug dilution test were conducted in the same manner as in Example 1 except that the drug to be added was changed to the drug shown in Table 3. These results are shown together in Table 3.

Figure 2019076840
Figure 2019076840

実施例4〜9は、ポリアミンの分子量を本発明の範囲内で変化させて処理した例である。ポリアミンの分子量によらず、処理後の水溶液の亜鉛濃度は、排水基準である2.0mg/L以下であり、亜鉛の処理が十分であった。また、透過率は、いずれも100%であり、配管閉塞抑制効果が十分であった。   Examples 4-9 are the examples which changed and processed the molecular weight of the polyamine within the range of this invention. Regardless of the molecular weight of the polyamine, the zinc concentration of the aqueous solution after treatment was 2.0 mg / L or less, which is the drainage standard, and the zinc treatment was sufficient. Moreover, all the transmittance | permeability was 100% and the piping obstruction | occlusion suppression effect was enough.

実施例10は、ジチオカルバミン酸の塩Aの代わりにジチオカルバミン酸の塩Bを使用した例である。処理後の水溶液の亜鉛濃度は、排水基準である2.0mg/L以下であり、亜鉛の処理が十分であった。また、透過率は、100%であり、配管閉塞抑制効果が十分であった。   Example 10 is an example using the salt B of dithiocarbamic acid instead of the salt A of dithiocarbamic acid. The zinc concentration of the aqueous solution after the treatment was 2.0 mg / L or less, which is the drainage standard, and the zinc treatment was sufficient. Moreover, the transmittance | permeability was 100% and the piping obstruction | occlusion suppression effect was enough.

比較例11
500mLビーカーに、ジャーテスター(Jar Tester)を設置し、亜鉛イオン10mg/LとEDTA260mg/Lを含む水溶液を500mL添加した。次いで、150rpmで攪拌しながら、38重量%塩化第二鉄水溶液を800mg/L加え、150rpmで10分間攪拌した。水溶液のpHは、微量の塩酸及び水酸化ナトリウムを用いて、常にpH10となるよう調整した。攪拌終了後、10分間静置し、アドバンテック製5Aのろ紙で水溶液をろ別し、処理後の水溶液の亜鉛濃度を測定した。結果を表4に示す。
Comparative example 11
A jar tester (Jar Tester) was placed in a 500 mL beaker, and 500 mL of an aqueous solution containing 10 mg / L of zinc ions and 260 mg / L of EDTA was added. Then, while stirring at 150 rpm, 800 mg / L of a 38 wt% ferric chloride aqueous solution was added, and stirred at 150 rpm for 10 minutes. The pH of the aqueous solution was adjusted to be always pH 10 using a trace amount of hydrochloric acid and sodium hydroxide. After completion of the stirring, the solution was allowed to stand for 10 minutes, the aqueous solution was filtered off with an Advantec 5A filter paper, and the zinc concentration of the treated aqueous solution was measured. The results are shown in Table 4.

比較例12〜16
添加する薬剤を表4に示す薬剤に変更する以外、実施例1と同様にして、排水処理試験、薬剤の希釈試験を実施した。これらの結果を表4に併せて示す。
Comparative Examples 12 to 16
The wastewater treatment test and the drug dilution test were conducted in the same manner as in Example 1 except that the drug to be added was changed to the drug shown in Table 4. These results are shown together in Table 4.

Figure 2019076840
Figure 2019076840

比較例11は、鉄イオンを添加して中和し、亜鉛イオンを鉄イオンと共に水酸化物として沈殿させる従来の処理方法の例である。処理後の水溶液の亜鉛濃度は4.3mg/Lであり、排水基準である2mg/Lを超過しており、亜鉛の処理が不十分であった。   Comparative Example 11 is an example of a conventional treatment method in which iron ions are added for neutralization, and zinc ions are precipitated together with iron ions as hydroxides. The zinc concentration of the aqueous solution after treatment was 4.3 mg / L, which exceeded the 2 mg / L drainage standard, and the zinc treatment was insufficient.

比較例12〜14は、ポリアミンを添加せずにジチオカルバミン酸の塩Aのみで処理した例である。処理後の水溶液の亜鉛濃度は、排水基準である2mg/Lを超過しており、亜鉛の処理が不十分であった。   Comparative Examples 12 to 14 are examples in which only the salt A of dithiocarbamic acid was treated without adding a polyamine. The zinc concentration of the aqueous solution after the treatment exceeded 2 mg / L, which is the drainage standard, and the zinc treatment was insufficient.

比較例15は、ジチオカルバミン酸の塩Aを添加せずに、ポリアミンとしてPEI(1800)のみを添加し、次に無機凝集剤を添加してpH7で処理した例である。処理後の水溶液の亜鉛濃度は、排水基準である2mg/Lを超過しており、亜鉛の処理が不十分であった。   Comparative Example 15 is an example in which only PEI (1800) as a polyamine was added without addition of the salt A of dithiocarbamic acid, and then an inorganic flocculant was added and treated at pH 7. The zinc concentration of the aqueous solution after the treatment exceeded 2 mg / L, which is the drainage standard, and the zinc treatment was insufficient.

比較例16は、本発明の範囲外である重量平均分子量146のポリアミンと、ジチオカルバミン酸の塩Aを併用した例であるが、処理後水溶液の亜鉛濃度は、排水基準である2mg/Lを超過しており、亜鉛の処理が不十分であった。   Comparative Example 16 is an example in which a polyamine of weight average molecular weight 146 outside the scope of the present invention and salt A of dithiocarbamic acid are used in combination, but the zinc concentration of the aqueous solution after treatment exceeds 2 mg / L, which is the drainage standard. Treatment of zinc was insufficient.

実施例11〜14、比較例17〜18
添加する薬剤を表5に示す薬剤に変更する以外、実施例1と同様にして、排水処理試験、薬剤の希釈試験を実施した。これらの結果を表5に併せて示す。
Examples 11 to 14 and Comparative Examples 17 to 18
The wastewater treatment test and the drug dilution test were conducted in the same manner as in Example 1 except that the drug to be added was changed to the drug shown in Table 5. These results are shown together in Table 5.

Figure 2019076840
Figure 2019076840

実施例11〜14は、ジチオカルバミン酸の塩100重量部に対するポリアミン(PEI(1800))の重量部を本発明の範囲内で変化させて処理した例である。ポリアミンの添加量によらず、処理後水溶液の亜鉛濃度は、排水基準である2mg/L以下であり、亜鉛の処理が十分であった。また、透過率は、いずれも100%であり、配管閉塞抑制効果が十分であった。   Examples 11-14 are the examples which changed and processed the weight part of the polyamine (PEI (1800)) with respect to 100 weight parts of the salt of dithio carbamic acid within the range of this invention. The zinc concentration of the aqueous solution after treatment was 2 mg / L or less, which is the drainage standard, regardless of the amount of polyamine added, and the zinc treatment was sufficient. Moreover, all the transmittance | permeability was 100% and the piping obstruction | occlusion suppression effect was enough.

比較例17は、ジチオカルバミン酸の塩Aと、本発明の範囲を下回る量のPEI(1800)を添加した例である。処理後の水溶液の亜鉛濃度は、排水基準である2mg/Lを超過しており、亜鉛の処理が不十分であった。   The comparative example 17 is an example which added the salt A of dithio carbamic acid, and PEI (1800) of the quantity below the scope of the present invention. The zinc concentration of the aqueous solution after the treatment exceeded 2 mg / L, which is the drainage standard, and the zinc treatment was insufficient.

比較例18は、ジチオカルバミン酸の塩Aと、本発明の範囲を上回る量のPEI(1800)を添加した例である。処理後の水溶液の亜鉛濃度は6.0mg/Lであり、亜鉛の処理性能が大幅に悪化した。   Comparative Example 18 is an example in which salt A of dithiocarbamic acid and PEI (1800) in an amount exceeding the range of the present invention were added. The zinc concentration of the aqueous solution after treatment was 6.0 mg / L, and the zinc treatment performance was significantly deteriorated.

比較例17及び比較例18から、ジチオカルバミン酸の塩と併用するポリアミンの量には、亜鉛を処理できる好適な範囲が存在することが分かる。   From Comparative Example 17 and Comparative Example 18, it is understood that the amount of polyamine used in combination with the salt of dithiocarbamic acid has a suitable range in which zinc can be treated.

実施例15
500mLビーカーに、ジャーテスター(Jar Tester)を設置し、亜鉛イオン10mg/LとEDTA260mg/Lを含む水溶液を500mL添加した。次いで、150rpmで攪拌しながら、ジチオカルバミン酸の塩Aを400mg/L、ポリアミンとしてPEI(1800)を12mg/L、カルボン酸の塩としてHIDSを0.8mg/Lを加え、150rpmで10分間攪拌した。次いで、38重量%塩化第二鉄水溶液を800mg/L加え、150rpmで5分間攪拌した。次いで、高分子凝集剤として0.1重量%OA−23水溶液を2000mg/L加え、pH7に調整し、50rpmで5分間攪拌した。水溶液のpHは、微量の塩酸及び水酸化ナトリウムを用いて、常にpH7となるよう調整した。攪拌終了後、10分間静置し、アドバンテック製5Aのろ紙で水溶液をろ別し、処理後の水溶液の亜鉛濃度を測定した。結果を表6に示す。
Example 15
A jar tester (Jar Tester) was placed in a 500 mL beaker, and 500 mL of an aqueous solution containing 10 mg / L of zinc ions and 260 mg / L of EDTA was added. Then, while stirring at 150 rpm, 400 mg / L of salt A of dithiocarbamic acid, 12 mg / L of PEI (1800) as polyamine, 0.8 mg / L of HIDS as a salt of carboxylic acid were added and stirred at 150 rpm for 10 minutes . Then, 800 mg / L of a 38 wt% ferric chloride aqueous solution was added, and stirred at 150 rpm for 5 minutes. Subsequently, 2000 mg / L of 0.1 weight% OA-23 aqueous solution was added as a polymer flocculant, adjusted to pH 7, and stirred at 50 rpm for 5 minutes. The pH of the aqueous solution was adjusted to be always pH 7 using a small amount of hydrochloric acid and sodium hydroxide. After completion of the stirring, the solution was allowed to stand for 10 minutes, the aqueous solution was filtered off with an Advantec 5A filter paper, and the zinc concentration of the treated aqueous solution was measured. The results are shown in Table 6.

実施例16
添加する薬剤を表6に示す薬剤に変更する以外、実施例15と同様にして、処理後の水溶液の亜鉛濃度を測定した。これらの結果を表6に併せて示す。
Example 16
The zinc concentration of the aqueous solution after treatment was measured in the same manner as in Example 15, except that the drug to be added was changed to the drug shown in Table 6. These results are shown together in Table 6.

実施例17
ジチオカルバミン酸の塩Aを200mg、PEI(1800)を6mg、HIDSを0.4mg含む溶液に、Mgを35mg/L含む希釈水2mLを混合し、薬剤希釈液を調製した。
500mLビーカーに、ジャーテスター(Jar Tester)を設置し、亜鉛イオン10mg/LとEDTA260mg/Lを含む水溶液を500mL添加した。次いで、150rpmで攪拌しながら、薬剤希釈液を全量加え、150rpmで10分間攪拌した。次いで、38重量%塩化第二鉄水溶液を800mg/L加え、150rpmで5分間攪拌した。水溶液のpHは、微量の塩酸及び水酸化ナトリウムを用いて、常にpH7となるよう調整した。攪拌終了後、10分間静置し、アドバンテック製5Aのろ紙で水溶液をろ別し、処理後の水溶液の亜鉛濃度を測定した。結果を表6に併せて示す。
Example 17
A solution containing 200 mg of dithiocarbamic acid salt A, 6 mg of PEI (1800) and 0.4 mg of HIDS was mixed with 2 mL of dilution water containing 35 mg / L of Mg to prepare a drug dilution.
A jar tester (Jar Tester) was placed in a 500 mL beaker, and 500 mL of an aqueous solution containing 10 mg / L of zinc ions and 260 mg / L of EDTA was added. Next, while stirring at 150 rpm, the whole drug dilution was added and stirred at 150 rpm for 10 minutes. Then, 800 mg / L of a 38 wt% ferric chloride aqueous solution was added, and stirred at 150 rpm for 5 minutes. The pH of the aqueous solution was adjusted to be always pH 7 using a small amount of hydrochloric acid and sodium hydroxide. After completion of the stirring, the solution was allowed to stand for 10 minutes, the aqueous solution was filtered off with an Advantec 5A filter paper, and the zinc concentration of the treated aqueous solution was measured. The results are shown in Table 6 together.

Figure 2019076840
Figure 2019076840

実施例15は、実施例1に高分子凝集剤を添加した例である。処理後の水溶液の亜鉛濃度は、高分子凝集剤を添加しない場合と同値で排水基準である2.0mg/L以下であり、亜鉛の処理が十分であった。   Example 15 is an example in which a polymer flocculant is added to Example 1. The zinc concentration of the aqueous solution after the treatment was 2.0 mg / L or less, which is the drainage standard, at the same value as when the polymer coagulant was not added, and the zinc treatment was sufficient.

実施例16は、無機凝集剤として、PAC水溶液を用いた例である。処理後の水溶液の亜鉛濃度は、排水基準である2.0mg/L以下であり、無機凝集剤の種類によらず、亜鉛の処理が十分であった。   Example 16 is an example using PAC aqueous solution as an inorganic coagulant. The zinc concentration of the aqueous solution after the treatment was 2.0 mg / L or less, which is the drainage standard, and the treatment of zinc was sufficient regardless of the type of inorganic flocculant.

実施例17は、実施例1で使用した薬剤を希釈水で希釈してから亜鉛を含有する溶液に加えて処理した例である。処理後の水溶液の亜鉛濃度は、薬剤を希釈水で希釈しない場合と同値で排水基準である2.0mg/L以下であり、亜鉛の処理が十分であった。   Example 17 is an example in which the drug used in Example 1 was diluted with dilution water and then added to a zinc-containing solution for treatment. The zinc concentration of the aqueous solution after the treatment was 2.0 mg / L or less, which is the drainage standard, which was the same value as when the drug was not diluted with dilution water, and the zinc treatment was sufficient.

実施例18
500mLビーカーに、ジャーテスター(Jar Tester)を設置し、カドミウムイオン10mg/LとEDTA260mg/Lを含む水溶液を500mL添加した。次いで、150rpmで攪拌しながら、ジチオカルバミン酸の塩Aを400mg/L、ポリアミンとしてPEI(1800)を12mg/L、カルボン酸のナトリウム塩としてHIDSを0.8mg/Lを加え、150rpmで10分間攪拌した。次いで、38重量%塩化第二鉄水溶液を800mg/L加え、150rpmで5分間攪拌した。水溶液のpHは、微量の塩酸及び水酸化ナトリウムを用いて、常にpH7となるよう調整した。攪拌終了後、10分間静置し、アドバンテック製5Aのろ紙で水溶液をろ別し、処理後の水溶液のカドミウム濃度を測定した。結果を表7に示す。
Example 18
A jar tester (Jar Tester) was placed in a 500 mL beaker, and 500 mL of an aqueous solution containing 10 mg / L of cadmium ion and 260 mg / L of EDTA was added. Then, while stirring at 150 rpm, add 400 mg / L of salt A of dithiocarbamic acid, 12 mg / L of PEI (1800) as polyamine, 0.8 mg / L of HIDS as sodium salt of carboxylic acid, and stir at 150 rpm for 10 minutes did. Then, 800 mg / L of a 38 wt% ferric chloride aqueous solution was added, and stirred at 150 rpm for 5 minutes. The pH of the aqueous solution was adjusted to be always pH 7 using a small amount of hydrochloric acid and sodium hydroxide. After completion of the stirring, the solution was allowed to stand for 10 minutes, the aqueous solution was filtered off with a 5A filter paper made by Advantec, and the cadmium concentration of the aqueous solution after treatment was measured. The results are shown in Table 7.

実施例19〜21
重金属と錯生成能力を持つ化合物、重金属を含有する水溶液、添加する薬剤を表7に示す薬剤に変更する以外、実施例18と同様にして、処理後の水溶液の重金属の濃度を測定した。これらの結果を表7に併せて示す。
Examples 19 to 21
The concentration of heavy metal in the aqueous solution after treatment was measured in the same manner as in Example 18 except that the compound having the ability to form a complex with heavy metal, the aqueous solution containing heavy metal, and the drug to be added were changed to those shown in Table 7. These results are shown together in Table 7.

Figure 2019076840
Figure 2019076840

実施例18〜21は、重金属を含有する排水が、カドミウム、水銀、ニッケルの場合に本発明の薬剤を添加して処理した例である。表7から明らかなように処理後の水溶液のカドミウム濃度と水銀濃度は、それぞれ排水基準値であるカドミウム0.03mg/L、水銀0.005mg/L以下に処理でき、ニッケルは、4.6mg/Lに低減することができた。   Examples 18 to 21 are the examples in which the heavy metal-containing waste water was treated by adding the agent of the present invention in the case of cadmium, mercury, and nickel. As apparent from Table 7, the cadmium concentration and the mercury concentration of the aqueous solution after the treatment can be treated so as to be 0.03 mg / L or less of cadmium and 0.005 mg / L or less of mercury respectively as the drainage standard value, and nickel is 4.6 mg / L. It could be reduced to L.

実施例22
500mLビーカーに、ジャーテスター(Jar Tester)を設置し、石炭火力発電所の脱硫排水を500mL添加した。次いで、150rpmで攪拌しながら、ジチオカルバミン酸の塩Aを9.7mg/L、ポリアミンとしてPEI(1万)を0.3mg/、HIDSを0.02mg/L加え、150rpmで10分間攪拌した。次いで、30重量%ポリ塩化アルミニウム水溶液を1000mg/L加え、150rpmで5分間攪拌した。次いで、高分子凝集剤として0.1重量%OA−23水溶液を2000mg/L加え、50rpmで5分間攪拌した。水溶液のpHは、微量の塩酸及び水酸化ナトリウムを用いて、常にpH7となるように調整した。攪拌終了後、10分間静置し、アドバンテック製5Aのろ紙で水溶液をろ別し、処理後の水溶液の重金属濃度を測定した。結果を表8に示す。
Example 22
A jar tester (Jar Tester) was installed in a 500 mL beaker, and 500 mL of desulfurization waste water from a coal-fired power plant was added. Next, while stirring at 150 rpm, 9.7 mg / L of dithiocarbamic acid salt A, 0.3 mg / l of PEI (10,000) as polyamine and 0.02 mg / L of HIDS were added, and stirred at 150 rpm for 10 minutes. Then, 1000 mg / L of a 30% by weight aqueous solution of polyaluminum chloride was added, and the mixture was stirred at 150 rpm for 5 minutes. Subsequently, 2000 mg / L of 0.1 weight% OA-23 aqueous solution was added as a polymer flocculating agent, and it stirred for 5 minutes by 50 rpm. The pH of the aqueous solution was adjusted to be always pH 7 using trace amounts of hydrochloric acid and sodium hydroxide. After completion of the stirring, the solution was allowed to stand for 10 minutes, the aqueous solution was filtered off with a filter paper made by Advantec 5A, and the heavy metal concentration of the aqueous solution after treatment was measured. The results are shown in Table 8.

実施例23
石炭火力発電所の脱硫排水を表8に示す脱硫排水に変更する以外、実施例22と同様にして、処理後の水溶液の重金属濃度を測定した。結果を表8に併せて示す。
Example 23
The heavy metal concentration of the aqueous solution after treatment was measured in the same manner as in Example 22 except that desulfurization drainage of a coal thermal power plant was changed to desulfurization drainage shown in Table 8. The results are shown in Table 8 together.

Figure 2019076840
Figure 2019076840

実施例22〜23は、石炭火力発電所の脱硫排水中に本発明の範囲で薬剤を添加して処理した例である。処理後の水溶液の亜鉛濃度は0.1mg/L未満、かつカドミウム濃度は0.03mg/L未満であり、さらに他の重金属類も排水基準以下に処理できた。すなわち、本発明の浄化剤は重金属を含有する実排水の浄化にも有効であることが確認できた。   Examples 22-23 are the examples which added and processed the chemical | medical agent in the range of this invention in the desulfurization waste water of a coal-fired power plant. The zinc concentration of the aqueous solution after treatment was less than 0.1 mg / L, and the cadmium concentration was less than 0.03 mg / L, and other heavy metals could also be treated below the drainage standard. That is, it has been confirmed that the purification agent of the present invention is also effective for purification of actual wastewater containing heavy metals.

本発明の重金属含有水溶液の浄化方法によれば、亜鉛やカドミウム等の重金属の処理が難しい、亜鉛やカドミウム等の重金属と錯生成能力を持つ化合物、及び亜鉛やカドミウム等の重金属を含有する水溶液であっても、重金属濃度を低減できるため、新規な重金属含有水溶液の浄化方法として、めっき工場、電子部品・機械部品製造工場、自動車工場などからの亜鉛やカドミウム等の重金属含有排水の処理に使用される可能性を有している。   According to the method of purifying heavy metal-containing aqueous solution of the present invention, it is difficult to treat heavy metals such as zinc and cadmium, aqueous solution containing heavy metal such as zinc and cadmium, and compounds having complexing ability, and heavy metals such as zinc and cadmium Even if the heavy metal concentration can be reduced, it is used as a novel purification method of heavy metal-containing aqueous solution for the treatment of wastewater containing heavy metals such as zinc and cadmium from plating plants, electronic parts and machine parts manufacturing plants, and automobile plants. Have the potential to

Claims (13)

ジチオカルバミン酸の塩100重量部に対し、重量平均分子量300以上のポリアミンを2〜50重量部、並びにカルボキシル基を3つ以上有するヒドロキシアミノカルボン酸及び/又はその塩を含む重金属含有水溶液用浄化剤。 A cleaning agent for a heavy metal-containing aqueous solution, comprising 2 to 50 parts by weight of a polyamine having a weight average molecular weight of 300 or more, and hydroxyaminocarboxylic acid having three or more carboxyl groups and / or a salt thereof relative to 100 parts by weight of a dithiocarbamic acid salt. ジチオカルバミン酸の塩が、1級アミノ基及び2級アミノ基からなる群より選ばれるアミノ基を少なくとも1つ有するアミン化合物と、二硫化炭素と、アルカリ金属水酸化物との反応生成物であることを特徴とする請求項1に記載の重金属含有水溶液用浄化剤。 The salt of dithiocarbamic acid is a reaction product of an amine compound having at least one amino group selected from the group consisting of a primary amino group and a secondary amino group, carbon disulfide and an alkali metal hydroxide The purification agent for a heavy metal-containing aqueous solution according to claim 1, characterized in that ジチオカルバミン酸の塩が、1級アミノ基及び2級アミノ基からなる群より選ばれるアミノ基を2つ以上有するアミン化合物と、二硫化炭素と、アルカリ金属水酸化物との反応生成物であることを特徴とする請求項1に記載の重金属含有水溶液用浄化剤。 The dithiocarbamic acid salt is a reaction product of an amine compound having two or more amino groups selected from the group consisting of a primary amino group and a secondary amino group, carbon disulfide and an alkali metal hydroxide The purification agent for a heavy metal-containing aqueous solution according to claim 1, characterized in that ジチオカルバミン酸の塩が、ピペラジン又はテトラエチレンペンタミンと、二硫化炭素と、アルカリ金属水酸化物との反応生成物であることを特徴とする請求項1に記載の重金属含有水溶液用浄化剤。 The cleaning agent for a heavy metal-containing aqueous solution according to claim 1, wherein the dithiocarbamic acid salt is a reaction product of piperazine or tetraethylene pentamine, carbon disulfide and an alkali metal hydroxide. 重量平均分子量300以上のポリアミンが、重量平均分子量300以上のポリエチレンイミンであることを特徴とする請求項1〜4のいずれかに記載の重金属含有水溶液用浄化剤。 The cleaning agent for a heavy metal-containing aqueous solution according to any one of claims 1 to 4, wherein the polyamine having a weight average molecular weight of 300 or more is a polyethyleneimine having a weight average molecular weight of 300 or more. 重量平均分子量300以上のポリアミンが、重量平均分子量が1800〜200万のポリエチレンイミンであることを特徴とする請求項1〜4のいずれかに記載の重金属含有水溶液用浄化剤。 The cleaning agent for a heavy metal-containing aqueous solution according to any one of claims 1 to 4, wherein the polyamine having a weight average molecular weight of 300 or more is a polyethyleneimine having a weight average molecular weight of 1,800 to 200,000. 亜鉛、カドミウム、ニッケル、水銀、鉛、銅からなる群より選ばれる少なくとも一種の重金属を含む重金属含有水溶液に、請求項1〜6のいずれかに記載の重金属含有水溶液用浄化剤を添加した後、生成した固形物を除去することを特徴とする重金属含有水溶液の浄化方法。 The heavy metal-containing aqueous solution according to any one of claims 1 to 6 is added to a heavy metal-containing aqueous solution containing at least one heavy metal selected from the group consisting of zinc, cadmium, nickel, mercury, lead and copper, What is claimed is: 1. A method of purifying a heavy metal-containing aqueous solution, comprising removing a generated solid. 亜鉛、カドミウム、ニッケル、水銀、鉛、銅からなる群より選ばれる少なくとも一種の重金属を含む重金属含有水溶液に、請求項1〜6のいずれかに記載の重金属含有水溶液用浄化剤と希釈水を添加した後、生成した固形物を除去することを特徴とする重金属含有水溶液の浄化方法。 The heavy metal-containing aqueous solution containing at least one heavy metal selected from the group consisting of zinc, cadmium, nickel, mercury, lead and copper is added with the purification agent for heavy metal-containing aqueous solution according to any one of claims 1 to 6 and dilution water The method of purifying a heavy metal-containing aqueous solution is characterized by removing the solid matter generated after the 重金属含有水溶液が、さらに亜鉛、カドミウム、ニッケル、水銀、鉛、銅からなる群より選ばれる少なくとも一種の重金属と錯生成能力を持つ化合物を含むことを特徴とする請求項7又は請求項8に記載の重金属含有水溶液の浄化方法。 9. The heavy metal-containing aqueous solution according to claim 7, further comprising a compound having an ability to form a complex with at least one heavy metal selected from the group consisting of zinc, cadmium, nickel, mercury, lead and copper. Of purification of heavy metal-containing aqueous solution. 亜鉛、カドミウム、ニッケル、水銀、鉛、銅からなる群より選ばれる少なくとも一種の重金属と錯生成能力を持つ化合物が、カルボキシル基及びアミノ基からなる群より選ばれる官能基を分子内に有する化合物であることを特徴とする請求項9に記載の重金属含有水溶液の浄化方法。 A compound having the ability to form a complex with at least one heavy metal selected from the group consisting of zinc, cadmium, nickel, mercury, lead and copper is a compound having in its molecule a functional group selected from the group consisting of a carboxyl group and an amino group 10. The method for purifying a heavy metal-containing aqueous solution according to claim 9, wherein 固形物を除去する前に、無機凝集剤を添加することを特徴とする請求項7〜10のいずれかに記載の重金属含有水溶液の浄化方法。 An inorganic coagulant | flocculant is added before removing a solid substance, The purification method of the heavy metal containing aqueous solution in any one of the Claims 7-10 characterized by the above-mentioned. 固形物を除去する前に、無機凝集剤及び高分子凝集剤を添加することを特徴とする請求項7〜10のいずれかに記載の重金属含有水溶液の浄化方法。 An inorganic coagulant | flocculant and a polymer coagulant | flocculant are added before removing a solid substance, The purification method of the heavy metal containing aqueous solution in any one of the Claims 7-10 characterized by the above-mentioned. 無機凝集剤が、鉄化合物及びアルミニウム化合物からなる群より選択されることを特徴とする請求項11又は12に記載の重金属含有水溶液の浄化方法。 The method for purifying a heavy metal-containing aqueous solution according to claim 11 or 12, wherein the inorganic coagulant is selected from the group consisting of an iron compound and an aluminum compound.
JP2017206187A 2017-10-25 2017-10-25 Purification agent for heavy metal-containing aqueous solution, and method for purifying heavy metal-containing aqueous solution Pending JP2019076840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017206187A JP2019076840A (en) 2017-10-25 2017-10-25 Purification agent for heavy metal-containing aqueous solution, and method for purifying heavy metal-containing aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017206187A JP2019076840A (en) 2017-10-25 2017-10-25 Purification agent for heavy metal-containing aqueous solution, and method for purifying heavy metal-containing aqueous solution

Publications (1)

Publication Number Publication Date
JP2019076840A true JP2019076840A (en) 2019-05-23

Family

ID=66628553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017206187A Pending JP2019076840A (en) 2017-10-25 2017-10-25 Purification agent for heavy metal-containing aqueous solution, and method for purifying heavy metal-containing aqueous solution

Country Status (1)

Country Link
JP (1) JP2019076840A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023277136A1 (en) * 2021-07-02 2023-01-05 ミヨシ油脂株式会社 Heavy metal treatment agent, and method for treating incinerated ash and wastewater using same
WO2024143028A1 (en) * 2022-12-27 2024-07-04 ミヨシ油脂株式会社 Heavy metal treatment agent, and method for treating wastewater and incineration ash using same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09268279A (en) * 1996-04-01 1997-10-14 Miyoshi Oil & Fat Co Ltd Metal scavenger
JP2014088477A (en) * 2012-10-29 2014-05-15 Tosoh Corp Heavy metal treatment agent and method for treating heavy metal contaminant
JP2017154066A (en) * 2016-03-01 2017-09-07 東ソー株式会社 Purifier for nickel-containing aqueous solution and method of purifying nickel-containing aqueous solution
JP2017154130A (en) * 2015-08-07 2017-09-07 東ソー株式会社 Cleaning agent for heavy-metal-containing aqueous solution, and cleaning method of heavy-metal-containing aqueous solution
JP2018043232A (en) * 2016-09-08 2018-03-22 東ソー株式会社 Purification agent for mercury-containing aqueous solution, and method of purifying mercury-containing aqueous solution

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09268279A (en) * 1996-04-01 1997-10-14 Miyoshi Oil & Fat Co Ltd Metal scavenger
JP2014088477A (en) * 2012-10-29 2014-05-15 Tosoh Corp Heavy metal treatment agent and method for treating heavy metal contaminant
JP2017154130A (en) * 2015-08-07 2017-09-07 東ソー株式会社 Cleaning agent for heavy-metal-containing aqueous solution, and cleaning method of heavy-metal-containing aqueous solution
JP2017154066A (en) * 2016-03-01 2017-09-07 東ソー株式会社 Purifier for nickel-containing aqueous solution and method of purifying nickel-containing aqueous solution
JP2018043232A (en) * 2016-09-08 2018-03-22 東ソー株式会社 Purification agent for mercury-containing aqueous solution, and method of purifying mercury-containing aqueous solution

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023277136A1 (en) * 2021-07-02 2023-01-05 ミヨシ油脂株式会社 Heavy metal treatment agent, and method for treating incinerated ash and wastewater using same
WO2024143028A1 (en) * 2022-12-27 2024-07-04 ミヨシ油脂株式会社 Heavy metal treatment agent, and method for treating wastewater and incineration ash using same

Similar Documents

Publication Publication Date Title
JP6969076B2 (en) Purifying agent for heavy metal-containing aqueous solution, and method for purifying heavy metal-containing aqueous solution
AU2007243032B2 (en) Polymeric chelant and coagulant to treat metal-containing wastewater
JP6486877B2 (en) Waste water treatment device and waste water treatment method using the waste water treatment device
CN1978336B (en) Composition and method for simultaneously precipitating metal ions from semiconductor wastewater
Ang et al. Hybrid coagulation–NF membrane process for brackish water treatment: Effect of antiscalant on water characteristics and membrane fouling
US20080197075A1 (en) Removing mercury and other heavy metals from industrial wastewater
JP7166795B2 (en) Method for treating wastewater containing COD components
JP2023060143A (en) Purification agent for nickel-containing aqueous solution and purification method of nickel-containing aqueous solution
JP2007209886A (en) Fluorine removing agent, and method and apparatus for treating drain containing fluorine using the agent
JP2019076840A (en) Purification agent for heavy metal-containing aqueous solution, and method for purifying heavy metal-containing aqueous solution
JP6862660B2 (en) Purifying agent for nickel-containing aqueous solution and purification method for nickel-containing aqueous solution
CN109293053A (en) A kind of chelating precipitation method removing heavy metals in industrial wastewater
JP6744526B2 (en) Wastewater treatment method and wastewater treatment agent
JP2018043232A (en) Purification agent for mercury-containing aqueous solution, and method of purifying mercury-containing aqueous solution
JP2001240843A (en) Heavy metal scavenger and scavenging method
JP7031176B2 (en) Purifying agent for nickel-containing aqueous solution and purification method for nickel-containing aqueous solution
JP6862659B2 (en) How to purify nickel-containing aqueous solution
JP2019025481A (en) Agent for purifying nickel-containing aqueous solution and method for purifying nickel-containing aqueous solution
JP7183560B2 (en) Purifying Agent for Nickel-Containing Aqueous Solution and Method for Purifying Nickel-Containing Aqueous Solution
WO2016158632A1 (en) Flocculant for treating waste water, and method for flocculation treatment of waste water
JP2016209861A (en) Method for cleaning cadmium-containing water solution
JP2017094252A (en) Method for removing molybdenum in waste water
JP2014188455A (en) Membrane separation method and membrane separation apparatus
CN103172161A (en) Compound heavy metal chelating agent
JP6891653B2 (en) Wastewater purification agent for heavy metal-containing aqueous solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220208