JP6862659B2 - How to purify nickel-containing aqueous solution - Google Patents

How to purify nickel-containing aqueous solution Download PDF

Info

Publication number
JP6862659B2
JP6862659B2 JP2016038756A JP2016038756A JP6862659B2 JP 6862659 B2 JP6862659 B2 JP 6862659B2 JP 2016038756 A JP2016038756 A JP 2016038756A JP 2016038756 A JP2016038756 A JP 2016038756A JP 6862659 B2 JP6862659 B2 JP 6862659B2
Authority
JP
Japan
Prior art keywords
nickel
aqueous solution
added
treatment
rpm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016038756A
Other languages
Japanese (ja)
Other versions
JP2017154065A (en
Inventor
正寛 服部
正寛 服部
隆洋 増田
隆洋 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2016038756A priority Critical patent/JP6862659B2/en
Publication of JP2017154065A publication Critical patent/JP2017154065A/en
Application granted granted Critical
Publication of JP6862659B2 publication Critical patent/JP6862659B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Removal Of Specific Substances (AREA)

Description

本発明は、ニッケルと錯生成能力を持つ化合物、及びニッケルを含有する水溶液から、ニッケルを除去することを可能にする浄化方法に関するものである。 The present invention relates to a compound having the ability to form a complex with nickel, and a purification method capable of removing nickel from an aqueous solution containing nickel.

ニッケルを含有した水溶液は、排水処理設備に送り、例えば鉄イオンを添加してアルカリ性にし、ニッケルイオン等を鉄イオンやその他含有されるイオンと共に水酸化物として沈殿させるなどの処理を行い、水溶液から分離した後に放流する方法などが行われてきた。 The aqueous solution containing nickel is sent to a wastewater treatment facility, for example, iron ions are added to make it alkaline, and nickel ions and the like are precipitated as hydroxides together with iron ions and other contained ions. Methods such as releasing after separation have been carried out.

ニッケル含有量の排水基準は、化学物質排出把握管理促進法において第1種指定化学物質に指定される有害な重金属であり、水質汚濁に係る環境基準における要監視項目として設定されており、排水処理の重要性が高まっている。 The nickel content wastewater standard is a harmful heavy metal designated as a Class 1 designated chemical substance in the Chemical Substance Emission Control Promotion Law, and is set as a monitoring item in the environmental standard for water pollution, and wastewater treatment. Is becoming more important.

ところで、めっき工場、電子部品・機械部品製造工場、自動車工場などからの排水には、クエン酸、グルコン酸などの有機酸、エチレンジアミン四酢酸(以下、EDTAと略す)、シアン、アミン、アンモニア及びポリリン酸など、ニッケルと錯生成能力を持つ化合物が含まれ、上記のような水酸化物法では処理できない事例が多くなっている。 By the way, organic acids such as citric acid and gluconic acid, ethylenediaminetetraacetic acid (hereinafter abbreviated as EDTA), cyanide, amine, ammonia and polyphosphorus are used for wastewater from plating factories, electronic parts / mechanical parts manufacturing factories, automobile factories, etc. It contains compounds such as acids that have the ability to form complex with nickel, and there are many cases where it cannot be treated by the hydroxide method as described above.

これに対し、ニッケルと錯生成能力を持つ化合物を化学的処理によって、ニッケルと錯生成能力を持つ化合物を処理した後に、ニッケルを不溶化処理する方法がある。しかし、化学的処理、例えば、塩素系薬剤による酸化法、電解酸化法、過酸化水素−第一鉄塩法、オゾン酸化法、湿式酸化法等においても、共存する重金属元素による酸化反応の阻害、スケールの生成などの問題がある。 On the other hand, there is a method of insolubilizing nickel after treating a compound having a complex forming ability with nickel by a chemical treatment with a compound having a complex forming ability with nickel. However, even in chemical treatments such as oxidation method with chlorine-based chemicals, electrolytic oxidation method, hydrogen peroxide-ferrous iron salt method, ozone oxidation method, wet oxidation method, etc., inhibition of oxidation reaction by coexisting heavy metal elements, There are problems such as scale generation.

このような排水中に含まれる各種の重金属元素を除去する技術としては、例えば、無機若しくは有機凝集剤の添加による凝集分離除去法、電解による除去法、活性炭、無機吸着剤若しくは有機高分子材料による吸着除去法、排水を加熱蒸発させる乾固法、膜を用いた逆浸透法、電気透析又は限外ろ過法などが提案されている。 Techniques for removing various heavy metal elements contained in such wastewater include, for example, a coagulation separation removal method by adding an inorganic or organic coagulant, a removal method by electrodialysis, activated carbon, an inorganic adsorbent or an organic polymer material. Adsorption removal methods, dry solidification methods that heat and evaporate wastewater, reverse osmosis methods using membranes, electrodialysis, ultrafiltration methods, and the like have been proposed.

上記の諸方法を用いた場合は、以下のような問題が多々あり、いずれの方法もそれらに対する改善の必要性があった。例えば、(1)凝集分離除去法ではニッケルを充分に処理できない、(2)吸着除去法等は、例えニッケルを吸着できたとしても処理後に多量の固形成分が発生する、(3)逆浸透法、電気透析又は限外ろ過法等は、排水中に有機物を含有すると除去が困難であり、また、その処理コストが高い、(4)加熱蒸発による乾固法は、処理法が煩雑かつ処理コストが高いなどである。 When the above methods were used, there were many problems such as the following, and there was a need for improvement in each method. For example, (1) the coagulation separation and removal method cannot sufficiently treat nickel, (2) the adsorption and removal method and the like generate a large amount of solid components after the treatment even if nickel can be adsorbed, and (3) the reverse osmosis method. , Electrodialysis or ultrafiltration is difficult to remove if organic matter is contained in the wastewater, and the treatment cost is high. (4) The dry-drying method by heat evaporation is complicated and the treatment cost is high. Is high and so on.

ところで、ジチオカルバミン酸の塩を排水中の重金属処理剤として使用する方法(例えば、特許文献1〜4参照)が提案されている。しかしながら、ニッケルと錯生成能力を持つ化合物を含むニッケル含有排水の処理に関する例示はされていない。 By the way, a method of using a salt of dithiocarbamic acid as a heavy metal treating agent in wastewater (see, for example, Patent Documents 1 to 4) has been proposed. However, no example is given regarding the treatment of nickel-containing wastewater containing nickel and a compound having a complexing ability.

特開2009−249399公報JP-A-2009-249399 特開2011−074350公報Japanese Unexamined Patent Publication No. 2011-074350 特開2014−088477公報JP-A-2014-08477 特開2002−177902公報JP-A-2002-177902

本発明の目的は、ニッケルと錯生成能力を持つ化合物、及びニッケルを含有する水溶液のニッケル濃度を低減するニッケル含有水溶液の浄化方法を提供することにある。 An object of the present invention is to provide a compound having an ability to form a complex with nickel, and a method for purifying a nickel-containing aqueous solution that reduces the nickel concentration of the nickel-containing aqueous solution.

本発明者等は、上記の課題を解決すべく鋭意検討を重ねた結果、本発明で示す新規なニッケル含有水溶液の浄化方法を用いることにより、ニッケルと錯生成能力を持つ化合物、及びニッケルを含有する水溶液を簡便な方法で、ニッケル濃度を低減できることを見出し、本発明を完成するに至った。 As a result of diligent studies to solve the above problems, the present inventors, etc., by using the novel method for purifying a nickel-containing aqueous solution shown in the present invention, contain nickel, a compound having an ability to form a complex, and nickel. We have found that the nickel concentration can be reduced by a simple method, and have completed the present invention.

すなわち、本発明は、以下の要旨を有するものである。
[1]ニッケルと錯生成能力を持つ化合物、及びニッケルを含有する水溶液に、ジチオカルバミン酸の塩と、ニッケルと錯生成能力を持つ化合物の含有量以上の無機凝集剤を添加した後、固形物を除去することを特徴とするニッケル含有水溶液の浄化方法。
[2]上記ニッケルと錯生成能力を持つ化合物が、分子内にカルボキシル基、アミノ基及びリン酸基から選ばれる少なくとも1種以上の置換基を有する化合物であることを特徴とする上記[1]に記載のニッケル含有水溶液の浄化方法。
[3]上記ジチオカルバミン酸の塩が、1級アミノ基乃び/又は2級アミノ基を有するアミン化合物と二硫化炭素とアルカリ金属水酸化物を反応させて得られるものであることを特徴とする上記[1]又は[2]に記載のニッケル含有水溶液の浄化方法。
[4]上記無機凝集剤が、塩化第二鉄、硫酸アルミニウム及びポリ塩化アルミニウムから選ばれる少なくとも1種以上であることを特徴とする上記[1]〜[3]のいずれかに記載のニッケル含有水溶液の浄化方法。
That is, the present invention has the following gist.
[1] After adding a salt of dithiocarbamic acid and an inorganic flocculant having a content of nickel and a compound having a complex forming ability or more to an aqueous solution containing nickel and a compound having a complex forming ability, a solid substance is added. A method for purifying a nickel-containing aqueous solution, which comprises removing it.
[2] The compound having an ability to form a complex with nickel is a compound having at least one substituent selected from a carboxyl group, an amino group and a phosphoric acid group in the molecule [1]. The method for purifying a nickel-containing aqueous solution according to.
[3] The salt of dithiocarbamic acid is obtained by reacting an amine compound having a primary amino group / or a secondary amino group with carbon disulfide and an alkali metal hydroxide. The method for purifying a nickel-containing aqueous solution according to the above [1] or [2].
[4] The nickel-containing agent according to any one of [1] to [3] above, wherein the inorganic flocculant is at least one selected from ferric chloride, aluminum sulfate and polyaluminum chloride. Aqueous solution purification method.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明のニッケル含有水溶液の浄化方法は、ニッケルと錯生成能力を持つ化合物、及びニッケルを含有する水溶液に、ジチオカルバミン酸の塩と無機凝集剤を添加した後、固形物を除去することを特徴とする。 The method for purifying a nickel-containing aqueous solution of the present invention is characterized by adding a salt of dithiocarbamic acid and an inorganic flocculant to a compound having a ability to form a complex with nickel and an aqueous solution containing nickel, and then removing solid substances. To do.

ニッケルと錯生成能力を持つ化合物としては、ニッケルと錯体を形成する化合物であれば特に限定されないが、例えば分子内にカルボキシル基、アミノ基及びリン酸基から選ばれる少なくとも1種以上の置換基を有する化合物が挙げられる。特にニッケルと強固な錯体を形成する化合物としてEDTA、クエン酸、ピロリン酸が挙げられる。 The compound having a complex forming ability with nickel is not particularly limited as long as it is a compound forming a complex with nickel, but for example, at least one or more substituents selected from a carboxyl group, an amino group and a phosphoric acid group are contained in the molecule. Examples include compounds having. In particular, EDTA, citric acid, and pyrophosphoric acid are examples of compounds that form a strong complex with nickel.

ジチオカルバミン酸の塩としては、分子内にジチオカルバミル基を有する化合物であれば特に限定されないが、例えばジエチルアミン、ピペラジン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、及びヘプタエチレンオクタミンなどの1級アミノ基乃び/又は2級アミノ基を有するアミン化合物と二硫化炭素とアルカリ金属水酸化物を反応させて得られる化合物が挙げられる。 The salt of dithiocarbamic acid is not particularly limited as long as it is a compound having a dithiocarbamyl group in the molecule, but for example, diethylamine, piperazine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, and heptaethyleneoctamine. Examples thereof include a compound obtained by reacting an amine compound having a primary amino group / or a secondary amino group with carbon disulfide and an alkali metal hydroxide.

この内、ニッケルの処理性能や化合物の安定性の点で、ピペラジン又はテトラエチレンペンタミンと二硫化炭素とアルカリ金属水酸化物を反応させて得られる化合物が好ましい。ただし、テトラエチレンペンタミンのジチオカルバミン酸の塩は、原料であるテトラエチレンペンタミンが、主成分のリニア体[化学式(1)]以外に類縁体[化学式(2)〜(4)]を含む組成物のみが工業的に製造されているため、得られるジチオカルバミン酸の塩も組成物となり、品質管理上煩雑になる欠点がある。一方、ピペラジンのジチオカルバミン酸の塩はこのような欠点がなく、特に好ましい。 Of these, a compound obtained by reacting piperazine or tetraethylenepentamine with carbon disulfide and an alkali metal hydroxide is preferable in terms of nickel treatment performance and compound stability. However, the salt of tetraethylenepentamine dithiocarbamic acid has a composition in which the raw material tetraethylenepentamine contains analogs [chemical formulas (2) to (4)] in addition to the linear body [chemical formula (1)] as the main component. Since only the product is manufactured industrially, the obtained salt of dithiocarbamic acid is also a composition, which has a drawback of complicated quality control. On the other hand, the salt of piperazine dithiocarbamic acid does not have such a drawback and is particularly preferable.

Figure 0006862659
Figure 0006862659

Figure 0006862659
Figure 0006862659

Figure 0006862659
Figure 0006862659

Figure 0006862659
アルカリ金属水酸化物としては、入手が容易な点で、水酸化ナトリウムや水酸化カリウムが特に好ましい。
Figure 0006862659
As the alkali metal hydroxide, sodium hydroxide and potassium hydroxide are particularly preferable because they are easily available.

固形物の除去を速やかに行うために、無機凝集剤の添加が必要である。また、凝集剤として、無機化合物と高分子化合物を併用することが好ましい。無機化合物としては、市販されている無機凝集剤を使用でき、例えば塩化第二鉄、硫酸アルミニウム及びポリ塩化アルミニウムなどが挙げられる。 Inorganic flocculants need to be added to expedite the removal of solids. Further, it is preferable to use an inorganic compound and a polymer compound in combination as the flocculant. As the inorganic compound, a commercially available inorganic flocculant can be used, and examples thereof include ferric chloride, aluminum sulfate, and polyaluminum chloride.

無機凝集剤は、ニッケルと錯生成能力を持つ化合物の含有量以上を添加することが好ましい。ニッケルと錯生成能力を持つ化合物の含有量より無機凝集剤の添加量が少ない場合、凝集性が不足し、ニッケル濃度を低減できない場合がある。 As the inorganic flocculant, it is preferable to add the content of nickel and a compound having a complexing ability or more. If the amount of the inorganic cohesive agent added is smaller than the content of the compound having the ability to form a complex with nickel, the cohesiveness may be insufficient and the nickel concentration may not be reduced.

ニッケルと錯生成能力を持つ化合物の含有量は、ニッケルを含有する水溶液中のニッケルと錯生成能力を持つ化合物濃度をHPLC、ガスクロマトグラフィー、滴定などの分析を行うことで算出することができる。 The content of the compound having the ability to form a complex with nickel can be calculated by analyzing the concentration of the compound having the ability to form a complex with nickel in the nickel-containing aqueous solution by HPLC, gas chromatography, titration or the like.

高分子化合物としては、市販されている高分子凝集剤を使用でき、例えばアクリル酸ポリマー、アクリルアミドポリマー、ジメチルアミノエチルメタアクリレートポリマーなどが挙げられる。凝集性能の点で、弱アニオン性のアクリル酸ポリマーが好ましい。 As the polymer compound, a commercially available polymer flocculant can be used, and examples thereof include an acrylic acid polymer, an acrylamide polymer, and a dimethylaminoethyl methacrylate polymer. A weak anionic acrylic acid polymer is preferable in terms of aggregation performance.

ジチオカルバミン酸の塩、及び無機凝集剤を添加する順番としては特に限定されないが、例えば最初にジチオカルバミン酸の塩を添加し、次に無機凝集剤を添加する方法や、先に無機凝集剤を添加し、次にジチオカルバミン酸の塩を添加する方法が挙げられる。先に無機凝集剤を添加する方法では、ジチオカルバミン酸の塩を添加した後に、再度無機凝集剤を添加する必要がある場合があるため、最初にジチオカルバミン酸の塩を添加し、次に無機凝集剤を添加する方法が好ましい。 The order in which the salt of dithiocarbamic acid and the inorganic flocculant are added is not particularly limited, but for example, a method of first adding the salt of dithiocarbamic acid and then adding the inorganic flocculant, or adding the inorganic flocculant first. Then, a method of adding a salt of dithiocarbamic acid can be mentioned. In the method of adding the inorganic aggregating agent first, it may be necessary to add the inorganic aggregating agent again after adding the salt of dithiocarbamic acid. Therefore, the salt of dithiocarbamic acid is added first, and then the inorganic aggregating agent is added. Is preferred.

固形物を除去する方法としては特に限定されず、ろ過、遠心分離、及び固形物を沈降させた後、上澄み液と分離する方法などが挙げられる。 The method for removing the solid matter is not particularly limited, and examples thereof include filtration, centrifugation, and a method in which the solid matter is settled and then separated from the supernatant liquid.

本発明によれば、ニッケルの処理が難しい、ニッケルと錯生成能力を持つ化合物、及びニッケルを含有する水溶液であっても、ニッケル濃度を低減できる。 According to the present invention, the nickel concentration can be reduced even in an aqueous solution containing nickel and a compound having a ability to form a complex with nickel, which is difficult to treat with nickel.

以下に、本発明を具体的に説明するが、本発明はこれらの実施例により限定して解釈されるものではない。 Hereinafter, the present invention will be specifically described, but the present invention is not construed as being limited to these examples.

(分析方法)
水溶液中のニッケルイオン濃度は、ICP発光分光分析装置(ICP−9820、島津製作所社製)で測定した。
(Analysis method)
The nickel ion concentration in the aqueous solution was measured by an ICP emission spectrophotometer (ICP-9820, manufactured by Shimadzu Corporation).

参考例1
実施例1〜18に使用したキレート剤A(ジチオカルバミン酸の塩)は、以下の方法に従って調製した。
Reference example 1
The chelating agent A (salt of dithiocarbamic acid) used in Examples 1 to 18 was prepared according to the following method.

(キレート剤Aの調製)
ピペラジン(東ソー社製)112gと純水386gを混合した後、25℃で、窒素気流中で攪拌しながら48重量%水酸化カリウム306g(キシダ化学社製)と二硫化炭素196g(キシダ化学社製)をそれぞれ4分割して交互に滴下した。1時間攪拌し、化学式(5)に示す化合物40重量%を含む水溶液を得た。
(Preparation of chelating agent A)
After mixing 112 g of piperazine (manufactured by Tosoh) and 386 g of pure water, 306 g of 48 wt% potassium hydroxide (manufactured by Kishida Chemical Co., Ltd.) and 196 g of carbon disulfide (manufactured by Kishida Chemical Co., Ltd.) while stirring in a nitrogen stream at 25 ° C. ) Was divided into 4 parts and dropped alternately. The mixture was stirred for 1 hour to obtain an aqueous solution containing 40% by weight of the compound represented by the chemical formula (5).

Figure 0006862659
(無機凝集剤)
キシダ化学社製38重量%塩化第二鉄水溶液を無機凝集剤として使用した。
Figure 0006862659
(Inorganic flocculant)
A 38 wt% ferric chloride aqueous solution manufactured by Kishida Chemical Co., Ltd. was used as an inorganic flocculant.

関東化学社製硫酸アルミニウム30gを水に加え、合計100gにした水溶液(30重量%硫酸アルミニウム水溶液)を無機凝集剤として使用した。 An aqueous solution (30 wt% aluminum sulfate aqueous solution) made by adding 30 g of aluminum sulfate manufactured by Kanto Chemical Co., Inc. to water to make a total of 100 g was used as an inorganic flocculant.

キシダ化学社製ポリ塩化アルミニウム30gを水に加え、合計100gにした水溶液(30重量%ポリ塩化アルミニウム水溶液)を無機凝集剤として使用した。 30 g of polyaluminum chloride manufactured by Kishida Chemical Co., Ltd. was added to water to make a total of 100 g, and an aqueous solution (30 wt% polyaluminum chloride aqueous solution) was used as an inorganic flocculant.

(高分子凝集剤)
高分子凝集剤として、オルガノ社製OA−23(弱アニオンポリマー)を使用した。
(Polymer flocculant)
OA-23 (weak anion polymer) manufactured by Organo Corporation was used as the polymer flocculant.

ニッケルと錯生成能力を持つ化合物の定量法として、ニッケルを含有する水溶液中のEDTAの定量法を一例として示す。 As an example of a method for quantifying a compound having an ability to form a complex with nickel, a method for quantifying EDTA in an aqueous solution containing nickel is shown.

参考例2
ニッケルイオン10mg/LとEDTA25mg/Lを含む水溶液200mLをビーカーに準備し、内部標準物質(サロゲート)としてトランス−1,2−ジアミノシクロヘキサン−N,N,N’,N’−四酢酸(同仁化学研究所製)溶液(40mg/L)25μLを加えた後、ホットプレート上で加熱し、残液が2mL程度となるまで蒸発濃縮した。残液を10mLのねじ口キャップ付遠心沈殿管に移し、少量の洗液を合わせた。この濃縮液にギ酸200μLを加えて混和し、ヒートブロック上で約70℃に加熱しながら窒素ガスを吹き付け、完全に蒸発乾固させた。遠心沈殿管中の残渣に三フッ化ホウ素−メタノール1mLを加えて密栓し、ヒートブロック上で80℃に加熱して1時間誘導体化反応を行った。冷却後、リン酸塩緩衝液3mL及びジクロロメタン2mLを加えて10分間激しく振り混ぜた後、3500rpmで15分間遠心分離した。ジクロロメタン層を取り、ろ紙を用いろ過し、ろ液をガスクロマトグラフ−質量分析計で分析した。
Reference example 2
200 mL of an aqueous solution containing 10 mg / L of nickel ions and 25 mg / L of EDTA was prepared in a beaker, and trans-1,2-diaminocyclohexane-N, N, N', N'-tetraacetic acid (Dojin Kagaku) was prepared as an internal standard substance (surrogate). After adding 25 μL of the solution (manufactured by the laboratory) (40 mg / L), the mixture was heated on a hot plate and concentrated by evaporation until the residual liquid became about 2 mL. The residual liquid was transferred to a centrifugal settling tube with a 10 mL screw cap, and a small amount of washing liquid was combined. 200 μL of formic acid was added to this concentrated solution and mixed, and nitrogen gas was sprayed on a heat block while heating at about 70 ° C. to completely evaporate and dry. Boron trifluoride-methanol (1 mL) was added to the residue in the centrifugal settling tube, sealed, and heated to 80 ° C. on a heat block to carry out a derivatization reaction for 1 hour. After cooling, 3 mL of phosphate buffer and 2 mL of dichloromethane were added, and the mixture was vigorously shaken for 10 minutes and then centrifuged at 3500 rpm for 15 minutes. The dichloromethane layer was removed, filtered using filter paper, and the filtrate was analyzed with a gas chromatograph-mass spectrometer.

分析の結果、EDTA濃度は25mg/Lであり、仕込み濃度と同じであることを定量分析により確認した。 As a result of the analysis, it was confirmed by quantitative analysis that the EDTA concentration was 25 mg / L, which was the same as the charged concentration.

実施例1〜6
500mLビーカーに、ジャーテスターを設置し、ニッケルイオン10mg/LとEDTA25mg/Lを含む水溶液を500mL添加した。150rpmで攪拌しながら、キレート剤Aを所定量加え、150rpmで10分間攪拌し、次に38重量%塩化第二鉄水溶液、30重量%硫酸アルミニウム又は30重量%ポリ塩化アルミニウムを所定量加え、150rpmで5分間攪拌し、次に0.1重量%OA−23水溶液を所定量加え、50rpmで5分間攪拌した。水溶液のpHは、微量の塩酸及び水酸化ナトリウムを用いて、常にpH7となるよう調製した。攪拌終了後、10分間静置し、アドバンテック社製5Aのろ紙で水溶液をろ別し、処理後水溶液のニッケル濃度を測定した。
Examples 1-6
A jar tester was placed in a 500 mL beaker, and 500 mL of an aqueous solution containing 10 mg / L of nickel ions and 25 mg / L of EDTA was added. While stirring at 150 rpm, add a predetermined amount of chelating agent A, stir at 150 rpm for 10 minutes, then add a predetermined amount of 38 wt% ferric chloride aqueous solution, 30 wt% aluminum sulfate or 30 wt% polyaluminum chloride, 150 rpm. Then, a predetermined amount of 0.1 wt% OA-23 aqueous solution was added, and the mixture was stirred at 50 rpm for 5 minutes. The pH of the aqueous solution was adjusted to always be pH 7 using a small amount of hydrochloric acid and sodium hydroxide. After the stirring was completed, the mixture was allowed to stand for 10 minutes, the aqueous solution was filtered off with a 5A filter paper manufactured by Advantech, and the nickel concentration of the aqueous solution after the treatment was measured.

結果を以下の表1に示す。 The results are shown in Table 1 below.

Figure 0006862659
実施例1〜3のEDTA含有排水では、無機凝集剤に塩化第二鉄を使用した例であり、ニッケル濃度を5mg/L以下に低減することができた。
Figure 0006862659
In the EDTA-containing wastewater of Examples 1 to 3, ferric chloride was used as the inorganic flocculant, and the nickel concentration could be reduced to 5 mg / L or less.

また、実施例4では塩化第二鉄を加えた後、高分子凝集剤(OA−23)を添加しなかった例であるが、処理後水溶液のニッケル濃度は、高分子凝集剤を添加した場合とほぼ同じ値であり、高分子凝集剤を添加しなくてもニッケル濃度を低減できる結果となった。 Further, in Example 4, the polymer flocculant (OA-23) was not added after the addition of ferric chloride, but the nickel concentration of the aqueous solution after the treatment was the case where the polymer flocculant was added. The value was almost the same as that of the above, and the result was that the nickel concentration could be reduced without adding a polymer flocculant.

無機凝集剤である塩化第二鉄の代わりに、実施例5では硫酸アルミニウム、実施例6ではポリ塩化アルミニウムを使用しているが、処理後水溶液のニッケル濃度は、塩化第二鉄を使用した場合と同じであり、無機凝集剤の種類によらずニッケル濃度を低減することができた。 Instead of ferric chloride, which is an inorganic flocculant, aluminum sulfate is used in Example 5, and polyaluminum chloride is used in Example 6, but the nickel concentration of the treated aqueous solution is the case where ferric chloride is used. The nickel concentration could be reduced regardless of the type of inorganic flocculant.

比較例1〜4
500mLビーカーに、ジャーテスターを設置し、ニッケルイオン10mg/LとEDTA25mg/Lを含む水溶液を500mL添加した。150rpmで攪拌しながら、38重量%塩化第二鉄水溶液、30重量%硫酸アルミニウム又は30重量%ポリ塩化アルミニウムを所定量加え、150rpmで5分間攪拌し、次に0.1重量%OA−23水溶液を所定量加え、50rpmで5分間攪拌した。水溶液のpHは、微量の塩酸及び水酸化ナトリウムを用いて、常に所定のpH値となるよう調製した。攪拌終了後、10分間静置し、アドバンテック社製5Aのろ紙で水溶液をろ別し、処理後水溶液のニッケル濃度を測定した。
Comparative Examples 1 to 4
A jar tester was placed in a 500 mL beaker, and 500 mL of an aqueous solution containing 10 mg / L of nickel ions and 25 mg / L of EDTA was added. While stirring at 150 rpm, add a predetermined amount of 38 wt% ferric chloride aqueous solution, 30 wt% aluminum sulfate or 30 wt% polyaluminum chloride, stir at 150 rpm for 5 minutes, and then 0.1 wt% OA-23 aqueous solution. Was added in a predetermined amount, and the mixture was stirred at 50 rpm for 5 minutes. The pH of the aqueous solution was adjusted to always be a predetermined pH value using a small amount of hydrochloric acid and sodium hydroxide. After the stirring was completed, the mixture was allowed to stand for 10 minutes, the aqueous solution was filtered off with a 5A filter paper manufactured by Advantech, and the nickel concentration of the aqueous solution after the treatment was measured.

比較例5
500mLビーカーに、ジャーテスターを設置し、ニッケルイオン10mg/LとEDTA25mg/Lを含む水溶液を500mL添加した。150rpmで攪拌しながら、キレート剤Aを所定量加え、150rpmで10分間攪拌し、次に0.1重量%OA−23水溶液を所定量加え、50rpmで5分間攪拌した。水溶液のpHは、微量の塩酸及び水酸化ナトリウムを用いて、常にpH7となるよう調製した。攪拌終了後、10分間静置し、アドバンテック社製5Aのろ紙で水溶液をろ別し、処理後水溶液のニッケル濃度を測定した。
Comparative Example 5
A jar tester was placed in a 500 mL beaker, and 500 mL of an aqueous solution containing 10 mg / L of nickel ions and 25 mg / L of EDTA was added. While stirring at 150 rpm, a predetermined amount of chelating agent A was added, and the mixture was stirred at 150 rpm for 10 minutes, then a predetermined amount of 0.1 wt% OA-23 aqueous solution was added, and the mixture was stirred at 50 rpm for 5 minutes. The pH of the aqueous solution was adjusted to always be pH 7 using a small amount of hydrochloric acid and sodium hydroxide. After the stirring was completed, the mixture was allowed to stand for 10 minutes, the aqueous solution was filtered off with a 5A filter paper manufactured by Advantech, and the nickel concentration of the aqueous solution after the treatment was measured.

結果を以下の表2に示す。 The results are shown in Table 2 below.

Figure 0006862659
比較例1,2は、EDTA含有排水に鉄イオンを添加して中和し、ニッケルイオンを鉄イオンと共に水酸化物として沈殿させる従来の凝集沈殿法の例であるが、処理後水溶液のニッケル濃度は7mg/L以上であり、ニッケルの処理が不十分であった。
Figure 0006862659
Comparative Examples 1 and 2 are examples of the conventional coagulation-precipitation method in which iron ions are added to the EDTA-containing wastewater to neutralize the nickel ions and the nickel ions are precipitated as a hydroxide together with the iron ions. Was 7 mg / L or more, and the treatment with nickel was insufficient.

比較例3,4は、EDTA含有排水にアルミニウムイオンを添加して中和し、ニッケルイオンをアルミニウムイオンと共に水酸化物として沈殿させる従来の凝集沈殿法の例であるが、処理後水溶液のニッケル濃度は7mg/L以上であり、ニッケルの処理が不十分であった。 Comparative Examples 3 and 4 are examples of a conventional coagulation-precipitation method in which aluminum ions are added to EDTA-containing wastewater to neutralize them and nickel ions are precipitated as hydroxides together with aluminum ions. Was 7 mg / L or more, and the treatment with nickel was insufficient.

比較例5は、無機凝集剤を添加しない例であるが、処理後水溶液のニッケル濃度は7.4mg/Lであり、無機凝集剤を加えた場合と比較してニッケルの処理が不十分であった。 Comparative Example 5 is an example in which the inorganic flocculant is not added, but the nickel concentration of the aqueous solution after the treatment is 7.4 mg / L, and the nickel treatment is insufficient as compared with the case where the inorganic flocculant is added. It was.

実施例7〜12
500mLビーカーに、ジャーテスターを設置し、ニッケルイオン10mg/Lとクエン酸320mg/Lを含む水溶液を500mL添加した。150rpmで攪拌しながら、キレート剤Aを所定量加え、150rpmで10分間攪拌し、次に38重量%塩化第二鉄水溶液、30重量%硫酸アルミニウム又は30重量%ポリ塩化アルミニウムを所定量加え、150rpmで5分間攪拌し、次に0.1重量%OA−23水溶液を所定量加え、50rpmで5分間攪拌した。水溶液のpHは、微量の塩酸及び水酸化ナトリウムを用いて、常にpH7となるよう調製した。攪拌終了後、10分間静置し、アドバンテック社製5Aのろ紙で水溶液をろ別し、処理後水溶液のニッケル濃度を測定した。
Examples 7-12
A jar tester was placed in a 500 mL beaker, and 500 mL of an aqueous solution containing 10 mg / L of nickel ions and 320 mg / L of citric acid was added. While stirring at 150 rpm, add a predetermined amount of chelating agent A, stir at 150 rpm for 10 minutes, then add a predetermined amount of 38 wt% ferric chloride aqueous solution, 30 wt% aluminum sulfate or 30 wt% polyaluminum chloride, 150 rpm. Then, a predetermined amount of 0.1 wt% OA-23 aqueous solution was added, and the mixture was stirred at 50 rpm for 5 minutes. The pH of the aqueous solution was adjusted to always be pH 7 using a small amount of hydrochloric acid and sodium hydroxide. After the stirring was completed, the mixture was allowed to stand for 10 minutes, the aqueous solution was filtered off with a 5A filter paper manufactured by Advantech, and the nickel concentration of the aqueous solution after the treatment was measured.

結果を以下の表3に示す。 The results are shown in Table 3 below.

Figure 0006862659
実施例7〜9のクエン酸含有排水では、無機凝集剤に塩化第二鉄を使用した例であり、ニッケル濃度を1mg/L以下に低減し、ニッケルを十分処理することができた。
Figure 0006862659
In the citric acid-containing wastewater of Examples 7 to 9, ferric chloride was used as the inorganic flocculant, and the nickel concentration was reduced to 1 mg / L or less, and nickel could be sufficiently treated.

また、実施例10は、塩化第二鉄を加えた後、高分子凝集剤を添加しなかった例であるが、処理後水溶液のニッケル濃度は、高分子凝集剤を添加した場合とほぼ同じ値であり、高分子凝集剤を添加しなくてもニッケル濃度を低減できる結果となった。 Further, Example 10 is an example in which the polymer flocculant was not added after the addition of ferric chloride, but the nickel concentration of the aqueous solution after the treatment was substantially the same as that when the polymer flocculant was added. The result was that the nickel concentration could be reduced without adding a polymer flocculant.

無機凝集剤である塩化第二鉄の代わりに、実施例11では硫酸アルミニウム、実施例12ではポリ塩化アルミニウムを使用しているが、処理後水溶液のニッケル濃度は、塩化第二鉄を使用した場合と同じであり、無機凝集剤の種類によらずニッケル濃度を低減することができた。 Instead of ferric chloride, which is an inorganic flocculant, aluminum sulfate is used in Example 11 and polyaluminum chloride is used in Example 12, but the nickel concentration of the treated aqueous solution is the case where ferric chloride is used. The nickel concentration could be reduced regardless of the type of inorganic flocculant.

比較例6〜9
500mLビーカーに、ジャーテスターを設置し、ニッケルイオン10mg/Lとクエン酸320mg/Lを含む水溶液を500mL添加した。150rpmで攪拌しながら、38重量%塩化第二鉄水溶液、30重量%硫酸アルミニウム又は30重量%ポリ塩化アルミニウムを所定量加え、150rpmで5分間攪拌し、次に0.1重量%OA−23水溶液を所定量加え、50rpmで5分間攪拌した。水溶液のpHは、微量の塩酸及び水酸化ナトリウムを用いて、常に所定のpH値となるよう調製した。攪拌終了後、10分間静置し、アドバンテック社製5Aのろ紙で水溶液をろ別し、処理後水溶液のニッケル濃度を測定した。
Comparative Examples 6-9
A jar tester was placed in a 500 mL beaker, and 500 mL of an aqueous solution containing 10 mg / L of nickel ions and 320 mg / L of citric acid was added. While stirring at 150 rpm, add a predetermined amount of 38 wt% ferric chloride aqueous solution, 30 wt% aluminum sulfate or 30 wt% polyaluminum chloride, stir at 150 rpm for 5 minutes, and then 0.1 wt% OA-23 aqueous solution. Was added in a predetermined amount, and the mixture was stirred at 50 rpm for 5 minutes. The pH of the aqueous solution was adjusted to always be a predetermined pH value using a small amount of hydrochloric acid and sodium hydroxide. After the stirring was completed, the mixture was allowed to stand for 10 minutes, the aqueous solution was filtered off with a 5A filter paper manufactured by Advantech, and the nickel concentration of the aqueous solution after the treatment was measured.

比較例10
500mLビーカーに、ジャーテスターを設置し、ニッケルイオン10mg/Lとクエン酸320mg/Lを含む水溶液を500mL添加した。150rpmで攪拌しながら、キレート剤Aを所定量加え、150rpmで10分間攪拌し、次に0.1重量%OA−23水溶液を所定量加え、50rpmで5分間攪拌した。水溶液のpHは、微量の塩酸及び水酸化ナトリウムを用いて、常にpH7となるよう調製した。攪拌終了後、10分間静置し、アドバンテック社製5Aのろ紙で水溶液をろ別し、処理後水溶液のニッケル濃度を測定した。
Comparative Example 10
A jar tester was placed in a 500 mL beaker, and 500 mL of an aqueous solution containing 10 mg / L of nickel ions and 320 mg / L of citric acid was added. While stirring at 150 rpm, a predetermined amount of chelating agent A was added, and the mixture was stirred at 150 rpm for 10 minutes, then a predetermined amount of 0.1 wt% OA-23 aqueous solution was added, and the mixture was stirred at 50 rpm for 5 minutes. The pH of the aqueous solution was adjusted to always be pH 7 using a small amount of hydrochloric acid and sodium hydroxide. After the stirring was completed, the mixture was allowed to stand for 10 minutes, the aqueous solution was filtered off with a 5A filter paper manufactured by Advantech, and the nickel concentration of the aqueous solution after the treatment was measured.

結果を以下の表4に示す。 The results are shown in Table 4 below.

Figure 0006862659
比較例6,7は、クエン酸含有排水に鉄イオンを添加して中和する凝集沈殿法の例であるが、処理後水溶液のニッケル濃度は10mg/Lであり、ニッケルを全く処理できない結果となった。
Figure 0006862659
Comparative Examples 6 and 7 are examples of the coagulation-precipitation method in which iron ions are added to the citric acid-containing wastewater to neutralize the waste, but the nickel concentration of the aqueous solution after the treatment is 10 mg / L, and the result is that nickel cannot be treated at all. became.

比較例8,9は、クエン酸含有排水にアルミニウムイオンを添加して中和する凝集沈殿法の例であるが、処理後水溶液のニッケル濃度は10mg/Lであり、ニッケルを全く処理できない結果となった。 Comparative Examples 8 and 9 are examples of a coagulation-precipitation method in which aluminum ions are added to the citric acid-containing wastewater to neutralize the wastewater, but the nickel concentration of the aqueous solution after the treatment is 10 mg / L, and the result is that nickel cannot be treated at all. became.

比較例10は、無機凝集剤を添加しない例であるが、処理後水溶液のニッケル濃度は、クエン酸含有排水2.0mg/Lであり、無機凝集剤を加えた場合と比較してニッケルの処理が不十分であった。 Comparative Example 10 is an example in which the inorganic flocculant is not added, but the nickel concentration of the aqueous solution after the treatment is 2.0 mg / L of the citric acid-containing wastewater, and the nickel treatment is compared with the case where the inorganic flocculant is added. Was inadequate.

実施例13〜18
500mLビーカーに、ジャーテスターを設置し、ニッケルイオン10mg/Lとピロリン酸303mg/Lを含む水溶液を500mL添加した。150rpmで攪拌しながら、キレート剤Aを所定量加え、150rpmで10分間攪拌し、次に38重量%塩化第二鉄水溶液、30重量%硫酸アルミニウム又は30重量%ポリ塩化アルミニウムを所定量加え、150rpmで5分間攪拌し、次に0.1重量%OA−23水溶液を所定量加え、50rpmで5分間攪拌した。水溶液のpHは、微量の塩酸及び水酸化ナトリウムを用いて、常にpH7となるよう調製した。攪拌終了後、10分間静置し、アドバンテック社製5Aのろ紙で水溶液をろ別し、処理後水溶液のニッケル濃度を測定した。
Examples 13-18
A jar tester was placed in a 500 mL beaker, and 500 mL of an aqueous solution containing 10 mg / L of nickel ion and 303 mg / L of pyrophosphate was added. While stirring at 150 rpm, add a predetermined amount of chelating agent A, stir at 150 rpm for 10 minutes, then add a predetermined amount of 38 wt% ferric chloride aqueous solution, 30 wt% aluminum sulfate or 30 wt% polyaluminum chloride, 150 rpm. Then, a predetermined amount of 0.1 wt% OA-23 aqueous solution was added, and the mixture was stirred at 50 rpm for 5 minutes. The pH of the aqueous solution was adjusted to always be pH 7 using a small amount of hydrochloric acid and sodium hydroxide. After the stirring was completed, the mixture was allowed to stand for 10 minutes, the aqueous solution was filtered off with a 5A filter paper manufactured by Advantech, and the nickel concentration of the aqueous solution after the treatment was measured.

結果を以下の表5に示す。 The results are shown in Table 5 below.

Figure 0006862659
実施例13〜15のピロリン酸含有排水では、無機凝集剤に塩化第二鉄を使用した例であり、ニッケル濃度を1mg/L以下に低減し、ニッケルを十分処理することができた。
Figure 0006862659
In the pyrophosphoric acid-containing wastewater of Examples 13 to 15, ferric chloride was used as the inorganic flocculant, and the nickel concentration was reduced to 1 mg / L or less, and nickel could be sufficiently treated.

また、実施例16は、塩化第二鉄を加えた後、高分子凝集剤を添加しなかった例であるが、処理後水溶液のニッケル濃度は、高分子凝集剤を添加した場合とほぼ同じ値であり、高分子凝集剤を添加しなくてもニッケル濃度を低減できる結果となった。 Further, Example 16 is an example in which the polymer flocculant was not added after the addition of ferric chloride, but the nickel concentration of the aqueous solution after the treatment was substantially the same as that in the case where the polymer flocculant was added. The result was that the nickel concentration could be reduced without adding a polymer flocculant.

無機凝集剤である塩化第二鉄の代わりに、実施例17では硫酸アルミニウム、実施例18ではポリ塩化アルミニウムを使用しているが、処理後水溶液のニッケル濃度は、塩化第二鉄を使用した場合と同じであり、無機凝集剤の種類によらずニッケル濃度を低減することができた。 Instead of ferric chloride, which is an inorganic flocculant, aluminum sulfate is used in Example 17, and polyaluminum chloride is used in Example 18, but the nickel concentration of the treated aqueous solution is the case where ferric chloride is used. The nickel concentration could be reduced regardless of the type of inorganic flocculant.

比較例11〜14
500mLビーカーに、ジャーテスターを設置し、ニッケルイオン10mg/Lとピロリン酸303mg/Lを含む水溶液を500mL添加した。150rpmで攪拌しながら、38重量%塩化第二鉄水溶液、30重量%硫酸アルミニウム又は30重量%ポリ塩化アルミニウムを所定量加え、150rpmで5分間攪拌し、次に0.1重量%OA−23水溶液を所定量加え、50rpmで5分間攪拌した。水溶液のpHは、微量の塩酸及び水酸化ナトリウムを用いて、常に所定のpH値となるよう調製した。攪拌終了後、10分間静置し、アドバンテック社製5Aのろ紙で水溶液をろ別し、処理後水溶液のニッケル濃度を測定した。
Comparative Examples 11-14
A jar tester was placed in a 500 mL beaker, and 500 mL of an aqueous solution containing 10 mg / L of nickel ion and 303 mg / L of pyrophosphate was added. While stirring at 150 rpm, add a predetermined amount of 38 wt% ferric chloride aqueous solution, 30 wt% aluminum sulfate or 30 wt% polyaluminum chloride, stir at 150 rpm for 5 minutes, and then 0.1 wt% OA-23 aqueous solution. Was added in a predetermined amount, and the mixture was stirred at 50 rpm for 5 minutes. The pH of the aqueous solution was adjusted to always be a predetermined pH value using a small amount of hydrochloric acid and sodium hydroxide. After the stirring was completed, the mixture was allowed to stand for 10 minutes, the aqueous solution was filtered off with a 5A filter paper manufactured by Advantech, and the nickel concentration of the aqueous solution after the treatment was measured.

比較例15
500mLビーカーに、ジャーテスターを設置し、ニッケルイオン10mg/Lとピロリン酸303mg/Lを含む水溶液を500mL添加した。150rpmで攪拌しながら、キレート剤Aを所定量加え、150rpmで10分間攪拌し、次に0.1重量%OA−23水溶液を所定量加え、50rpmで5分間攪拌した。水溶液のpHは、微量の塩酸及び水酸化ナトリウムを用いて、常にpH7となるよう調製した。攪拌終了後、10分間静置し、アドバンテック社製5Aのろ紙で水溶液をろ別し、処理後水溶液のニッケル濃度を測定した。
Comparative Example 15
A jar tester was placed in a 500 mL beaker, and 500 mL of an aqueous solution containing 10 mg / L of nickel ion and 303 mg / L of pyrophosphate was added. While stirring at 150 rpm, a predetermined amount of chelating agent A was added, and the mixture was stirred at 150 rpm for 10 minutes, then a predetermined amount of 0.1 wt% OA-23 aqueous solution was added, and the mixture was stirred at 50 rpm for 5 minutes. The pH of the aqueous solution was adjusted to always be pH 7 using a small amount of hydrochloric acid and sodium hydroxide. After the stirring was completed, the mixture was allowed to stand for 10 minutes, the aqueous solution was filtered off with a 5A filter paper manufactured by Advantech, and the nickel concentration of the aqueous solution after the treatment was measured.

結果を以下の表6に示す。 The results are shown in Table 6 below.

Figure 0006862659
比較例11,12は、ピロリン酸含有排水に鉄イオンを添加して中和する凝集沈殿法の例であるが、処理後水溶液のニッケル濃度は5mg/L以上であり、ニッケルの処理が不十分であった。
Figure 0006862659
Comparative Examples 11 and 12 are examples of a coagulation-precipitation method in which iron ions are added to the pyrophosphate-containing wastewater to neutralize the wastewater, but the nickel concentration of the aqueous solution after the treatment is 5 mg / L or more, and the nickel treatment is insufficient. Met.

比較例13,14は、ピロリン酸含有排水にアルミニウムイオンを添加して中和する凝集沈殿法の例であるが、処理後水溶液のニッケル濃度は5mg/L以上であり、ニッケルの処理が不十分であった。 Comparative Examples 13 and 14 are examples of a coagulation-precipitation method in which aluminum ions are added to the pyrophosphate-containing wastewater to neutralize the wastewater, but the nickel concentration of the aqueous solution after the treatment is 5 mg / L or more, and the nickel treatment is insufficient. Met.

比較例15は、無機凝集剤を添加しない例であるが、処理後水溶液のニッケル濃度は、2.0mg/Lであり、無機凝集剤を加えた場合と比較してニッケルの処理が不十分であった。 Comparative Example 15 is an example in which the inorganic flocculant is not added, but the nickel concentration of the aqueous solution after the treatment is 2.0 mg / L, and the nickel treatment is insufficient as compared with the case where the inorganic flocculant is added. there were.

本発明のニッケル含有水溶液の浄化方法によれば、ニッケルの処理が難しい、ニッケルと錯生成能力を持つ化合物、及びニッケルを含有する水溶液であっても、ニッケル濃度を低減できるため、新規なニッケル含有水溶液の浄化方法として、めっき工場、電子部品・機械部品製造工場、自動車工場などからのニッケル含有排水の処理方法として使用される可能性を有している。 According to the method for purifying a nickel-containing aqueous solution of the present invention, the nickel concentration can be reduced even in a compound containing nickel and a compound having an ability to form a complex with nickel, which is difficult to treat with nickel, and thus a novel nickel-containing aqueous solution is contained. As a method for purifying an aqueous solution, it has the potential to be used as a method for treating nickel-containing wastewater from plating factories, electronic parts / mechanical parts manufacturing factories, automobile factories, and the like.

Claims (1)

エチレンジアミン四酢酸及びニッケルを含有する水溶液に、ピペラジンと二硫化炭素とアルカリ金属水酸化物を反応させて得られるジチオカルバミン酸の塩と、エチレンジアミン四酢酸の含有量以上の塩化第二鉄、硫酸アルミニウム及びポリ塩化アルミニウムから選ばれる少なくとも1種以上の無機凝集剤を添加した後、固形物を除去することを特徴とするニッケル含有水溶液の浄化方法。 A salt of dithiocarbamic acid obtained by reacting piperazine, carbon disulfide and an alkali metal hydroxide in an aqueous solution containing ethylenediaminetetraacetic acid and nickel, ferric chloride, aluminum sulfate and aluminum sulfate having a content equal to or higher than that of ethylenediaminetetraacetic acid. A method for purifying a nickel-containing aqueous solution, which comprises adding at least one inorganic flocculant selected from polyaluminum chloride and then removing solid matter.
JP2016038756A 2016-03-01 2016-03-01 How to purify nickel-containing aqueous solution Active JP6862659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016038756A JP6862659B2 (en) 2016-03-01 2016-03-01 How to purify nickel-containing aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016038756A JP6862659B2 (en) 2016-03-01 2016-03-01 How to purify nickel-containing aqueous solution

Publications (2)

Publication Number Publication Date
JP2017154065A JP2017154065A (en) 2017-09-07
JP6862659B2 true JP6862659B2 (en) 2021-04-21

Family

ID=59807572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016038756A Active JP6862659B2 (en) 2016-03-01 2016-03-01 How to purify nickel-containing aqueous solution

Country Status (1)

Country Link
JP (1) JP6862659B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112794423A (en) * 2020-12-31 2021-05-14 西安吉利电子化工有限公司 Defluorination agent and preparation method thereof
CN113060860B (en) * 2021-03-22 2022-02-11 中南大学 Treatment method of chemical nickel wastewater

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106585A (en) * 1983-11-15 1985-06-12 Miyoshi Oil & Fat Co Ltd Treatment of waste water
JPS63294986A (en) * 1987-05-26 1988-12-01 Miyoshi Oil & Fat Co Ltd Treatment of heavy metal-containing waste water
US5505857A (en) * 1994-01-13 1996-04-09 Buckman Laboratories International, Inc. Process for the treatment of metal-containing water and recovery of metals therefrom
JP3391173B2 (en) * 1994-12-02 2003-03-31 東ソー株式会社 Method for immobilizing heavy metals in fly ash and agent for immobilizing heavy metals
JP4374636B2 (en) * 1999-01-11 2009-12-02 栗田工業株式会社 Treatment method of waste liquid containing heavy metal complex
JP4543502B2 (en) * 2000-06-01 2010-09-15 栗田工業株式会社 Determination method of required addition amount of chelating heavy metal scavenger, chemical injection control method and chemical injection control device
JP4798913B2 (en) * 2001-09-28 2011-10-19 日本曹達株式会社 Heavy metal fixing agent, its manufacturing method and incineration ash processing method
JP5728983B2 (en) * 2011-02-04 2015-06-03 栗田工業株式会社 Chemical injection control method for heavy metal scavengers
JP2013060517A (en) * 2011-09-13 2013-04-04 Tosoh Corp Heavy metal treating agent, manufacturing method of heavy metal treating agent, and method for treatment of heavy metal-containing material using the same
JP6044160B2 (en) * 2012-07-31 2016-12-14 栗田工業株式会社 Method and apparatus for treating wastewater containing heavy metals
JP6048071B2 (en) * 2012-10-29 2016-12-21 東ソー株式会社 Heavy metal treating agent and method for treating heavy metal contaminants
JP5985959B2 (en) * 2012-11-07 2016-09-06 水ing株式会社 Method and apparatus for treating waste liquid containing heavy metal

Also Published As

Publication number Publication date
JP2017154065A (en) 2017-09-07

Similar Documents

Publication Publication Date Title
JP6969076B2 (en) Purifying agent for heavy metal-containing aqueous solution, and method for purifying heavy metal-containing aqueous solution
JP2023060143A (en) Purification agent for nickel-containing aqueous solution and purification method of nickel-containing aqueous solution
JP6862659B2 (en) How to purify nickel-containing aqueous solution
JP5603394B2 (en) Method for treating waste liquid containing cesium
JP5429838B1 (en) Method and apparatus for treating dust and incineration ash containing cesium
JP6862660B2 (en) Purifying agent for nickel-containing aqueous solution and purification method for nickel-containing aqueous solution
JP5206453B2 (en) Cement kiln extraction dust processing method
JP2010082497A (en) Water treating agent and method for treating water
JP2016209861A (en) Method for cleaning cadmium-containing water solution
JP6884986B2 (en) How to purify zinc-containing aqueous solution
JP7031176B2 (en) Purifying agent for nickel-containing aqueous solution and purification method for nickel-containing aqueous solution
CN112209469B (en) Method for removing complex copper in high-salinity wastewater by using sulfur-modified nano zero-valent iron
TWI694057B (en) Method for manufacturing gypsum and method for manufacturing cement composition
JP7183560B2 (en) Purifying Agent for Nickel-Containing Aqueous Solution and Method for Purifying Nickel-Containing Aqueous Solution
JP2019025481A (en) Agent for purifying nickel-containing aqueous solution and method for purifying nickel-containing aqueous solution
JP6891653B2 (en) Wastewater purification agent for heavy metal-containing aqueous solution
JP2018043232A (en) Purification agent for mercury-containing aqueous solution, and method of purifying mercury-containing aqueous solution
JP4995794B2 (en) Boron remover and method for treating boron-containing water
JP2019076840A (en) Purification agent for heavy metal-containing aqueous solution, and method for purifying heavy metal-containing aqueous solution
JP2018192390A (en) Purification method of arsenic-containing aqueous solution
JP6109999B1 (en) Water treatment method and water treatment system
JP2016040034A (en) Method of removing molybdenum from molybdenum containing waste water
JP6901807B1 (en) Treatment method of water containing selenate ion
JP6989840B2 (en) Phosphoric acid recovery method
RU2380324C1 (en) Method of removing lead ions from waste water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200318

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201117

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20201117

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20201208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210106

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210108

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210315

R151 Written notification of patent or utility model registration

Ref document number: 6862659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151