JPH05169071A - Treatment of cyanide containing waste water - Google Patents

Treatment of cyanide containing waste water

Info

Publication number
JPH05169071A
JPH05169071A JP3353245A JP35324591A JPH05169071A JP H05169071 A JPH05169071 A JP H05169071A JP 3353245 A JP3353245 A JP 3353245A JP 35324591 A JP35324591 A JP 35324591A JP H05169071 A JPH05169071 A JP H05169071A
Authority
JP
Japan
Prior art keywords
added
treatment
cyanide
cyan
hydrogen peroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3353245A
Other languages
Japanese (ja)
Other versions
JP3191372B2 (en
Inventor
Isamu Kato
勇 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP35324591A priority Critical patent/JP3191372B2/en
Publication of JPH05169071A publication Critical patent/JPH05169071A/en
Application granted granted Critical
Publication of JP3191372B2 publication Critical patent/JP3191372B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To improve treating efficiency by oxidation-treating cyanide containing waste water with Fenton's reagent, next adding copper salt to decompose excess hydrogen peroxide and further adding a reducing agent to make cyanide compounds hard to dissolve, permitting them to be separated. CONSTITUTION:Fenton's reagent which is formed by combining hydrogen peroxide and ferrous salt is added to cyanide containing waste water under acidic conditions of pH2-6 to give it oxidation treatment. In this case, the added quantity of the reagent is determined by previously giving sampling treatment to the waste water so that treating time may be about 0.5-5hr. After the oxidation treatment, sodium hydroxide, etc., are added to make it alkaline, pH8-10, and copper salt, such as copper sulfate is added by such amount that treating time may be about 10min-3hr to decompose excess hydrogen peroxide. Next, a reducing agent, such as sodium sulfite is added under conditions of pH2-10 by such amount that treating time may be 5min-1hr to make cyanide compounds hard to dissolve. Next, the precipitate is removed in a precipitator, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はシアン含有廃水の処理方
法の改良に関するものである。さらに詳しくいえば、本
発明は、従来の処理方法では除去できないシアン前駆物
質などを効果的に除去しうるシアン含有廃水の処理方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved method for treating cyanide-containing wastewater. More specifically, the present invention relates to a method for treating cyanide-containing wastewater that can effectively remove cyanogen precursors that cannot be removed by conventional treatment methods.

【0002】[0002]

【従来の技術】従来、シアン含有廃水の処理方法として
種々の方法が知られている。例えば遊離シアンや各種シ
アン錯塩を含有する廃水に対しては、通常アルカリ塩素
法による処理が施されている。しかしながら、このアル
カリ塩素法においては、遊離シアンや、亜鉛、銅、カド
ミウムなどのシアン錯塩は分解が可能であるが、鉄、ニ
ッケル、コバルト、あるいは金、銀などのシアン錯塩は
分解が困難である。したがって、このような難分解性の
シアン錯塩を含む廃水に対しては、紺青法、亜鉛を使用
する難溶性塩生成法、あるいは遊離シアンと各種シアン
錯塩を同時に難溶化する銅塩/還元剤法(特公平2−4
8315号公報)などが適用されている。しかしなが
ら、シアン含有廃水の中には、このような処理方法を適
用しても処理できない廃水の存在が知られており、一
方、全くシアンを使用していない工場廃水からシアンが
検出された事例に関する報告が最近多くなっている
[「千葉県水保研年報(昭和60年度)」第37〜41
ページ、「東京都環境科学研究所年報1990」、「環
境と測定技術」第17巻、第1号、第2号、第3号(1
990年)]。これらの原因については、シアン処理を
妨害する物質やシアン分析の蒸留操作過程でシアンを生
成するようなシアン前駆物質が廃水中に存在するためと
推定されるが、これらの妨害物質やシアン前駆物質の詳
細については必ずしも明確ではない。このようなシアン
処理が困難な廃水としては、例えばコークス製造廃水や
非シアンメッキ工場廃水、鉄鋼製造廃水などがあるが、
根本的な処理方法がないため、希釈処理方法などの対策
がとられているのが実状である。
2. Description of the Related Art Heretofore, various methods have been known as methods for treating cyanide-containing wastewater. For example, waste water containing free cyan and various cyan complex salts is usually treated by the alkali chlorine method. However, in this alkali chlorine method, free cyan and cyan complex salts such as zinc, copper and cadmium can be decomposed, but cyan complex salts such as iron, nickel, cobalt or gold and silver are difficult to decompose. .. Therefore, for wastewater containing such a hardly decomposable cyan complex salt, a dark blue method, a method of forming a hardly soluble salt using zinc, or a copper salt / reducing agent method of simultaneously making free cyan and various cyan complex salts difficult to dissolve (Tokuhei 2-4
No. 8315) is applied. However, it is known that some of the cyanide-containing wastewater cannot be treated even if such a treatment method is applied. On the other hand, regarding the case where cyanide is detected from factory wastewater that does not use cyan at all. The number of reports has been increasing recently [Chiba Prefectural Mizuhoken Annual Report (1985)] 37-41
Page, "Tokyo Metropolitan Institute of Environmental Science, Annual Report 1990", "Environment and Measurement Technology" Volume 17, No. 1, No. 2, No. 3 (1
990)]. It is presumed that these causes are due to the presence of substances that interfere with the cyanide treatment and cyanogen precursors that produce cyan during the distillation operation of cyanogen analysis in the wastewater. The details are not always clear. Examples of such wastewater that is difficult to perform cyan treatment include coke manufacturing wastewater, non-cyan plating factory wastewater, and steel manufacturing wastewater.
Since there is no fundamental treatment method, the actual situation is that measures such as a dilution treatment method are taken.

【0003】[0003]

【発明が解決しようとする課題】本発明はこのような事
情のもとで、従来の処理方法では除去できないシアン処
理妨害物質やシアン前駆物質などを含む廃水に適用さ
れ、該妨害物質やシアン前駆物質を分解し、効果的にシ
アンを除去しうるシアン含有廃水の処理方法を提供する
ことを目的としてなされたものである。
Under these circumstances, the present invention is applied to wastewater containing a cyanogen-treating interfering substance, a cyan precursor, etc., which cannot be removed by a conventional treating method. The object of the present invention is to provide a method for treating cyanide-containing wastewater capable of decomposing substances and effectively removing cyanide.

【0004】[0004]

【課題を解決するための手段】本発明者らは前記目的を
達成するために鋭意研究を重ねた結果、まずシアン含有
廃水にフェントン試薬を添加し、酸化処理して該妨害物
質やシアン前駆物質を分解したのち、銅塩を添加して過
剰の過酸化水素を分解し、次いで還元剤を添加してシア
ン化合物を難溶化させ分離することにより、その目的を
達成しうることを見い出し、この知見に基づき本発明を
完成するに至った。すなわち、本発明は、シアン含有廃
水に、フェントン試薬を添加して酸化処理を施したの
ち、銅塩を添加して過剰の過酸化水素を分解処理し、次
いで還元剤を添加してシアン化合物を難溶化させ分離す
ることを特徴とするシアン含有廃水の処理方法を提供す
るものである。以下、本発明を詳細に説明する。
Means for Solving the Problems As a result of intensive studies for achieving the above-mentioned object, the present inventors have found that first, a Fenton's reagent is added to cyanide-containing wastewater and subjected to an oxidation treatment to effect the interfering substance or the cyanogen precursor. It was found that the objective can be achieved by decomposing bisphenol, then decomposing excess hydrogen peroxide by adding a copper salt, and then adding a reducing agent to make the cyanide compound insoluble and separate. Based on this, the present invention has been completed. That is, according to the present invention, cyanide-containing wastewater is subjected to oxidation treatment by adding Fenton's reagent, and then copper salt is added to decompose excess hydrogen peroxide, and then a reducing agent is added to remove cyanide compounds. The present invention provides a method for treating cyanide-containing wastewater, which is characterized in that it is made insoluble and separated. Hereinafter, the present invention will be described in detail.

【0005】本発明方法は、(A)フェントン試薬によ
る酸化処理工程、(B)銅塩による過剰の過酸化水素の
分解処理工程、(C)還元剤によるシアン化合物の難溶
化工程及び(D)難溶化シアン化合物の分離工程から構
成されている。前記(A)工程においては、シアン含有
廃水にフェントン試薬を添加し、酸化処理が行われる。
なお、フェントン試薬とは過酸化水素と第一鉄塩とを組
み合わせた酸化剤のことである。該フェントン試薬によ
る処理は、通常pH2〜6の酸性条件下で行われる。この
酸化処理工程における作用については、必ずしも明確で
はないが、廃水中に含まれるシアン妨害物質の分解や、
シアン前駆物質のシアン化合物への転換作用が考えられ
る。特に比較例で示すように、塩素やオゾンなど、シア
ン酸化処理方法でシアンが増加することは反応の複雑性
を表している。
The method of the present invention comprises (A) an oxidation treatment step with a Fenton reagent, (B) a decomposition treatment step of excess hydrogen peroxide with a copper salt, (C) a step of making a cyanide compound insoluble by a reducing agent, and (D). It is composed of a step of separating the sparingly soluble cyanide compound. In the step (A), the Fenton's reagent is added to the wastewater containing cyanide, and the oxidation treatment is performed.
The Fenton's reagent is an oxidizing agent that combines hydrogen peroxide and a ferrous salt. The treatment with the Fenton's reagent is usually performed under acidic conditions of pH 2-6. About the action in this oxidation treatment step, although it is not always clear, decomposition of cyanogen-interfering substances contained in the wastewater,
The conversion action of the cyan precursor to the cyan compound is considered. In particular, as shown in the comparative example, an increase in cyanide due to a cyanide oxidation treatment method such as chlorine and ozone shows the complexity of the reaction.

【0006】フェントン試薬の添加量については、廃水
中に存在するシアン処理妨害物質やシアン前駆物質を酸
化分解するのに十分な量であればよく、特に制限はない
が、廃水中には他のフェントン試薬を消費する物質が含
まれていることが多く、したがって、予め被処理廃水を
サンプリングし、該フェントン試薬の添加量を求めてお
くことが望ましい。また、処理時間は、通常0.5〜5
時間程度で十分である。該(B)工程においては、前記
(A)工程の酸化処理が施された廃水に銅塩を添加する
ことにより、過剰に存在する過酸化水素の分解処理が行
われる。残留過酸化水素はCOD源となるのみならず、
後続の沈殿工程で過酸化水素より発生する酸素が、生成
する沈殿を浮上させるなど、好ましくなく事態を招来す
るため、分解する必要がある。
The amount of Fenton's reagent added is not particularly limited as long as it is sufficient to oxidize and decompose the cyanide-treating substance or cyanogen precursor present in the wastewater, but other amounts are not included in the wastewater. It often contains a substance that consumes the Fenton reagent, and therefore it is desirable to sample the wastewater to be treated in advance and determine the addition amount of the Fenton reagent. The processing time is usually 0.5 to 5
Time is enough. In the step (B), the excess hydrogen peroxide is decomposed by adding a copper salt to the wastewater subjected to the oxidation treatment in the step (A). The residual hydrogen peroxide not only serves as a COD source,
Oxygen generated from hydrogen peroxide in the subsequent precipitation step undesirably brings about a situation such as floating the generated precipitate, so it is necessary to decompose it.

【0007】銅塩による過酸化水素の接触分解は、過酸
化水素の分解に通常用いられる還元剤などの薬剤やカタ
ラーゼなどの酵素を必要とせず、経済的に有利である
上、該銅塩は次の(C)工程におけるシアン化合物の難
溶化に寄与する。この銅塩による過酸化水素分解処理
は、pH8〜10のアルカリ性条件下で行うのが望まし
く、したがって、(A)工程の酸化処理が施された廃水
は通常酸性であるので、水酸化ナトリウム、炭酸ナトリ
ウム、炭酸水素ナトリウム、水酸化カルシウムなどのア
ルカリを添加して、pHを前記範囲に調整し銅塩による過
酸化水素の分解処理が行われる。この際、銅塩として
は、例えば水溶性の二価の硫酸銅、塩化銅、硝酸銅など
の二価の銅塩が好ましく用いられる。また、該銅塩の添
加量については、過剰の過酸化水素を分解するのに十分
な量であり、かつ廃水中のシアンとの反応当量以上であ
ればよく、特に制限はない。処理時間は、通常10分な
いし3時間程度で十分である。
Catalytic decomposition of hydrogen peroxide by a copper salt is economically advantageous because it does not require a chemical agent such as a reducing agent or an enzyme such as catalase which is usually used for decomposition of hydrogen peroxide. It contributes to the insolubility of the cyanide compound in the next step (C). It is desirable to perform the hydrogen peroxide decomposition treatment with this copper salt under alkaline conditions of pH 8 to 10. Therefore, since the wastewater subjected to the oxidation treatment in the step (A) is usually acidic, sodium hydroxide and carbonic acid are used. An alkali such as sodium, sodium hydrogen carbonate or calcium hydroxide is added to adjust the pH within the above range, and hydrogen peroxide is decomposed by a copper salt. At this time, as the copper salt, for example, a water-soluble divalent copper salt such as divalent copper sulfate, copper chloride or copper nitrate is preferably used. Further, the amount of the copper salt added is not particularly limited as long as it is a sufficient amount to decompose excess hydrogen peroxide and is equal to or more than the reaction equivalent of cyanide in the wastewater. A treatment time of 10 minutes to 3 hours is usually sufficient.

【0008】該(C)工程においては、前記(B)工程
の処理が施された廃水に還元剤を添加することにより、
シアン化合物の難溶化処理が行われる。この際用いられ
る還元剤としては、二価の銅イオンを一価に還元しうる
もの、例えば亜硫酸塩、二価の鉄塩、ヒドラジンなどが
挙げられるが、これらの中で汚泥発生量の低減及び入手
の容易さなどの点から亜硫酸塩が好適である。この亜硫
酸塩としては、例えば亜硫酸ナトリウムや亜硫酸水素ナ
トリウムなどが好ましく用いられる。一般に、硫酸銅な
どの二価の銅塩に亜硫酸塩、二価の鉄塩、ヒドラジンな
どの各種還元剤を添加し、pH2〜11としても、見かけ
上一価の銅イオンの生成はみられないくらい還元速度が
遅いが、シアン化合物が存在していると、一価の銅のシ
アン化合物が難溶性塩となって沈殿する。これは還元剤
により生成した一価の銅イオンとシアン化合物が反応し
て沈殿し、系内に一価の銅イオンが存在できない雰囲気
となるため、見かけ上の酸化還元電位が変化して、還元
が進行したものと推察される。前記反応は、反応式 Cu++CN-→CuCN↓ ・・・[1] 4Cu++Zn(CN)4 2-→4CuCN↓+Zn2+ ・・・[2] Cu++Ag(CN)2 -→CuAg(CN)2↓ ・・・[3] で示される3種類に代表される。
In the step (C), a reducing agent is added to the wastewater treated in the step (B),
A process for making the cyanide compound insoluble is performed. Examples of the reducing agent used at this time include those capable of monovalent reduction of divalent copper ions, such as sulfite, divalent iron salt, and hydrazine. Among them, reduction of sludge generation amount and Sulfite is preferable from the viewpoint of easy availability. As the sulfite, for example, sodium sulfite, sodium hydrogen sulfite, etc. are preferably used. Generally, even if various reducing agents such as sulfite, divalent iron salt and hydrazine are added to divalent copper salt such as copper sulfate and the pH is set to 2 to 11, no apparent formation of monovalent copper ion is observed. Although the reduction rate is slow, the presence of a cyanide compound causes the cyanide compound of monovalent copper to form a sparingly soluble salt and precipitate. This is because the monovalent copper ion generated by the reducing agent reacts with the cyanide compound and precipitates, creating an atmosphere in which monovalent copper ion cannot exist in the system, so the apparent redox potential changes and the reduction occurs. Is presumed to have progressed. The reaction is a reaction formula Cu + + CN - → CuCN ↓ ··· [1] 4Cu + + Zn (CN) 4 2- → 4CuCN ↓ + Zn 2+ ··· [2] Cu + + Ag (CN) 2 - → CuAg (CN) 2 ↓ ・ ・ ・ Represented by three types represented by [3].

【0009】前記式[1]は遊離シアンの反応、式
[2]は易分解性シアン錯塩の反応、式[3]は難分解
性シアン錯塩の反応であり、いずれも一価の銅イオンに
より、難溶性の沈殿を生成し、一括して処理される。前
記還元剤の添加量については二価の銅イオンを一価に還
元するための理論量及び溶存酸素などの被還元物質によ
って消費される量の合計量以上であればよく、特に制限
はないが、通常はNaHSO3として50〜500mg/
リットル程度である。この還元剤によるシアン化合物の
難溶化処理におけるpHは、通常2〜10、好ましくは5
〜9.5の範囲で選ばれる。また、Cd2+、Ni2+、M
2+など、pH9.5以下では完全に沈殿しない共存重金
属イオンが多い場合には、いったんpH5〜9.5でシア
ン化合物を沈殿させたのち、さらにpH10〜11で重金
属を沈殿させる二段沈殿法を採用するのが有利である。
また、還元剤による処理時間は、通常5分ないし1時間
程度で十分である。
The above formula [1] is a reaction of free cyan, the formula [2] is a reaction of a readily decomposable cyan complex salt, and the formula [3] is a reaction of a hardly decomposable cyan complex salt. Produces a sparingly soluble precipitate and is processed in batches. The amount of the reducing agent added is not particularly limited as long as it is equal to or more than the total amount of the theoretical amount for reducing divalent copper ions to monovalent and the amount consumed by the substance to be reduced such as dissolved oxygen. , Usually 50-500 mg / NaHSO 3
It is about a liter. The pH of the hardly soluble treatment of the cyan compound with the reducing agent is usually 2 to 10, preferably 5
It is selected in the range of ~ 9.5. In addition, Cd 2+ , Ni 2+ , M
When there are many coexisting heavy metal ions such as n 2+ that do not completely precipitate at pH 9.5 or lower, a two-stage precipitation is performed in which the cyanide compound is once precipitated at pH 5 to 9.5 and then the heavy metal is further precipitated at pH 10 to 11. Adopting the law is advantageous.
The treatment time with the reducing agent is usually 5 minutes to 1 hour.

【0010】このようにして処理された廃水は(D)工
程において、高分子凝集剤などを添加して、沈殿性のよ
いフロックなどを形成させ、固液分離処理を行う。この
固液分離処理はシックナーなどの沈殿槽を用いて行って
もよいし、界面活性剤や分散剤などを含有し、凝集沈降
性が悪い場合には、ろ過器などを用いて行ってもよい。
このようにして固形分が分離された処理廃水は、シアン
や銅などの重金属がほとんど含まれていないため、その
まま放流可能である。本発明の処理方法によると、従来
の方法では処理できなかったシアンを0.1mg/リット
ル以下まで処理することができる。
In step (D), the wastewater treated in this manner is subjected to solid-liquid separation treatment by adding a polymer flocculant or the like to form flocs having a good sedimentation property. This solid-liquid separation treatment may be carried out using a settling tank such as a thickener, or may be carried out using a filter or the like if it contains a surfactant or dispersant and the aggregation and sedimentation properties are poor. ..
The treated wastewater from which the solid content has been separated in this manner contains almost no heavy metals such as cyanide and copper, and therefore can be discharged as it is. According to the processing method of the present invention, cyan which could not be processed by the conventional method can be processed to 0.1 mg / liter or less.

【0011】[0011]

【実施例】次に実施例により本発明をさらに詳細に説明
するが、本発明はこれらの例によってなんら限定される
ものではない。なお、シアン含有廃水として、CODMn
1,350mg/リットル、CODCr2,300mg/リット
ル、BOD2,000mg/リットル、フェノール408m
g/リットル、SCN403mg/リットル、T−CN1
6.5mg/リットルを含む安水を、CODMn負荷0.4〜
0.5kg/m3・dayで生物処理して得られたCODMn
6.3mg/リットル、CODCr2,300mg/リットル、
BOD11.8mg/リットル、フェノール0.1mg/リッ
トル以下、SCN9.5mg/リットル、T−CN1.30
mg/リットルを含む処理水を用い、シアン処理に供し
た。 実施例1 処理水に、フェントン試薬として過酸化水素500mg/
リットル及び硫酸第一鉄7水塩200mg/リットルを加
え、pH3にて2時間酸化処理を行ったのち、硫酸第二銅
を銅換算で20mg/リットル添加し、pH9で1時間撹拌
し、残留過酸化水素の分解処理を行った。次いで、亜硫
酸ナトリウム200mg/リットルを添加し、pH7にて3
0分間撹拌し、シアンの難溶化処理を行った。分析結果
を次に示す。
The present invention will be described in more detail by way of examples, which should not be construed as limiting the invention thereto. As cyanide-containing wastewater, COD Mn
1,350 mg / liter, COD Cr 2,300 mg / liter, BOD 2,000 mg / liter, phenol 408 m
g / liter, SCN403 mg / liter, T-CN1
Anhydrous water containing 6.5 mg / liter was used for COD Mn loading 0.4-
COD Mn 6 obtained by biological treatment at 0.5 kg / m 3 · day
6.3 mg / liter, COD Cr 2,300 mg / liter,
BOD 11.8 mg / liter, phenol 0.1 mg / liter or less, SCN 9.5 mg / liter, T-CN 1.30
The treated water containing mg / liter was used for cyanide treatment. Example 1 Hydrogen peroxide (500 mg / Fenton reagent) was added to treated water.
Lithium and ferrous sulfate heptahydrate 200 mg / liter were added, oxidation treatment was carried out at pH 3 for 2 hours, cupric sulfate 20 mg / liter in terms of copper was added, and the mixture was stirred at pH 9 for 1 hour to remove residual excess. Hydrogen oxide was decomposed. Next, add 200 mg / liter of sodium sulfite, and add 3 at pH 7.
The mixture was stirred for 0 minutes, and a treatment for making cyan less soluble was performed. The analysis results are shown below.

【0012】 原水 フェントン処理 難溶化処理 pH 8.5 9.0 7.0 CODMn(mg/リットル) 66.3 31.0 29.0 T−CN(mg/リットル) 1.3 6.13 0.04 Cu (mg/リットル) − − 1.7 Raw water Fenton treatment Insoluble treatment pH 8.5 9.0 7.0 COD Mn (mg / liter) 66.3 31.0 29.0 T-CN (mg / liter) 1.3 6.13 .04 Cu (mg / liter) -1.7

【0013】比較例1 アルカリ塩素処理 処理水に、次亜塩素酸ナトリウムをシアンの分解当量以
上である200mg/リットル(Cl2として)添加し、pH
7.5で15分間、pH10.5で20分間処理した。シア
ンの分析結果を第1表に示す。
Comparative Example 1 Alkali Chlorine Treatment To treated water, sodium hypochlorite was added at 200 mg / liter (as Cl 2 ) which was more than the decomposition equivalent of cyan, and the pH was adjusted.
It was treated with 7.5 for 15 minutes and pH 10.5 for 20 minutes. The cyan analysis results are shown in Table 1.

【0014】比較例2 オゾン処理 処理水に、pH11.0にて分解当量以上のオゾン100m
g/リットル及び600mg/リットル(O3として)をそ
れぞれ吹き込み、オゾン処理を行った。この際吹き込ん
だオゾン化空気の濃度は10mg−O3/リットル−空気
である。シアンの分析結果を第1表に示す。
COMPARATIVE EXAMPLE 2 Ozone Treatment Treated water with 100 m of ozone having a decomposition equivalent or more at pH 11.0.
Ozone treatment was performed by blowing in g / liter and 600 mg / liter (as O 3 ) respectively. The concentration of the ozonized air was blown at this time 10 mg-O 3 / l - is air. The cyan analysis results are shown in Table 1.

【0015】比較例3 紺青処理 処理水に、残留しているシアンをFe(CN)6 3-である
鉄シアン錯体と仮定して反応当量以上の硫酸第一鉄20
0mg/リットル及び600mg/リットルをそれぞれ添加
し、pH5.5で20分間処理したのち、ろ液のシアンを
分析した。その結果を第1表に示す。
COMPARATIVE EXAMPLE 3 Treatment with deep blue blue Assuming that the remaining cyan in the treated water is an iron-cyan complex of Fe (CN) 6 3− , a reaction equivalent of ferrous sulfate 20 or more is obtained.
After adding 0 mg / liter and 600 mg / liter respectively and treating at pH 5.5 for 20 minutes, the filtrate was analyzed for cyanide. The results are shown in Table 1.

【0016】比較例4 Cu/Na2SO3による難溶化
処理 処理水に、硫酸第二銅20mg/リットル(Cuとして)
及び亜硫酸ナトリウム200mg/リットルを添加し、pH
6で20分間処理したのち、ろ液のシアンを分析した。
その結果を第1表に示す。
Comparative Example 4 Insoluble treatment with Cu / Na 2 SO 3 20 mg / liter of cupric sulfate (as Cu) in treated water
And sodium sulfite 200 mg / liter are added to adjust the pH.
After treatment with 6 for 20 minutes, the filtrate was analyzed for cyan.
The results are shown in Table 1.

【0017】比較例5 比較例2/4の組合せ処理 処理水にオゾン600mg/リットル(O3として)を吹
き込み、オゾン処理を行ったのち、比較例4と同様の処
理を行った。シアンの分析結果を第1表に示す。
Comparative Example 5 Combination Treatment of Comparative Example 2/4 600 mg / l of ozone (as O 3 ) was blown into the treated water to carry out ozone treatment, and then the same treatment as in Comparative Example 4 was conducted. The cyan analysis results are shown in Table 1.

【0018】[0018]

【表1】 [Table 1]

【0019】以上の結果から、従来法の中でも最も有効
なオゾン処理とCu/NaSO3処理との組合せ処理に
おいても、シアンの含有量を0.1mg/リットル以下に
することができないが、本発明方法によるとシアンの含
有量を容易に0.1mg/リットル以下まで下げることが
できる。
From the above results, even in the combination treatment of ozone treatment and Cu / NaSO 3 treatment, which is the most effective method among the conventional methods, the cyan content cannot be reduced to 0.1 mg / liter or less. According to the method, the cyan content can be easily reduced to 0.1 mg / liter or less.

【0020】[0020]

【発明の効果】本発明方法によると、従来の処理方法で
は除去できないシアン処理妨害物質やシアン前駆物質が
フェントン試薬により酸化分解され、シアンを効率よく
除去することができる。また、塩素系の酸化剤を使用し
ないため、有機塩素化合物生成の危険がない上、フェン
トン試薬による処理を行うため、CODの低下も期待で
きる。
EFFECTS OF THE INVENTION According to the method of the present invention, cyan processing interfering substances and cyan precursors, which cannot be removed by the conventional processing methods, are oxidized and decomposed by the Fenton reagent, and cyan can be efficiently removed. Further, since no chlorine-based oxidizing agent is used, there is no danger of producing an organic chlorine compound, and since COF is treated with a Fenton reagent, a reduction in COD can be expected.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】シアン含有廃水に、フェントン試薬を添加
して酸化処理を施したのち、銅塩を添加して過剰の過酸
化水素を分解処理し、次いで還元剤を添加してシアン化
合物を難溶化させ分離することを特徴とするシアン含有
廃水の処理方法。
1. A cyan-containing wastewater is added with a Fenton's reagent to be oxidized, and then a copper salt is added to decompose excess hydrogen peroxide, and then a reducing agent is added to make a cyanide compound difficult. A method for treating cyanide-containing wastewater, which comprises solubilizing and separating.
JP35324591A 1991-12-17 1991-12-17 Treatment of wastewater containing cyanide Expired - Lifetime JP3191372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35324591A JP3191372B2 (en) 1991-12-17 1991-12-17 Treatment of wastewater containing cyanide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35324591A JP3191372B2 (en) 1991-12-17 1991-12-17 Treatment of wastewater containing cyanide

Publications (2)

Publication Number Publication Date
JPH05169071A true JPH05169071A (en) 1993-07-09
JP3191372B2 JP3191372B2 (en) 2001-07-23

Family

ID=18429534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35324591A Expired - Lifetime JP3191372B2 (en) 1991-12-17 1991-12-17 Treatment of wastewater containing cyanide

Country Status (1)

Country Link
JP (1) JP3191372B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006026496A (en) * 2004-07-14 2006-02-02 Kurita Water Ind Ltd Method and equipment for treating cyanide-containing waste water
JP2007252969A (en) * 2006-03-20 2007-10-04 Nippon Steel Corp Purification method of steel production drainage
JP2011020034A (en) * 2009-07-14 2011-02-03 Nippon Rensui Co Ltd Wastewater treatment method and wastewater treatment apparatus
JP2011173046A (en) * 2010-02-23 2011-09-08 Jfe Steel Corp Cyanide-containing wastewater treatment method and apparatus
JP2012157798A (en) * 2011-01-31 2012-08-23 Jfe Steel Corp Method for treating cyanide-containing wastewater
JP2018069227A (en) * 2016-10-21 2018-05-10 日鉄住金環境株式会社 Treatment method of effluent
WO2018095124A1 (en) * 2016-11-25 2018-05-31 中冶赛迪工程技术股份有限公司 Method and system for decarbonization, decolorization, and decyanation in deep treatment of coking wastewater
JP2020032412A (en) * 2018-08-24 2020-03-05 日鉄環境株式会社 Method and equipment for treating cyanide-containing water

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006026496A (en) * 2004-07-14 2006-02-02 Kurita Water Ind Ltd Method and equipment for treating cyanide-containing waste water
JP4656379B2 (en) * 2004-07-14 2011-03-23 栗田工業株式会社 Method of treating wastewater containing iron cyanide
JP2007252969A (en) * 2006-03-20 2007-10-04 Nippon Steel Corp Purification method of steel production drainage
JP4662059B2 (en) * 2006-03-20 2011-03-30 新日本製鐵株式会社 Purification process for steel manufacturing wastewater
JP2011020034A (en) * 2009-07-14 2011-02-03 Nippon Rensui Co Ltd Wastewater treatment method and wastewater treatment apparatus
JP2011173046A (en) * 2010-02-23 2011-09-08 Jfe Steel Corp Cyanide-containing wastewater treatment method and apparatus
JP2012157798A (en) * 2011-01-31 2012-08-23 Jfe Steel Corp Method for treating cyanide-containing wastewater
JP2018069227A (en) * 2016-10-21 2018-05-10 日鉄住金環境株式会社 Treatment method of effluent
WO2018095124A1 (en) * 2016-11-25 2018-05-31 中冶赛迪工程技术股份有限公司 Method and system for decarbonization, decolorization, and decyanation in deep treatment of coking wastewater
JP2020032412A (en) * 2018-08-24 2020-03-05 日鉄環境株式会社 Method and equipment for treating cyanide-containing water

Also Published As

Publication number Publication date
JP3191372B2 (en) 2001-07-23

Similar Documents

Publication Publication Date Title
US11685681B2 (en) Method for treatment of mixed electroplating wasterwater without cyanide and phosphorus-containing reductant
JP7204140B2 (en) Method for treating wastewater containing cyanide
US6551514B1 (en) Cyanide detoxification process
JP4894403B2 (en) Cyanide-containing wastewater treatment method and apparatus
CN108137358B (en) Method for treating cyanide complex-containing wastewater and treating agent used in method
JP4382556B2 (en) Treatment method of wastewater containing cyanide
JP5945682B2 (en) Treatment method of wastewater containing cyanide
JP3191372B2 (en) Treatment of wastewater containing cyanide
JP2013056328A (en) Treatment method and treatment apparatus of cyanide-containing water
CN111847702B (en) Method for treating cyanide-containing high-concentration ammonium sulfite wastewater
JP2021053620A (en) Treatment method for cyanide-containing wastewater
UA125671C2 (en) Method for the treatment of wastewaters
Griffiths, A.*, Knorre, H.*, Gos, S.* & Higgins The detoxification of gold-mill tailings with hydrogen peroxide
JP4639309B2 (en) Treatment method of wastewater containing cyanide
JPH0248315B2 (en)
JP4106415B2 (en) Treatment method of wastewater containing cyanide
JP4656379B2 (en) Method of treating wastewater containing iron cyanide
JP7353619B2 (en) Treatment method for cyanide-containing wastewater
JPS6224157B2 (en)
KR20230051427A (en) Method and apparatus for treating cyanide-containing water
JPH0135713B2 (en)
JPH05245377A (en) Catalyst for decomposing sodium hypochlorite
JPS6345271B2 (en)
JPH0623396A (en) Treatment of sludge containing cyanic compound
JP2008149309A (en) Method for treating heavy metal-containing waste liquid

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090525

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090525

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 11