JP2010194479A - Pure-water production apparatus - Google Patents

Pure-water production apparatus Download PDF

Info

Publication number
JP2010194479A
JP2010194479A JP2009044082A JP2009044082A JP2010194479A JP 2010194479 A JP2010194479 A JP 2010194479A JP 2009044082 A JP2009044082 A JP 2009044082A JP 2009044082 A JP2009044082 A JP 2009044082A JP 2010194479 A JP2010194479 A JP 2010194479A
Authority
JP
Japan
Prior art keywords
reducing agent
amount
tower
cation exchange
exchange tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009044082A
Other languages
Japanese (ja)
Other versions
JP5077266B2 (en
Inventor
Yasuaki Hashimoto
泰明 橋本
Takashi Ishibashi
隆史 石橋
Takashi Kikuchi
隆 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Rensui Co
Original Assignee
Nippon Rensui Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Rensui Co filed Critical Nippon Rensui Co
Priority to JP2009044082A priority Critical patent/JP5077266B2/en
Publication of JP2010194479A publication Critical patent/JP2010194479A/en
Application granted granted Critical
Publication of JP5077266B2 publication Critical patent/JP5077266B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pure-water production apparatus which effectively decomposition remove residual chlorine in a raw water to as low concentration as possible with a reducing agent without requiring of an active-carbon tower treatment as a pretreatment. <P>SOLUTION: The pure-water production apparatus includes a cation exchange tower 1 and an anion exchange tower 3 at least in order to keep a reducing-agent supplying pipe 64 for decomposing free chlorine remaining in the raw water connected to a raw-water supplying passage 61 connected to the cation exchange tower, wherein the apparatus is connected with an automatic analyzer 4 having the function of arranging a sampling pipe 65 for analyzing free chlorine in a passage 62 between the cation exchange tower and the anion exchange tower, collecting a constant amount of sample to measure a chlorine concentration by a spectrophotometer, and outputting its result as a measuring signal, and a reducing-agent supplying amount controller 5 which makes the result that is calculated as a necessary reducing-agent amount in the automatic analyzer 4, a control signal, to control the amount of the reducing agent supplied from a reducing-agent supplying pipe 64. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は純水製造装置に関する。   The present invention relates to a pure water production apparatus.

工業用水から純水を製造する場合、溶解性の鉄やマンガン除去や、除菌のために、工業用水などに次亜塩素酸塩を注入後にろ過し、これを原水として純水製造装置に供給するのが一般的である。すなわち、次亜塩素酸塩由来の遊離塩素は、純水装置に用いられるイオン交換樹脂を酸化劣化させるため、純水装置に供給する前に、還元剤(亜硫酸塩)を注入して遊離塩素を中和する。   When pure water is produced from industrial water, it is filtered after injecting hypochlorite into industrial water for removal of soluble iron and manganese and sterilization, and this is supplied to pure water production equipment as raw water It is common to do. That is, free chlorine derived from hypochlorite oxidizes and degrades the ion exchange resin used in the deionized water device, so before supplying it to the deionized water device, a reducing agent (sulfite) is injected to remove the free chlorine. Neutralize.

ところで、本発明者らの知見によれば、水温が低い場合や、水中有機物の濃度変動によって、理論的には充分な亜硫酸塩を注入しているにも拘わらず、遊離塩素が中和しきれず、微量の遊離塩素が残留する場合がある。これは、遊離塩素と亜硫酸塩の反応速度が低下することに起因するものと判断される。そして、この微量の遊離塩素は、イオン交換樹脂を劣化させる。特に、アニオン交換塔が弱塩基樹脂と強塩基樹脂の複層である場合、弱塩基性樹脂がカルボキシル基の様なカチオン交換能を持つようになり、苛性ソーダによる再生の後にナトリウムを放出し、水洗性が著しく悪化する。また、その結果、再生時間が長くなり、1日当りの採水量が減少する。斯かる問題に対処するため、亜硫酸塩注入量増加して反応速度を上げることが考えられるが、薬剤コストの増加や、中和の副生成物である硫酸イオンの増大をもたらし、アニオン交換工程の肥大を招く欠点がある。   By the way, according to the knowledge of the present inventors, free chlorine cannot be neutralized theoretically even though sufficient sulfite is injected due to low water temperature or due to fluctuations in the concentration of organic substances in water. A trace amount of free chlorine may remain. This is considered to be caused by a decrease in the reaction rate between free chlorine and sulfite. And this trace amount of free chlorine degrades an ion exchange resin. In particular, when the anion exchange tower is a multilayer of a weak base resin and a strong base resin, the weak base resin has a cation exchange ability such as a carboxyl group, releases sodium after regeneration with caustic soda, and is washed with water. Sexually deteriorates. As a result, the regeneration time becomes longer and the amount of water collected per day is reduced. In order to cope with such a problem, it is conceivable to increase the injection rate of sulfite to increase the reaction rate, but this leads to an increase in drug cost and an increase in sulfate ion, which is a by-product of neutralization. There is a drawback that causes hypertrophy.

一方、還元剤の使用を考慮した純水製造装置として、原水を活性炭塔に通水した後、イオン交換樹脂塔に通水する純水の製造装置において、活性炭塔の前段に還元剤反応槽を設置し、活性炭塔からの流出水ラインに酸化還元電位計を設置し、該酸化還元電位計の測定値に応じて還元剤反応槽への還元剤注入量を制御する手段を設けたことを特徴とする純水の製造装置が提案されている(特許文献1)。   On the other hand, as a pure water production apparatus considering the use of a reducing agent, in a pure water production apparatus in which raw water is passed through an activated carbon tower and then passed through an ion exchange resin tower, a reducing agent reaction tank is provided in front of the activated carbon tower. It is installed, a redox potential meter is installed in the effluent line from the activated carbon tower, and means for controlling the amount of reducing agent injected into the reducing agent reaction tank according to the measured value of the redox potential meter is provided. An apparatus for producing pure water is proposed (Patent Document 1).

しかしながら、活性炭塔処理を行う上記の方法は、純水製造装置に供給する原水中に遊離塩素が残存することは殆どないという利点はあるものの、活性炭の賦活再生などにコストが掛かるという問題がある。   However, although the above-mentioned method for performing the activated carbon tower treatment has an advantage that the free chlorine hardly remains in the raw water supplied to the pure water production apparatus, there is a problem that the activated regeneration of the activated carbon is costly. .

特開2001−187398号公報JP 2001-187398 A

本発明は、上記実情に鑑みなされたものであり、その目的は、活性炭塔処理を必要とせず、しかも、原水中の残存塩素の除去性能に優れた純水製造装置を提供することにある。   This invention is made | formed in view of the said situation, The objective is to provide the pure water manufacturing apparatus excellent in the removal performance of the residual chlorine in raw | natural water, without requiring an activated carbon tower process.

すなわち、本発明の要旨は、少なくとも順次に配置されたカチオン交換塔(1)及びアニオン交換塔(3)を包含し、カチオン交換塔(1)に接続する原水供給流路(61)には原水中に残存する遊離塩素を分解するための還元剤供給配管(64)が接続されて成る純水製造装置に於いて、カチオン交換塔(1)とアニオン交換塔(3)との間の流路(62)に遊離塩素分析用の試料採取配管(65)を設け、試料採取配管(65)には、定量ポンプにより一定量の試料を採取し、これに一定量の発色試薬を添加混合して発色させ、分光光度計に導き吸光度を測定し、吸光度の測定値と検量線とから塩素濃度を求め、その結果を測定信号として出力する機能を備えた自動分析装置(4)を接続し、自動分析装置(4)には、それからの測定信号と予め用意された塩素濃度と還元剤量との関係式とに基づき必要な還元剤量を算出し、その結果を制御信号として出力し還元剤供給配管(64)から供給される還元剤の量を制御する機能を備えた還元剤供給量制御装置(5)を接続して成ることを特徴とする純水製造装置に存する。   That is, the gist of the present invention includes at least the cation exchange tower (1) and the anion exchange tower (3) arranged in sequence, and the raw water supply flow path (61) connected to the cation exchange tower (1) has a raw material. A flow path between a cation exchange column (1) and an anion exchange column (3) in a pure water production apparatus to which a reducing agent supply pipe (64) for decomposing free chlorine remaining in water is connected. (62) is provided with a sampling pipe (65) for analyzing free chlorine, and a fixed amount of sample is collected by a metering pump in the sampling pipe (65), and a fixed amount of coloring reagent is added thereto and mixed. Color is developed, guided to a spectrophotometer, the absorbance is measured, the chlorine concentration is determined from the measured value of the absorbance and the calibration curve, and an automatic analyzer (4) equipped with a function for outputting the result as a measurement signal is connected to automatically The analyzer (4) has a measurement signal from it. And the amount of reducing agent supplied from the reducing agent supply pipe (64) by outputting the result as a control signal. A pure water production apparatus characterized by connecting a reducing agent supply amount control device (5) having a function of controlling the water content.

本発明によれば、前処理としての活性炭塔処理を必要とせず、水温が低い場合(冬季)であっても、原水中の残存塩素を可及的低濃度まで効率的に還元剤で分解除去することが出来るように改良された純水製造装置が提供される。   According to the present invention, no activated carbon tower treatment as a pretreatment is required, and even when the water temperature is low (in winter), residual chlorine in raw water is efficiently decomposed and removed to the lowest possible concentration with a reducing agent. An apparatus for producing pure water improved so as to be able to be provided is provided.

図1は本発明の純水製造装置の好ましい態様の一例の説明図である。FIG. 1 is an explanatory view of an example of a preferred embodiment of the pure water production apparatus of the present invention.

以下、本発明を添付図面に基づき詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

本発明の純水製造装置においては、原水として、工業用水などに次亜塩素酸塩(次亜塩素酸ナトリウム)を注入後にろ過したものが使用される。原水中に残存する遊離塩素の量は一般に0.1〜1ppmである。ここで、遊離塩素とは、溶存ガス(Cl)、次亜塩素酸(HOCl)、および次亜塩素酸イオン(OCl)として水中に存在する残留塩素を意味する。 In the pure water production apparatus of the present invention, the raw water is filtered after injecting hypochlorite (sodium hypochlorite) into industrial water or the like. The amount of free chlorine remaining in the raw water is generally 0.1 to 1 ppm. Here, free chlorine means residual chlorine existing in water as dissolved gas (Cl 2 ), hypochlorous acid (HOCl), and hypochlorite ions (OCl ).

本発明の純水製造装置の基本的構成は、順次に配置されたカチオン交換塔(1)及びアニオン交換塔(3)を包含し、カチオン交換塔(1)に接続する原水供給流路(61)には原水中に残存する遊離塩素を分解するための還元剤供給配管(64)が接続されて成るが、図示した純水製造装置は、カチオン交換塔(1)とアニオン交換塔(3)との間に脱炭酸塔(2)を備えている。   The basic configuration of the pure water production apparatus of the present invention includes a cation exchange tower (1) and an anion exchange tower (3) arranged in sequence, and a raw water supply channel (61) connected to the cation exchange tower (1). ) Is connected to a reducing agent supply pipe (64) for decomposing free chlorine remaining in the raw water. The pure water production apparatus shown in the figure includes a cation exchange column (1) and an anion exchange column (3). And a decarbonation tower (2).

カチオン交換塔(1)には、カチオン交換樹脂が充填されるが、強酸性カチオン交換樹脂の単床式であっても、更に、弱酸性カチオン交換樹脂を充填した複層床式であってもよい。強酸性カチオン交換樹脂としては、例えば、三菱化学社製のダイヤイオン(登録商標:以下同様)UBKシリーズ等が挙げられ、弱酸性カチオン交換樹脂としては、例えば、三菱化学社製のダイヤイオンWKシリーズ等が挙げられる。   The cation exchange tower (1) is filled with a cation exchange resin, and it may be a single bed type of strong acid cation exchange resin or a multi-layer bed type filled with weak acid cation exchange resin. Good. Examples of the strongly acidic cation exchange resin include Diaion (registered trademark: the same shall apply hereinafter) UBK series manufactured by Mitsubishi Chemical Corporation. Examples of the weak acid cation exchange resin include Diaion WK series manufactured by Mitsubishi Chemical Corporation. Etc.

アニオン交換塔(3)には、アニオン交換樹脂が充填されるが、強塩基性アニオン交換樹脂の単床式であっても、更に、弱塩基性アニオン交換樹脂を充填した複層床式であってもよい。強塩基性アニオン交換樹脂としては、例えば、三菱化学社製のダイヤイオンUBAシリーズ等が挙げられ、弱酸性アニオン交換樹脂としては、例えば、三菱化学社製のダイヤイオンWAシリーズ等が挙げられる。純水の回収は、アニオン交換塔(3)の底部に設けられた純水取出流路(63)から行われる。   The anion exchange tower (3) is packed with an anion exchange resin. However, even if it is a single-bed type of strong basic anion exchange resin, it is a multi-bed type packed with weak basic anion exchange resin. May be. Examples of the strongly basic anion exchange resin include Diaion UBA series manufactured by Mitsubishi Chemical Corporation, and examples of the weakly acidic anion exchange resin include Diaion WA series manufactured by Mitsubishi Chemical Corporation. The recovery of the pure water is performed from the pure water extraction channel (63) provided at the bottom of the anion exchange tower (3).

脱炭酸塔(2)は、カチオン交換された処理水(酸性水)中に含まれるHCOを除去し得る限り如何なる方式のものであってもよい。通常、塔の下部から空気を吹き込み、HCOをCOとして除去するエアーレーション方式が採用されるが、COの分離に膜脱気装置を使用することが出来る。膜脱気装置としては、例えば、多孔性の疎水性膜で気相と液相に分離され、気相側に減圧配管が接続された構造のものを使用することが出来る。脱炭酸塔(2)において、HCOをCOとして除去することにより、アニオン交換塔(3)におけるアニオン交換樹脂のイオン負荷を減らすことが出来る。 The decarboxylation tower (2) may be of any system as long as it can remove HCO 3 contained in the cation-exchanged treated water (acidic water). Usually, air is blown from the bottom of the tower, but aeration method for removing HCO 3 as CO 2 is employed, it is possible to use a membrane degasser for separating CO 2. As the membrane deaerator, for example, a device having a structure in which a porous hydrophobic membrane is used to separate a gas phase and a liquid phase and a decompression pipe is connected to the gas phase side can be used. By removing HCO 3 as CO 2 in the decarboxylation tower (2), the ion load of the anion exchange resin in the anion exchange tower (3) can be reduced.

還元剤供給配管(64)から還元剤としては、一般的には亜硫酸塩(具体的には亜硫酸ナトリウム)の水溶液が使用される。水溶液における亜硫酸塩濃度は通常1〜10重量%である。なお、符号(71)は還元剤供給配管(64)に備えられたバルブである。   As the reducing agent from the reducing agent supply pipe (64), an aqueous solution of sulfite (specifically, sodium sulfite) is generally used. The concentration of sulfite in the aqueous solution is usually 1 to 10% by weight. Reference numeral (71) denotes a valve provided in the reducing agent supply pipe (64).

本発明の純水製造装置は、カチオン交換塔(1)とアニオン交換塔(3)との間の流路(62)に遊離塩素分析用の試料採取配管(65)を設け、試料採取配管(65)には、定量ポンプにより一定量の試料を採取し、これに一定量の発色試薬を添加混合して発色させ、分光光度計に導き吸光度を測定し、吸光度の測定値と検量線とから塩素濃度を求め、その結果を測定信号として出力する機能を備えた自動分析装置(4)を接続し、自動分析装置(4)には、それからの測定信号と予め用意された塩素濃度と還元剤量との関係式とに基づき必要な還元剤量を算出し、その結果を制御信号として出力し還元剤供給配管(64)から供給される還元剤の量を制御する機能を備えた還元剤供給量制御装置(5)を接続して成ることを特徴とする。   The pure water production apparatus of the present invention is provided with a sampling pipe (65) for analyzing free chlorine in the flow path (62) between the cation exchange tower (1) and the anion exchange tower (3), and the sampling pipe ( In 65), a fixed amount of sample is collected with a metering pump, and a fixed amount of color-developing reagent is added to and mixed with this to develop color, and the spectrophotometer is used to measure the absorbance. From the measured absorbance value and the calibration curve, An automatic analyzer (4) having a function of obtaining a chlorine concentration and outputting the result as a measurement signal is connected to the automatic analyzer (4), the measurement signal from the automatic analyzer (4), a chlorine concentration prepared in advance and a reducing agent. Reducing agent supply having a function of calculating a necessary amount of reducing agent based on a relational expression with the amount, outputting the result as a control signal, and controlling the amount of reducing agent supplied from the reducing agent supply pipe (64) A quantity control device (5) is connected.

試料採取配管(65)の設置位置としては、カチオン交換塔(1)とアニオン交換塔(3)との間の流路(62)であれば、時に制限されないが、脱炭酸塔(2)が備えられている場合は、脱炭酸塔(2)の前の流路(62a)よりも、脱炭酸塔(2)の後の流路(62b)が好ましい。なお、符号(72)は試料採取配管(65)に備えられたバルブである。   The installation position of the sampling pipe (65) is not limited as long as it is a flow path (62) between the cation exchange tower (1) and the anion exchange tower (3), but the decarboxylation tower (2) When provided, the flow path (62b) after the decarbonation tower (2) is preferable to the flow path (62a) before the decarbonation tower (2). Reference numeral (72) denotes a valve provided in the sampling pipe (65).

自動分析装置(4)において採用される塩素濃度の測定法は、比色法として知られている方法であり、発色試薬としては、特にジエチル−p−フェニレンジアミンが好適である。これらの発色試薬により、ppbオーダの極低濃度の残留塩素を測定することが出来る。測定吸光波長は、発色試薬によって異なるが、ジエチル−p−フェニレンジアミンの場合は540nm付近、o−トリジンの場合は440nm付近の波長を選択するのが好ましい。検量線は、種々の塩素濃度と吸光度との関係を示すデータであり、予め、上記の比色法に従って求めたものである。   The measuring method of the chlorine concentration employed in the automatic analyzer (4) is a method known as a colorimetric method, and diethyl-p-phenylenediamine is particularly suitable as the color developing reagent. With these coloring reagents, it is possible to measure residual chlorine at a very low concentration in the order of ppb. The measurement absorption wavelength varies depending on the coloring reagent, but it is preferable to select a wavelength around 540 nm in the case of diethyl-p-phenylenediamine and around 440 nm in the case of o-tolidine. The calibration curve is data indicating the relationship between various chlorine concentrations and absorbances, and is obtained in advance according to the above colorimetric method.

自動分析装置(4)と還元剤供給量制御装置(5)とにおける前記の各機能は、プログラム化されてコンピューターにより行われ、自動分析装置(4)及び還元剤供給量制御装置(5)の具体的構成は、従来の自動制御技術とコンピューター技術により当業者にとっては容易に構築することが出来る。符号(81)と(82)は、それぞれ、自動分析装置(4)と還元剤供給量制御装置(5)とにおける前記の測定信号と制御信号の伝送路である。   The functions of the automatic analyzer (4) and the reducing agent supply amount control device (5) are programmed and performed by a computer, and the automatic analyzer (4) and the reducing agent supply amount control device (5) The specific configuration can be easily constructed by those skilled in the art using conventional automatic control technology and computer technology. Reference numerals (81) and (82) are transmission paths for the measurement signal and the control signal in the automatic analyzer (4) and the reducing agent supply amount controller (5), respectively.

本発明の純水製造装置を使用した純水の製造方法は常法に従って行われ、イオン交換能力が低下するとイオン交換樹脂の再生が行われ、イオン交換樹脂が劣化した場合は交換を行う。   The pure water production method using the pure water production apparatus of the present invention is performed according to a conventional method. When the ion exchange capacity is lowered, the ion exchange resin is regenerated, and when the ion exchange resin is deteriorated, the exchange is performed.

以下、本発明を実施例により更に詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to a following example, unless the summary is exceeded.

実施例1:
純水製造装置として、図1に示したのと同様の構造のものを使用した。
Example 1:
As a pure water production apparatus, one having the same structure as that shown in FIG. 1 was used.

カチオン交換塔(1)には、上から順次に、「ダイヤイオンWK40L」550Lと「ダイヤイオンUBK110」1350Lとを充填した複層床式カチオン交換塔(内径1000mm×長さ2500mm)を使用した。   As the cation exchange column (1), a multi-layer bed type cation exchange column (inner diameter 1000 mm × length 2500 mm) filled with “Diaion WK40L” 550L and “Diaion UBK110” 1350L was used in this order from the top.

アニオン交換塔(3)には、上から順次に、「ダイヤイオンWA30L」750Lと「ダイヤイオンUBA12A」750Lとを充填した複層床式カチオン交換塔(内径1000mm×長さ2500mm)を使用した。   As the anion exchange column (3), a multi-layer bed type cation exchange column (inner diameter 1000 mm × length 2500 mm) packed with “Diaion WA30L” 750L and “Diaion UBA12A” 750L was used in this order from the top.

脱炭酸塔(2)にはエアーレーション方式の脱炭酸塔を使用した。   An aeration type decarboxylation tower was used as the decarboxylation tower (2).

原水としては次亜塩素酸塩を注入後にろ過した工業用水(遊離塩素0.5ppm)を使用し、通水量は25.5m/hとした。 As raw water, industrial water (free chlorine 0.5 ppm) filtered after injecting hypochlorite was used, and the water flow rate was set to 25.5 m 3 / h.

還元剤供給配管(64)から原水供給流路(61)に供給される亜硫酸ナトリウム水溶液(濃度5重量%)の量は、ジエチル−p−フェニリンジアミン比色法の自動分析装置(4)と還元剤供給量制御装置(5)とによって制御した。その結果、流路(62)中の塩素が高精度で測定され、還元剤量の供給管理が自動的に行われ、長期間に亘って安定した運転を行うことが出来た。因に、亜硫酸ナトリウムの供給量はClに対する化学当量比で2.3倍に相当量とした。 The amount of the sodium sulfite aqueous solution (concentration 5 wt%) supplied from the reducing agent supply pipe (64) to the raw water supply flow path (61) is the same as that of the automatic analyzer (4) of the diethyl-p-phenylinediamine colorimetric method. It controlled by the reducing agent supply amount control apparatus (5). As a result, chlorine in the flow path (62) was measured with high accuracy, supply control of the amount of reducing agent was automatically performed, and stable operation could be performed over a long period of time. Incidentally, the amount of sodium sulfite supplied was 2.3 times the chemical equivalent ratio to Cl 2 .

アニオン交換塔(3)の再生時間は当初1時間以内であったが、冬季、アニオン交換塔(3)の水洗時間が延長し始め、3ヶ月目に3時間を超えるようになった。その原因は「ダイヤイオンWA30L」からのナトリウムリークであった。アニオン交換塔(3)入ロの遊離塩素を分析したところ、0.07ppmの遊離塩素が検出された。なお、別試験において、「ダイヤイオンWA30L」を充填したカラムに0.07ppmの遊離塩素を含む水を通液したところ、ナトリウムリークが生じることが確認された。   The regeneration time of the anion exchange tower (3) was initially less than 1 hour, but in the winter, the washing time of the anion exchange tower (3) started to increase, and exceeded 3 hours in the third month. The cause was a sodium leak from “Diaion WA30L”. Analysis of free chlorine in the anion exchange column (3) showed 0.07 ppm of free chlorine. In another test, it was confirmed that sodium leak occurred when water containing 0.07 ppm of free chlorine was passed through a column packed with “Diaion WA30L”.

その後、「ダイヤイオンWA30L」を交換して運転を再開した。冬季、再びアニオン交換塔(3)入ロに遊離塩素0.07mg−Cl/Lが検出されるようになったので、亜硫酸塩注入量を、遊離塩素が検出されなくなるまで増量し、運転を継続した。「ダイヤイオンWA30L」からのナトリウムリークは起こらず、アニオン交換塔(3)の再生時間延長は見られなくなった。   Thereafter, “Diaion WA30L” was replaced and the operation was resumed. In winter, 0.07mg-Cl / L of free chlorine was detected again in the anion exchange column (3), so the sulfite injection amount was increased until no free chlorine was detected and the operation continued. did. The sodium leak from “Diaion WA30L” did not occur, and the regeneration time extension of the anion exchange column (3) was not observed.

1:カチオン交換塔
2:脱炭酸塔
3:アニオン交換塔
4:自動分析装置
5:還元剤供給量制御装置
61:原水供給流路
62:流路
63:純水取出流路
64:還元剤供給配管
65:試料採取配管
1: Cation Exchange Tower 2: Decarboxylation Tower 3: Anion Exchange Tower 4: Automatic Analyzer 5: Reducing Agent Supply Amount Control Device 61: Raw Water Supply Channel 62: Channel 63: Pure Water Extraction Channel 64: Reductant Supply Piping 65: Sampling piping

Claims (1)

少なくとも順次に配置されたカチオン交換塔(1)及びアニオン交換塔(3)を包含し、カチオン交換塔(1)に接続する原水供給流路(61)には原水中に残存する遊離塩素を分解するための還元剤供給配管(64)が接続されて成る純水製造装置に於いて、カチオン交換塔(1)とアニオン交換塔(3)との間の流路(62)に遊離塩素分析用の試料採取配管(65)を設け、試料採取配管(65)には、定量ポンプにより一定量の試料を採取し、これに一定量の発色試薬を添加混合して発色させ、分光光度計に導き吸光度を測定し、吸光度の測定値と検量線とから塩素濃度を求め、その結果を測定信号として出力する機能を備えた自動分析装置(4)を接続し、自動分析装置(4)には、それからの測定信号と予め用意された塩素濃度と還元剤量との関係式とに基づき必要な還元剤量を算出し、還元剤供給配管(64)から供給される還元剤の量を制御する機能を備えた還元剤供給量制御装置(5)を接続して成ることを特徴とする純水製造装置。   At least the cation exchange tower (1) and the anion exchange tower (3) arranged sequentially are included, and the raw water supply channel (61) connected to the cation exchange tower (1) decomposes free chlorine remaining in the raw water. In a pure water production apparatus to which a reducing agent supply pipe (64) is connected, the flow path (62) between the cation exchange column (1) and the anion exchange column (3) is used for free chlorine analysis. The sample collection pipe (65) is provided, and a fixed amount of sample is collected in the sample collection pipe (65) by a metering pump, and a fixed amount of coloring reagent is added and mixed with this to produce a spectrophotometer. An automatic analyzer (4) having a function of measuring the absorbance, obtaining the chlorine concentration from the absorbance measurement value and the calibration curve, and outputting the result as a measurement signal is connected to the automatic analyzer (4). Measurement signal and chlorine concentration prepared in advance A reducing agent supply amount control device (5) having a function of calculating a necessary reducing agent amount based on the relational expression with the reducing agent amount and controlling the amount of reducing agent supplied from the reducing agent supply pipe (64). An apparatus for producing pure water characterized by comprising:
JP2009044082A 2009-02-26 2009-02-26 Pure water production equipment Expired - Fee Related JP5077266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009044082A JP5077266B2 (en) 2009-02-26 2009-02-26 Pure water production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009044082A JP5077266B2 (en) 2009-02-26 2009-02-26 Pure water production equipment

Publications (2)

Publication Number Publication Date
JP2010194479A true JP2010194479A (en) 2010-09-09
JP5077266B2 JP5077266B2 (en) 2012-11-21

Family

ID=42819775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009044082A Expired - Fee Related JP5077266B2 (en) 2009-02-26 2009-02-26 Pure water production equipment

Country Status (1)

Country Link
JP (1) JP5077266B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102424464A (en) * 2011-12-21 2012-04-25 青岛双瑞海洋环境工程有限公司 Elimination method of total residual oxidants (TRO)
JP2012213730A (en) * 2011-03-31 2012-11-08 Mitsubishi Heavy Ind Ltd Desalination apparatus and desalination method
JP2020060456A (en) * 2018-10-10 2020-04-16 株式会社アストム Inspection method of anion exchange membrane containing polyvinyl chloride component

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54104638A (en) * 1978-02-02 1979-08-17 Mitsubishi Heavy Ind Ltd Device for removing residual chlorine from cooling water
JPS5524577A (en) * 1978-08-10 1980-02-21 Nec Corp Oxidation-reduction treatment method
JPS631699U (en) * 1986-06-24 1988-01-07
JPH02222774A (en) * 1989-02-23 1990-09-05 Fuji Kasui Kogyo Kk Method for controlling amount of oxidizing agent or reducing agent to be added
JPH04108587A (en) * 1990-08-29 1992-04-09 Nippon Rensui Kk Production of ultrapure water
JPH0538495A (en) * 1991-08-08 1993-02-19 Hitachi Chem Co Ltd Pretreatment of hospital drainage for performing purifying treatment
JP2001187398A (en) * 1999-12-28 2001-07-10 Hitachi Plant Eng & Constr Co Ltd Production method of pure water and device thereof
JP2001286874A (en) * 2000-04-06 2001-10-16 Nippon Soda Co Ltd Simple, reliable and efficient dechlorization method of bathtub water and dechlorination agent
JP2001318057A (en) * 2000-05-02 2001-11-16 Mitsubishi Heavy Ind Ltd Residual chlorine measuring method and its device
JP2003260471A (en) * 2002-03-13 2003-09-16 Mitsubishi Electric Corp Control apparatus for residual chlorine in treated water
JP2004033800A (en) * 2002-06-28 2004-02-05 Nomura Micro Sci Co Ltd Control method of concentration of residual chlorine, producing method of ultra-pure water and control method of concentration of injected chlorine
JP2004202429A (en) * 2002-12-26 2004-07-22 Nippon Torimu:Kk Apparatus and method for producing reductive bathtub water and reductive bathtub water
JP2005281777A (en) * 2004-03-30 2005-10-13 Nippon Rensui Co Ltd Method for electrolyzing alkali metal chloride
JP2008057996A (en) * 2006-08-29 2008-03-13 Miura Co Ltd Measuring method of concentration of component to be inspected in water to be measured
JP2009028569A (en) * 2007-07-24 2009-02-12 Jfe Engineering Kk Ballast water treatment apparatus and ballast water treatment method

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54104638A (en) * 1978-02-02 1979-08-17 Mitsubishi Heavy Ind Ltd Device for removing residual chlorine from cooling water
JPS5524577A (en) * 1978-08-10 1980-02-21 Nec Corp Oxidation-reduction treatment method
JPS631699U (en) * 1986-06-24 1988-01-07
JPH02222774A (en) * 1989-02-23 1990-09-05 Fuji Kasui Kogyo Kk Method for controlling amount of oxidizing agent or reducing agent to be added
JPH04108587A (en) * 1990-08-29 1992-04-09 Nippon Rensui Kk Production of ultrapure water
JPH0538495A (en) * 1991-08-08 1993-02-19 Hitachi Chem Co Ltd Pretreatment of hospital drainage for performing purifying treatment
JP2001187398A (en) * 1999-12-28 2001-07-10 Hitachi Plant Eng & Constr Co Ltd Production method of pure water and device thereof
JP2001286874A (en) * 2000-04-06 2001-10-16 Nippon Soda Co Ltd Simple, reliable and efficient dechlorization method of bathtub water and dechlorination agent
JP2001318057A (en) * 2000-05-02 2001-11-16 Mitsubishi Heavy Ind Ltd Residual chlorine measuring method and its device
JP2003260471A (en) * 2002-03-13 2003-09-16 Mitsubishi Electric Corp Control apparatus for residual chlorine in treated water
JP2004033800A (en) * 2002-06-28 2004-02-05 Nomura Micro Sci Co Ltd Control method of concentration of residual chlorine, producing method of ultra-pure water and control method of concentration of injected chlorine
JP2004202429A (en) * 2002-12-26 2004-07-22 Nippon Torimu:Kk Apparatus and method for producing reductive bathtub water and reductive bathtub water
JP2005281777A (en) * 2004-03-30 2005-10-13 Nippon Rensui Co Ltd Method for electrolyzing alkali metal chloride
JP2008057996A (en) * 2006-08-29 2008-03-13 Miura Co Ltd Measuring method of concentration of component to be inspected in water to be measured
JP2009028569A (en) * 2007-07-24 2009-02-12 Jfe Engineering Kk Ballast water treatment apparatus and ballast water treatment method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012213730A (en) * 2011-03-31 2012-11-08 Mitsubishi Heavy Ind Ltd Desalination apparatus and desalination method
CN102424464A (en) * 2011-12-21 2012-04-25 青岛双瑞海洋环境工程有限公司 Elimination method of total residual oxidants (TRO)
JP2020060456A (en) * 2018-10-10 2020-04-16 株式会社アストム Inspection method of anion exchange membrane containing polyvinyl chloride component
JP7148124B2 (en) 2018-10-10 2022-10-05 株式会社アストム Inspection method for anion exchange membrane containing polyvinyl chloride component

Also Published As

Publication number Publication date
JP5077266B2 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
CN101825641B (en) Water quality total nitrogen on-line automatic monitoring device
JP5768959B2 (en) Water treatment equipment
US9611160B2 (en) Wastewater treatment apparatus and method
Hamid et al. Ozone combined with ceramic membranes for water treatment: Impact on HO radical formation and mitigation of bromate
US8748189B2 (en) Method and apparatus for measuring bromate ions
JP5077266B2 (en) Pure water production equipment
JP2005305328A (en) Water treatment controlling system
CN201276469Y (en) Apparatus for processing difficult biochemical treatment ammonia nitrogen wastewater by break-point chlorination
CN201662575U (en) On-line automatic monitoring device for water quality total nitrogen
JP3903831B2 (en) Boric acid analysis method and analyzer, ultrapure water production method and production apparatus
US20100147776A1 (en) Magnesium thiosulfate as chlorine quencher and scrubber
CN107973461A (en) A kind of UV/Na of 4- bromines phenol2SO3Photo-reduction biodegrading process
TWI811365B (en) Fluorine concentration measuring method, fluorine concentration measuring device, water treatment method, and water treatment device
JP6279295B2 (en) Ultrapure water production system and ultrapure water production method
JP4864671B2 (en) Water quality abnormality detection device, water quality abnormality detection method, and water treatment device
US10989699B2 (en) Methods and systems for detecting and quantifying peroxy acid and peroxide in fluids
JP4509644B2 (en) Ozone gas injection control system
JP2019171228A (en) Water purifying treatment method and water purifying treatment apparatus
KR20010104007A (en) Advanced Wastewater Treatment System Adding Dechlorination Process
JP5980652B2 (en) Persulfate treatment apparatus, persulfate treatment method, oxidation-reduction potential measurement apparatus, and oxidation-reduction potential measurement method
GB2510564A (en) Treating clinical analyser wastewater
Zhang Ammonia Removal from Mining Wastewater by Ion-Exchange Regenerated by Chlorine Solutions
CN102247900A (en) Process for regenerating calcium type chromatographic separation resin
JP5913087B2 (en) Wastewater treatment system
CA2752423C (en) Oxidative remediation of oil sands derived aqueous streams

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120813

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5077266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees