JP2012213730A - Desalination apparatus and desalination method - Google Patents

Desalination apparatus and desalination method Download PDF

Info

Publication number
JP2012213730A
JP2012213730A JP2011081252A JP2011081252A JP2012213730A JP 2012213730 A JP2012213730 A JP 2012213730A JP 2011081252 A JP2011081252 A JP 2011081252A JP 2011081252 A JP2011081252 A JP 2011081252A JP 2012213730 A JP2012213730 A JP 2012213730A
Authority
JP
Japan
Prior art keywords
chlorine
reducing agent
amount
raw water
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011081252A
Other languages
Japanese (ja)
Other versions
JP5669651B2 (en
Inventor
Katsunori Matsui
克憲 松井
Kazuhisa Takeuchi
和久 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2011081252A priority Critical patent/JP5669651B2/en
Publication of JP2012213730A publication Critical patent/JP2012213730A/en
Application granted granted Critical
Publication of JP5669651B2 publication Critical patent/JP5669651B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a desalination apparatus and a desalination method capable of controlling excessive injection of SBS solution and surely completing neutralization treatment when carrying out the neutralization treatment using a reducing agent to raw water after chlorination treatment.SOLUTION: The desalination apparatus 10 includes: a desalting treatment apparatus 17 and a reducing agent feeder 18 which includes a chlorine adding part 31 for taking out raw water obtained by adding chlorine-containing water from an upstream side of the desalting treatment apparatus 17 and quantitatively adding chlorine components to the raw water which has been taken out, a chlorine determining quantity part 32 for determining quantity of chlorine amount in the raw water obtained by adding chlorine components, a reducing agent feeding amount determination part 33 for calculating reducing agent amount corresponding to the difference between the chlorine amount determined by the chlorine determining quantity part 32 and the quantitatively added chlorine amount and determining feeding amount of the reducing agent, and a reducing agent feeding part 34 for feeding the determined feeding amount of the reducing agent to the raw water obtained by adding chlorine-containing water at the upstream side of the desalting treatment apparatus 17.

Description

本発明は、海水を淡水化するための淡水化装置及び淡水化処理方法に関する。   The present invention relates to a desalination apparatus and a desalination treatment method for desalinating seawater.

海水を淡水化するための設備として、逆浸透膜(RO膜、Reverse Osmosis Membrane)を用いて海水(原水)を脱塩処理して淡水化する海水淡水化装置(以下、淡水化装置という)がある。RO膜としては、酢酸セルロース膜やポリアミド膜などが使用される。   As equipment for desalinating seawater, there is a seawater desalination apparatus (hereinafter referred to as a desalination apparatus) that desalinates seawater (raw water) using a reverse osmosis membrane (RO membrane, Reverse Osmosis Membrane). is there. As the RO membrane, a cellulose acetate membrane or a polyamide membrane is used.

淡水化装置では、一般的に、原水を脱塩処理する前に、殺菌などを目的として原水に塩素剤を添加する前処理が行われる。RO膜としてポリアミド膜などの塩素耐性を有しない材料からなる膜を使用した場合、RO膜に塩素が接触すると、RO膜が劣化する。そのため、RO膜の前段側において、還元剤を用いて原水中の塩素を中和処理する必要がある。還元剤としては、例えば重亜硫酸ソーダ(SBS、Sodium bisulfate soda)が用いられる(特許文献1〜3)。   In the desalination apparatus, generally, before desalting the raw water, a pretreatment for adding a chlorine agent to the raw water for the purpose of sterilization or the like is performed. When a film made of a material having no chlorine resistance, such as a polyamide film, is used as the RO film, the RO film deteriorates when chlorine contacts the RO film. Therefore, it is necessary to neutralize the chlorine in the raw water using a reducing agent on the upstream side of the RO membrane. For example, sodium bisulfite (SBS) is used as the reducing agent (Patent Documents 1 to 3).

特開平7−308671号公報JP-A-7-308671 特開平7−171565号公報JP 7-171565 A 特開平9−57076号公報JP-A-9-57076

塩素を含む原水をSBS溶液で中和する際には、中和処理した原水中の酸化還元電位を計測して、中和の終了を確認する。酸化還元電位(ORP)はORP計により計測する。該ORP計は、原水の性状(pH等)、ORP電極の連続使用による電極汚れ、及びORP計自体の製造要因のぶれ等により絶対値が変動することがある。このため、SBSを添加した原水のORPの絶対値を直接測定し、これを目標値としてSBS溶液の供給量を制御しようとすると、SBS溶液の注入量が不足、または過剰となる可能性がある。SBS溶液の注入量が不足した場合には、原水が十分に中和されないため、RO膜の損傷要因となる。SBS溶液の注入量が過剰の場合には、ランニングコストが嵩む上、SBS由来の硫黄化合物が逆浸透膜に付着し、閉塞等の問題を引き起こす可能性がある。   When neutralizing raw water containing chlorine with the SBS solution, the oxidation-reduction potential in the neutralized raw water is measured to confirm the end of neutralization. The oxidation-reduction potential (ORP) is measured with an ORP meter. The absolute value of the ORP meter may fluctuate due to the properties of raw water (pH, etc.), electrode contamination due to continuous use of the ORP electrode, and fluctuations in manufacturing factors of the ORP meter itself. For this reason, if the absolute value of the ORP of the raw water added with SBS is directly measured and the supply amount of the SBS solution is controlled using this value as a target value, the injection amount of the SBS solution may be insufficient or excessive. . When the injection amount of the SBS solution is insufficient, the raw water is not sufficiently neutralized, which causes damage to the RO membrane. When the injection amount of the SBS solution is excessive, the running cost increases and the SBS-derived sulfur compound adheres to the reverse osmosis membrane, which may cause problems such as blockage.

本発明は、このような事情に鑑みてなされたものであって、塩素処理した後の原水に対して還元剤を用いて中和処理する際に、SBS溶液の過剰注入を抑制しつつ、より確実に中和処理を完了することのできる淡水化装置及び淡水化方法の提供を目的とする。   The present invention has been made in view of such circumstances, and when neutralizing the raw water after chlorination using a reducing agent, while suppressing excessive injection of the SBS solution, An object of the present invention is to provide a desalination apparatus and a desalination method capable of reliably completing the neutralization treatment.

上記課題を解決するために、本発明は、塩素含有水を添加した原水から塩類を分離するための逆浸透膜を有する脱塩処理装置と、前記脱塩処理装置の前流側で、前記塩素含有水を添加した原水に、塩素を中和可能な還元剤を供給する還元剤供給装置と、を備えた淡水化装置であって、前記還元剤供給装置が、前記脱塩処理装置の前流側から前記塩素含有水を添加した原水を抜き出して、該抜き出した原水に塩素成分を定量的に添加する塩素添加部と、前記塩素成分を添加した原水の塩素量を定量する塩素定量部と、前記塩素定量部で定量した塩素量と、前記定量的に添加した塩素量との差分の塩素量に対応する還元剤量を算出して、還元剤の供給量を決定する還元剤供給量決定部と、前記決定した供給量の還元剤を脱塩処理装置の前流側で前記塩素含有水を添加した原水に供給する還元剤供給部とを含む淡水化装置を提供する。   In order to solve the above problems, the present invention provides a desalination treatment apparatus having a reverse osmosis membrane for separating salts from raw water to which chlorine-containing water is added, and the chlorine on the upstream side of the desalination treatment apparatus. A desalination apparatus comprising a reducing agent supply apparatus that supplies a reducing agent capable of neutralizing chlorine to the raw water to which the contained water has been added, wherein the reducing agent supply apparatus is upstream of the desalination treatment apparatus. Extracting the raw water to which the chlorine-containing water has been added from the side, adding a chlorine component quantitatively to the extracted raw water, and a chlorine quantitative unit for determining the chlorine content of the raw water to which the chlorine component has been added, A reducing agent supply amount determination unit that determines a supply amount of the reducing agent by calculating a reducing agent amount corresponding to a difference between the chlorine amount quantified by the chlorine determination unit and the quantitatively added chlorine amount. And the determined supply amount of the reducing agent in front of the desalination apparatus Providing desalination device that includes a reducing agent supply unit for supplying the raw water with the addition of chlorine-containing water.

上記発明によれば、塩素含有水を添加した原水に、更に定量的に塩素成分を加えることで、塩素濃度が高くなるため、より正確に塩素量を定量することが可能となる。添加前後の差分の塩素量は、塩素含有水を添加した原水に含まれる塩素量に相当するため、上記差分の塩素量を中和するために必要な還元剤量を算出することで、還元剤の供給量を決定できる。   According to the above invention, the chlorine concentration is increased by adding the chlorine component quantitatively to the raw water to which the chlorine-containing water is added, so that the amount of chlorine can be more accurately quantified. Since the difference chlorine amount before and after the addition corresponds to the chlorine amount contained in the raw water to which the chlorine-containing water is added, by calculating the amount of reducing agent necessary to neutralize the difference chlorine amount, the reducing agent is calculated. Can be determined.

上記発明の一態様において、前記還元剤供給装置が、前記塩素含有水を添加した原水の一部を抜き出して、定量用の還元剤溶液を添加しつつ、還元剤と塩素との酸化還元電位の最大変化部を求め、この当量点に対応する還元剤添加濃度を求め、該還元剤添加濃度を前記還元剤供給量決定部で決定した還元剤の供給量と比較し、前記還元剤供給量を適宜補正する補正部を備えても良い。
補正部を備えることで、より正確に適量の還元剤を注入することが可能となる。
In one aspect of the invention, the reducing agent supply device extracts a portion of the raw water to which the chlorine-containing water has been added, and adds a reducing agent solution for quantification, while reducing the redox potential of the reducing agent and chlorine. The maximum change part is obtained, the reducing agent addition concentration corresponding to the equivalence point is obtained, the reducing agent addition concentration is compared with the reducing agent supply amount determined by the reducing agent supply amount determination unit, and the reducing agent supply amount is determined. You may provide the correction | amendment part which correct | amends suitably.
By providing the correction unit, it is possible to inject an appropriate amount of the reducing agent more accurately.

また、本発明は、逆浸透膜を有する脱塩処理装置を用いて塩素含有水を添加した原水から塩類を分離する方法であって、前記脱塩処理装置の前流側から前記塩素含有水を添加した原水を抜き出して、該抜き出した原水に塩素成分を定量的に添加し、前記塩素成分を添加した原水の塩素量を定量し、前記定量した塩素量と、前記定量的に添加した塩素量との差分の塩素量に対応する還元剤量を算出して、還元剤の供給量を決定し、前記脱塩処理装置の前流側で、前記塩素含有水を添加した原水に、前記決定した供給量の還元剤を供給し、前記塩素含有水を添加した原水に含まれる塩素を中和する淡水化方法を提供する。   The present invention is also a method for separating salts from raw water to which chlorine-containing water has been added using a desalination treatment apparatus having a reverse osmosis membrane, wherein the chlorine-containing water is removed from the upstream side of the desalination treatment apparatus. Extracting the added raw water, quantitatively adding a chlorine component to the extracted raw water, quantifying the amount of chlorine in the raw water to which the chlorine component has been added, and determining the amount of chlorine and the amount of chlorine added quantitatively The amount of reducing agent corresponding to the difference between the amount of chlorine and the amount of reducing agent supplied is determined, and the raw water to which the chlorine-containing water is added is determined on the upstream side of the desalting apparatus. Provided is a desalination method for supplying a supply amount of a reducing agent and neutralizing chlorine contained in raw water to which the chlorine-containing water is added.

上記発明の一態様において、前記塩素含有水を添加した原水の一部を抜き出して、定量用の還元剤溶液を添加しつつ、還元剤と塩素との酸化還元電位の最大変化部である当量点を求め、この当量点に対応する還元剤添加濃度を求め、該還元剤添加濃度を前記還元剤供給量決定部で決定した還元剤の供給量と比較し、前記還元剤供給量を適宜補正しても良い。   In one aspect of the invention, an equivalent point that is a maximum change portion of the oxidation-reduction potential between the reducing agent and chlorine while extracting a part of the raw water to which the chlorine-containing water is added and adding the reducing agent solution for quantification. The reducing agent addition concentration corresponding to the equivalence point is obtained, the reducing agent addition concentration is compared with the reducing agent supply amount determined by the reducing agent supply amount determination unit, and the reducing agent supply amount is appropriately corrected. May be.

本発明によれば、間接的に還元剤の必要量を定量できるため、還元剤の過剰注入を防止しつつ、塩素をより確実に中和することが可能となる。   According to the present invention, since the necessary amount of the reducing agent can be indirectly determined, it is possible to more reliably neutralize chlorine while preventing excessive injection of the reducing agent.

第1実施形態に係る淡水化装置の概略図である。It is the schematic of the desalination apparatus which concerns on 1st Embodiment. 第2実施形態に係る補正部の概略図である。It is the schematic of the correction | amendment part which concerns on 2nd Embodiment. サンプル水基準SBS濃度とORP計測値との関係を示す図である。It is a figure which shows the relationship between sample water reference | standard SBS density | concentration and ORP measured value.

(第1実施形態)
以下に、本発明に係る淡水化装置及び淡水化方法の一実施形態について、図面を参照して説明する。
図1は、本実施形態に係る淡水化装置10の概略図である。淡水化装置10は、前処理装置13、脱塩処理装置17、及び還元剤供給装置18を具備してなる、海水(原水)から塩類を分離して淡水とする装置である。なお、図1中、符号20は濃縮水、21a、21bは送液ポンプ、22は原水ライン、23は濾過水ライン、24は濃縮水ライン、25は透過水ラインを各々図示する。
(First embodiment)
Hereinafter, an embodiment of a desalination apparatus and a desalination method according to the present invention will be described with reference to the drawings.
FIG. 1 is a schematic view of a desalination apparatus 10 according to the present embodiment. The desalination apparatus 10 is an apparatus comprising a pretreatment device 13, a desalination treatment device 17, and a reducing agent supply device 18, which separates salts from seawater (raw water) to produce fresh water. In FIG. 1, reference numeral 20 is concentrated water, 21a and 21b are liquid feed pumps, 22 is a raw water line, 23 is a filtered water line, 24 is a concentrated water line, and 25 is a permeate line.

前処理装置13は、前処理膜13aを備えており、該前処理膜13aに原水(海水)11を透過させることで、原水11から濁質分を除去する役割を果たす。   The pretreatment device 13 includes a pretreatment membrane 13a and plays a role of removing turbid components from the raw water 11 by allowing the raw water (seawater) 11 to pass through the pretreatment membrane 13a.

脱塩処理装置17は、濾過水ライン23を介して前処理装置13の後流側に接続されている。脱塩処理装置17は、逆浸透膜(RO膜)16を備えており、原水から塩類を分離することができる。逆浸透膜16は、塩類を透過させない半透膜とされる。逆浸透膜16は、酢酸セルロース系ポリマー、ポリアミド、ポリイミド、ビニルポリマーなどの高分子素材などからなる。逆浸透膜16は、逆浸透法により使用される既存の膜から選択され得る。   The desalting apparatus 17 is connected to the downstream side of the pretreatment apparatus 13 via the filtered water line 23. The desalting apparatus 17 includes a reverse osmosis membrane (RO membrane) 16 and can separate salts from raw water. The reverse osmosis membrane 16 is a semipermeable membrane that does not allow salt to permeate. The reverse osmosis membrane 16 is made of a polymer material such as cellulose acetate polymer, polyamide, polyimide, vinyl polymer or the like. The reverse osmosis membrane 16 can be selected from existing membranes used by the reverse osmosis method.

還元剤供給装置18は、前処理装置13と脱塩処理装置17との間の濾過水ライン23に接続されており、塩素添加部31、塩素定量部32、還元剤供給量決定部33、及び還元剤供給部34を備えている。
塩素添加部31は、脱塩処理装置17の前流側の濾過水ライン23から、前処理装置13で濁質分が除去された原水(濾過水14A)の一部を抜き出して、該抜き出した濾過水14Aに塩素成分を定量的に添加することができる。
The reducing agent supply device 18 is connected to the filtered water line 23 between the pretreatment device 13 and the desalting treatment device 17, and includes a chlorine addition unit 31, a chlorine determination unit 32, a reducing agent supply amount determination unit 33, and A reducing agent supply unit 34 is provided.
The chlorine addition unit 31 extracts a part of the raw water (filtered water 14A) from which the turbid components have been removed by the pretreatment device 13 from the filtrate water line 23 on the upstream side of the desalination treatment device 17 and extracts it. A chlorine component can be quantitatively added to the filtered water 14A.

塩素定量部32は、塩素添加部31により塩素成分を添加された濾過水14Bの塩素量を定量することができる。塩素量の定量は、比色法(DPD法、オルトトリジン法)、電流法などによって実施され得る。本実施形態では、ジエチル−p−フェニレンジアンモニウム(DPD)を用いた比色法(DPD法)を例示する。   The chlorine determination unit 32 can determine the amount of chlorine in the filtered water 14B to which the chlorine component is added by the chlorine addition unit 31. The determination of the amount of chlorine can be carried out by a colorimetric method (DPD method, orthotolidine method), current method or the like. In this embodiment, a colorimetric method (DPD method) using diethyl-p-phenylenediammonium (DPD) is exemplified.

DPD法では、塩素添加部31により塩素成分を添加された濾過水にDPDを加え、残留塩素との反応で生じる桃色から桃赤色を、残留塩素標準比色液と比較して定量する。残留塩素とは、遊離残留塩素と結合性残留塩素の合計量を指す。DPDと塩素による定色は513nm及び553nm付近に極大吸収波長を有する。DPDは遊離残留塩素と速やかに反応するが、結合性残留塩素との反応は遅く、試薬添加後1分以内に比色すると、遊離残留塩素のみが定量される。その後、ヨウ化カリウムを加えることでヨウ化物イオンが触媒となり、結合性残留塩素によっても発色が起こる。   In the DPD method, DPD is added to the filtered water to which the chlorine component is added by the chlorine addition unit 31, and the pink to pink color generated by the reaction with residual chlorine is quantified in comparison with the residual chlorine standard colorimetric solution. Residual chlorine refers to the total amount of free residual chlorine and bound residual chlorine. The constant color by DPD and chlorine has maximum absorption wavelengths around 513 nm and 553 nm. DPD reacts rapidly with free residual chlorine, but the reaction with bound residual chlorine is slow, and if the color is compared within 1 minute after addition of the reagent, only free residual chlorine is quantified. Thereafter, by adding potassium iodide, iodide ion becomes a catalyst, and color development also occurs due to binding residual chlorine.

還元剤供給量決定部33は、塩素定量部32で定量した濾過水14Bの塩素量と、濾過水14Aに定量的に添加した塩素量との差分の塩素量に対応する還元剤量を算出して、還元剤の供給量を決定することができる。   The reducing agent supply amount determination unit 33 calculates the reducing agent amount corresponding to the chlorine amount which is the difference between the chlorine amount of the filtered water 14B quantified by the chlorine quantifying unit 32 and the chlorine amount quantitatively added to the filtered water 14A. Thus, the supply amount of the reducing agent can be determined.

還元剤供給部34は、還元剤供給量決定部33で決定された量の還元剤を、脱塩処理装置17の前流側にある濾過水ライン23に供給することができる。   The reducing agent supply unit 34 can supply the amount of reducing agent determined by the reducing agent supply amount determination unit 33 to the filtered water line 23 on the upstream side of the desalting apparatus 17.

次に、淡水化装置10を用いて海水を淡水化する方法を説明する。
海水(原水)11を淡水化装置10に供給すると、まず、塩素含有水12が原水11に添加される。塩素含有水12は、次亜塩素酸ナトリウムの水溶液などとされ、1ppm程度添加される。
Next, a method for desalinating seawater using the desalination apparatus 10 will be described.
When seawater (raw water) 11 is supplied to the desalination apparatus 10, first, chlorine-containing water 12 is added to the raw water 11. The chlorine-containing water 12 is an aqueous solution of sodium hypochlorite or the like, and about 1 ppm is added.

塩素含有水12が添加された原水11は、前処理装置13に送られ、前処理膜13aによって濾過されて濾過水14Aとなる。濾過水14Aは濾過水ライン23を通り、還元剤で中和された後、脱塩処理装置17へと供給される。   The raw water 11 to which the chlorine-containing water 12 is added is sent to the pretreatment device 13 and filtered by the pretreatment membrane 13a to become filtered water 14A. The filtered water 14 </ b> A passes through the filtered water line 23, is neutralized with a reducing agent, and then supplied to the desalting apparatus 17.

濾過水14Aの中和は、還元剤供給装置18によって行われる。まず、塩素添加部31によって濾過水ライン23から濾過水14Aの一部を抜き出す。次に、抜き出した濾過水14Aに、塩素成分を定量的に添加し、濾過水14Bとする。塩素成分は、次亜塩素酸ナトリウムの水溶液などの形態で添加されて良く、塩素含有水12と同じ組成であることが好ましい。塩素成分の添加量は、0.5〜1.0ppm程度とすると良い。   The neutralization of the filtered water 14 </ b> A is performed by the reducing agent supply device 18. First, a part of the filtered water 14 </ b> A is extracted from the filtered water line 23 by the chlorine addition unit 31. Next, a chlorine component is quantitatively added to the extracted filtered water 14A to obtain filtered water 14B. The chlorine component may be added in the form of an aqueous solution of sodium hypochlorite or the like, and preferably has the same composition as the chlorine-containing water 12. The addition amount of the chlorine component is preferably about 0.5 to 1.0 ppm.

次に、塩素定量部32により、濾過水14Bに含まれる塩素量(X)を定量する。次に、定量した濾過水14Bに含まれる塩素量(X)から、濾過水14Aに定量的に添加した塩素量(Y)を除算し、濾過水14Aにもともと含まれる塩素量(Z)を算出する。   Next, the amount of chlorine (X) contained in the filtered water 14B is quantified by the chlorine quantification unit 32. Next, the amount of chlorine (Y) quantitatively added to the filtered water 14A is divided from the amount of chlorine (X) contained in the quantified filtered water 14B to calculate the amount of chlorine (Z) originally contained in the filtered water 14A. To do.

次に、還元剤供給量決定部33により還元剤の供給量を決定する。例えば、塩素含有水として次亜塩素酸ナトリウム(NaClO)溶液を使用し、還元剤としてSBS(NaHSO)溶液を使用した場合の酸化還元反応は次の式で示される。
NaClO+NaHSO→NaHSO+NaCl
上記反応式に基づき、NaClO 1molに対して、NaHSO 1molとなるようにSBS溶液の供給量を決定すると良い。
Next, the reducing agent supply amount determination unit 33 determines the supply amount of the reducing agent. For example, the oxidation-reduction reaction when a sodium hypochlorite (NaClO) solution is used as the chlorine-containing water and an SBS (NaHSO 3 ) solution is used as the reducing agent is represented by the following formula.
NaClO + NaHSO 3 → NaHSO 4 + NaCl
Based on the above reaction formula, the supply amount of the SBS solution may be determined so as to be 1 mol of NaHSO 3 with respect to 1 mol of NaClO.

上記で決定した還元剤の供給量の情報は、還元剤供給部34に提供される。還元剤供給部34は、提供された情報に基づき、濾過水ライン23に還元剤を供給する。これによって、還元剤を過剰注入することをなく、濾過水ライン23を流れる濾過水14を中和することができる。なお、濾過水ライン23から濾過水14の一部を抜き出してから還元剤を濾過水ライン23へと供給するまでを一連の中和処理工程とし、該中和処理工程は脱塩処理装置17へ塩素成分が混入しないよう繰り返し実施される。   Information on the supply amount of the reducing agent determined above is provided to the reducing agent supply unit 34. The reducing agent supply unit 34 supplies the reducing agent to the filtered water line 23 based on the provided information. As a result, the filtered water 14 flowing through the filtered water line 23 can be neutralized without excessive injection of the reducing agent. It should be noted that a series of steps from extracting a portion of the filtered water 14 from the filtered water line 23 to supplying the reducing agent to the filtered water line 23 is a series of neutralizing treatment steps, and the neutralizing treatment steps are directed to the desalination treatment apparatus 17. It repeats so that a chlorine component may not mix.

中和された濾過水14は、脱塩処理装置17へと供給され、逆浸透膜16にて塩類が分離される。   The neutralized filtered water 14 is supplied to the desalting apparatus 17, and the salts are separated by the reverse osmosis membrane 16.

(第2実施形態)
本実施形態では、還元剤注入装置が補正部を備える以外は第1実施形態と同様の構成とされる。
図2に、本実施形態に係る還元剤供給装置の補正部100の一例を示す。補正部100は、前処理装置(図示せず)からの濾過水ライン23を流れる濾過水14の一部抜出水104aをサンプル水として抜出す抜出ライン101と、抜出された一部抜出水104aに定量用の還元剤溶液であるSBS溶液108aを供給する定量用還元剤供給部である定量用SBS供給タンク102と、定量用SBS溶液108aが添加された混合液104bの酸化還元電位を計測する電極103a及び測定部33bを有する酸化還元電位(ORP)計103とを具備する。
(Second Embodiment)
In this embodiment, it is set as the structure similar to 1st Embodiment except a reducing agent injection apparatus being provided with the correction | amendment part.
In FIG. 2, an example of the correction | amendment part 100 of the reducing agent supply apparatus which concerns on this embodiment is shown. The correction unit 100 includes a withdrawal line 101 that draws out a part of the drained water 104a of the filtrate 14 that flows through the filtrate line 23 from the pretreatment device (not shown) as sample water, and a part of the drained water that is extracted. Measures the redox potential of the quantitative SBS supply tank 102, which is a quantitative reducing agent supply unit that supplies the quantitatively reducing agent solution 108a to 104a, and the mixed liquid 104b, to which the quantitative SBS solution 108a is added. And an oxidation-reduction potential (ORP) meter 103 having an electrode 103a and a measurement unit 33b.

補正部100は、定量用SBS溶液108aを一部抜出水104aに供給しつつ、ORP計103により両者の最大変化部である当量点を求め、求めた当量点に対応する定量用SBS溶液108aの還元剤添加濃度(Csm)を求め、この還元剤添加濃度(Csm)を中和可能なSBS溶液の流量を算出する演算装置104を備えている。
図2中、符号105は一部抜出水104aを測定部103bに供給する定量ポンプ、106は定量用SBS溶液108aを供給する流量可変定量ポンプ、107はシーケンサー、109は排水を各々図示する。
The correction unit 100 obtains the equivalent point which is the maximum change part of the two by using the ORP meter 103 while supplying a part of the quantitative SBS solution 108a to the extracted water 104a, and determines the equivalent SBS solution 108a corresponding to the obtained equivalent point. An arithmetic unit 104 is provided that calculates the reducing agent addition concentration (Csm) and calculates the flow rate of the SBS solution that can neutralize the reducing agent addition concentration (Csm).
In FIG. 2, reference numeral 105 is a metering pump that supplies partially extracted water 104 a to the measuring unit 103 b, 106 is a variable flow rate metering pump that supplies the SBS solution 108 a for metering, 107 is a sequencer, and 109 is drainage.

前処理装置で前処理された濾過水14には塩素が含有されているので、塩素含有水12を含む濾過水14の一部抜出水104aをサンプル水として定量ポンプにて連続的に酸化還元電位(ORP)計の測定部103bに供給する。
シーケンサー107からの信号を受けた流量可変定量ポンプ106によりサンプル水である一部抜出水104aに定量用SBS溶液108aの供給流量を変えながら一定パターンで供給混合する。
Since the filtered water 14 pretreated by the pretreatment apparatus contains chlorine, the redox potential is continuously obtained by a metering pump using the partially extracted water 104a of the filtered water 14 containing the chlorine-containing water 12 as sample water. (ORP) Supply to the measuring unit 103b of the meter.
The variable flow rate metering pump 106 that receives the signal from the sequencer 107 supplies and mixes the sampled water 104a, which is sample water, in a constant pattern while changing the supply flow rate of the SBS solution 108a for metering.

次いで、混合液104bの酸化還元電位(ORP)を測定部103bで計測し、ORP計103とシーケンサー107とからの信号により、還元剤と塩素との酸化還元電位の最大変化部(当量点)を求め、この当量点に対応する還元剤添加濃度(Csm)を求め、この濃度に対応したSBS溶液の量を算出する。   Next, the redox potential (ORP) of the mixed liquid 104b is measured by the measuring unit 103b, and the maximum change portion (equivalent point) of the redox potential of the reducing agent and chlorine is determined by a signal from the ORP meter 103 and the sequencer 107. The reducing agent addition concentration (Csm) corresponding to this equivalence point is determined, and the amount of the SBS solution corresponding to this concentration is calculated.

ここで、前記操作において、ORP計103の測定部103bに供給される基準SBS濃度(Cs)を(1)式にて算出することができる。
また、基準SBS(Cs)の変化に対するORP値の最大変化を与える還元剤添加濃度(Csm)になるよう、逆浸透膜装置に供給する濾過水14に添加するSBS溶液の流量(F3)を(2)式にて算出することができる。
Cs=(F1×C1)/F2 …(1)
ここで、
Cs:サンプル水基準SBS濃度(mol/l)
C1:定量用SBS溶液濃度(mol/l)
F1:定量用SBS溶液流量(1/h)
F2:サンプル水流量(1/h)
F3=(F4×Csm)/C3 …(2)
F3:SBS溶液18の供給流量(1/h)
F4:RO供給水流量(1/h)
C3:SBS溶液濃度(mol/l)
Csm:当量点に対応する還元剤添加濃度(mol/l)
Here, in the above-described operation, the reference SBS concentration (Cs) supplied to the measuring unit 103b of the ORP meter 103 can be calculated by the equation (1).
Further, the flow rate (F3) of the SBS solution added to the filtered water 14 supplied to the reverse osmosis membrane device is set so that the reducing agent addition concentration (Csm) that gives the maximum change in the ORP value with respect to the change in the reference SBS (Cs) is ( 2) It can be calculated by the equation.
Cs = (F1 × C1) / F2 (1)
here,
Cs: Sample water reference SBS concentration (mol / l)
C1: SBS solution concentration for determination (mol / l)
F1: SBS solution flow rate for quantification (1 / h)
F2: Sample water flow rate (1 / h)
F3 = (F4 × Csm) / C3 (2)
F3: Supply flow rate of SBS solution 18 (1 / h)
F4: RO supply water flow rate (1 / h)
C3: SBS solution concentration (mol / l)
Csm: Reducing agent addition concentration corresponding to the equivalence point (mol / l)

ここで、演算装置104での演算内容について説明する。
1)一定流量のサンプル水104aに定量用SBS溶液108aを、供給流量を変えながら混合し、混合後の混合液104bの酸化還元電位(ORP)を、測定部103bの電極103aで測定し、ORP計103でその結果を求める。
ここで、定量用SBS溶液108aの供給流量は、あらかじめ変化パターンをプログラミングしたシーケンサー107からの信号により、流量可変定量ポンプ106を変化させることで行う。
2)流量可変定量ポンプ106からORP測定部103bにいたる液の滞留時間および電極103aの検出遅れ等を考慮し、上記供給流量はステップ状に変化させ、一定時間、定量用SBS溶液108aの供給量を維持する変化パターンとする。
3)シーケンサー107からの定量用SBS溶液108aの供給流量信号は、同時に演算装置104にも送られ、ここでまず、ORP計103からのORP信号値と、サンプル水基準SBS濃度の関係を得る。
図3は、サンプル水基準SBS濃度(mol/l)と、ORP計測値(mV)との関係図である。なお、図3の上段の横軸には、SBS/Clモル比についても示している。
図3に示すとおり、横軸にORPの測定部103bに供給するサンプル水基準SBS濃度(Cs)を前出(1)式により算出して示し、縦軸には検出されたORP値の関係をプロットする。
上記(1)式にて、C1、F2の変数はあらかじめ演算装置104に入力しておき、F1は供給流量変化ごとにシーケンサー107から自動入力される。
4)次に、演算装置104では図3よりSBS濃度変化に対し、ORPの変化が最大となるサンプル水基準SBS当量濃度が求められる。これが、当量点に対応する還元剤添加濃度(Csm)となる。
実測値を結んだスムージングカーブをSBS濃度(Cs)に対して微分することで自動的に求めることが可能である。
5)さらに、演算装置104にて上記当量点に対応する還元剤添加濃度(Csm)となるSBS溶液の流量(F3)を(2)式により算出する。
なお、(2)式にてF4、C3の変数はあらかじめ演算装置104に入力しておく。
Here, the calculation contents in the calculation device 104 will be described.
1) The SBS solution 108a for quantification is mixed with the sample water 104a having a constant flow rate while changing the supply flow rate, and the oxidation-reduction potential (ORP) of the mixed solution 104b after the mixing is measured with the electrode 103a of the measurement unit 103b. The result is obtained in total 103.
Here, the supply flow rate of the quantitative SBS solution 108a is changed by changing the variable flow rate quantitative pump 106 in accordance with a signal from the sequencer 107 programmed in advance with a change pattern.
2) Considering the liquid residence time from the variable flow rate metering pump 106 to the ORP measuring unit 103b, the detection delay of the electrode 103a, and the like, the supply flow rate is changed stepwise, and the supply amount of the SBS solution 108a for quantification for a certain time. Change pattern to maintain
3) The supply flow rate signal of the quantitative SBS solution 108a from the sequencer 107 is also sent to the arithmetic unit 104 at the same time. First, the relationship between the ORP signal value from the ORP meter 103 and the sample water reference SBS concentration is obtained.
FIG. 3 is a relationship diagram between the sample water reference SBS concentration (mol / l) and the ORP measurement value (mV). Note that the horizontal axis in the upper part of FIG. 3 also shows the SBS / Cl molar ratio.
As shown in FIG. 3, the horizontal axis represents the sample water reference SBS concentration (Cs) supplied to the ORP measuring unit 103b by the above equation (1), and the vertical axis represents the relationship between the detected ORP values. Plot.
In the above equation (1), variables C1 and F2 are input to the arithmetic unit 104 in advance, and F1 is automatically input from the sequencer 107 every time the supply flow rate changes.
4) Next, the arithmetic unit 104 obtains the sample water reference SBS equivalent concentration that maximizes the change in ORP with respect to the change in SBS concentration, as shown in FIG. This is the reducing agent addition concentration (Csm) corresponding to the equivalence point.
It can be automatically obtained by differentiating the smoothing curve connecting the measured values with respect to the SBS concentration (Cs).
5) Further, the arithmetic unit 104 calculates the flow rate (F3) of the SBS solution at the reducing agent addition concentration (Csm) corresponding to the equivalence point by the equation (2).
Note that the variables F4 and C3 in equation (2) are input to the arithmetic unit 104 in advance.

演算装置104で算出された還元剤添加濃度(Csm)を中和可能なSBS溶液の流量は、比較部還元剤定量部で定量した塩素量(Z)と比較される。塩素量(Z)が演算装置104で算出したSBSの流量と大きく異なる場合、濾過水ライン23に供給される還元剤量は適宜補正される。   The flow rate of the SBS solution capable of neutralizing the reducing agent addition concentration (Csm) calculated by the arithmetic unit 104 is compared with the chlorine amount (Z) quantified by the reducing agent quantification unit of the comparison unit. When the amount of chlorine (Z) is significantly different from the SBS flow rate calculated by the arithmetic unit 104, the amount of reducing agent supplied to the filtrate line 23 is corrected as appropriate.

10 淡水化装置
11 原水(海水)
12 塩素含有水
13 前処理装置
13a 前処理膜
14 濾過水
15 透過水
16 逆浸透膜(RO膜)
17 脱塩処理装置
18 還元剤供給装置
20 濃縮水
21a、21b 送液ポンプ
22 原水ライン
23 濾過水ライン
24 濃縮水ライン
25 透過水ライン
31 塩素添加部
32 塩素定量部
33 還元剤供給量決定部
34 還元剤供給部
100 補正部
101 抜出ライン
102 定量用SBS供給タンク
103 ORP計
103a ORP電極
103b ORP測定部
104 演算装置
104a サンプル水
104b 混合液
105 定量ポンプ
106 流量可変定量ポンプ
107 シーケンサー
108a 定量用SBS溶液
109 排水
10 Desalination equipment 11 Raw water (seawater)
12 Chlorine-containing water 13 Pretreatment device 13a Pretreatment membrane 14 Filtered water 15 Permeated water 16 Reverse osmosis membrane (RO membrane)
DESCRIPTION OF SYMBOLS 17 Desalination processing apparatus 18 Reducing agent supply apparatus 20 Concentrated water 21a, 21b Liquid feed pump 22 Raw water line 23 Filtrated water line 24 Concentrated water line 25 Permeated water line 31 Chlorine addition part 32 Chlorine determination part 33 Reductant supply amount determination part 34 Reducing agent supply unit 100 Correction unit 101 Extraction line 102 SBS supply tank for determination 103 ORP meter 103a ORP electrode 103b ORP measurement unit 104 Arithmetic device 104a Sample water 104b Mixed solution 105 Metering pump 106 Flow variable metering pump 107 Sequencer 108a Metering SBS Solution 109 drainage

Claims (4)

塩素含有水を添加した原水から塩類を分離するための逆浸透膜を有する脱塩処理装置と、前記脱塩処理装置の前流側で、前記塩素含有水を添加した原水に、塩素を中和可能な還元剤を供給する還元剤供給装置と、を備えた淡水化装置であって、
前記還元剤供給装置が、
前記脱塩処理装置の前流側から前記塩素含有水を添加した原水を抜き出して、該抜き出した原水に塩素成分を定量的に添加する塩素添加部と、
前記塩素成分を添加した原水の塩素量を定量する塩素定量部と、
前記塩素定量部で定量した塩素量と、前記定量的に添加した塩素量との差分の塩素量に対応する還元剤量を算出して、還元剤の供給量を決定する還元剤供給量決定部と、
前記決定した供給量の還元剤を脱塩処理装置の前流側で前記塩素含有水を添加した原水に供給する還元剤供給部と、
を含む淡水化装置。
Chlorine is neutralized in the desalination treatment device having a reverse osmosis membrane for separating salts from the raw water to which chlorine-containing water is added, and the raw water to which the chlorine-containing water is added on the upstream side of the desalination treatment device. A desalination apparatus comprising a reducing agent supply device for supplying a possible reducing agent,
The reducing agent supply device comprises:
A chlorine addition unit for extracting the raw water to which the chlorine-containing water has been added from the upstream side of the desalination treatment apparatus, and quantitatively adding a chlorine component to the extracted raw water;
A chlorine determination unit for determining the amount of chlorine in the raw water to which the chlorine component is added;
A reducing agent supply amount determination unit that determines a supply amount of the reducing agent by calculating a reducing agent amount corresponding to a difference between the chlorine amount quantified by the chlorine determination unit and the quantitatively added chlorine amount. When,
A reducing agent supply unit that supplies the determined supply amount of the reducing agent to the raw water to which the chlorine-containing water is added on the upstream side of the desalination treatment apparatus;
Including desalination equipment.
前記還元剤供給装置が、
前記塩素含有水を添加した原水の一部を抜き出して、定量用の還元剤溶液を添加しつつ、還元剤と塩素との酸化還元電位の最大変化部を求め、この当量点に対応する還元剤添加濃度を求め、該還元剤添加濃度を前記還元剤供給量決定部で決定した還元剤の供給量と比較し、前記還元剤供給量を適宜補正する補正部を備える請求項1に記載の淡水化装置。
The reducing agent supply device comprises:
Extracting a portion of the raw water to which the chlorine-containing water has been added, adding a reducing agent solution for determination, obtaining the maximum change portion of the redox potential of the reducing agent and chlorine, and reducing agent corresponding to this equivalent point 2. The fresh water according to claim 1, further comprising a correction unit that obtains an addition concentration, compares the reducing agent addition concentration with the reducing agent supply amount determined by the reducing agent supply amount determination unit, and appropriately corrects the reducing agent supply amount. Device.
逆浸透膜を有する脱塩処理装置を用いて塩素含有水を添加した原水から塩類を分離する方法であって、
前記脱塩処理装置の前流側から前記塩素含有水を添加した原水を抜き出して、該抜き出した原水に塩素成分を定量的に添加し、
前記塩素成分を添加した原水の塩素量を定量し、
前記定量した塩素量と、前記定量的に添加した塩素量との差分の塩素量に対応する還元剤量を算出して、還元剤の供給量を決定し、
前記脱塩処理装置の前流側で、前記塩素含有水を添加した原水に、前記決定した供給量の還元剤を供給し、前記塩素含有水を添加した原水に含まれる塩素を中和する淡水化方法。
A method for separating salts from raw water to which chlorine-containing water has been added using a desalination treatment apparatus having a reverse osmosis membrane,
The raw water to which the chlorine-containing water is added is extracted from the upstream side of the desalination treatment apparatus, and a chlorine component is quantitatively added to the extracted raw water,
Quantifying the amount of chlorine in the raw water to which the chlorine component is added,
Calculate the amount of reducing agent corresponding to the amount of chlorine that is the difference between the amount of chlorine quantified and the amount of chlorine added quantitatively, and determine the amount of reducing agent supplied,
Fresh water that supplies the determined supply amount of the reducing agent to the raw water to which the chlorine-containing water has been added and neutralizes the chlorine contained in the raw water to which the chlorine-containing water has been added on the upstream side of the desalination treatment apparatus. Method.
前記塩素含有水を添加した原水の一部を抜き出して、定量用の還元剤溶液を添加しつつ、還元剤と塩素との酸化還元電位の最大変化部である当量点を求め、この当量点に対応する還元剤添加濃度を求め、該還元剤添加濃度を前記還元剤供給量決定部で決定した還元剤の供給量と比較し、前記還元剤供給量を適宜補正する請求項3に記載の淡水化方法。
While extracting a part of the raw water to which the chlorine-containing water has been added and adding a reducing agent solution for quantification, an equivalent point that is the maximum change portion of the redox potential of the reducing agent and chlorine is obtained, and this equivalent point is obtained. The fresh water according to claim 3, wherein a corresponding reducing agent addition concentration is obtained, the reducing agent addition concentration is compared with the reducing agent supply amount determined by the reducing agent supply amount determination unit, and the reducing agent supply amount is corrected as appropriate. Method.
JP2011081252A 2011-03-31 2011-03-31 Desalination apparatus and desalination method Expired - Fee Related JP5669651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011081252A JP5669651B2 (en) 2011-03-31 2011-03-31 Desalination apparatus and desalination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011081252A JP5669651B2 (en) 2011-03-31 2011-03-31 Desalination apparatus and desalination method

Publications (2)

Publication Number Publication Date
JP2012213730A true JP2012213730A (en) 2012-11-08
JP5669651B2 JP5669651B2 (en) 2015-02-12

Family

ID=47267076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011081252A Expired - Fee Related JP5669651B2 (en) 2011-03-31 2011-03-31 Desalination apparatus and desalination method

Country Status (1)

Country Link
JP (1) JP5669651B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08257377A (en) * 1995-03-23 1996-10-08 Tohoku Electric Power Co Inc Membrane separator and control of addition amount of oxidizing agent
JPH0957076A (en) * 1995-08-28 1997-03-04 Toray Ind Inc Operation of reverse osmosis membrane device
JPH09248429A (en) * 1996-03-14 1997-09-22 Toray Ind Inc Separation method and apparatus therefor
JP2004033800A (en) * 2002-06-28 2004-02-05 Nomura Micro Sci Co Ltd Control method of concentration of residual chlorine, producing method of ultra-pure water and control method of concentration of injected chlorine
JP2009028569A (en) * 2007-07-24 2009-02-12 Jfe Engineering Kk Ballast water treatment apparatus and ballast water treatment method
JP2009285523A (en) * 2008-05-27 2009-12-10 Jfe Engineering Corp Ballast water treatment method and apparatus
JP2009297610A (en) * 2008-06-11 2009-12-24 Jfe Engineering Corp Ballast water treatment apparatus and ballast water treatment method
JP2010125395A (en) * 2008-11-27 2010-06-10 Mitsubishi Heavy Ind Ltd Multistage seawater desalination equipment and operation control method of multistage seawater desalination equipment
JP2010194479A (en) * 2009-02-26 2010-09-09 Nippon Rensui Co Ltd Pure-water production apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08257377A (en) * 1995-03-23 1996-10-08 Tohoku Electric Power Co Inc Membrane separator and control of addition amount of oxidizing agent
JPH0957076A (en) * 1995-08-28 1997-03-04 Toray Ind Inc Operation of reverse osmosis membrane device
JPH09248429A (en) * 1996-03-14 1997-09-22 Toray Ind Inc Separation method and apparatus therefor
JP2004033800A (en) * 2002-06-28 2004-02-05 Nomura Micro Sci Co Ltd Control method of concentration of residual chlorine, producing method of ultra-pure water and control method of concentration of injected chlorine
JP2009028569A (en) * 2007-07-24 2009-02-12 Jfe Engineering Kk Ballast water treatment apparatus and ballast water treatment method
JP2009285523A (en) * 2008-05-27 2009-12-10 Jfe Engineering Corp Ballast water treatment method and apparatus
JP2009297610A (en) * 2008-06-11 2009-12-24 Jfe Engineering Corp Ballast water treatment apparatus and ballast water treatment method
JP2010125395A (en) * 2008-11-27 2010-06-10 Mitsubishi Heavy Ind Ltd Multistage seawater desalination equipment and operation control method of multistage seawater desalination equipment
JP2010194479A (en) * 2009-02-26 2010-09-09 Nippon Rensui Co Ltd Pure-water production apparatus

Also Published As

Publication number Publication date
JP5669651B2 (en) 2015-02-12

Similar Documents

Publication Publication Date Title
US9309138B2 (en) Fresh water production method
Xu et al. Measurements of dissolved organic nitrogen (DON) in water samples with nanofiltration pretreatment
US10155077B2 (en) Dialysis machine, and method of determining the calcification in a dialysis machine
US8702978B2 (en) Seawater desalination apparatus and chemical injection apparatus
JP5843921B2 (en) Desalination apparatus and desalination method
JP5460936B2 (en) Apparatus and method for reducing the content of hydrogen peroxide and peracetic acid in a water stream
WO2011065257A1 (en) Desalting system and method of desalting
JP2012192373A (en) Water treatment apparatus
Ettori et al. Pilot scale study of chlorination-induced transport property changes of a seawater reverse osmosis membrane
Wagner et al. Lowering the fresh water footprint of cooling towers: A treatment-train for the reuse of discharged water consisting of constructed wetlands, nanofiltration, electrochemical oxidation and reverse osmosis
JP5669651B2 (en) Desalination apparatus and desalination method
KR100724707B1 (en) Method of Determinnig Injection Amount of Chlorine/Dechlorination Agent, Controller and Wastewater Purification Apparatus Using the same
Zach-Maor et al. Diagnostic analysis of RO desalting treated wastewater
KR102449026B1 (en) Method of pH Control by Electrical Conductivity
Chellam et al. Nanofiltration of pretreated Lake Houston water: disinfection by-product speciation, relationships, and control
JP6179918B2 (en) Water quality monitoring method
US11524909B2 (en) Accurate biocide dosing for low concentration membrane biofouling control applications
JP2004033800A (en) Control method of concentration of residual chlorine, producing method of ultra-pure water and control method of concentration of injected chlorine
EP3243562A1 (en) Method for improving inhibition performance of semipermeable membrane, semipermeable membrane, and semipermeable membrane water production device
JP2012120970A (en) Desalination apparatus and desalination method
Loi-Brügger et al. Removal of trace organic substances from river bank filtrate–performance study of RO and NF membranes
JP2018108550A (en) Salt concentration device and method for detecting the scale of the salt concentration device
JP5421948B2 (en) Water treatment system
WO2020071075A1 (en) Dialysis solution production device
JP5581289B2 (en) Water treatment apparatus and water treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141216

R151 Written notification of patent or utility model registration

Ref document number: 5669651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees