JP2018108550A - Salt concentration device and method for detecting the scale of the salt concentration device - Google Patents

Salt concentration device and method for detecting the scale of the salt concentration device Download PDF

Info

Publication number
JP2018108550A
JP2018108550A JP2016256682A JP2016256682A JP2018108550A JP 2018108550 A JP2018108550 A JP 2018108550A JP 2016256682 A JP2016256682 A JP 2016256682A JP 2016256682 A JP2016256682 A JP 2016256682A JP 2018108550 A JP2018108550 A JP 2018108550A
Authority
JP
Japan
Prior art keywords
water
detection
main body
concentrator
concentrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016256682A
Other languages
Japanese (ja)
Inventor
嘉晃 伊藤
Yoshiaki Ito
嘉晃 伊藤
英正 垣上
Hidemasa Kakiue
英正 垣上
竹内 和久
Kazuhisa Takeuchi
和久 竹内
英夫 鈴木
Hideo Suzuki
英夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2016256682A priority Critical patent/JP2018108550A/en
Publication of JP2018108550A publication Critical patent/JP2018108550A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a salt concentration device and a method for detecting the scale of the salt concentration device.SOLUTION: There is provided a salt concentration device comprising: a concentration device body 14 with a filtration membrane 13 concentrating salt from the water 11 to be treated to obtain permeable water 12; a pressurization apparatus 15 for the body pressurizing the water 11 to be treated and feeding the same; a concentration apparatus 23 for detection with a filtration membrane 22 for detection provided at a concentrated water branch line Lbranching the concentrated water from a concentrated water line Lexhausting concentrated water 16 from the concentration device body 14 and further concentrating the salt from the branched concentrated water 16a to obtain permeable water 21 for detection; and a pressurization apparatus 24 for detection pressurizing the concentrated water 16a branched at the concentration apparatus 23 for detection, and using solute permeation parameters before and after the change in the water generation amount of the concentration apparatus body 14 obtained with the permeable water 12 and the permeable water 21 for detection and solution permeation parameters before and after the change in the water generating amount of the concentration device body 14 obtained with the permeable water amount of the permeable water 21 for detection and the feed water pressure of the water 11 to be treated, the presence or absence of scale adhesion variation to the concentration device body 14 is detected.SELECTED DRAWING: Figure 1

Description

本発明は、塩分濃縮装置及び塩分濃縮装置のスケール検知方法に関するものである。   The present invention relates to a salt concentration apparatus and a scale detection method for a salt concentration apparatus.

従来、被処理水である海水から淡水を得る装置として、海水に圧力をかけて逆浸透膜(RO膜:Reverse Osmosis Membrane)と呼ばれるろ過膜の一種に通し、海水の塩分を濃縮して除去することにより海水を淡水化させて上水として使用する淡水(透過水)を生産する淡水化装置が用いられている。   Conventionally, as a device that obtains fresh water from seawater, which is the treated water, pressure is applied to the seawater and it is passed through a type of filtration membrane called reverse osmosis membrane (RO membrane: Reverse Osmosis Membrane) to concentrate and remove the salt content of seawater. Accordingly, a desalination apparatus is used that produces fresh water (permeated water) to be used as clean water by desalinating seawater.

この淡水化装置では、逆浸透膜の表面部分で海水が濃縮されることにより海水中に含まれる無機成分が析出して析出物(スケール)が逆浸透膜に付着すると、逆浸透膜が閉塞するため、逆浸透膜における原水の透過性能が低下する。そのため、淡水化装置は運転の際に得られる逆浸透膜の透過性能を計算し、その逆浸透膜の透過性能の低下の度合いから逆浸透膜表面でのスケールの析出の有無を判断する。   In this desalination apparatus, when the seawater is concentrated at the surface portion of the reverse osmosis membrane, the inorganic components contained in the seawater are precipitated and the deposit (scale) adheres to the reverse osmosis membrane, the reverse osmosis membrane is blocked. Therefore, the permeation | transmission performance of raw water in a reverse osmosis membrane falls. Therefore, the desalination apparatus calculates the permeation performance of the reverse osmosis membrane obtained during operation, and determines the presence or absence of scale deposition on the reverse osmosis membrane surface from the degree of decrease in the permeation performance of the reverse osmosis membrane.

また、逆浸透膜を監視する方法の一例として、例えば、供給液および濃縮液の各々の一部を用いて逆浸透膜に付着する有機物、無機物、菌類などを目視で直接監視すると共に、逆浸透膜に生じるスケール等を目視で直接監視する方法が提案されている(例えば、特許文献1参照)。   In addition, as an example of a method for monitoring the reverse osmosis membrane, for example, organic substances, inorganic substances, fungi, and the like attached to the reverse osmosis membrane are directly monitored visually using a part of each of the supply liquid and the concentrated liquid, and reverse osmosis is also performed. There has been proposed a method of directly monitoring the scale generated in the film visually (see, for example, Patent Document 1).

また、海水以外の被処理水として例えば鉱山廃水があり、この鉱山廃水にはパイライト(FeS2)が含まれており、このパイライトが酸化されてSO4 2-を生成する。鉱山廃水を中和するために安価なCa(OH)2が用いられる。このため、鉱山廃水にはCa2+及びSO4 2-が豊富に含まれている。また、かん水、下水、工場廃水にもCa2+及びSO4 2-が豊富に含まれていることが知られている。また、冷却塔においては、ボイラなどから排出された高温の排ガスと冷却水との間で熱交換が行われる。この熱交換により冷却水の一部が蒸気となるため、冷却水中のイオンが濃縮される。従って、冷却塔から排出された冷却水(ブローダウン水)は、Ca2+及びSO4 2-などのイオン濃度が高い状態となっている。 In addition, for example, mine wastewater other than seawater includes mine wastewater, which contains pyrite (FeS 2 ), and this pyrite is oxidized to produce SO 4 2− . Inexpensive Ca (OH) 2 is used to neutralize mine wastewater. For this reason, the mine wastewater is rich in Ca 2+ and SO 4 2- . It is also known that brine, sewage, and factory wastewater are rich in Ca 2+ and SO 4 2- . Further, in the cooling tower, heat exchange is performed between the high-temperature exhaust gas discharged from the boiler or the like and the cooling water. Since a part of the cooling water becomes steam by this heat exchange, ions in the cooling water are concentrated. Therefore, the cooling water (blow-down water) discharged from the cooling tower is in a state in which ion concentrations such as Ca 2+ and SO 4 2- are high.

これらのイオンを多量に含む水は、脱塩処理が施される。脱塩処理を実施する濃縮装置としては、例えば逆浸透膜装置、ナノろ過膜装置、イオン交換膜装置等が知られている。   The water containing a large amount of these ions is subjected to a desalting treatment. As a concentrating device for performing a desalting treatment, for example, a reverse osmosis membrane device, a nanofiltration membrane device, an ion exchange membrane device and the like are known.

しかし、これらの装置を用いて脱塩処理する場合、高濃度の陽イオン(例えばカルシウムイオン(Ca2+))と陰イオン(例えば硫酸イオン(SO4 2-))が、その淡水を得る際に、これらのイオンが膜表面で濃縮すると、難溶性鉱物塩である硫酸カルシウム(石膏(CaSO4))の溶解限度を超える場合があり、膜表面に付着物として析出し、透過水の透過流束(フラックス)が低下する、という問題がある。 However, when desalting using these devices, high concentrations of cations (for example, calcium ions (Ca 2+ )) and anions (for example, sulfate ions (SO 4 2− )) are used to obtain the fresh water. In addition, when these ions are concentrated on the membrane surface, they may exceed the solubility limit of calcium sulfate (gypsum (CaSO 4 )), which is a hardly soluble mineral salt, and precipitate as deposits on the membrane surface, and the permeate permeate flows. There is a problem that the bundle (flux) decreases.

このため、従来においては、逆浸透膜を監視する方法として、例えば逆浸透膜装置の逆浸透膜を監視するセルを用いて、目視で判断することで、濃縮塩の結晶生成を検出することの提案がある(特許文献2)。   For this reason, conventionally, as a method for monitoring the reverse osmosis membrane, for example, by using a cell for monitoring the reverse osmosis membrane of the reverse osmosis membrane device, it is possible to detect the formation of concentrated salt crystals by visual judgment. There is a proposal (Patent Document 2).

特開2008−253953号公報JP 2008-253953 A 特表2009−524521号公報Special table 2009-524521

ここで、特許文献1の逆浸透膜を監視する方法では、異物(有機物、無機物、菌類など)に染色剤を添加することにより着色し、目視により直接監視することで、有機物と菌類に対しては具体的に染色剤を開示しているが、無機物に対しては無機物に吸着性のある染料等としか記載が無く、仮に適切な染色剤があった場合であっても、定期的に染色剤を添加して監視する方法では、染色剤の処理に問題を生じる。異常を生じた際に染色剤を添加して監視する方式では染色剤の処理の負担は減少するものの、逆浸透膜の性能低下が判別できる程度まで逆浸透膜の透過性能が低下した時には、洗浄により回復が困難なレベルまでスケール析出が進行している場合がある。そのため、逆浸透膜に析出したスケールを除去し、逆浸透膜を洗浄するためには、ろ過装置のろ過処理運転を停止しなければならず、透過水の生産効率が悪い、という問題がある。   Here, in the method of monitoring the reverse osmosis membrane of Patent Document 1, coloring is performed by adding a stain to a foreign substance (organic matter, inorganic matter, fungi, etc.), and direct monitoring is performed on the organic matter and fungi. Has specifically disclosed a dyeing agent, but for inorganic substances, there are only descriptions such as dyes that are adsorptive to inorganic substances, and even if there is an appropriate dyeing agent, periodic dyeing is performed. In the method of adding and monitoring the dye, a problem occurs in the processing of the dye. The method of monitoring by adding a staining agent when an abnormality occurs reduces the burden of processing the staining agent, but when the permeation performance of the reverse osmosis membrane decreases to the point where the performance deterioration of the reverse osmosis membrane can be determined, washing is performed. As a result, scale deposition may have progressed to a level where recovery is difficult. Therefore, in order to remove the scale deposited on the reverse osmosis membrane and wash the reverse osmosis membrane, there is a problem that the filtration treatment operation of the filtration device must be stopped and the production efficiency of the permeated water is poor.

また、特許文献2の提案による監視方法においては、付着物(例えば鉱物塩結晶)の生成メカニズムは、ナノレベルの結晶核が成長し、付着物となる。逆浸透膜装置の逆浸透膜表面の細孔サイズはナノレベルであり、サブμm以下の付着物が膜表面に存在すると、逆浸透膜を閉塞させることとなる。このサブμm以下の付着物を目視確認する為には、光学撮影装置(例えば、光学顕微鏡)での撮影では、実質的に困難であり、電子顕微鏡のような撮影装置が必要となり、連続的な観察はできない、という問題がある。さらに、目視観察可能な逆浸透膜の表面には、逆浸透膜装置の濃縮水が流れているため、流れる液体を通して逆浸透膜の表面を精度よく連続観察することは実質的に困難である、という問題がある。   In addition, in the monitoring method proposed by Patent Document 2, the generation mechanism of deposits (for example, mineral salt crystals) is a deposit with growth of nano-level crystal nuclei. The pore size of the reverse osmosis membrane surface of the reverse osmosis membrane device is at a nano level, and if a deposit of sub-μm or less exists on the membrane surface, the reverse osmosis membrane is blocked. In order to visually confirm the deposits of sub-μm or less, it is substantially difficult to photograph with an optical photographing apparatus (for example, an optical microscope), and a photographing apparatus such as an electron microscope is necessary. There is a problem that observation is not possible. Furthermore, since the concentrated water of the reverse osmosis membrane device flows on the surface of the reverse osmosis membrane that can be visually observed, it is substantially difficult to continuously observe the surface of the reverse osmosis membrane with high accuracy through the flowing liquid. There is a problem.

本発明は、濃縮装置の稼働を停止することなく、被処理水の性状や濃縮装置の膜へのスケールの付着の有無を検知することができる塩分濃縮装置及び塩分濃縮装置のスケール検知方法を提供することを課題とする。   The present invention provides a salt concentration device and a scale detection method for a salt concentration device that can detect the properties of water to be treated and the presence or absence of scale on the membrane of the concentration device without stopping the operation of the concentration device. The task is to do.

上述した課題を解決するための本発明の第1の発明は、被処理水から塩分を濃縮し、透過水を得るろ過膜を有する濃縮装置本体と、前記被処理水を前記濃縮装置本体に供給する供給ラインと、前記供給ラインに介装され、前記濃縮装置本体に被処理水を加圧して供給する本体用加圧装置と、前記濃縮装置本体から濃縮水を排出する濃縮水ラインと、前記濃縮水ラインから前記濃縮水の一部を分岐する濃縮水分岐ラインと、前記濃縮水分岐ラインに設けられ、分岐した前記濃縮水から更に塩分を濃縮し、検知用透過水を得る検知用ろ過膜を有する検知用濃縮装置と、前記濃縮水分岐ラインに介装され、前記検知用濃縮装置に分岐した前記濃縮水を加圧して供給する検知用加圧装置と、前記透過水と前記検知用透過水とより求めた前記濃縮装置本体の造水量の変化前後の溶質透過パラメータと、前記検知用透過水の透過水量と前記被処理水の供給水圧とより求めた前記濃縮装置本体の造水量の変化前後の溶液透過パラメータとを用い、前記濃縮装置本体へのスケール付着変動の有無を検知する検知部と、を具備することを特徴とする塩分濃縮装置にある。   The first invention of the present invention for solving the above-mentioned problems is a concentration device body having a filtration membrane for concentrating salinity from treated water to obtain permeated water, and supplying the treated water to the concentration device body. A supply line that is interposed in the supply line, pressurizes and supplies the water to be treated to the concentration apparatus body, and a concentration water line that discharges the concentration water from the concentration apparatus body, Concentrated water branch line for branching a part of the concentrated water from the concentrated water line, and a filtration membrane for detection that is provided in the concentrated water branch line and further concentrates salt from the branched concentrated water to obtain permeated water for detection. A concentration device for detection, a pressure device for detection, which is interposed in the concentrated water branch line, and supplies the pressurized concentrated water branched to the concentration device for detection, and the permeate and the permeation for detection The concentrator book obtained from water and more Solute permeation parameters before and after the change in the amount of water produced, and the solution permeation parameters before and after the change in the amount of water produced in the concentration device body determined from the amount of permeated water for the detection permeate and the supply water pressure of the treated water, A salinity concentrating device comprising: a detecting unit configured to detect the presence or absence of a scale adhesion fluctuation on the concentrating device main body.

第2の発明は、第1の発明において、前記溶質透過パラメータが、前記濃縮装置本体の造水量の変化前後の検知用透過水の電気伝導度と透過水の電気伝導度とにより求めることを特徴とする塩分濃縮装置にある。   A second invention is characterized in that, in the first invention, the solute permeation parameter is obtained from the electric conductivity of the permeated water for detection before and after the change in the water production amount of the main body of the concentrator and the electric conductivity of the permeated water. In the salinity concentrator.

第3の発明は、第1の発明において、前記溶液透過パラメータが、前記濃縮装置本体の造水量の変化前後の検知用透過水の透過水量と濃縮装置本体への被処理水の供給水圧とにより求めることを特徴とする塩分濃縮装置にある。   According to a third invention, in the first invention, the solution permeation parameter is determined by a permeated water amount of detection permeate before and after a change in a water production amount of the concentrator main body and a supply water pressure of water to be treated to the concentrator main body. It exists in the salt concentration apparatus characterized by calculating | requiring.

第4の発明は、第1乃至3のいずれか一つの発明において、前記検知用加圧装置の加圧割合が、本体用加圧装置の圧力の1/2〜1/50であることを特徴とする塩分濃縮装置にある。   A fourth invention is characterized in that, in any one of the first to third inventions, the pressurization ratio of the pressurizing device for detection is 1/2 to 1/50 of the pressure of the pressurizing device for the main body. In the salinity concentrator.

第5の発明は、被処理水からろ過膜により塩分を濃縮し、透過水と濃縮水とに分離する塩分濃縮工程と、分離した塩分が濃縮された濃縮水の一部の水圧を上昇させ、濃縮率を向上させつつ更に塩分を濃縮し、検知用透過水を得る検知用の塩分濃縮工程と、前記透過水と前記検知用透過水とより求めた前記濃縮装置本体の造水量の変化前後の溶質透過パラメータと、前記検知用透過水の透過水量と前記被処理水の供給水圧とより求めた前記濃縮装置本体の造水量の変化前後の溶液透過パラメータにより、濃縮装置本体へのスケール付着変動の有無を検知する検知工程と、を有することを特徴とする塩分濃縮装置のスケール検知方法にある。   The fifth aspect of the present invention is a salt concentration step of concentrating salt from the water to be treated by a filtration membrane and separating it into permeate and concentrated water, and increasing the water pressure of a part of the concentrated water in which the separated salt is concentrated, The salt concentration step for detection to obtain the permeated water for detection while further improving the concentration rate and to obtain the permeated water for detection, and before and after the change in the water production amount of the concentrator main body obtained from the permeated water and the permeated water for detection Based on the solute permeation parameters, the solution permeation parameters before and after the change in the water production amount of the concentration device main body obtained from the permeated water amount of the detection permeated water and the supply water pressure of the treated water, the scale adhesion fluctuation to the concentration device main body And a detection step for detecting the presence or absence of the salt concentration apparatus.

第6の発明は、第5の発明において、前記溶質透過パラメータが、前記濃縮装置本体の造水量の変化前後の検知用透過水の電気伝導度と透過水の電気伝導度とにより求めることを特徴とする塩分濃縮装置のスケール検知方法にある。   A sixth invention is characterized in that, in the fifth invention, the solute permeation parameter is obtained from the electrical conductivity of the permeated water for detection before and after the change in the water production amount of the main body of the concentrator and the electrical conductivity of the permeated water. It is in the scale detection method of the salinity concentration apparatus.

第7の発明は、第5の発明において、前記溶液透過パラメータが、前記濃縮装置本体の造水量の変化前後の検知用透過水の透過水量と濃縮装置本体への被処理水の供給水圧とにより求めることを特徴とする塩分濃縮装置のスケール検知方法にある。   According to a seventh invention, in the fifth invention, the solution permeation parameter is determined by a permeated water amount of the detection permeate before and after a change in the water production amount of the concentrator main body and a supply water pressure of the water to be treated to the concentrator main body. It is in the scale detection method of the salt concentration apparatus characterized by calculating | requiring.

第8の発明は、第5乃至7のいずれか一つにおいて、前記検知用加圧装置の加圧割合が、本体用加圧装置の圧力の1/2〜1/50であることを特徴とする塩分濃縮装置のスケール検知方法にある。   An eighth invention is characterized in that, in any one of the fifth to seventh, the pressurization ratio of the detection pressurizing device is 1/2 to 1/50 of the pressure of the main body pressurizing device. There is a scale detection method for the salinity concentration device.

本発明によれば、濃縮装置本体からの濃縮水の一部を検知用濃縮装置に供給する際に、検知用加圧装置により濃縮水を昇圧させ、透過水と検知用透過水とより求めた濃縮装置本体の造水量の変化前後の溶質透過パラメータと、検知用透過水の透過水量と被処理水の供給水圧とより求めた濃縮装置本体の造水量の変化前後の溶液透過パラメータとを用い、被処理水の性状(例えばTDS、温度等)の変動の有無、又は濃縮装置本体のろ過膜へのスケール付着変動の有無を検知することができる。これにより、被処理水を濃縮稼働中に、事前に被処理水の性状や濃縮装置本体へのスケールの付着を検知することができる。   According to the present invention, when supplying a part of the concentrated water from the main body of the concentrating device to the detecting concentrating device, the condensing water is pressurized by the detecting pressurizing device, and the permeated water and the detecting permeated water are obtained. Using the solute permeation parameters before and after the change of the water production amount of the concentrator main body, the solution permeation parameters before and after the change of the water production amount of the concentrator main body obtained from the permeated water amount of the detection permeate and the supply water pressure of the treated water, It is possible to detect the presence or absence of fluctuations in the properties (for example, TDS, temperature, etc.) of the water to be treated, or the presence or absence of fluctuations in scale adhesion to the filtration membrane of the concentrator main body. Thereby, the property of to-be-processed water and the adhesion of the scale to the concentration apparatus main body can be detected in advance during the concentration operation of to-be-processed water.

図1は、実施例1に係る塩分濃縮装置の概略図である。FIG. 1 is a schematic diagram of a salt concentration apparatus according to Example 1. FIG. 図2は、実施例2に係る塩分濃縮装置の概略図である。FIG. 2 is a schematic diagram of the salt concentration apparatus according to the second embodiment. 図3は、検知用濃縮装置への濃縮水を昇圧した場合の溶質透過パラメータと溶液透過パラメータとの関係を示す図である。FIG. 3 is a diagram showing the relationship between the solute permeation parameter and the solution permeation parameter when the concentrated water to the concentration device for detection is pressurized. 図4は、検知用濃縮装置への濃縮水を昇圧した場合の溶質透過パラメータと溶液透過パラメータとに基づくスケール付着マップを示す図である。FIG. 4 is a diagram showing a scale adhesion map based on the solute permeation parameter and the solution permeation parameter when the concentrated water to the concentration device for detection is pressurized. 図5は、検知用濃縮装置への濃縮水を昇圧しない場合の溶質透過パラメータと溶液透過パラメータとの関係を示す図である。FIG. 5 is a diagram showing the relationship between the solute permeation parameter and the solution permeation parameter when the concentration water to the concentration device for detection is not increased.

以下に添付図面を参照して、本発明の好適な実施例を詳細に説明する。なお、この実施例により本発明が限定されるものではなく、また、実施例が複数ある場合には、各実施例を組み合わせて構成するものも含むものである。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, this invention is not limited by this Example, Moreover, when there exists multiple Example, what comprises combining each Example is also included.

図1は、実施例1に係る塩分濃縮装置の概略図である。図1に示すように、本実施例に係る塩分濃縮装置10Aは、被処理水11から塩分を濃縮し、透過水12を得るろ過膜13を有する濃縮装置本体14と、被処理水11を濃縮装置本体14に供給する供給ラインL11と、供給ラインL11に介装され、濃縮装置本体14に被処理水11を加圧して供給する本体用加圧装置15と、濃縮装置本体14から濃縮水16を排出する濃縮水ラインL13と、濃縮水ラインL13から濃縮水16の一部を分岐する濃縮水分岐ラインL21と、濃縮水分岐ラインL21に設けられ、分岐した濃縮水16aから更に塩分を濃縮し、検知用透過水21を得る検知用ろ過膜22を有する検知用濃縮装置23と、濃縮水分岐ラインL21に介装され、検知用濃縮装置23に分岐した濃縮水16aを加圧して供給する検知用加圧装置24と、透過水12と検知用透過水21とより求めた濃縮装置本体14の透過水12の造水量の変化前後の溶質透過パラメータ(電気伝導度(EC))と、検知用透過水21の透過水量(Qp)と被処理水11の供給水圧(Pf)とより求めた濃縮装置本体14の透過水12の造水量の変化前後の溶液透過パラメータとを用い、被処理水11の性状(例えばTDS、温度、pH等)の変動の有無、又は濃縮装置本体14へのスケール付着変動の有無を検知する検知部と、を具備するものである。なお、本実施例では、淡水を得る濃縮装置として、逆浸透膜装置を例にして説明するが、本発明はこれに限定されるものではなく、被処理水11をろ過膜13で淡水の透過水12を得ると共に濃縮水16として分離する装置であれば特に限定されるものではない。 FIG. 1 is a schematic diagram of a salt concentration apparatus according to Example 1. FIG. As shown in FIG. 1, the salt concentration device 10 </ b> A according to the present embodiment concentrates the concentration of salt water from the water to be treated 11, the concentration device main body 14 having a filtration membrane 13 that obtains the permeated water 12, and the water to be treated 11. concentrated and the supply line L 11 is supplied to the apparatus main body 14, is interposed in the supply line L 11, the water to be treated 11 with pressurized body for pressurizing device 15 supplies the concentrator body 14, from the concentrator body 14 A concentrated water line L 13 that discharges water 16, a concentrated water branch line L 21 that branches a part of the concentrated water 16 from the concentrated water line L 13 and a concentrated water branch line L 21 that are provided in the branched water 16a. further concentrated salt from a detection concentrator 23 having a detection filter membrane 22 to obtain the detection permeate 21 is interposed concentrated water branch line L 21, the concentrated water 16a branching to detection concentrator 23 Pressure device for detection 24, the solute permeation parameter (electric conductivity (EC)) before and after the change in the water production amount of the permeated water 12 of the concentrator main body 14 obtained from the permeated water 12 and the permeated water 21 for detection, Using the permeated water amount (Qp), the supply water pressure (Pf) of the water to be treated 11, and the solution permeation parameters before and after the change in the water production amount of the permeated water 12 of the concentrator main body 14, the properties of the water to be treated 11 (for example, TDS, temperature, pH, etc.), or a detector for detecting the presence or absence of scale adhesion to the concentrator main body 14. In this embodiment, a reverse osmosis membrane device will be described as an example of a concentration device for obtaining fresh water. However, the present invention is not limited to this, and the water to be treated 11 is permeated through the filtration membrane 13. The apparatus is not particularly limited as long as the apparatus obtains water 12 and separates it as concentrated water 16.

濃縮装置本体14は、昇圧手段である本体用加圧装置(例えば昇圧ポンプ等)15で加圧された被処理水11から塩分を除去して透過水12を得るろ過膜13を有する。例えば逆浸透膜装置は、例えば逆浸透膜のろ過膜を備えた逆浸透膜エレメントを耐圧容器に装填した逆浸透膜モジュールで構成される。ろ過膜13は、膜を介する溶液間の浸透圧差以上の圧力を高濃度側にかけて、溶質を阻止し、溶媒を透過する液体分離膜である。濃縮装置本体14に供給した被処理水11は本体用加圧装置15を用いてろ過膜13の被処理水11側に浸透圧以上の圧力をかけ、被処理水11をろ過膜13に通水させることにより、被処理水11から透過水12と濃縮水16とを得る。   The concentrator main body 14 has a filtration membrane 13 that removes salt from the water to be treated 11 pressurized by a main body pressurizing device 15 (for example, a pressurizing pump) 15 that is a pressurizing means to obtain permeated water 12. For example, the reverse osmosis membrane device is constituted by a reverse osmosis membrane module in which a reverse osmosis membrane element including a filtration membrane of a reverse osmosis membrane is loaded in a pressure vessel. The filtration membrane 13 is a liquid separation membrane that applies a pressure higher than the osmotic pressure difference between the solutions through the membrane to the high concentration side to block the solute and permeate the solvent. The treated water 11 supplied to the concentrator main body 14 is subjected to a pressure higher than the osmotic pressure on the treated water 11 side of the filtration membrane 13 using the main body pressurizing device 15, and the treated water 11 is passed through the filtration membrane 13. As a result, the permeated water 12 and the concentrated water 16 are obtained from the treated water 11.

透過水12は、透過水ラインL12を介して外部の水使用設備等に供給される。濃縮装置本体14で塩分が濃縮された濃縮水16は、濃縮水ラインL13を介して系外に排出される。 Permeate 12 is supplied to the external water-using equipment or the like via the permeate line L 12. Concentrated water 16 salt is concentrated in concentrator body 14 is discharged out of the system through the concentrated water line L 13.

例えばろ過膜として逆浸透膜(RO膜:Reverse Osmosis Membrane)を用いた場合の膜構造としては、複合膜、相分離膜などの高分子膜などを挙げることができる。逆浸透膜の素材としては、例えば、芳香族系ポリアミド、脂肪族系ポリアミド、これらの複合材などのポリアミド系素材、酢酸セルロースなどのセルロース系材料などを挙げることができる。   For example, as a membrane structure when a reverse osmosis membrane (RO membrane: Reverse Osmosis Membrane) is used as a filtration membrane, a polymer membrane such as a composite membrane or a phase separation membrane can be exemplified. Examples of the material for the reverse osmosis membrane include aromatic polyamides, aliphatic polyamides, polyamide materials such as composite materials thereof, and cellulose materials such as cellulose acetate.

逆浸透膜としては、上述のように、RO膜を挙げることができるが、特にこれに限定されるものではなく、例えばNF膜(Nanofiltration Membrane)などを用いてもよい。   Examples of the reverse osmosis membrane include an RO membrane as described above, but are not particularly limited thereto. For example, an NF membrane (Nanofiltration Membrane) may be used.

ここで、被処理水11は、例えば海水、鉱山廃水、発電プラント冷却塔のブローダウン水、オイル・ガス拙作時の随伴水、かん水、工場廃水等のスケール成分を含むものである。この被処理水11は、供給ラインL11に設けた本体用加圧装置15により、所定圧力(例えば50〜70バール)まで昇圧され、逆浸透(RO)膜のろ過膜13を備えた逆浸透膜装置である濃縮装置本体14に導入される。 Here, the water to be treated 11 includes scale components such as seawater, mine wastewater, blowdown water of a power plant cooling tower, accompanying water at the time of oil / gas production, brine, and factory wastewater. The water to be treated 11, the body for a pressure device 15 which is provided in a supply line L 11, is pressurized to a predetermined pressure (for example 50-70 bar), reverse osmosis provided with a filtration membrane 13 of the reverse osmosis (RO) membranes It is introduced into the concentration device main body 14 which is a membrane device.

この濃縮装置本体14では、塩分濃縮工程として、被処理水11中の塩分が濃縮され、ろ過膜13を通過した水は、淡水である透過水12として回収される。また、この塩分濃縮工程で塩分が濃縮された濃縮水16は、排出されるか、もしくは、別途塩分を回収するため用いられる。   In the concentration device main body 14, as a salt concentration step, the salt content in the water to be treated 11 is concentrated, and the water that has passed through the filtration membrane 13 is recovered as permeated water 12 that is fresh water. In addition, the concentrated water 16 in which the salinity is concentrated in the salinity concentration step is discharged or used to collect the salinity separately.

本実施例では、この濃縮水16を排出する濃縮水ラインL13からその一部を分岐する濃縮水分岐ラインL21を設けている。そして、この濃縮水分岐ラインL21には、分岐した濃縮水16aから更に塩分を濃縮し、検知用透過水21を得ると共に、検知用濃縮水ラインL23により排出される検知用濃縮水25として塩分を濃縮する検知用ろ過膜22を有する検知用濃縮装置23を設けている。この検知用ろ過膜22は、逆浸透(RO)膜であることが望ましい。特に、濃縮装置本体14である逆浸透膜装置の逆浸透膜と同一性状のものとすると、その膜挙動が同一であるので、より好ましいが、限定されるものではない。 In the present embodiment, a concentrated water branch line L 21 that branches a part from the concentrated water line L 13 that discharges the concentrated water 16 is provided. In the concentrated water branch line L 21 , the salt content is further concentrated from the branched concentrated water 16 a to obtain the permeated water 21 for detection, and as the concentrated water 25 for detection discharged from the concentrated water line L 23 for detection. A detection concentrator 23 having a detection filtration membrane 22 for concentrating salt is provided. The detection filtration membrane 22 is preferably a reverse osmosis (RO) membrane. In particular, it is more preferable that the concentration is the same as that of the reverse osmosis membrane of the reverse osmosis membrane device which is the main body 14 of the concentrator.

また、濃縮装置本体14から透過水12を排出する透過水ラインL12には、透過水12の電気伝導度を測定する電気伝導度計(EC(Electric Conductivity)メーター)31Aと、透過水12の流量を測定する流量計32Aとが設けられている。また、検知用透過水ラインL22には、検知用透過水21の電気伝導度を測定する電気伝導度計(EC(Electric Conductivity)メーター)31Bと、検知用透過水21の流量を測定する流量計32Bとが設けられている。 Furthermore, the permeate line L 12 for discharging the permeate 12 from the concentrator body 14, an electric conductivity meter for measuring the electrical conductivity of the permeate 12 (EC (Electric Conductivity) meter) 31A and, permeate 12 A flow meter 32A for measuring the flow rate is provided. In addition, in the detection permeate line L 22 , an electric conductivity meter (EC (Electric Conductivity) meter) 31 B that measures the electrical conductivity of the detection permeate 21 and a flow rate that measures the flow rate of the detection permeate 21. A total of 32B is provided.

また、供給ラインL11の本体用加圧装置15と濃縮装置本体14との間には、被処理水11の圧力を測定する本体用圧力計P1が設けられている。また、濃縮水分岐ラインL21の検知用加圧装置24と検知用濃縮装置23との間には、分岐した濃縮水16の圧力を測定する検知用圧力計P2が設けられている。なお、透過水ラインL12には、ろ過膜13の出口付近の透過水12の圧力を測定する圧力計を設けるようにしてもよく、濃縮水ラインL13には、濃縮水16の圧力を測定する圧力計を設けるようにしてもよい。 A main body pressure gauge P 1 for measuring the pressure of the water to be treated 11 is provided between the main body pressure device 15 and the concentration device main body 14 in the supply line L 11 . Further, a detection pressure gauge P 2 for measuring the pressure of the branched concentrated water 16 is provided between the detection pressure device 24 and the detection concentration device 23 in the concentrated water branch line L 21 . The permeate line L 12 may be provided with a pressure gauge for measuring the pressure of the permeate 12 near the outlet of the filtration membrane 13. The concentrated water line L 13 measures the pressure of the concentrated water 16. A pressure gauge may be provided.

電気伝導度計31A、31Bと、流量計32A、32Bとにより測定された情報は検知部50に伝達される。検知部50は、電気伝導度計31A、31Bと、流量計32A、32Bとの測定結果から、ろ過膜13の透過水量を算出し電気伝導度計31A、31Bの測定結果から被処理水11の電気伝導度を算出し、圧力計P1、P2の測定結果から被処理水11、透過水12、濃縮水16の圧力を算出している。 Information measured by the electric conductivity meters 31A and 31B and the flow meters 32A and 32B is transmitted to the detection unit 50. The detection unit 50 calculates the amount of permeated water of the filtration membrane 13 from the measurement results of the electrical conductivity meters 31A and 31B and the flow meters 32A and 32B, and calculates the water 11 to be treated from the measurement results of the electrical conductivity meters 31A and 31B. The electrical conductivity is calculated, and the pressures of the water 11 to be treated, the permeated water 12 and the concentrated water 16 are calculated from the measurement results of the pressure gauges P 1 and P 2 .

そして、検知部50において、被処理水の性状の変化の有無やその動向、又は濃縮装置本体14のろ過膜13へのスケールの付着の有無やその動向を確認することができる。   And in the detection part 50, the presence or absence of the change of the property of to-be-processed water and its trend, or the presence or absence of the adhesion of the scale to the filtration membrane 13 of the concentration apparatus main body 14 can be confirmed.

被処理水の性状の変化とは、水の温度が高い場合や低い場合、水中に含む塩濃度が高い場合や低い場合において、装置本体の水量や水質が変化する。   The change in the properties of the water to be treated means that the amount of water and the quality of the apparatus body change when the temperature of the water is high or low, or when the concentration of salt contained in the water is high or low.

ここで、濃縮装置本体14に供給する被処理水11の塩分処理条件として、本実施例では、いわゆるマスバランスを一定としている。このマスバランスが一定の運転とは、逆浸透膜装置の一般的な運転であって、透過水12の透過水量、濃縮水16の濃縮水量を一定条件となるように制御し、供給圧力を制御しない運転モードである。そして、濃縮装置本体14のろ過膜13にスケールが付着した場合には、透過水12の造水量を確保すべく供給圧力の昇圧操作を自動で行う運転モードである。   Here, as a salt treatment condition of the water to be treated 11 supplied to the concentration apparatus main body 14, a so-called mass balance is constant in the present embodiment. The operation with a constant mass balance is a general operation of the reverse osmosis membrane device, and controls the supply water pressure by controlling the permeated water amount of the permeated water 12 and the concentrated water amount of the concentrated water 16 to be constant conditions. The operation mode is not. And when a scale adheres to the filtration membrane 13 of the concentration apparatus main body 14, it is the operation mode which performs the pressure | voltage rise operation of supply pressure automatically in order to ensure the amount of fresh water of the permeated water 12. FIG.

このようなマスバランスが一定の運転モードとする場合、濃縮装置本体14からの濃縮水16は、濃縮装置本体14から排出された圧力の状態のままで、検知用濃縮装置23に供給される。   In the case of such an operation mode in which the mass balance is constant, the concentrated water 16 from the concentrator main body 14 is supplied to the detection concentrator 23 while maintaining the pressure discharged from the concentrator main body 14.

ここで、供給する被処理水11の性状が変化(例えば被処理水11中の塩分濃度が高くなる)するような場合、濃縮装置本体14側でのスケール付着が発生すると、濃縮水16中の塩分濃度が高くなり、検知用濃縮装置23の検知用ろ過膜22へスケール付着が発生する。   Here, when the property of the to-be-treated water 11 to be supplied changes (for example, the salinity concentration in the to-be-treated water 11 increases), if scale adhesion occurs on the concentrator main body 14 side, The salt concentration becomes high, and scale adhesion occurs on the detection filtration membrane 22 of the detection concentration device 23.

この検知用ろ過膜22へのスケールが発生した場合には、検知用透過水21の透過水量が低下する。   When the scale to the detection filtration membrane 22 occurs, the amount of permeated water of the detection permeated water 21 decreases.

そこで、本実施例では、検知用濃縮装置23の前段側の濃縮水分岐ラインL21に検知用加圧装置24を設置し、この検知用加圧装置24を用いて分岐された濃縮水16aを昇圧することで、分離した塩分が濃縮された濃縮水16の一部の水圧を上昇させて検知用濃縮装置23に供給し、検知用透過水21の透過量の低下を解消(検知用透過水21の透過量を確保)することができる。 Therefore, in the present embodiment, the detection pressurizing device 24 is installed in the concentrated water branch line L 21 on the upstream side of the detection concentrating device 23, and the concentrated water 16 a branched using the detection pressurizing device 24 is supplied. By increasing the pressure, the water pressure of a part of the concentrated water 16 in which the separated salinity is concentrated is increased and supplied to the detecting concentrator 23 to eliminate the decrease in the permeation amount of the detecting permeated water 21 (detecting permeated water). 21 can be ensured).

例えば本体用加圧装置15での被処理水11の加圧を70バールとしている場合、
検知用加圧装置24の加圧割合(α)は、本体用加圧装置15の圧力の1/2〜1/50(より好ましくは1/5〜1/10)程度の圧力を付加するのが好ましい。これにより分岐した濃縮水16aは、濃縮装置本体14から排出された濃縮水16の圧力(Y)にαを加えた圧力(Y+α)で、検知用濃縮装置23に供給するようにしている。
For example, when the pressure of the water to be treated 11 in the main body pressure device 15 is 70 bar,
The pressurization ratio (α) of the detection pressurizing device 24 applies a pressure of about 1/2 to 1/50 (more preferably 1/5 to 1/10) of the pressure of the main body pressurizing device 15. Is preferred. The concentrated water 16a thus branched is supplied to the concentration device for detection 23 at a pressure (Y + α) obtained by adding α to the pressure (Y) of the concentrated water 16 discharged from the concentration device main body 14.

ここで、αは、本体用加圧装置15の圧力(70バール)の1/2〜1/50(より好ましくは1/5〜1/10)程度とするのが好ましい。好適には1/7前後の圧力(10バール)が好ましい。   Here, α is preferably about 1/2 to 1/50 (more preferably, 1/5 to 1/10) of the pressure (70 bar) of the main body pressurizing device 15. A pressure of around 1/7 (10 bar) is preferred.

このような、検知用濃縮装置23を昇圧状態とした場合、すなわち濃縮装置本体14からの濃縮水16の一部を分岐して分岐した濃縮水16aを検知用濃縮装置23に供給する際に、検知用加圧装置24により分岐した濃縮水16aを昇圧させる場合において、透過水12と検知用透過水21とより求めた濃縮装置本体14の透過水12の造水量の変前後の溶質透過パラメータ(SPP:Salt Permeability Parameter)と、検知用透過水21の透過水量と被処理水11の供給水圧とより求めた濃縮装置本体14の透過水12の造水量の変化前後の溶液透過パラメータ(WPP:Water Permeability Parameter)とを用い、被処理水11の性状(例えばTDS、温度等)の変動の有無、濃縮装置本体14のろ過膜13へのスケール付着変動の有無を検知することができる。これにより、被処理水を濃縮稼働中に、事前に被処理水の性状や濃縮装置本体へのスケールの付着を検知することができる。   When the concentration device for detection 23 is in a pressurized state, that is, when the concentrated water 16a branched from a part of the concentrated water 16 from the concentration device main body 14 is supplied to the concentration device for detection 23, In the case where the concentrated water 16a branched by the detection pressurizing device 24 is pressurized, the solute permeation parameters before and after the change in the water production amount of the permeated water 12 of the concentrating device body 14 obtained from the permeated water 12 and the detected permeated water 21 ( Solution permeation parameters (WPP: Water) before and after the change in the water production amount of the permeated water 12 of the concentrator main body 14 obtained from the SPP: Salt Permeability Parameter), the permeated water amount of the detection permeated water 21 and the supply water pressure of the treated water 11 Permeability Parameter) is used to detect the presence or absence of fluctuations in the properties of treated water 11 (eg, TDS, temperature, etc.) and the presence or absence of scale adhesion fluctuations on the filtration membrane 13 of the concentrator main body 14. Kill. Thereby, the property of to-be-processed water and the adhesion of the scale to the concentration apparatus main body can be detected in advance during the concentration operation of to-be-processed water.

ここで、本実施例では、溶質透過パラメータは、例えば電気伝導度(EC)の測定結果により求めることができる。具体的には、被処理水11の水質が変化する前後において、「検知用透過水21の電気伝導度(ECp,sensor)」と「透過水12の電気伝導度(ECp,plant)」との割り算により求めることができる。   Here, in the present embodiment, the solute permeation parameter can be obtained from, for example, a measurement result of electric conductivity (EC). Specifically, before and after the water quality of the treated water 11 changes, the “electric conductivity of the detection permeated water 21 (ECp, sensor)” and “the electric conductivity of the permeated water 12 (ECp, plant)” It can be obtained by division.

例えば本実施例では、濃縮装置本体14の透過水12の造水量の変化として、スケール付着が発生する要因である被処理水11の水質の変化の前後の比をとって、[Relative(ECp,sensor)/(ECp,plant)]を求めるようにしている。ここで、被処理水11の水質の変化の前後とは、水質変動の確認を一定間隔で計測し、変化が無い場合には、さらに一定間隔で計測し、変化がある場合と、変化が無い時点を比較することをいう。この変化の比較は、(変化後の値)を(変化前の値)で割る((変化後の値)/(変化前の値))ようにしてもよいし、その差分((変化後の値)−(変化前の値))を求めるようにしてもよい。   For example, in the present embodiment, as the change in the amount of the permeated water 12 of the concentrator main body 14, the ratio before and after the change in the water quality of the water to be treated 11, which is a factor causing the scale adhesion, is taken as [Relativ (ECp, sensor) / (ECp, plant)]. Here, before and after the change of the water quality of the water to be treated 11, the confirmation of the water quality change is measured at regular intervals, and when there is no change, it is further measured at regular intervals, and when there is a change, there is no change. Comparing time points. This change comparison may be made by dividing (value after change) by (value before change) ((value after change) / (value before change)), or the difference ((value after change) (Value)-(value before change)) may be obtained.

また、溶液透過パラメータは、検知用透過水21の膜透過水量と、本体用加圧装置15の被処理水11の供給圧力とを掛け合わせた結果により挙動を求めることができる。具体的には、被処理水11の水質の変化の前後において、「検知用透過水21の透過水量」と「濃縮装置本体14への被処理水11の供給水圧」との掛け算により求めることができる。ここで、「検知用透過水21の透過水量」と「濃縮装置本体14への被処理水11の供給水圧」とを掛けることとしているのは、スケールによりろ過膜性能が変化した際のこれらの変化率が大きいので、その結果を増長させるためであるが、本発明はこれらの値を掛けることに限定されるものではない。   The solution permeation parameter can be determined by the result of multiplying the amount of permeated water of the detection permeated water 21 and the supply pressure of the water to be treated 11 of the main body pressurizing device 15. Specifically, it is obtained by multiplying “the amount of permeated water of the detection permeated water 21” and “the supply water pressure of the treated water 11 to the concentrator main body 14” before and after the change in the water quality of the treated water 11. it can. Here, the “permeated water amount of the permeating water 21 for detection” and the “supply water pressure of the treated water 11 to the concentrator main body 14” are multiplied by these when the filtration membrane performance changes depending on the scale. This is to increase the result because the rate of change is large, but the present invention is not limited to multiplying these values.

例えば本実施例では、濃縮装置本体14の透過水12の造水量の変化として、被処理水11の水質の変化の前後の比をとって、[Relative(Qp,sensor)×(Pf,plant)]を求めるようにしている。   For example, in the present embodiment, as the change in the amount of the permeated water 12 of the concentrator main body 14, the ratio before and after the change in the water quality of the treated water 11 is taken, and [Relative (Qp, sensor) × (Pf, plant) ] To ask.

この溶質透過パラメータと、溶液透過パラメータを用いた結果の一例を図3に示す。図3においては、被処理水として、A値が1割減(黒丸印)、2割減(白丸印)、4割減(三角印)となるように設定した試験水を用い、溶質透過パラメータである[Relative(ECp,sensor)/(ECp,plant)]を求めた結果を横軸としている。また、同様に試験水を用いて、溶液透過パラメータである[Relative(Qp,sensor)×(Pf,plant)]を求めた結果を縦軸としている。   An example of the results using these solute permeation parameters and solution permeation parameters is shown in FIG. In FIG. 3, as water to be treated, test water set so that the A value is 10% reduced (black circle mark), 20% reduced (white circle mark), and 40% reduced (triangular mark) is used. [Relative (ECp, sensor) / (ECp, plant)] is calculated on the horizontal axis. Similarly, the vertical axis represents the result of determining the solution permeation parameter [Relative (Qp, sensor) × (Pf, plant)] using test water.

図3に示すように、被処理水中のスケール付着度合いが高くなるにつれて基準(0)よりも、右下のゾーンに下がる傾向があることが判明した。なお、基準(0)とは、被処理水11の水質の変化の前後の計測値を確認し、変化が無い場合である。   As shown in FIG. 3, it has been found that as the scale adhesion degree in the water to be treated increases, it tends to fall to the lower right zone from the reference (0). The reference (0) is a case where the measured values before and after the change of the water quality of the treated water 11 are confirmed and there is no change.

そこで、この変化をマップ化して、警報1ゾーン、警報2ゾーン、警報3ゾーンとし、例えば警報2ゾーンに検知結果が属すると判断した際には、例えば画像(例えばPC画面)上や音声等において、アラーム51を発することで、ろ過膜13へのスケールを事前に予測することができる。   Therefore, this change is mapped into alarm 1 zone, alarm 2 zone, and alarm 3 zone. For example, when it is determined that the detection result belongs to alarm 2 zone, for example, on an image (for example, a PC screen) or in sound, etc. By issuing the alarm 51, the scale to the filtration membrane 13 can be predicted in advance.

これに対して、図5に示すように、濃縮水分岐ラインL21に検知用加圧装置24を設置せずに、検知用濃縮装置23に供給する分岐した濃縮水16aを昇圧しない場合には、基準(0)付近にプロットがかたまり、変化のゾーンを確認することが出来なかった。 On the other hand, as shown in FIG. 5, in the case where the branching concentrated water 16 a supplied to the detection concentrating device 23 is not boosted without installing the detection pressurizing device 24 in the concentrated water branching line L 21. The plots gathered around the reference (0), and the zone of change could not be confirmed.

本実施例では、濃縮装置本値14のろ過膜13へスケール付着の有無を確認する際、濃縮装置本体14の透過水12の造水量の変化の前後について説明したが、本発明はこれに限定されるものではない。透過水12の造水量の変化そのものを確認して、スケール付着の有無を確認するようにしてもよい。また、被処理水11の状態(例えば温度、pH値、TDS(Total Dissolved Solid :総溶解不純物(例えば銅、亜鉛、水銀、カドミウム他の不純物)濃度)等))において、変化割合を事前に確認しておき、対応するマップ等を作成することで、これらに起因する濃縮装置本体14に供給される被処理水11の変化に対しても事前に対応することができる。   In the present embodiment, when the presence or absence of scale adheres to the filtration membrane 13 of the concentration device main value 14 is confirmed before and after the change in the water production amount of the permeated water 12 of the concentration device main body 14, the present invention is limited to this. Is not to be done. You may make it confirm the presence or absence of scale adhesion by confirming the change of the water production amount of the permeated water 12 itself. In addition, in the state of the water 11 to be treated (for example, temperature, pH value, TDS (Total Dissolved Solid: concentration of total dissolved impurities (for example, copper, zinc, mercury, cadmium and other impurities))), the change rate is confirmed in advance. In addition, by creating a corresponding map or the like, it is possible to cope in advance with changes in the water to be treated 11 supplied to the concentration apparatus body 14 due to these maps.

以上、本実施例によれば、濃縮装置本体からの濃縮水の一部を検知用濃縮装置に供給する際に、検知用加圧装置により濃縮水を昇圧させ、透過水と検知用透過水とより求めた濃縮装置本体の造水量の変化前後の溶質透過パラメータと、検知用透過水の透過水量と被処理水の供給水圧とより求めた濃縮装置本体の造水量の変化前後の溶液透過パラメータとを用い、被処理水の性状(例えば塩濃度、TDS、温度、pH等)の変動の有無、濃縮装置本体のろ過膜へのスケール付着変動の有無を検知することができる。これにより、被処理水を濃縮稼働中に、事前に被処理水の性状や濃縮装置本体へのスケールの付着を検知することができる。   As described above, according to this embodiment, when a part of the concentrated water from the main body of the concentration device is supplied to the detection concentration device, the concentration water is pressurized by the detection pressure device, The solute permeation parameters before and after the change in the water production amount of the concentrator main body obtained from the above, the solution permeation parameters before and after the change in the water production amount of the concentrator main body obtained from the permeated water amount of the detection permeated water and the supply water pressure of the treated water, and Can be used to detect the presence or absence of fluctuations in the properties of the water to be treated (eg, salt concentration, TDS, temperature, pH, etc.) and the presence or absence of scale adhesion fluctuations on the filter membrane of the concentrator main body. Thereby, the property of to-be-processed water and the adhesion of the scale to the concentration apparatus main body can be detected in advance during the concentration operation of to-be-processed water.

図2は、実施例2に係る塩分濃縮装置の概略図である。図2に示すように、本実施例に係る塩分濃縮装置10Bは、濃縮装置本体を2台用いて、第1の濃縮装置本体14−1の第1の濃縮水16−1からさらに脱塩するために、第2の濃縮装置本体14−2を設置し、これにより第2の透過水12−1の淡水を得るものである。なお、実施例1の装置構成と同じ構成のものを2セットつなげているので、前段側の装置に枝番に「−1」の符号を付し、後段側の装置に枝番に「−2」の符号を付しており、重複する説明は省略する。   FIG. 2 is a schematic diagram of the salt concentration apparatus according to the second embodiment. As shown in FIG. 2, the salt concentration apparatus 10B according to the present embodiment further desalinates from the first concentrated water 16-1 of the first concentration apparatus body 14-1 using two concentration apparatus bodies. For this purpose, the second concentrator main body 14-2 is installed, and thereby fresh water of the second permeated water 12-1 is obtained. Since two sets having the same configuration as the apparatus configuration of the first embodiment are connected, the branch number is assigned to the preceding apparatus and the branch number is set to “−2”. ”Is attached, and redundant description is omitted.

図2に示すように、濃縮装置本体14−1、14−2を2台設置する場合には、第1の濃縮水16−1中の塩分濃度は、被処理水11−1の塩分濃度よりも濃いので、後段側の第2の濃縮装置本体14−2の第2のろ過膜13−2へのスケール付着の発生頻度が激しいものとなる。よって、第2の濃縮装置本体14−2においても第2の濃縮水16−2を分岐して分岐した第2の濃縮水16a―2を第2の検知用濃縮装置23−2に導入する際、実施例1と同様に、第2の検知用加圧装置24−2を用いて、所定圧昇圧させている。   As shown in FIG. 2, when two concentration apparatus main bodies 14-1 and 14-2 are installed, the salinity concentration in the 1st concentration water 16-1 is from the salinity concentration of the to-be-processed water 11-1. Since it is also dark, the frequency of scale adhesion to the second filtration membrane 13-2 of the second concentrator body 14-2 on the rear stage side is high. Therefore, when the second concentrated water 16a-2 branched from the second concentrated water 16-2 is also introduced into the second concentration device 23-2 for the second concentration device main body 14-2. As in the first embodiment, the second pressure increasing device 24-2 is used to increase the pressure by a predetermined pressure.

本実施例によれば、第2の濃縮装置本体14−2からの第2の濃縮水16−2の一部を第2の検知用濃縮装置23−2に供給する際に、第2の検知用加圧装置24−2により第2の濃縮水16−2を昇圧させ、第2の透過水12−2と第2の検知用透過水21−2とより求めた濃縮装置本体14の透過水12の造水量の変化前後の溶質透過パラメータと、第2の検知用透過水21−2の透過水量と第1の濃縮水16−1の供給水圧とより求めた濃縮装置本体14の透過水12の造水量の変化前後の溶液透過パラメータとを用い、第1の濃縮水16−1の性状(例えばTDS、温度、pH等)の変動の有無、第2の濃縮装置本体14−2の第2のろ過膜13−2へのスケール付着変動の有無を検知することができる。これにより、被処理水11又は第1の濃縮水16−1を濃縮稼働中に、事前に被処理水11又は第1の濃縮水16−1の性状や第1又は第2の濃縮装置本体14−1、14−2の第1又は第2のろ過膜13−1、13−2へのスケールの付着を検知することができる。   According to the present embodiment, when a part of the second concentrated water 16-2 from the second concentrating device main body 14-2 is supplied to the second detecting concentrating device 23-2, the second detection is performed. The pressure of the second concentrated water 16-2 is increased by the pressure applying device 24-2, and the permeated water of the concentrating device body 14 obtained from the second permeated water 12-2 and the second permeated water for detection 21-2. The permeated water 12 of the concentrator main body 14 determined from the solute permeation parameters before and after the change in the water production amount of 12, the permeated water amount of the second permeating water for detection 21-2, and the supply water pressure of the first concentrated water 16-1. Using the solution permeation parameters before and after the change in the water production amount, the presence or absence of fluctuations in the properties of the first concentrated water 16-1 (eg, TDS, temperature, pH, etc.), the second of the second concentrator main body 14-2 It is possible to detect the presence or absence of scale adhesion fluctuation on the filter membrane 13-2. Thereby, during the concentration operation of the water to be treated 11 or the first concentrated water 16-1, the properties of the water to be treated 11 or the first concentrated water 16-1 and the first or second concentrator main body 14 in advance. -1,14-2 can be detected to adhere to the first or second filtration membrane 13-1, 13-2.

なお、本実施例では、濃縮装置本体を2台用いているが、本発明はこれに限定されるものではなく、第2の濃縮装置本体14−2の第2の濃縮水16−2からさらに脱塩するために、第3の濃縮装置本体を設置し、同様にして第3の濃縮水を分岐して、第3の濃縮水の一部を第3の検知用濃縮装置に供給する際に、第3検知用加圧装置により第2の濃縮水を昇圧させ、第3の透過水と第3の検知用透過水とより求めた濃縮装置本体14の透過水12の造水量の変化前後の溶質透過パラメータと、第3の検知用透過水の透過水量と第2の濃縮水16−2の供給水圧とより求めた濃縮装置本体14の透過水12の造水量の変化前後の溶液透過パラメータとを用い、第2の濃縮水16−2の性状(例えばTDS、温度、pH等)の変動の有無、第3の濃縮装置本体の第3のろ過膜へのスケール付着変動の有無を検知することができる。これにより、被処理水11又は第1又は第2の濃縮水16−1を濃縮稼働中に、事前に被処理水11又は第1又は第2の濃縮水16−1の性状や第1又は第2又は第3の濃縮装置本体14−1、14−2の第1又は第2又は第3のろ過膜13−1、13−2へのスケールの付着を検知することができる。   In the present embodiment, two concentration device main bodies are used. However, the present invention is not limited to this, and further from the second concentrated water 16-2 of the second concentration device main body 14-2. In order to desalinate, when the third concentrator body is installed, the third concentrated water is branched in the same manner, and a part of the third concentrated water is supplied to the third detecting concentrator. The pressure of the second concentrated water is increased by the third detection pressurizing device, and before and after the change in the water production amount of the permeated water 12 of the concentration device main body 14 obtained from the third permeated water and the third detected permeated water. Solute permeation parameters, solution permeation parameters before and after the change in the amount of permeated water 12 in the permeated water 12 of the concentrator body 14 obtained from the permeated water amount of the third permeating water for detection and the supply water pressure of the second concentrated water 16-2 The presence or absence of fluctuations in the properties (for example, TDS, temperature, pH, etc.) of the second concentrated water 16-2, It is possible to detect the presence or absence of scale deposition change on the third filtration membrane concentrator body. As a result, during the concentration operation of the water to be treated 11 or the first or second concentrated water 16-1, the properties of the water to be treated 11 or the first or second concentrated water 16-1 and the first or second The adhesion of the scale to the first, second, or third filtration membranes 13-1, 13-2 of the second or third concentrator main bodies 14-1, 14-2 can be detected.

10A、10B 塩分濃縮装置
11 被処理水
12 透過水
13 ろ過膜
14 濃縮装置本体
15 本体用加圧装置
11 供給ライン
15 本体用加圧装置
16 濃縮水
16a 分岐した濃縮水
21 検知用透過水
22 検知用ろ過膜
23 検知用濃縮装置
24 検知用加圧装置
25 検知用濃縮水
31A、31B 電気伝導度計
32A、32B 流量計
50 検知部
51 アラーム
12 透過水ライン
13 濃縮水ライン、
21 濃縮水分岐ライン
22 検知用透過水ライン
23 検知用濃縮水ライン
10A, 10B Salt concentrator 11 Water to be treated 12 Permeated water 13 Filtration membrane 14 Concentrator main body 15 Main body pressurizer L 11 Supply line 15 Main body pressurizer 16 Concentrated water 16a Branched concentrated water 21 Detection permeate 22 Filtration membrane for detection 23 Concentration device for detection 24 Pressurization device for detection 25 Concentrated water for detection 31A, 31B Conductivity meter 32A, 32B Flow meter 50 Detector 51 Alarm L 12 Permeated water line L 13 Concentrated water line,
L 21 Concentrated water branch line L 22 Permeated water line for detection L 23 Concentrated water line for detection

Claims (8)

被処理水から塩分を濃縮し、透過水を得るろ過膜を有する濃縮装置本体と、
前記被処理水を前記濃縮装置本体に供給する供給ラインと、
前記供給ラインに介装され、前記濃縮装置本体に被処理水を加圧して供給する本体用加圧装置と、
前記濃縮装置本体から濃縮水を排出する濃縮水ラインと、
前記濃縮水ラインから前記濃縮水の一部を分岐する濃縮水分岐ラインと、
前記濃縮水分岐ラインに設けられ、分岐した前記濃縮水から更に塩分を濃縮し、検知用透過水を得る検知用ろ過膜を有する検知用濃縮装置と、
前記濃縮水分岐ラインに介装され、前記検知用濃縮装置に分岐した前記濃縮水を加圧して供給する検知用加圧装置と、
前記透過水と前記検知用透過水とより求めた前記濃縮装置本体の造水量の変化前後の溶質透過パラメータと、前記検知用透過水の透過水量と前記被処理水の供給水圧とより求めた前記濃縮装置本体の造水量の変化前後の溶液透過パラメータとを用い、前記濃縮装置本体へのスケール付着変動の有無を検知する検知部と、を具備することを特徴とする塩分濃縮装置。
A concentration device body having a filtration membrane for concentrating salt from water to be treated and obtaining permeated water;
A supply line for supplying the treated water to the concentrator body;
A pressurizing device for a main body, which is interposed in the supply line, and pressurizes and supplies treated water to the main body of the concentration device;
A concentrated water line for discharging concentrated water from the concentrator body;
A concentrated water branch line for branching a part of the concentrated water from the concentrated water line;
A concentration device for detection having a filtration membrane for detection, which is provided in the concentrated water branch line, further concentrates salt from the branched concentrated water, and obtains permeate for detection;
A detection pressurizer that is interposed in the concentrated water branch line and that pressurizes and supplies the concentrated water branched to the detection concentrator;
The solute permeation parameters before and after the change in the water production amount of the concentrator main body obtained from the permeate and the permeate for detection, the permeate amount of the permeate for detection and the supply water pressure of the treated water were obtained. A salinity concentrating device, comprising: a detection unit that detects whether or not there is a variation in scale adhesion to the concentrating device main body using solution permeation parameters before and after a change in the amount of water produced by the concentrating device main body.
請求項1において、
前記溶質透過パラメータが、前記濃縮装置本体の造水量の変化前後の検知用透過水の電気伝導度と透過水の電気伝導度とにより求めることを特徴とする塩分濃縮装置。
In claim 1,
The salt concentration device, wherein the solute permeation parameter is obtained from the electrical conductivity of the permeated water for detection and the electrical conductivity of the permeated water before and after the change of the water production amount of the concentration device main body.
請求項1において、
前記溶液透過パラメータが、前記濃縮装置本体の造水量の変化前後の検知用透過水の透過水量と濃縮装置本体への被処理水の供給水圧とにより求めることを特徴とする塩分濃縮装置。
In claim 1,
The salt concentration device, wherein the solution permeation parameter is obtained from a permeate amount of permeated water for detection before and after a change in a water production amount of the concentration device body and a supply water pressure of water to be treated to the concentration device body.
請求項1乃至3のいずれか一つにおいて、
前記検知用加圧装置の加圧割合が、本体用加圧装置の圧力の1/2〜1/50であることを特徴とする塩分濃縮装置。
In any one of Claims 1 thru | or 3,
The salinity concentrating device, wherein a pressurizing ratio of the detecting pressurizing device is 1/2 to 1/50 of a pressure of the main body pressurizing device.
被処理水からろ過膜により塩分を濃縮し、透過水と濃縮水とに濃縮装置本体により分離する塩分濃縮工程と、
分離した塩分が濃縮された濃縮水の一部の水圧を上昇させて検知用濃縮装置に供給し、濃縮率を向上させつつ更に塩分を濃縮し、検知用透過水を得る検知用の塩分濃縮工程と、
前記透過水と前記検知用透過水とより求めた前記濃縮装置本体の造水量の変化前後の溶質透過パラメータと、
前記検知用透過水の透過水量と前記被処理水の供給水圧とより求めた前記濃縮装置本体の造水量の変化前後の溶液透過パラメータにより、前記濃縮装置本体へのスケール付着変動の有無を検知する検知工程と、を有することを特徴とする塩分濃縮装置のスケール検知方法。
A salt concentration step of concentrating salt from the water to be treated by a filtration membrane, and separating the permeated water and concentrated water by a concentrator main body;
A salt concentration process for detection that increases the water pressure of a part of the concentrated water in which the separated salt is concentrated and supplies it to the concentration device for detection, further concentrates the salt while improving the concentration rate, and obtains permeate for detection. When,
Solute permeation parameters before and after the change in the water production amount of the concentration device main body obtained from the permeate and the permeate for detection,
Based on the solution permeation parameters before and after the change in the water production amount of the concentration device main body obtained from the permeated water amount of the detection permeated water and the supply water pressure of the treated water, the presence / absence of fluctuations in scale adhesion to the concentration device main body is detected. A scale detection method for a salinity concentrator, comprising: a detection step.
請求項5において、
前記溶質透過パラメータが、前記濃縮装置本体の造水量変化前後の検知用透過水の電気伝導度と透過水の電気伝導度とにより求めることを特徴とする塩分濃縮装置のスケール検知方法。
In claim 5,
The scale detection method for a salinity concentration device, wherein the solute permeation parameter is obtained from electrical conductivity of permeated water for detection before and after a change in water production amount of the concentrator main body and electrical conductivity of permeated water.
請求項5において、
前記溶液透過パラメータが、前記濃縮装置本体の造水量の変化前後の検知用透過水の透過水量と濃縮装置本体への被処理水の供給水圧とにより求めることを特徴とする塩分濃縮装置のスケール検知方法。
In claim 5,
The scale detection of the salinity concentrator characterized in that the solution permeation parameter is obtained from the amount of permeate permeate for detection before and after the change of the amount of water produced in the main body of the concentrator and the supply water pressure of the water to be treated to the main body of the concentrator. Method.
請求項5乃至7のいずれか一つにおいて、
前記検知用濃縮装置へ分岐した濃縮水を加圧する検知用加圧装置の加圧割合が、濃縮装置本体へ被処理水を加圧する本体用加圧装置の圧力の1/2〜1/50であることを特徴とする塩分濃縮装置のスケール検知方法。
In any one of Claims 5 thru | or 7,
The pressurization ratio of the detection pressurizer for pressurizing the concentrated water branched to the detection concentrator is 1/2 to 1/50 of the pressure of the main body pressurizer for pressurizing the water to be treated to the concentrator main body. A method for detecting a scale of a salinity concentrator, characterized by:
JP2016256682A 2016-12-28 2016-12-28 Salt concentration device and method for detecting the scale of the salt concentration device Pending JP2018108550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016256682A JP2018108550A (en) 2016-12-28 2016-12-28 Salt concentration device and method for detecting the scale of the salt concentration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016256682A JP2018108550A (en) 2016-12-28 2016-12-28 Salt concentration device and method for detecting the scale of the salt concentration device

Publications (1)

Publication Number Publication Date
JP2018108550A true JP2018108550A (en) 2018-07-12

Family

ID=62844172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016256682A Pending JP2018108550A (en) 2016-12-28 2016-12-28 Salt concentration device and method for detecting the scale of the salt concentration device

Country Status (1)

Country Link
JP (1) JP2018108550A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11367209B2 (en) * 2020-10-23 2022-06-21 X Development Llc Visual detection of haloclines

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10156156A (en) * 1996-11-28 1998-06-16 Kurita Water Ind Ltd Membrane module performance measuring device
JP2008307487A (en) * 2007-06-15 2008-12-25 Mitsubishi Heavy Ind Ltd Desalting device
JP2013022544A (en) * 2011-07-25 2013-02-04 Kubota Corp Membrane treatment device and method of operation
JP2013126635A (en) * 2011-12-19 2013-06-27 Hitachi Plant Technologies Ltd Reverse osmosis treatment apparatus, and method for cleaning reverse osmosis treatment apparatus
JP2015116538A (en) * 2013-12-18 2015-06-25 三菱重工業株式会社 Device and method of scale detection in concentrator and reproduction treatment system of water
WO2016111370A1 (en) * 2015-01-09 2016-07-14 東レ株式会社 Water treatment method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10156156A (en) * 1996-11-28 1998-06-16 Kurita Water Ind Ltd Membrane module performance measuring device
JP2008307487A (en) * 2007-06-15 2008-12-25 Mitsubishi Heavy Ind Ltd Desalting device
JP2013022544A (en) * 2011-07-25 2013-02-04 Kubota Corp Membrane treatment device and method of operation
JP2013126635A (en) * 2011-12-19 2013-06-27 Hitachi Plant Technologies Ltd Reverse osmosis treatment apparatus, and method for cleaning reverse osmosis treatment apparatus
JP2015116538A (en) * 2013-12-18 2015-06-25 三菱重工業株式会社 Device and method of scale detection in concentrator and reproduction treatment system of water
WO2016111370A1 (en) * 2015-01-09 2016-07-14 東レ株式会社 Water treatment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11367209B2 (en) * 2020-10-23 2022-06-21 X Development Llc Visual detection of haloclines
US20220284612A1 (en) * 2020-10-23 2022-09-08 X Development Llc Visual detection of haloclines

Similar Documents

Publication Publication Date Title
Damtie et al. Removal of fluoride in membrane-based water and wastewater treatment technologies: Performance review
Khanzada et al. Performance evaluation of reverse osmosis (RO) pre-treatment technologies for in-land brackish water treatment
CN102985373B (en) Fresh water producing apparatus and method for operating same
KR20150114507A (en) Osmotic separation systems and methods
JP6269241B2 (en) Forward osmosis processing system
Song et al. Evaluation of scaling potential in a pilot-scale NF–SWRO integrated seawater desalination system
WO2012115114A1 (en) Seawater desalination system and seawater desalination method
JP6189205B2 (en) Concentrator scale detection device and method, water regeneration treatment system
JP2016016384A (en) Evaluation device and evaluation method for osmosis membrane module
WO2019087867A1 (en) Seawater desalination method and seawater desalination system
JP5398695B2 (en) Desalination apparatus, method for monitoring membrane and operation method of desalination apparatus
JP2009285522A (en) Reverse osmosis membrane device
Liu et al. Semi batch dual-pass nanofiltration as scaling-controlled pretreatment for seawater purification and concentration with high recovery rate
JP2021006335A (en) Oxidation risk evaluation method of separation membrane in separation membrane plant and fresh water generator
WO2019180788A1 (en) Salt concentration device and scale detection method for salt concentration device
WO2016035175A1 (en) Water treatment device and operating method for water treatment device
JP2014171926A (en) Desalination method and desalination apparatus
KR20140041995A (en) Water-purifying system with high recovery rate and method using membrane filtration for manufacturing purified water
Gasia-Bruch et al. Field experience with a 20,000 m3/d integrated membrane seawater desalination plant in Cyprus
JP2018108550A (en) Salt concentration device and method for detecting the scale of the salt concentration device
WO2013146784A1 (en) Method of desalination
Lee et al. Performance analysis of serially-connected membrane element for pressure-assisted forward osmosis: Wastewater reuse and seawater desalination
Macedonio et al. Pressure-driven membrane processes
Ahmad et al. Experimental study of a cellulose triacetate spiral wound forward osmosis membrane for desalination process integration
Al Sunbul Boron Removal from Seawater by Thin-Film Composite Reverse Osmosis Membranes

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180618

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20190919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200728

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210224