WO2019180788A1 - Salt concentration device and scale detection method for salt concentration device - Google Patents

Salt concentration device and scale detection method for salt concentration device Download PDF

Info

Publication number
WO2019180788A1
WO2019180788A1 PCT/JP2018/010871 JP2018010871W WO2019180788A1 WO 2019180788 A1 WO2019180788 A1 WO 2019180788A1 JP 2018010871 W JP2018010871 W JP 2018010871W WO 2019180788 A1 WO2019180788 A1 WO 2019180788A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
detection
main body
concentrated
concentrator
Prior art date
Application number
PCT/JP2018/010871
Other languages
French (fr)
Japanese (ja)
Inventor
嘉晃 伊藤
英正 垣上
英夫 鈴木
Original Assignee
三菱重工エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工エンジニアリング株式会社 filed Critical 三菱重工エンジニアリング株式会社
Priority to PCT/JP2018/010871 priority Critical patent/WO2019180788A1/en
Publication of WO2019180788A1 publication Critical patent/WO2019180788A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/12Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis

Definitions

  • the present invention relates to a salt concentration device and a scale detection method of the salt concentration device.
  • seawater is pressurized and passed through a type of filtration membrane called a reverse osmosis membrane (RO membrane: Reverse RO Osmosis Membrane) to remove and concentrate the salt content of seawater.
  • RO membrane Reverse RO Osmosis Membrane
  • a desalination apparatus is used that produces fresh water (permeated water) to be used as clean water by desalinating seawater.
  • the desalination apparatus calculates the permeation performance of the reverse osmosis membrane obtained during operation, and determines the presence or absence of scale deposition on the reverse osmosis membrane surface from the degree of decrease in the permeation performance of the reverse osmosis membrane.
  • mine wastewater other than seawater includes mine wastewater, which contains pyrite (FeS 2 ), and this pyrite is oxidized to produce SO 4 2 ⁇ .
  • Inexpensive Ca (OH) 2 is used to neutralize mine wastewater.
  • the mine wastewater is rich in Ca 2+ and SO 4 2- .
  • brine, sewage, and factory wastewater are rich in Ca 2+ and SO 4 2- .
  • heat exchange is performed between the high-temperature exhaust gas discharged from the boiler or the like and the cooling water. Since a part of the cooling water becomes steam by this heat exchange, ions in the cooling water are concentrated. Therefore, the cooling water (blow-down water) discharged from the cooling tower is in a state in which ion concentrations such as Ca 2+ and SO 4 2- are high.
  • the water containing a large amount of these ions is subjected to desalting treatment.
  • a concentrating device for performing a desalting treatment for example, a reverse osmosis membrane device, a nanofiltration membrane device, an ion exchange membrane device and the like are known.
  • Patent Document 2 proposes a method for monitoring the reverse osmosis membrane, for example, by using a cell for monitoring the reverse osmosis membrane of the reverse osmosis membrane device.
  • the burden of processing the staining agent is reduced, but when the permeation performance of the reverse osmosis membrane is reduced to the extent that the performance deterioration of the reverse osmosis membrane can be discriminated.
  • the scale deposition proceeds to a level that is difficult to recover by washing. Therefore, in order to remove the scale deposited on the reverse osmosis membrane and wash the reverse osmosis membrane, there is a problem that the filtration treatment operation of the filtration device must be stopped and the production efficiency of the permeated water is poor.
  • the generation mechanism of deposits is based on the growth of nano-level crystal nuclei.
  • the pore size of the reverse osmosis membrane surface of the reverse osmosis membrane device is at a nano level, and if a deposit of sub- ⁇ m or less exists on the membrane surface, the reverse osmosis membrane is blocked.
  • an optical photographing apparatus for example, an optical microscope
  • a photographing apparatus such as an electron microscope is necessary. There is a problem that observation is not possible.
  • the present invention provides a salt concentration device and a scale detection method for a salt concentration device that can detect the properties of water to be treated and the presence or absence of scale on the membrane of the concentration device without stopping the operation of the concentration device.
  • the task is to do.
  • the main body of the concentration apparatus has a filtration membrane that obtains permeated water by concentrating the salinity of the water to be treated from the water to be treated, and discharges the concentrated water in which the salinity is concentrated.
  • Concentrating the sample the detection concentrating device having a detection filtration membrane for obtaining permeate for detection, and the concentrated water branched from the concentration line branch, pressurizing the branched concentrated water and supplying it to the detection concentration device
  • Pressure device for detection Using the solute permeation parameter and the solution permeation parameter before and after the change in the water production amount of the concentrator main body obtained from the permeate and the permeate for detection, the presence / absence of scale adhesion fluctuation to the concentrator main body is detected.
  • a salt concentration device comprising: a detection unit;
  • the salt concentration for separating the water to be treated into the permeated water and the concentrated water in which the salt content is concentrated by the main body of the concentrating device by concentrating the salt content of the water to be treated by the filtration membrane.
  • a permeate for detection is obtained from the concentrated water by increasing the water pressure of a part of the concentrated water and supplying the concentrated water to the concentration device for detection, and further concentrating the salt content of the concentrated water while improving the concentration rate.
  • the condensing water is pressurized by the detecting pressurizing device, and the permeated water and the detecting permeated water are obtained.
  • the solute permeation parameter and the solution permeation parameter before and after the change in the water production amount of the concentrator main body whether or not the property of the treated water (for example, TDS, temperature, etc.) fluctuates, or the scale adheres to the filter membrane of the concentrator main body The presence or absence of can be detected.
  • the property of to-be-processed water and the adhesion of the scale to the concentration apparatus main body can be detected in advance during the concentration operation of to-be-processed water.
  • FIG. 1 is a schematic diagram of a salt concentration apparatus according to Example 1.
  • FIG. FIG. 2 is a schematic diagram of the salt concentration apparatus according to the second embodiment.
  • FIG. 3 is a diagram showing a relationship between a solute permeation parameter (SPP: Salt Permeability Parameter) and a solution permeation parameter (WPP: Water Permeability Parameter) when the concentrated water to the concentration device for detection is pressurized.
  • SPP Salt Permeability Parameter
  • WPP Water Permeability Parameter
  • FIG. 4 is a diagram showing a scale adhesion map based on the solute permeation parameter and the solution permeation parameter when the concentrated water to the concentration device for detection is pressurized.
  • FIG. 5 is a diagram showing the relationship between the solute permeation parameter and the solution permeation parameter when the concentration water to the concentration device for detection is not increased.
  • FIG. 1 is a schematic diagram of a salt concentration apparatus according to Example 1.
  • a salt concentration device 10A according to the present embodiment has a filtration membrane 13 that obtains permeate 12 by concentrating salt contained in water to be treated 11, and the salt is concentrated.
  • a supply line L 11 for supplying water to be treated 11 in the concentrator body 14 is interposed in the supply line L 11, the treated water 11 pressurized to concentrator body 14
  • the detection concentrator 23 having a detection filter membrane 22 to obtain the detection permeate 21 by further concentrating the salt contained therein
  • Concentrated water branch Interposed down L 21, branched and sensing pressure device 24 supplies the concentrated water 16a pressurizes detection concentrator 23, the permeate 12 and each of the electric conductivity of the detection permeate 21 (EC).
  • a reverse osmosis membrane device will be described as an example of a concentrating device for obtaining fresh water.
  • the present invention is not limited to this, and the water to be treated 11 is permeated through the filtration membrane 13.
  • the apparatus is not particularly limited as long as the apparatus obtains water 12 and separates it as concentrated water 16.
  • the concentrator main body 14 is provided with a filtration membrane 13 for removing permeated water 12 and removing permeated water 12 from the water to be treated 11 pressurized by a main body pressurizing device 15 (for example, a booster pump).
  • a main body pressurizing device 15 for example, a booster pump.
  • the concentrator main body 14 is constituted by a reverse osmosis membrane module in which a reverse osmosis membrane element including a reverse osmosis membrane filtration membrane is loaded in a pressure vessel.
  • the filtration membrane 13 is a liquid separation membrane that applies a pressure higher than the osmotic pressure difference between the solutions through the membrane to the high concentration side to prevent the passage of the solute and permeate the solvent.
  • a pressure higher than the osmotic pressure is applied to the treated water 11 supplied to the concentrator main body 14 on the treated water 11 side of the filtration membrane 13 using the main body pressurizing device 15, and then the water is passed through the filtration membrane 13.
  • the permeated water 12 and the concentrated water 16 are obtained from the treated water 11.
  • Permeate 12 is supplied to the external water-using equipment or the like via the permeate line L 12.
  • Concentrated water 16 salt is concentrated in concentrator body 14 is discharged out of the system through the concentrated water line L 13.
  • examples of the membrane structure when a reverse osmosis membrane include polymer membranes such as composite membranes and phase separation membranes.
  • examples of the material for the reverse osmosis membrane include aromatic polyamides, aliphatic polyamides, polyamide materials such as composite materials thereof, and cellulose materials such as cellulose acetate.
  • the reverse osmosis membrane may be an RO membrane, but is not particularly limited thereto, and for example, an NF membrane (Nanofiltration Membrane) may be used.
  • an NF membrane Nanofiltration Membrane
  • the water to be treated 11 includes scale components such as seawater, mine wastewater, blowdown water of a power plant cooling tower, accompanying water at the time of oil / gas production, brine, and factory wastewater.
  • the water to be treated 11, the main body pressing device 15 provided in the supply line L 11, is pressurized to a predetermined pressure (for example 50-70 bar), reverse osmosis provided with a filtration membrane 13 of the reverse osmosis (RO) membranes It introduce
  • a predetermined pressure for example 50-70 bar
  • RO reverse osmosis
  • the concentration device main body 14 as a salt concentration step, the salt in the water to be treated 11 is concentrated, and the water that has passed through the filtration membrane 13 is recovered as permeated water 12 that is fresh water. Further, the concentrated water 16 in which the salinity is concentrated in this salinity concentration step is discharged or used separately for recovering the salinity.
  • a concentrated water branch line L 21 that branches a part from the concentrated water line L 13 that discharges the concentrated water 16 is provided. Then, the concentrated water branch line L 21 is obtained by further concentrating the salt contained in the branched concentrated water 16a to obtain the permeated water 21 for detection and concentrating the salt to obtain the concentrated water for detection.
  • the line L 23 is provided with a detection concentrator 23 having a detection filtration membrane 22 for discharging the detection concentrated water 25.
  • the detection filtration membrane 22 is preferably a reverse osmosis (RO) membrane. In particular, it is more preferable that the concentration is the same as that of the reverse osmosis membrane of the reverse osmosis membrane device which is the main body 14 of the concentrator.
  • RO reverse osmosis
  • the permeate line L 12 for discharging the permeate 12 from the concentrator body 14 an electric conductivity meter for measuring the electrical conductivity of the permeate 12 (EC (Electric Conductivity) meter) 31A and, permeate 12 A flow meter 32A for measuring the flow rate is provided.
  • a main body pressure gauge P 1 for measuring the pressure of the water to be treated 11 is provided between the main body pressure device 15 and the concentration device main body 14 in the supply line L 11 .
  • a detection pressure gauge P 2 for measuring the pressure of the branched concentrated water 16 a is provided between the detection pressurizing device 24 and the detection concentrating device 23 in the concentrated water branch line L 21 .
  • the permeate line L 12 may be provided with a pressure gauge that measures the pressure of the permeate 12 near the outlet of the filtration membrane 13, and the concentrated water line L 13 is a pressure that measures the pressure of the concentrated water 16. A total may be provided.
  • the detection unit 50 calculates the amount of permeated water of the filtration membrane 13 from the measurement results of the flow meters 32A and 32B, calculates the electrical conductivity of the treated water 11 from the measurement results of the electrical conductivity meters 31A and 31B, and the pressure gauge P 1, the treated water 11 from the measurement result of the P 2, permeate 12, and calculates the pressure of the concentrated water 16.
  • the presence or absence of the change of the property of to-be-processed water, its trend, or the presence or absence of the adhesion of the scale to the filtration membrane 13 of the concentration apparatus main body 14 can be confirmed.
  • Changes in the properties of the water to be treated can be confirmed by changes in the amount of water and the quality of the water depending on the temperature of the water and the concentration of salt contained in the water.
  • the so-called mass balance is constant in the present embodiment as the salt treatment condition of the water to be treated 11 supplied to the concentrator main body 14.
  • the operation with a constant mass balance is a general operation of the reverse osmosis membrane device, and controls the supply water pressure by controlling the permeated water amount of the permeated water 12 and the concentrated water amount of the concentrated water 16 to be constant conditions.
  • the operation mode is not.
  • the operation is an operation mode in which the pressure increase operation of the supply pressure is automatically performed in order to ensure the amount of the permeated water 12.
  • the concentrated water 16 from the concentrator main body 14 is supplied to the detection concentrator 23 while maintaining the pressure discharged from the concentrator main body 14.
  • the property of the to-be-treated water 11 to be supplied changes (for example, the salinity concentration in the to-be-treated water 11 increases)
  • the scale adheres to the filtration membrane 13 on the concentration device body 14 side the scale adheres to the filtration membrane 13 on the concentration device body 14 side
  • the salt concentration in the concentrated water 16 becomes high, and scale adhesion occurs on the detection filtration membrane 22 of the detection concentration device 23.
  • the detection pressurizing device 24 is installed in the concentrated water branch line L 21 on the upstream side of the detection concentrating device 23, and the branched concentrated water 16 a is used by using the detection pressurizing device 24.
  • the water pressure of a part of the branched concentrated water 16 is increased and supplied to the detection concentrating device 23 to eliminate the decrease in the permeation amount of the detection permeate water 21 (the permeation amount of the detection permeate water 21 is reduced). Secure).
  • the pressure increase ( ⁇ ) of the detection pressurizing device 24 is 1 ⁇ 2 of the pressure of the main body pressurizing device 15.
  • the pressure is preferably about 1/50 (more preferably 1/5 to 1/10).
  • the concentrated water 16a thus branched is supplied to the concentration device for detection 23 at a pressure (Y + ⁇ ) obtained by adding a pressure increase ( ⁇ ) to the pressure (Y) of the concentrated water 16 discharged from the concentration device main body 14. I have to.
  • the pressure increase ( ⁇ ) is 1/2 (35 bar) to 1/50 (1.4 bar) of the pressure (70 bar) of the main body pressurizing device 15 (more preferably 1/5 (14 Bar) to about 1/10 (7 bar)).
  • a pressure of around 1/7 (10 bar) is preferred.
  • the detection concentrator 23 When the detection concentrator 23 is in a pressure-increased state, that is, when the concentrated water 16 a branched from a part of the concentrated water 16 from the concentrator main body 14 is supplied to the detection concentrator 23, In the case where the pressure of the concentrated water 16a is increased by the pressure device 24, the solute permeation parameters before and after the change in the water production amount of the permeated water 12 of the concentrating device body 14 obtained from the permeated water 12 and the permeated water for detection 21, and the permeated water for detection.
  • the properties of the water to be treated 11 (for example, TDS, temperature, etc.) using the permeated water amount of 21 and the supply water pressure of the water to be treated 11 and the solution permeation parameters before and after the change in the water production amount of the permeated water 12 of the concentrator main body 14 are obtained. ) And the presence / absence of a change in scale adhesion to the filtration membrane 13 of the concentrator main body 14 can be detected. Thereby, the property of to-be-processed water and the adhesion of the scale to the concentration apparatus main body can be detected in advance during the concentration operation of to-be-processed water.
  • the solute permeation parameter can be obtained from, for example, a measurement result of electrical conductivity (EC). Specifically, before and after the water quality of the treated water 11 changes, the “electric conductivity of the detection permeated water 21 (ECp, sensor)” and “the electric conductivity of the permeated water 12 (ECp, plant)” It can be obtained by division.
  • EC electrical conductivity
  • the ratio before and after the change in the water quality of the water to be treated 11 which is a factor that causes scale adhesion, is taken, and relative [(ECp, sensor) / (ECp, plant)].
  • the confirmation of the water quality change is measured at regular intervals, and when there is no change, it is further measured at regular intervals, and when there is a change, there is no change. Comparing cases. This change comparison may be made by dividing (value after change) by (value before change) ((value after change) / (value before change)), or the difference ((value after change) (Value)-(value before change)) may be obtained.
  • the behavior of the solution permeation parameter can be obtained from the result of multiplying the amount of permeated water of the detection permeated water 21 and the supply pressure of the water to be treated 11 of the main body pressurizing device 15. Specifically, it is obtained by multiplying “the amount of permeated water of the detection permeated water 21” and “the supply water pressure of the treated water 11 to the concentrator main body 14” before and after the change in the water quality of the treated water 11. it can.
  • the “permeated water amount of the permeating water 21 for detection” and the “supply water pressure of the treated water 11 to the concentrator main body 14” are multiplied by these when the filtration membrane performance changes depending on the scale. This is to increase the result because the rate of change is large, but the present invention is not limited to multiplying these values.
  • the ratio before and after the change in the water quality of the water to be treated 11 is taken, and the relative [(Qp, sensor) ⁇ (Pf, plant) ] To ask.
  • FIG. 3 shows an example of the results using the solute permeation parameter and the solution permeation parameter.
  • test water set so that the A value is 10% reduced (black circle mark), 20% reduced (white circle mark), and 40% reduced (triangular mark) is used.
  • the horizontal axis represents the result of obtaining the relative [(ECp, sensor) / (ECp, plant)].
  • the vertical axis represents the result of determining the relative [(Qp, sensor) ⁇ (Pf, plant)], which is a solution permeation parameter.
  • the reference (0) is a case where the measured values before and after the change of the water quality of the treated water 11 are confirmed and there is no change.
  • this change can be mapped as alarm 1 zone, alarm 2 zone, and alarm 3 zone.
  • an alarm 51 is issued on an image (for example, a PC screen) or a voice to predict the scale adhesion to the filtration membrane 13 in advance. Can do.
  • the present invention when the presence or absence of scale adhesion to the filtration membrane 13 of the concentrator main body 14 is confirmed, before and after the change in the water production amount of the permeated water 12 of the concentrator main body 14 has been described, the present invention is limited to this. Is not to be done. You may make it confirm the presence or absence of scale adhesion by confirming the change of the water production amount of the permeated water 12 itself.
  • the state of the water to be treated 11 for example, temperature, pH value, TDS (for example, copper, zinc, mercury, cadmium and other impurities)
  • the change rate of the state is confirmed in advance, and the corresponding map, etc. Therefore, it is possible to cope in advance with changes in the water to be treated 11 supplied to the concentration device main body 14 due to these.
  • the concentration water is pressurized by the detection pressure device
  • the property of to-be-processed water and the adhesion of the scale to the concentration apparatus main body can be detected in advance during the concentration operation of to-be-processed water.
  • FIG. 2 is a schematic diagram of the salt concentration apparatus according to the second embodiment.
  • the salt concentration device 10B according to the present embodiment further desalinates the first concentrated water 16-1 of the first concentration device main body 14-1 using two concentration device main bodies.
  • a second concentrator main body 14-2 is installed to obtain fresh water of the second permeated water 12-1. Since two sets having the same configuration as the apparatus configuration of the first embodiment are connected, the branch number is assigned “ ⁇ 1” to the preceding apparatus, and the branch number “ ⁇ 2” is assigned to the succeeding apparatus. ”Is attached, and redundant description is omitted.
  • the salinity concentration in the first concentrated water 16-1 is greater than the salinity concentration of the water to be treated 11-1. Therefore, the frequency of scale adhesion to the second filtration membrane 13-2 of the second concentrator main body 14-2 on the rear stage side is high. Therefore, when the second concentrated water 16a-2 branched from the second concentrated water 16-2 is introduced into the second concentration apparatus 23-2 in the second concentration apparatus main body 14-2 as well, As in the case of 1, the pressure is increased by a predetermined pressure using the second detection pressurizing device 24-2.
  • the second detection is performed.
  • the pressure of the second concentrated water 16-2 is increased by the pressurizing device 24-2, and the concentration of the concentration device main body 14-2 obtained from the second permeated water 12-2 and the second permeated water for detection 21-2 is obtained.
  • Concentrator main body 14 determined from the solute permeation parameters before and after the change in the water production amount of the permeated water 12-2, the permeated water amount of the second detection permeated water 21-2, and the supply water pressure of the first concentrated water 16-1.
  • the present invention is not limited to this, and the second concentrated water 16-2 of the second concentration device main body 14-2 is further added.
  • the third concentrated water is branched in the same manner, and a part of the third concentrated water is supplied to the third detecting concentrator.
  • the pressure of the third concentrated water is increased by the third detection pressurizing device, and before and after the change in the water production amount of the permeated water 12 of the concentration device main body 14 obtained from the third permeated water and the third detected permeated water.
  • Solute permeation parameters, solution permeation parameters before and after the change in the amount of water produced in the permeated water 12 of the concentrator body 14 determined from the permeated water amount of the third permeating water for detection and the supply water pressure of the second concentrated water 16-2
  • the presence or absence of fluctuations in the properties (eg, TDS, temperature, pH, etc.) of the second concentrated water 16-2 It is possible to detect the presence or absence of scale deposition change on the third filtration membrane concentrator body.
  • the water to be treated 11 or the first concentrated water 16-1 / second concentrated water 16-2 the water to be treated 11 or the first concentrated water 16-1 / first 2 of the concentrated water 16-2 and the first filtration membrane 13-1 / second filtration of the first concentration device main body 14-1 / second concentration device main body 14-2 / third concentration device main body.
  • the adhesion of the scale to the membrane 13-2 / third filtration membrane can be detected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

This salt concentration device is provided with: a concentration device main body 14 that comprises a filter membrane 13 in which permeate water 12 is obtained from water to be treated 11 by concentrating the salt in the water to be treated 11 and that discharges concentrated water in which salt is concentrated; a main body pressurization device 15 that pressurizes and supplies the water to be treated 11; a concentration device 23 for detection that is provided to a concentrated water branch line L21 by which part of concentrated water 16 from a concentrated water line L13 for discharging concentrated water 16 from the concentration device main body 14 is made to branch, that further concentrates the salt from the concentrated water 16a made to branch, and that comprises a filter membrane 22 for detection by which permeate water 21 for detection is obtained; and a pressurization device 24 for detection that pressurizes the concentrated water 16a made to branch to the concentration device 23 for detection, then supplies the result. A solution permeation parameter and a pre/post-change solute permeation parameter for the water production amount of the concentration device main body 14 obtained via the permeate water 12 and the permeate water 21 for detection are used to detect whether there is change in the adhesion of scale to the concentration device main body 14.

Description

塩分濃縮装置及び塩分濃縮装置のスケール検知方法Salt concentration apparatus and scale detection method for salt concentration apparatus
 本発明は、塩分濃縮装置及び塩分濃縮装置のスケール検知方法に関するものである。 The present invention relates to a salt concentration device and a scale detection method of the salt concentration device.
 従来、被処理水である海水から淡水を得る装置として、海水に圧力をかけて逆浸透膜(RO膜:Reverse Osmosis Membrane)と呼ばれるろ過膜の一種に通し、海水の塩分を濃縮して除去することにより海水を淡水化させて上水として使用する淡水(透過水)を生産する淡水化装置が用いられている。 Conventionally, as a device for obtaining fresh water from seawater, which is to be treated, seawater is pressurized and passed through a type of filtration membrane called a reverse osmosis membrane (RO membrane: Reverse RO Osmosis Membrane) to remove and concentrate the salt content of seawater. Accordingly, a desalination apparatus is used that produces fresh water (permeated water) to be used as clean water by desalinating seawater.
 この淡水化装置では、逆浸透膜の表面部分で海水が濃縮されることにより海水中に含まれる無機成分が析出して析出物(スケール)が逆浸透膜に付着すると、逆浸透膜が閉塞するため、逆浸透膜における原水の透過性能が低下する。そのため、淡水化装置は運転の際に得られる逆浸透膜の透過性能を計算し、その逆浸透膜の透過性能の低下の度合いから逆浸透膜表面でのスケールの析出の有無を判断する。 In this desalination apparatus, when the seawater is concentrated at the surface portion of the reverse osmosis membrane, the inorganic components contained in the seawater are precipitated and the deposit (scale) adheres to the reverse osmosis membrane, the reverse osmosis membrane is blocked. Therefore, the permeation | transmission performance of raw water in a reverse osmosis membrane falls. Therefore, the desalination apparatus calculates the permeation performance of the reverse osmosis membrane obtained during operation, and determines the presence or absence of scale deposition on the reverse osmosis membrane surface from the degree of decrease in the permeation performance of the reverse osmosis membrane.
 また、逆浸透膜を監視する方法の一例として、例えば、供給液および濃縮液の各々の一部を用いて逆浸透膜に付着する有機物、無機物、菌類などを目視で直接監視すると共に、逆浸透膜に生じるスケール等を目視で直接監視する方法が提案されている(例えば、特許文献1参照)。 In addition, as an example of a method for monitoring the reverse osmosis membrane, for example, organic substances, inorganic substances, fungi, and the like attached to the reverse osmosis membrane are directly monitored visually using a part of each of the supply liquid and the concentrated liquid, and reverse osmosis is also performed. There has been proposed a method of directly monitoring the scale generated in the film visually (see, for example, Patent Document 1).
 また、海水以外の被処理水として例えば鉱山廃水があり、この鉱山廃水にはパイライト(FeS2)が含まれており、このパイライトが酸化されてSO4 2-を生成する。鉱山廃水を中和するために安価なCa(OH)2が用いられる。このため、鉱山廃水にはCa2+及びSO4 2-が豊富に含まれている。また、かん水、下水、工場廃水にもCa2+及びSO4 2-が豊富に含まれていることが知られている。また、冷却塔においては、ボイラなどから排出された高温の排ガスと冷却水との間で熱交換が行われる。この熱交換により冷却水の一部が蒸気となるため、冷却水中のイオンが濃縮される。従って、冷却塔から排出された冷却水(ブローダウン水)は、Ca2+及びSO4 2-などのイオン濃度が高い状態となっている。 In addition, for example, mine wastewater other than seawater includes mine wastewater, which contains pyrite (FeS 2 ), and this pyrite is oxidized to produce SO 4 2− . Inexpensive Ca (OH) 2 is used to neutralize mine wastewater. For this reason, the mine wastewater is rich in Ca 2+ and SO 4 2- . It is also known that brine, sewage, and factory wastewater are rich in Ca 2+ and SO 4 2- . Further, in the cooling tower, heat exchange is performed between the high-temperature exhaust gas discharged from the boiler or the like and the cooling water. Since a part of the cooling water becomes steam by this heat exchange, ions in the cooling water are concentrated. Therefore, the cooling water (blow-down water) discharged from the cooling tower is in a state in which ion concentrations such as Ca 2+ and SO 4 2- are high.
 これらのイオンを多量に含む水は、脱塩処理が施される。脱塩処理を実施する濃縮装置としては、例えば逆浸透膜装置、ナノろ過膜装置、イオン交換膜装置等が知られている。 The water containing a large amount of these ions is subjected to desalting treatment. As a concentrating device for performing a desalting treatment, for example, a reverse osmosis membrane device, a nanofiltration membrane device, an ion exchange membrane device and the like are known.
 しかし、これらの装置を用いて脱塩処理する場合、高濃度の陽イオン(例えばカルシウムイオン(Ca2+))と陰イオン(例えば硫酸イオン(SO4 2-))を含んだ水から淡水を得る際に、これらのイオンが膜表面で濃縮されて難溶性鉱物塩である硫酸カルシウム(石膏(CaSO4))が生成されるが、生成された硫酸カルシウムの溶解度がその水に対する溶解限度を超える場合がある。その結果、硫酸カルシウムが膜表面に付着物として析出し、透過水の透過流束(フラックス)が低下する、という問題がある。 However, when desalinating using these devices, fresh water is removed from water containing high concentrations of cations (eg, calcium ions (Ca 2+ )) and anions (eg, sulfate ions (SO 4 2− )). When obtained, these ions are concentrated on the membrane surface to produce calcium sulfate, a sparingly soluble mineral salt (gypsum (CaSO 4 )), but the solubility of the generated calcium sulfate exceeds its solubility limit in water There is a case. As a result, there is a problem that calcium sulfate is deposited as a deposit on the membrane surface and the permeate flux (flux) is lowered.
 このため、従来においては、逆浸透膜を監視する方法として、例えば逆浸透膜装置の逆浸透膜を監視するセルを用いて、目視で判断することで、濃縮塩の結晶生成を検出することの提案がある(特許文献2)。 For this reason, conventionally, as a method for monitoring the reverse osmosis membrane, for example, by using a cell for monitoring the reverse osmosis membrane of the reverse osmosis membrane device, it is possible to detect the formation of concentrated salt crystals by visual judgment. There is a proposal (Patent Document 2).
特開2008-253953号公報JP 2008-253953 A 特表2009-524521号公報Special table 2009-524521
 ここで、特許文献1の逆浸透膜を監視する方法では、異物(有機物、無機物、菌類など)に染色剤を添加することにより着色し、目視により直接監視することを開示しているが、有機物と菌類に対して具体的な染色剤を例示しているものの、無機物に対しては無機物に吸着性のある染料等としか記載が無い。仮に無機物に対する適切な染色剤があった場合であっても、定期的に染色剤を添加して監視する方法では、染色剤の処理に問題を生じる。一方、異常を生じた際に染色剤を添加して監視する方法では染色剤の処理の負担は減少するものの、逆浸透膜の性能低下が判別できる程度まで逆浸透膜の透過性能が低下した時には、洗浄により回復が困難なレベルまでスケール析出が進行している場合がある。そのため、逆浸透膜に析出したスケールを除去し、逆浸透膜を洗浄するためには、ろ過装置のろ過処理運転を停止しなければならず、透過水の生産効率が悪い、という問題がある。 Here, in the method of monitoring the reverse osmosis membrane of Patent Document 1, it is disclosed that coloring is performed by adding a staining agent to a foreign substance (organic matter, inorganic matter, fungi, etc.), and visual monitoring is performed directly. Although specific dyeing agents are exemplified for fungi and fungi, only inorganic dyes and the like that have an adsorptive property to inorganic substances are described. Even if there is an appropriate stain for the inorganic substance, the method of periodically adding and monitoring the stain causes a problem in the processing of the stain. On the other hand, when the method of monitoring by adding a staining agent when an abnormality occurs, the burden of processing the staining agent is reduced, but when the permeation performance of the reverse osmosis membrane is reduced to the extent that the performance deterioration of the reverse osmosis membrane can be discriminated. In some cases, the scale deposition proceeds to a level that is difficult to recover by washing. Therefore, in order to remove the scale deposited on the reverse osmosis membrane and wash the reverse osmosis membrane, there is a problem that the filtration treatment operation of the filtration device must be stopped and the production efficiency of the permeated water is poor.
 また、特許文献2の提案による監視方法においては、付着物(例えば鉱物塩結晶)の生成メカニズムは、ナノレベルの結晶核の成長に基づいている。逆浸透膜装置の逆浸透膜表面の細孔サイズはナノレベルであり、サブμm以下の付着物が膜表面に存在すると、逆浸透膜を閉塞させることとなる。このサブμm以下の付着物を目視確認する為には、光学撮影装置(例えば、光学顕微鏡)での撮影では、実質的に困難であり、電子顕微鏡のような撮影装置が必要となり、連続的な観察はできない、という問題がある。さらに、目視観察可能な逆浸透膜の表面には、逆浸透膜装置の濃縮水が流れているため、流れる液体を通して逆浸透膜の表面を精度よく連続観察することは実質的に困難である、という問題がある。 Further, in the monitoring method proposed by Patent Document 2, the generation mechanism of deposits (for example, mineral salt crystals) is based on the growth of nano-level crystal nuclei. The pore size of the reverse osmosis membrane surface of the reverse osmosis membrane device is at a nano level, and if a deposit of sub-μm or less exists on the membrane surface, the reverse osmosis membrane is blocked. In order to visually confirm the deposits of sub-μm or less, it is substantially difficult to photograph with an optical photographing apparatus (for example, an optical microscope), and a photographing apparatus such as an electron microscope is necessary. There is a problem that observation is not possible. Furthermore, since the concentrated water of the reverse osmosis membrane device flows on the surface of the reverse osmosis membrane that can be visually observed, it is substantially difficult to continuously observe the surface of the reverse osmosis membrane with high accuracy through the flowing liquid. There is a problem.
 本発明は、濃縮装置の稼働を停止することなく、被処理水の性状や濃縮装置の膜へのスケールの付着の有無を検知することができる塩分濃縮装置及び塩分濃縮装置のスケール検知方法を提供することを課題とする。 The present invention provides a salt concentration device and a scale detection method for a salt concentration device that can detect the properties of water to be treated and the presence or absence of scale on the membrane of the concentration device without stopping the operation of the concentration device. The task is to do.
 本発明の第1の態様によると、被処理水から、該被処理水の塩分を濃縮することで透過水を得るろ過膜を有するとともに、前記塩分が濃縮された濃縮水を排出する濃縮装置本体と、前記被処理水を前記濃縮装置本体に供給する供給ラインと、前記供給ラインに介装され、前記濃縮装置本体に前記被処理水を加圧して供給する本体用加圧装置と、前記濃縮装置本体から前記濃縮水を供給する濃縮水ラインと、前記濃縮水ラインから前記濃縮水の一部を分岐する濃縮水分岐ラインと、前記濃縮水分岐ラインに設けられ、分岐した前記濃縮水の塩分を更に濃縮することで検知用透過水を得る検知用ろ過膜を有する検知用濃縮装置と、前記濃縮水分岐ラインに介装され、分岐した前記濃縮水を加圧して前記検知用濃縮装置に供給する検知用加圧装置と、前記透過水と前記検知用透過水とより求めた前記濃縮装置本体の造水量の変化前後の溶質透過パラメータと溶液透過パラメータとを用い、前記濃縮装置本体へのスケール付着変動の有無を検知する検知部と、を具備することを特徴とする塩分濃縮装置にある。 According to the first aspect of the present invention, the main body of the concentration apparatus has a filtration membrane that obtains permeated water by concentrating the salinity of the water to be treated from the water to be treated, and discharges the concentrated water in which the salinity is concentrated. A supply line that supplies the water to be treated to the concentration apparatus body, a pressure device for the body that is interposed in the supply line and that supplies the treatment water to the concentration apparatus body under pressure, and the concentration A concentrated water line for supplying the concentrated water from the apparatus main body, a concentrated water branch line for branching a part of the concentrated water from the concentrated water line, and a salinity of the concentrated water branched and provided in the concentrated water branch line Concentrating the sample, the detection concentrating device having a detection filtration membrane for obtaining permeate for detection, and the concentrated water branched from the concentration line branch, pressurizing the branched concentrated water and supplying it to the detection concentration device Pressure device for detection Using the solute permeation parameter and the solution permeation parameter before and after the change in the water production amount of the concentrator main body obtained from the permeate and the permeate for detection, the presence / absence of scale adhesion fluctuation to the concentrator main body is detected. A salt concentration device comprising: a detection unit;
 本発明の第2の態様によると、ろ過膜により被処理水の塩分を濃縮することで、該被処理水を濃縮装置本体により透過水と前記塩分が濃縮された濃縮水とに分離する塩分濃縮工程と、前記濃縮水の一部の水圧を上昇させて検知用濃縮装置に供給し、濃縮率を向上させつつ該濃縮水の塩分を更に濃縮することで該濃縮水から検知用透過水を得る検知用の塩分濃縮工程と、前記透過水と前記検知用透過水とより求めた前記濃縮装置本体の造水量の変化前後の溶質透過パラメータと溶液透過パラメータとにより、前記濃縮装置本体へのスケール付着変動の有無を検知する検知工程と、を有することを特徴とする塩分濃縮装置のスケール検知方法にある。 According to the second aspect of the present invention, the salt concentration for separating the water to be treated into the permeated water and the concentrated water in which the salt content is concentrated by the main body of the concentrating device by concentrating the salt content of the water to be treated by the filtration membrane. And a permeate for detection is obtained from the concentrated water by increasing the water pressure of a part of the concentrated water and supplying the concentrated water to the concentration device for detection, and further concentrating the salt content of the concentrated water while improving the concentration rate. The concentration of scale on the concentration device main body according to the salt concentration step for detection, and the solute permeation parameter and the solution permeation parameter before and after the change in the water production amount of the concentration device main body obtained from the permeate and the permeation water for detection. And a detection step of detecting the presence or absence of fluctuations.
 本発明によれば、濃縮装置本体からの濃縮水の一部を検知用濃縮装置に供給する際に、検知用加圧装置により濃縮水を昇圧させ、透過水と検知用透過水とより求めた濃縮装置本体の造水量の変化前後の溶質透過パラメータと溶液透過パラメータとを用い、被処理水の性状(例えばTDS、温度等)の変動の有無、又は濃縮装置本体のろ過膜へのスケール付着変動の有無を検知することができる。これにより、被処理水を濃縮稼働中に、事前に被処理水の性状や濃縮装置本体へのスケールの付着を検知することができる。 According to the present invention, when supplying a part of the concentrated water from the main body of the concentrating device to the detecting concentrating device, the condensing water is pressurized by the detecting pressurizing device, and the permeated water and the detecting permeated water are obtained. Using the solute permeation parameter and the solution permeation parameter before and after the change in the water production amount of the concentrator main body, whether or not the property of the treated water (for example, TDS, temperature, etc.) fluctuates, or the scale adheres to the filter membrane of the concentrator main body The presence or absence of can be detected. Thereby, the property of to-be-processed water and the adhesion of the scale to the concentration apparatus main body can be detected in advance during the concentration operation of to-be-processed water.
図1は、実施例1に係る塩分濃縮装置の概略図である。FIG. 1 is a schematic diagram of a salt concentration apparatus according to Example 1. FIG. 図2は、実施例2に係る塩分濃縮装置の概略図である。FIG. 2 is a schematic diagram of the salt concentration apparatus according to the second embodiment. 図3は、検知用濃縮装置への濃縮水を昇圧した場合の溶質透過パラメータ(SPP:Salt Permeability Parameter)と溶液透過パラメータ(WPP:Water Permeability Parameter)との関係を示す図である。FIG. 3 is a diagram showing a relationship between a solute permeation parameter (SPP: Salt Permeability Parameter) and a solution permeation parameter (WPP: Water Permeability Parameter) when the concentrated water to the concentration device for detection is pressurized. 図4は、検知用濃縮装置への濃縮水を昇圧した場合の溶質透過パラメータと溶液透過パラメータとに基づくスケール付着マップを示す図である。FIG. 4 is a diagram showing a scale adhesion map based on the solute permeation parameter and the solution permeation parameter when the concentrated water to the concentration device for detection is pressurized. 図5は、検知用濃縮装置への濃縮水を昇圧しない場合の溶質透過パラメータと溶液透過パラメータとの関係を示す図である。FIG. 5 is a diagram showing the relationship between the solute permeation parameter and the solution permeation parameter when the concentration water to the concentration device for detection is not increased.
 以下に添付図面を参照して、本発明の好適な実施例を詳細に説明する。なお、この実施例により本発明が限定されるものではなく、また、実施例が複数ある場合には、各実施例を組み合わせて構成するものも含むものである。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, this invention is not limited by this Example, Moreover, when there exists multiple Example, what comprises combining each Example is also included.
 図1は、実施例1に係る塩分濃縮装置の概略図である。図1に示すように、本実施例に係る塩分濃縮装置10Aは、被処理水11から、それに含まれる塩分を濃縮することで透過水12を得るろ過膜13を有するとともに、前記塩分が濃縮された濃縮水を排出する濃縮装置本体14と、被処理水11を濃縮装置本体14に供給する供給ラインL11と、供給ラインL11に介装され、濃縮装置本体14に被処理水11を加圧して供給する本体用加圧装置15と、濃縮装置本体14から濃縮水16を供給する濃縮水ラインL13と、濃縮水ラインL13から濃縮水16の一部を分岐する濃縮水分岐ラインL21と、濃縮水分岐ラインL21に設けられ、分岐した濃縮水16aから、それに含まれる塩分を更に濃縮することで検知用透過水21を得る検知用ろ過膜22を有する検知用濃縮装置23と、濃縮水分岐ラインL21に介装され、分岐した濃縮水16aを加圧して検知用濃縮装置23に供給する検知用加圧装置24と、透過水12と検知用透過水21のそれぞれの電気伝導度(EC)より求めた濃縮装置本体14の透過水12の造水量の変化前後の溶質透過パラメータと、検知用透過水21の透過水量(Qp)と被処理水11の供給水圧(Pf)とより求めた濃縮装置本体14の透過水12の造水量の変化前後の溶液透過パラメータとを用い、被処理水11の性状(例えばTDS(Total Dissolved Solids)、温度、pH等)の変動の有無、又は濃縮装置本体14へのスケール付着変動の有無を検知する検知部50と、を具備するものである。なお、本実施例では、淡水を得る濃縮装置として、逆浸透膜装置を例にして説明するが、本発明はこれに限定されるものではなく、被処理水11をろ過膜13で淡水の透過水12を得ると共に濃縮水16として分離する装置であれば特に限定されるものではない。 FIG. 1 is a schematic diagram of a salt concentration apparatus according to Example 1. FIG. As shown in FIG. 1, a salt concentration device 10A according to the present embodiment has a filtration membrane 13 that obtains permeate 12 by concentrating salt contained in water to be treated 11, and the salt is concentrated. and a concentrator body 14 for discharging concentrated water, a supply line L 11 for supplying water to be treated 11 in the concentrator body 14, is interposed in the supply line L 11, the treated water 11 pressurized to concentrator body 14 Pressurizing device 15 for supplying pressure and supplying, concentrated water line L 13 for supplying concentrated water 16 from concentrating device main body 14, and concentrated water branch line L for branching a part of concentrated water 16 from concentrated water line L 13 21, provided on the concentrated water branch line L 21, the branched concentrated water 16a, the detection concentrator 23 having a detection filter membrane 22 to obtain the detection permeate 21 by further concentrating the salt contained therein Concentrated water branch Interposed down L 21, branched and sensing pressure device 24 supplies the concentrated water 16a pressurizes detection concentrator 23, the permeate 12 and each of the electric conductivity of the detection permeate 21 (EC The solute permeation parameters before and after the change in the water production amount of the permeated water 12 of the concentrator main body 14 obtained from the above, the permeated water amount (Qp) of the permeating water for detection 21 and the supply water pressure (Pf) of the treated water 11 were obtained. Using the solution permeation parameters before and after the change in the water production amount of the permeate 12 of the concentrator main body 14, whether or not the properties of the treated water 11 (for example, TDS (Total Dissolved Solids), temperature, pH, etc.) have changed, or the concentrator And a detection unit 50 that detects the presence or absence of scale adhesion fluctuation on the main body 14. In this embodiment, a reverse osmosis membrane device will be described as an example of a concentrating device for obtaining fresh water. However, the present invention is not limited to this, and the water to be treated 11 is permeated through the filtration membrane 13. The apparatus is not particularly limited as long as the apparatus obtains water 12 and separates it as concentrated water 16.
 濃縮装置本体14は、昇圧手段である本体用加圧装置(例えば昇圧ポンプ等)15で加圧された被処理水11から、それに含まれる塩分を除去して透過水12を得るろ過膜13を有する。濃縮装置本体14は、例えば逆浸透膜のろ過膜を備えた逆浸透膜エレメントを耐圧容器に装填した逆浸透膜モジュールで構成される。ろ過膜13は、膜を介する溶液間の浸透圧差以上の圧力を高濃度側にかけて、溶質の通過を阻止し、溶媒を透過する液体分離膜である。濃縮装置本体14に供給した被処理水11に対し、本体用加圧装置15を用いてろ過膜13の被処理水11側にて浸透圧以上の圧力をかけ、続いてろ過膜13に通水させることにより、被処理水11から透過水12と濃縮水16とを得る。 The concentrator main body 14 is provided with a filtration membrane 13 for removing permeated water 12 and removing permeated water 12 from the water to be treated 11 pressurized by a main body pressurizing device 15 (for example, a booster pump). Have. The concentrator main body 14 is constituted by a reverse osmosis membrane module in which a reverse osmosis membrane element including a reverse osmosis membrane filtration membrane is loaded in a pressure vessel. The filtration membrane 13 is a liquid separation membrane that applies a pressure higher than the osmotic pressure difference between the solutions through the membrane to the high concentration side to prevent the passage of the solute and permeate the solvent. A pressure higher than the osmotic pressure is applied to the treated water 11 supplied to the concentrator main body 14 on the treated water 11 side of the filtration membrane 13 using the main body pressurizing device 15, and then the water is passed through the filtration membrane 13. As a result, the permeated water 12 and the concentrated water 16 are obtained from the treated water 11.
 透過水12は、透過水ラインL12を介して外部の水使用設備等に供給される。濃縮装置本体14で塩分が濃縮された濃縮水16は、濃縮水ラインL13を介して系外に排出される。 Permeate 12 is supplied to the external water-using equipment or the like via the permeate line L 12. Concentrated water 16 salt is concentrated in concentrator body 14 is discharged out of the system through the concentrated water line L 13.
 例えばろ過膜として逆浸透膜(RO膜:Reverse Osmosis Membrane)を用いた場合の膜構造としては、複合膜、相分離膜などの高分子膜などを挙げることができる。逆浸透膜の素材としては、例えば、芳香族系ポリアミド、脂肪族系ポリアミド、これらの複合材などのポリアミド系素材、酢酸セルロースなどのセルロース系材料などを挙げることができる。 For example, examples of the membrane structure when a reverse osmosis membrane (RO membrane: Reverse Osmosis Membrane) is used as a filtration membrane include polymer membranes such as composite membranes and phase separation membranes. Examples of the material for the reverse osmosis membrane include aromatic polyamides, aliphatic polyamides, polyamide materials such as composite materials thereof, and cellulose materials such as cellulose acetate.
 逆浸透膜としては、上述のように、RO膜を挙げることができるが、特にこれに限定されるものではなく、例えばNF膜(Nanofiltration Membrane)などを用いてもよい。 As described above, the reverse osmosis membrane may be an RO membrane, but is not particularly limited thereto, and for example, an NF membrane (Nanofiltration Membrane) may be used.
 ここで、被処理水11は、例えば海水、鉱山廃水、発電プラント冷却塔のブローダウン水、オイル・ガス拙作時の随伴水、かん水、工場廃水等のスケール成分を含むものである。この被処理水11は、供給ラインL11に設けた本体用加圧装置15により、所定圧力(例えば50~70バール)まで昇圧され、逆浸透(RO)膜のろ過膜13を備えた逆浸透膜装置である濃縮装置本体14に導入される。 Here, the water to be treated 11 includes scale components such as seawater, mine wastewater, blowdown water of a power plant cooling tower, accompanying water at the time of oil / gas production, brine, and factory wastewater. The water to be treated 11, the main body pressing device 15 provided in the supply line L 11, is pressurized to a predetermined pressure (for example 50-70 bar), reverse osmosis provided with a filtration membrane 13 of the reverse osmosis (RO) membranes It introduce | transduces into the concentration apparatus main body 14 which is a membrane apparatus.
 この濃縮装置本体14では、塩分濃縮工程として、被処理水11中の塩分が濃縮され、ろ過膜13を通過した水は、淡水である透過水12として回収される。また、この塩分濃縮工程で塩分が濃縮された濃縮水16は、排出されるか、もしくは、別途塩分を回収するために用いられる。 In the concentration device main body 14, as a salt concentration step, the salt in the water to be treated 11 is concentrated, and the water that has passed through the filtration membrane 13 is recovered as permeated water 12 that is fresh water. Further, the concentrated water 16 in which the salinity is concentrated in this salinity concentration step is discharged or used separately for recovering the salinity.
 本実施例では、この濃縮水16を排出する濃縮水ラインL13からその一部を分岐する濃縮水分岐ラインL21を設けている。そして、この濃縮水分岐ラインL21には、分岐した濃縮水16aから、それに含まれる塩分を更に濃縮することで、検知用透過水21を得ると共に、その塩分濃縮を行って、検知用濃縮水ラインL23に検知用濃縮水25を排出する検知用ろ過膜22を有する検知用濃縮装置23を設けている。この検知用ろ過膜22は、逆浸透(RO)膜であることが望ましい。特に、濃縮装置本体14である逆浸透膜装置の逆浸透膜と同一性状のものとすると、その膜挙動が同一であるので、より好ましいが、限定されるものではない。 In the present embodiment, a concentrated water branch line L 21 that branches a part from the concentrated water line L 13 that discharges the concentrated water 16 is provided. Then, the concentrated water branch line L 21 is obtained by further concentrating the salt contained in the branched concentrated water 16a to obtain the permeated water 21 for detection and concentrating the salt to obtain the concentrated water for detection. The line L 23 is provided with a detection concentrator 23 having a detection filtration membrane 22 for discharging the detection concentrated water 25. The detection filtration membrane 22 is preferably a reverse osmosis (RO) membrane. In particular, it is more preferable that the concentration is the same as that of the reverse osmosis membrane of the reverse osmosis membrane device which is the main body 14 of the concentrator.
 また、濃縮装置本体14から透過水12を排出する透過水ラインL12には、透過水12の電気伝導度を測定する電気伝導度計(EC(Electric Conductivity)メーター)31Aと、透過水12の流量を測定する流量計32Aとが設けられている。また、検知用透過水ラインL22には、検知用透過水21の電気伝導度を測定する電気伝導度計(EC(Electric Conductivity)メーター)31Bと、検知用透過水21の流量を測定する流量計32Bとが設けられている。 Furthermore, the permeate line L 12 for discharging the permeate 12 from the concentrator body 14, an electric conductivity meter for measuring the electrical conductivity of the permeate 12 (EC (Electric Conductivity) meter) 31A and, permeate 12 A flow meter 32A for measuring the flow rate is provided. Further, in the detection permeate line L 22 , an electric conductivity meter (EC (Electric Conductivity) meter) 31B that measures the electrical conductivity of the detection permeate 21 and a flow rate that measures the flow rate of the detection permeate 21. A total of 32B is provided.
 また、供給ラインL11の本体用加圧装置15と濃縮装置本体14との間には、被処理水11の圧力を測定する本体用圧力計P1が設けられている。また、濃縮水分岐ラインL21の検知用加圧装置24と検知用濃縮装置23との間には、分岐した濃縮水16aの圧力を測定する検知用圧力計P2が設けられている。なお、透過水ラインL12には、ろ過膜13の出口付近の透過水12の圧力を測定する圧力計を設けてもよく、濃縮水ラインL13には、濃縮水16の圧力を測定する圧力計を設けてもよい。 A main body pressure gauge P 1 for measuring the pressure of the water to be treated 11 is provided between the main body pressure device 15 and the concentration device main body 14 in the supply line L 11 . In addition, a detection pressure gauge P 2 for measuring the pressure of the branched concentrated water 16 a is provided between the detection pressurizing device 24 and the detection concentrating device 23 in the concentrated water branch line L 21 . The permeate line L 12 may be provided with a pressure gauge that measures the pressure of the permeate 12 near the outlet of the filtration membrane 13, and the concentrated water line L 13 is a pressure that measures the pressure of the concentrated water 16. A total may be provided.
 電気伝導度計31A、31Bと、流量計32A、32Bとにより測定された情報は検知部50に伝達される。検知部50は流量計32A、32Bとの測定結果からろ過膜13の透過水量を算出し、電気伝導度計31A、31Bの測定結果から被処理水11の電気伝導度を算出し、圧力計P1、P2の測定結果から被処理水11、透過水12、濃縮水16の圧力を算出している。 Information measured by the electric conductivity meters 31A and 31B and the flow meters 32A and 32B is transmitted to the detection unit 50. The detection unit 50 calculates the amount of permeated water of the filtration membrane 13 from the measurement results of the flow meters 32A and 32B, calculates the electrical conductivity of the treated water 11 from the measurement results of the electrical conductivity meters 31A and 31B, and the pressure gauge P 1, the treated water 11 from the measurement result of the P 2, permeate 12, and calculates the pressure of the concentrated water 16.
 そして、検知部50において、被処理水の性状の変化の有無やその動向、又は濃縮装置本体14のろ過膜13へのスケールの付着の有無やその動向を確認することができる。 And in the detection part 50, the presence or absence of the change of the property of to-be-processed water, its trend, or the presence or absence of the adhesion of the scale to the filtration membrane 13 of the concentration apparatus main body 14 can be confirmed.
 被処理水の性状の変化は、水の温度の高低や水中に含む塩濃度の高低に応じた装置本体の水量や水質の変化によって確認することができる。 Changes in the properties of the water to be treated can be confirmed by changes in the amount of water and the quality of the water depending on the temperature of the water and the concentration of salt contained in the water.
 ここで、濃縮装置本体14に供給する被処理水11の塩分処理条件として、本実施例では、いわゆるマスバランスを一定としている。このマスバランスが一定の運転とは、逆浸透膜装置の一般的な運転であって、透過水12の透過水量、濃縮水16の濃縮水量を一定条件となるように制御し、供給圧力を制御しない運転モードである。そして、濃縮装置本体14のろ過膜13にスケールが付着した場合には、その運転は、透過水12の造水量を確保すべく供給圧力の昇圧操作を自動で行う運転モードである。 Here, the so-called mass balance is constant in the present embodiment as the salt treatment condition of the water to be treated 11 supplied to the concentrator main body 14. The operation with a constant mass balance is a general operation of the reverse osmosis membrane device, and controls the supply water pressure by controlling the permeated water amount of the permeated water 12 and the concentrated water amount of the concentrated water 16 to be constant conditions. The operation mode is not. And when a scale adheres to the filtration membrane 13 of the concentration apparatus main body 14, the operation is an operation mode in which the pressure increase operation of the supply pressure is automatically performed in order to ensure the amount of the permeated water 12.
 このようなマスバランスが一定の運転モードとする場合、濃縮装置本体14からの濃縮水16は、濃縮装置本体14から排出された圧力の状態のままで、検知用濃縮装置23に供給される。 In the case of such an operation mode in which the mass balance is constant, the concentrated water 16 from the concentrator main body 14 is supplied to the detection concentrator 23 while maintaining the pressure discharged from the concentrator main body 14.
 ここで、供給する被処理水11の性状が変化(例えば被処理水11中の塩分濃度が高くなる)するような場合、濃縮装置本体14側でのろ過膜13へのスケール付着が発生すると、濃縮水16中の塩分濃度が高くなり、検知用濃縮装置23の検知用ろ過膜22へスケール付着が発生する。 Here, when the property of the to-be-treated water 11 to be supplied changes (for example, the salinity concentration in the to-be-treated water 11 increases), when the scale adheres to the filtration membrane 13 on the concentration device body 14 side, The salt concentration in the concentrated water 16 becomes high, and scale adhesion occurs on the detection filtration membrane 22 of the detection concentration device 23.
 この検知用ろ過膜22へのスケール付着が発生した場合には、検知用透過水21の透過水量が低下する。 When the scale adheres to the detection filtration membrane 22, the permeated water amount of the detection permeate 21 decreases.
 そこで、本実施例では、検知用濃縮装置23の前段側の濃縮水分岐ラインL21に検知用加圧装置24を設置し、分岐された濃縮水16aをこの検知用加圧装置24を用いて昇圧することで、分岐した濃縮水16の一部の水圧を上昇させて検知用濃縮装置23に供給し、検知用透過水21の透過量の低下を解消(検知用透過水21の透過量を確保)することができる。 Therefore, in the present embodiment, the detection pressurizing device 24 is installed in the concentrated water branch line L 21 on the upstream side of the detection concentrating device 23, and the branched concentrated water 16 a is used by using the detection pressurizing device 24. By increasing the pressure, the water pressure of a part of the branched concentrated water 16 is increased and supplied to the detection concentrating device 23 to eliminate the decrease in the permeation amount of the detection permeate water 21 (the permeation amount of the detection permeate water 21 is reduced). Secure).
 例えば本体用加圧装置15での被処理水11の加圧を70バールとしている場合、検知用加圧装置24の圧力上昇分(α)は、本体用加圧装置15の圧力の1/2~1/50(より好ましくは1/5~1/10)程度の圧力であるのが好ましい。これにより分岐した濃縮水16aは、濃縮装置本体14から排出された濃縮水16の圧力(Y)に圧力上昇分(α)を加えた圧力(Y+α)で、検知用濃縮装置23に供給するようにしている。 For example, when the pressure of the water to be treated 11 in the main body pressurizing device 15 is 70 bar, the pressure increase (α) of the detection pressurizing device 24 is ½ of the pressure of the main body pressurizing device 15. The pressure is preferably about 1/50 (more preferably 1/5 to 1/10). The concentrated water 16a thus branched is supplied to the concentration device for detection 23 at a pressure (Y + α) obtained by adding a pressure increase (α) to the pressure (Y) of the concentrated water 16 discharged from the concentration device main body 14. I have to.
 ここで、圧力上昇分(α)は、本体用加圧装置15の圧力(70バール)の1/2(35バール)~1/50(1.4バール)(より好ましくは1/5(14バール)~1/10(7バール))程度とするのが好ましい。好適には1/7前後の圧力(10バール)が好ましい。 Here, the pressure increase (α) is 1/2 (35 bar) to 1/50 (1.4 bar) of the pressure (70 bar) of the main body pressurizing device 15 (more preferably 1/5 (14 Bar) to about 1/10 (7 bar)). A pressure of around 1/7 (10 bar) is preferred.
 このような、検知用濃縮装置23を昇圧状態とした場合、すなわち濃縮装置本体14からの濃縮水16の一部を分岐した濃縮水16aを検知用濃縮装置23に供給する際に、検知用加圧装置24により濃縮水16aを昇圧させる場合において、透過水12と検知用透過水21とより求めた濃縮装置本体14の透過水12の造水量の変化前後の溶質透過パラメータと、検知用透過水21の透過水量と被処理水11の供給水圧とより求めた濃縮装置本体14の透過水12の造水量の変化前後の溶液透過パラメータとを用い、被処理水11の性状(例えばTDS、温度等)の変動の有無、濃縮装置本体14のろ過膜13へのスケール付着変動の有無を検知することができる。これにより、被処理水を濃縮稼働中に、事前に被処理水の性状や濃縮装置本体へのスケールの付着を検知することができる。 When the detection concentrator 23 is in a pressure-increased state, that is, when the concentrated water 16 a branched from a part of the concentrated water 16 from the concentrator main body 14 is supplied to the detection concentrator 23, In the case where the pressure of the concentrated water 16a is increased by the pressure device 24, the solute permeation parameters before and after the change in the water production amount of the permeated water 12 of the concentrating device body 14 obtained from the permeated water 12 and the permeated water for detection 21, and the permeated water for detection. The properties of the water to be treated 11 (for example, TDS, temperature, etc.) using the permeated water amount of 21 and the supply water pressure of the water to be treated 11 and the solution permeation parameters before and after the change in the water production amount of the permeated water 12 of the concentrator main body 14 are obtained. ) And the presence / absence of a change in scale adhesion to the filtration membrane 13 of the concentrator main body 14 can be detected. Thereby, the property of to-be-processed water and the adhesion of the scale to the concentration apparatus main body can be detected in advance during the concentration operation of to-be-processed water.
 ここで、本実施例では、溶質透過パラメータは、例えば電気伝導度(EC)の測定結果により求めることができる。具体的には、被処理水11の水質が変化する前後において、「検知用透過水21の電気伝導度(ECp,sensor)」と「透過水12の電気伝導度(ECp,plant)」との割り算により求めることができる。 Here, in the present embodiment, the solute permeation parameter can be obtained from, for example, a measurement result of electrical conductivity (EC). Specifically, before and after the water quality of the treated water 11 changes, the “electric conductivity of the detection permeated water 21 (ECp, sensor)” and “the electric conductivity of the permeated water 12 (ECp, plant)” It can be obtained by division.
 例えば本実施例では、濃縮装置本体14の透過水12の造水量の変化として、スケール付着が発生する要因である被処理水11の水質の変化の前後の比をとって、Relative[(ECp,sensor)/(ECp,plant)]を求めるようにしている。ここで、被処理水11の水質の変化の前後とは、水質変動の確認を一定間隔で計測し、変化が無い場合には、さらに一定間隔で計測し、変化がある場合と、変化が無い場合を比較することをいう。この変化の比較は、(変化後の値)を(変化前の値)で割る((変化後の値)/(変化前の値))ようにしてもよいし、その差分((変化後の値)-(変化前の値))を求めるようにしてもよい。 For example, in this embodiment, as a change in the amount of water produced in the permeated water 12 of the concentrator main body 14, the ratio before and after the change in the water quality of the water to be treated 11, which is a factor that causes scale adhesion, is taken, and relative [(ECp, sensor) / (ECp, plant)]. Here, before and after the change of the water quality of the water to be treated 11, the confirmation of the water quality change is measured at regular intervals, and when there is no change, it is further measured at regular intervals, and when there is a change, there is no change. Comparing cases. This change comparison may be made by dividing (value after change) by (value before change) ((value after change) / (value before change)), or the difference ((value after change) (Value)-(value before change)) may be obtained.
 また、溶液透過パラメータは、検知用透過水21の膜透過水量と、本体用加圧装置15の被処理水11の供給圧力とを掛け合わせた結果により挙動を求めることができる。具体的には、被処理水11の水質の変化の前後において、「検知用透過水21の透過水量」と「濃縮装置本体14への被処理水11の供給水圧」との掛け算により求めることができる。ここで、「検知用透過水21の透過水量」と「濃縮装置本体14への被処理水11の供給水圧」とを掛けることとしているのは、スケールによりろ過膜性能が変化した際のこれらの変化率が大きいので、その結果を増長させるためであるが、本発明はこれらの値を掛けることに限定されるものではない。 Further, the behavior of the solution permeation parameter can be obtained from the result of multiplying the amount of permeated water of the detection permeated water 21 and the supply pressure of the water to be treated 11 of the main body pressurizing device 15. Specifically, it is obtained by multiplying “the amount of permeated water of the detection permeated water 21” and “the supply water pressure of the treated water 11 to the concentrator main body 14” before and after the change in the water quality of the treated water 11. it can. Here, the “permeated water amount of the permeating water 21 for detection” and the “supply water pressure of the treated water 11 to the concentrator main body 14” are multiplied by these when the filtration membrane performance changes depending on the scale. This is to increase the result because the rate of change is large, but the present invention is not limited to multiplying these values.
 例えば本実施例では、濃縮装置本体14の透過水12の造水量の変化として、被処理水11の水質の変化の前後の比をとって、Relative[(Qp,sensor)×(Pf,plant)]を求めるようにしている。 For example, in the present embodiment, as the change in the amount of the permeated water 12 of the concentrator main body 14, the ratio before and after the change in the water quality of the water to be treated 11 is taken, and the relative [(Qp, sensor) × (Pf, plant) ] To ask.
 この溶質透過パラメータと、溶液透過パラメータを用いた結果の一例を図3に示す。図3においては、被処理水として、A値が1割減(黒丸印)、2割減(白丸印)、4割減(三角印)となるように設定した試験水を用い、溶質透過パラメータであるRelative[(ECp,sensor)/(ECp,plant)]を求めた結果を横軸としている。また、同様に試験水を用いて、溶液透過パラメータであるRelative[(Qp,sensor)×(Pf,plant)]を求めた結果を縦軸としている。 FIG. 3 shows an example of the results using the solute permeation parameter and the solution permeation parameter. In FIG. 3, as water to be treated, test water set so that the A value is 10% reduced (black circle mark), 20% reduced (white circle mark), and 40% reduced (triangular mark) is used. The horizontal axis represents the result of obtaining the relative [(ECp, sensor) / (ECp, plant)]. Similarly, using the test water, the vertical axis represents the result of determining the relative [(Qp, sensor) × (Pf, plant)], which is a solution permeation parameter.
 図3に示すように、被処理水中のスケール付着度合いが高くなるにつれて基準(0)よりも、右下のゾーンに下がる傾向があることが判明した。なお、基準(0)とは、被処理水11の水質の変化の前後の計測値を確認し、変化が無い場合である。  As shown in FIG. 3, it was found that as the scale adhesion degree in the water to be treated increases, it tends to fall to the lower right zone from the reference (0). The reference (0) is a case where the measured values before and after the change of the water quality of the treated water 11 are confirmed and there is no change.
 そこで、この変化を、図4に示すように、警報1ゾーン、警報2ゾーン、警報3ゾーンのようにマップ化することができる。例えば警報2ゾーンに検知結果が属すると判断した際には、例えば画像(例えばPC画面)上や音声等において、アラーム51を発することで、ろ過膜13へのスケールの付着を事前に予測することができる。 Therefore, as shown in FIG. 4, this change can be mapped as alarm 1 zone, alarm 2 zone, and alarm 3 zone. For example, when it is determined that the detection result belongs to the alarm 2 zone, for example, an alarm 51 is issued on an image (for example, a PC screen) or a voice to predict the scale adhesion to the filtration membrane 13 in advance. Can do.
 これに対して、図5に示すように、濃縮水分岐ラインL21に検知用加圧装置24を設置せずに、検知用濃縮装置23に供給する分岐した濃縮水16aを昇圧しない場合には、基準(0)付近にプロットがかたまり、変化のゾーンを確認することが出来なかった。 On the other hand, as shown in FIG. 5, in the case where the branching concentrated water 16 a supplied to the detection concentrating device 23 is not boosted without installing the detection pressurizing device 24 in the concentrated water branching line L 21. The plots gathered around the reference (0), and the zone of change could not be confirmed.
 本実施例では、濃縮装置本体14のろ過膜13へのスケール付着の有無を確認する際、濃縮装置本体14の透過水12の造水量の変化の前後について説明したが、本発明はこれに限定されるものではない。透過水12の造水量の変化そのものを確認して、スケール付着の有無を確認するようにしてもよい。また、被処理水11の状態(例えば温度、pH値、TDS(例えば銅、亜鉛、水銀、カドミウム他の不純物)等)において、その状態の変化割合を事前に確認しておき、対応するマップ等を作成することで、これらに起因する濃縮装置本体14に供給される被処理水11の変化に対しても事前に対応することができる。 In the present embodiment, when the presence or absence of scale adhesion to the filtration membrane 13 of the concentrator main body 14 is confirmed, before and after the change in the water production amount of the permeated water 12 of the concentrator main body 14 has been described, the present invention is limited to this. Is not to be done. You may make it confirm the presence or absence of scale adhesion by confirming the change of the water production amount of the permeated water 12 itself. In addition, in the state of the water to be treated 11 (for example, temperature, pH value, TDS (for example, copper, zinc, mercury, cadmium and other impurities)), the change rate of the state is confirmed in advance, and the corresponding map, etc. Therefore, it is possible to cope in advance with changes in the water to be treated 11 supplied to the concentration device main body 14 due to these.
 以上、本実施例によれば、濃縮装置本体からの濃縮水の一部を検知用濃縮装置に供給する際に、検知用加圧装置により濃縮水を昇圧させ、透過水と検知用透過水とより求めた濃縮装置本体の造水量の変化前後の溶質透過パラメータと、検知用透過水の透過水量と被処理水の供給水圧とより求めた濃縮装置本体の造水量の変化前後の溶液透過パラメータとを用い、被処理水の性状(例えば塩濃度、TDS、温度、pH等)の変動の有無、濃縮装置本体のろ過膜へのスケール付着変動の有無を検知することができる。これにより、被処理水を濃縮稼働中に、事前に被処理水の性状や濃縮装置本体へのスケールの付着を検知することができる。 As described above, according to this embodiment, when a part of the concentrated water from the main body of the concentration device is supplied to the detection concentration device, the concentration water is pressurized by the detection pressure device, The solute permeation parameters before and after the change in the water production amount of the concentrator main body obtained from the above, the solution permeation parameters before and after the change in the water production amount of the concentrator main body obtained from the permeated water amount of the detection permeated water and the supply water pressure of the treated water, and Can be used to detect the presence or absence of fluctuations in the properties of the water to be treated (eg, salt concentration, TDS, temperature, pH, etc.) and the presence or absence of scale adhesion fluctuations on the filter membrane of the concentrator main body. Thereby, the property of to-be-processed water and the adhesion of the scale to the concentration apparatus main body can be detected in advance during the concentration operation of to-be-processed water.
 図2は、実施例2に係る塩分濃縮装置の概略図である。図2に示すように、本実施例に係る塩分濃縮装置10Bは、濃縮装置本体を2台用いて、第1の濃縮装置本体14-1の第1の濃縮水16-1をさらに脱塩するために、第2の濃縮装置本体14-2を設置し、これにより第2の透過水12-1の淡水を得るものである。なお、実施例1の装置構成と同じ構成のものを2セットつなげているので、前段側の装置に枝番に「-1」の符号を付し、後段側の装置に枝番に「-2」の符号を付しており、重複する説明は省略する。 FIG. 2 is a schematic diagram of the salt concentration apparatus according to the second embodiment. As shown in FIG. 2, the salt concentration device 10B according to the present embodiment further desalinates the first concentrated water 16-1 of the first concentration device main body 14-1 using two concentration device main bodies. For this purpose, a second concentrator main body 14-2 is installed to obtain fresh water of the second permeated water 12-1. Since two sets having the same configuration as the apparatus configuration of the first embodiment are connected, the branch number is assigned “−1” to the preceding apparatus, and the branch number “−2” is assigned to the succeeding apparatus. ”Is attached, and redundant description is omitted.
 図2に示すように、濃縮装置本体14-1、14-2を2台設置する場合には、第1の濃縮水16-1中の塩分濃度は、被処理水11-1の塩分濃度よりも濃いので、後段側の第2の濃縮装置本体14-2の第2のろ過膜13-2へのスケール付着の発生頻度が激しいものとなる。よって、第2の濃縮装置本体14-2においても第2の濃縮水16-2を分岐した第2の濃縮水16a―2を第2の検知用濃縮装置23-2に導入する際、実施例1と同様に、第2の検知用加圧装置24-2を用いて、所定圧昇圧させている。 As shown in FIG. 2, when two concentration device main bodies 14-1 and 14-2 are installed, the salinity concentration in the first concentrated water 16-1 is greater than the salinity concentration of the water to be treated 11-1. Therefore, the frequency of scale adhesion to the second filtration membrane 13-2 of the second concentrator main body 14-2 on the rear stage side is high. Therefore, when the second concentrated water 16a-2 branched from the second concentrated water 16-2 is introduced into the second concentration apparatus 23-2 in the second concentration apparatus main body 14-2 as well, As in the case of 1, the pressure is increased by a predetermined pressure using the second detection pressurizing device 24-2.
 本実施例によれば、第2の濃縮装置本体14-2からの第2の濃縮水16-2の一部を第2の検知用濃縮装置23-2に供給する際に、第2の検知用加圧装置24-2により第2の濃縮水16-2を昇圧させ、第2の透過水12-2と第2の検知用透過水21-2とより求めた濃縮装置本体14-2の透過水12-2の造水量の変化前後の溶質透過パラメータと、第2の検知用透過水21-2の透過水量と第1の濃縮水16-1の供給水圧とより求めた濃縮装置本体14-2の透過水12-2の造水量の変化前後の溶液透過パラメータとを用い、第1の濃縮水16-1の性状(例えばTDS、温度、pH等)の変動の有無、第2の濃縮装置本体14-2の第2のろ過膜13-2へのスケール付着変動の有無を検知することができる。これにより、被処理水11-1又は第1の濃縮水16-1を濃縮稼働中に、事前に被処理水11-1又は第1の濃縮水16-1の性状や第1又は第2の濃縮装置本体14-1、14-2の第1又は第2のろ過膜13-1、13-2へのスケールの付着を検知することができる。 According to the present embodiment, when a part of the second concentrated water 16-2 from the second concentrating device main body 14-2 is supplied to the second detecting concentrating device 23-2, the second detection is performed. The pressure of the second concentrated water 16-2 is increased by the pressurizing device 24-2, and the concentration of the concentration device main body 14-2 obtained from the second permeated water 12-2 and the second permeated water for detection 21-2 is obtained. Concentrator main body 14 determined from the solute permeation parameters before and after the change in the water production amount of the permeated water 12-2, the permeated water amount of the second detection permeated water 21-2, and the supply water pressure of the first concentrated water 16-1. -2 permeated water 12-2 using the solution permeation parameters before and after the change in the water production amount, the presence or absence of fluctuations in the properties of the first concentrated water 16-1 (eg, TDS, temperature, pH, etc.), the second concentration It is possible to detect the presence or absence of scale adhesion fluctuation on the second filtration membrane 13-2 of the apparatus main body 14-2. As a result, the properties of the treated water 11-1 or the first concentrated water 16-1 and the first or second concentrated water 16-1 in advance during the concentration operation of the treated water 11-1 or the first concentrated water 16-1. It is possible to detect adhesion of scale to the first or second filtration membranes 13-1 and 13-2 of the concentrator main bodies 14-1 and 14-2.
 なお、本実施例では、濃縮装置本体を2台用いているが、本発明はこれに限定されるものではなく、第2の濃縮装置本体14-2の第2の濃縮水16-2をさらに脱塩するために、第3の濃縮装置本体を設置し、同様にして第3の濃縮水を分岐して、第3の濃縮水の一部を第3の検知用濃縮装置に供給する際に、第3検知用加圧装置により第3の濃縮水を昇圧させ、第3の透過水と第3の検知用透過水とより求めた濃縮装置本体14の透過水12の造水量の変化前後の溶質透過パラメータと、第3の検知用透過水の透過水量と第2の濃縮水16-2の供給水圧とより求めた濃縮装置本体14の透過水12の造水量の変化前後の溶液透過パラメータとを用い、第2の濃縮水16-2の性状(例えばTDS、温度、pH等)の変動の有無、第3の濃縮装置本体の第3のろ過膜へのスケール付着変動の有無を検知することができる。これにより、被処理水11-1又は第1の濃縮水16-1/第2の濃縮水16-2の濃縮稼働中に、事前に被処理水11又は第1の濃縮水16-1/第2の濃縮水16-2の性状や第1の濃縮装置本体14-1/第2の濃縮装置本体14-2/第3の濃縮装置本体の第1のろ過膜13-1/第2のろ過膜13-2/第3のろ過膜へのスケールの付着を検知することができる。 In the present embodiment, two concentration device main bodies are used. However, the present invention is not limited to this, and the second concentrated water 16-2 of the second concentration device main body 14-2 is further added. In order to desalinate, when the third concentrator body is installed, the third concentrated water is branched in the same manner, and a part of the third concentrated water is supplied to the third detecting concentrator. The pressure of the third concentrated water is increased by the third detection pressurizing device, and before and after the change in the water production amount of the permeated water 12 of the concentration device main body 14 obtained from the third permeated water and the third detected permeated water. Solute permeation parameters, solution permeation parameters before and after the change in the amount of water produced in the permeated water 12 of the concentrator body 14 determined from the permeated water amount of the third permeating water for detection and the supply water pressure of the second concentrated water 16-2 The presence or absence of fluctuations in the properties (eg, TDS, temperature, pH, etc.) of the second concentrated water 16-2, It is possible to detect the presence or absence of scale deposition change on the third filtration membrane concentrator body. Thus, during the concentration operation of the water to be treated 11-1 or the first concentrated water 16-1 / second concentrated water 16-2, the water to be treated 11 or the first concentrated water 16-1 / first 2 of the concentrated water 16-2 and the first filtration membrane 13-1 / second filtration of the first concentration device main body 14-1 / second concentration device main body 14-2 / third concentration device main body. The adhesion of the scale to the membrane 13-2 / third filtration membrane can be detected.
 10A、10B 塩分濃縮装置
 11 被処理水
 12 透過水
 13 ろ過膜
 14 濃縮装置本体
 15 本体用加圧装置
 16 濃縮水
 16a 分岐した濃縮水
 21 検知用透過水
 22 検知用ろ過膜
 23 検知用濃縮装置
 24 検知用加圧装置
 25 検知用濃縮水
 31A、31B 電気伝導度計
 32A、32B 流量計
 50 検知部
 51 アラーム
 L11 供給ライン
 L12 透過水ライン
 L13 濃縮水ライン
 L21 濃縮水分岐ライン
 L22 検知用透過水ライン
 L23 検知用濃縮水ライン
10A, 10B Salt concentration device 11 Water to be treated 12 Permeated water 13 Filtration membrane 14 Concentration device main body 15 Pressure device for main body 16 Concentrated water 16a Branched concentrated water 21 Permeated water for detection 22 Filtration membrane for detection 23 Concentration device for detection 24 Pressure detector for detection 25 Concentrated water for detection 31A, 31B Conductivity meter 32A, 32B Flow meter 50 Detector 51 Alarm L 11 Supply line L 12 Permeated water line L 13 Concentrated water line L 21 Concentrated water branch line L 22 detected Permeated water line L 23 Concentrated water line for detection

Claims (8)

  1.  被処理水から、該被処理水の塩分を濃縮することで透過水を得るろ過膜を有するとともに、前記塩分が濃縮された濃縮水を排出する濃縮装置本体と、
     前記被処理水を前記濃縮装置本体に供給する供給ラインと、
     前記供給ラインに介装され、前記濃縮装置本体に前記被処理水を加圧して供給する本体用加圧装置と、
     前記濃縮装置本体から前記濃縮水を供給する濃縮水ラインと、
     前記濃縮水ラインから前記濃縮水の一部を分岐する濃縮水分岐ラインと、
     前記濃縮水分岐ラインに設けられ、分岐した前記濃縮水の塩分を更に濃縮することで検知用透過水を得る検知用ろ過膜を有する検知用濃縮装置と、
     前記濃縮水分岐ラインに介装され、分岐した前記濃縮水を加圧して前記検知用濃縮装置に供給する検知用加圧装置と、
     前記透過水と前記検知用透過水とより求めた前記濃縮装置本体の造水量の変化前後の溶質透過パラメータと溶液透過パラメータとを用い、前記濃縮装置本体へのスケール付着変動の有無を検知する検知部と、を具備することを特徴とする塩分濃縮装置。
    Having a filtration membrane that obtains permeated water by concentrating the salinity of the water to be treated from the water to be treated, and a concentration device main body for discharging the concentrated water in which the salinity is concentrated;
    A supply line for supplying the treated water to the concentrator body;
    A pressurizing device for a main body, interposed in the supply line, and pressurizing and supplying the treated water to the main body of the concentrating device;
    A concentrated water line for supplying the concentrated water from the concentrator body;
    A concentrated water branch line for branching a part of the concentrated water from the concentrated water line;
    A concentration device for detection having a detection filtration membrane that is provided in the concentrated water branch line and obtains permeate for detection by further concentrating the salt content of the branched concentrated water;
    A detection pressure device interposed in the concentrated water branch line, pressurizing the branched concentrated water and supplying the concentrated water to the detection concentration device;
    Detection using the solute permeation parameter and the solution permeation parameter before and after the change in the water production amount of the concentrator main body obtained from the permeate and the permeate for detection, to detect the presence or absence of scale adhesion fluctuation to the concentrator main body A salinity concentrator.
  2.  請求項1において、
     前記溶質透過パラメータが、前記濃縮装置本体の造水量の変化前後の検知用透過水の電気伝導度と透過水の電気伝導度とにより求められることを特徴とする塩分濃縮装置。
    In claim 1,
    The salinity concentrator, wherein the solute permeation parameter is obtained from the electric conductivity of permeated water for detection and the electric conductivity of permeated water before and after a change in the amount of water produced by the main body of the concentrator.
  3.  請求項1において、
     前記溶液透過パラメータが、前記濃縮装置本体の造水量の変化前後の前記検知用透過水の透過水量と前記濃縮装置本体への前記被処理水の供給水圧とにより求めることを特徴とする塩分濃縮装置。
    In claim 1,
    The salinity concentrating device, wherein the solution permeation parameter is obtained from a permeated water amount of the detection permeated water before and after a change in a water production amount of the concentrator main body and a supply water pressure of the treated water to the concentrator main body. .
  4.  請求項1乃至3のいずれか一つにおいて、
     前記検知用加圧装置は、前記濃縮水の圧力に対して、前記本体用加圧装置の圧力の1/2~1/50だけ上昇させることを特徴とする塩分濃縮装置。
    In any one of Claims 1 thru | or 3,
    The salinity concentrating device, wherein the detecting pressurizing device increases the pressure of the concentrated water by 1/2 to 1/50 of the pressure of the main body pressurizing device.
  5.  ろ過膜により被処理水の塩分を濃縮することで、該被処理水を濃縮装置本体により透過水と前記塩分が濃縮された濃縮水とに分離する塩分濃縮工程と、
     前記濃縮水の一部の水圧を上昇させて検知用濃縮装置に供給し、濃縮率を向上させつつ該濃縮水の塩分を更に濃縮することで該濃縮水から検知用透過水を得る検知用の塩分濃縮工程と、
     前記透過水と前記検知用透過水とより求めた前記濃縮装置本体の造水量の変化前後の溶質透過パラメータと溶液透過パラメータとにより、前記濃縮装置本体へのスケール付着変動の有無を検知する検知工程と、を有することを特徴とする塩分濃縮装置のスケール検知方法。
    A salt concentration step of separating the water to be treated into a permeated water and a concentrated water in which the salt content is concentrated by a concentration device body by concentrating the salt content of the water to be treated with a filtration membrane;
    The pressure of a part of the concentrated water is raised and supplied to a concentration device for detection, and the concentration of the concentrated water is further concentrated while improving the concentration rate, thereby obtaining detection permeate from the concentrated water. A salt concentration step;
    A detection step of detecting the presence or absence of scale adhesion fluctuation on the concentration device main body based on the solute permeation parameter and the solution permeation parameter before and after the change in the water production amount of the concentration device main body obtained from the permeated water and the permeation water for detection. And a scale detection method for a salinity concentrator.
  6.  請求項5において、
     前記溶質透過パラメータが、前記濃縮装置本体の造水量変化前後の検知用透過水の電気伝導度と透過水の電気伝導度とにより求められることを特徴とする塩分濃縮装置のスケール検知方法。
    In claim 5,
    The scale detection method for a salinity concentrator, wherein the solute permeation parameter is obtained from the electric conductivity of the permeated water for detection before and after the change in the water production amount of the main body of the concentrator and the electric conductivity of the permeated water.
  7.  請求項5において、
     前記溶液透過パラメータが、前記濃縮装置本体の造水量の変化前後の検知用透過水の透過水量と濃縮装置本体への被処理水の供給水圧とにより求めることを特徴とする塩分濃縮装置のスケール検知方法。
    In claim 5,
    The scale detection of the salinity concentrator characterized in that the solution permeation parameter is obtained from the amount of permeate permeate for detection before and after the change of the amount of water produced in the main body of the concentrator and the supply water pressure of the water to be treated to the main body of the concentrator Method.
  8.  請求項5乃至7のいずれか一つにおいて、
     前記検知用濃縮装置へ分岐した濃縮水を加圧する検知用加圧装置は、前記濃縮水の圧力に対して、前記本体用加圧装置の圧力の1/2~1/50だけ上昇させることを特徴とする塩分濃縮装置のスケール検知方法。
    In any one of Claims 5 thru | or 7,
    The detection pressurizing device that pressurizes the concentrated water branched to the detection concentrating device increases the pressure of the concentrated water by 1/2 to 1/50 of the pressure of the main body pressurizing device. A salinity concentration device scale detection method.
PCT/JP2018/010871 2018-03-19 2018-03-19 Salt concentration device and scale detection method for salt concentration device WO2019180788A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/010871 WO2019180788A1 (en) 2018-03-19 2018-03-19 Salt concentration device and scale detection method for salt concentration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/010871 WO2019180788A1 (en) 2018-03-19 2018-03-19 Salt concentration device and scale detection method for salt concentration device

Publications (1)

Publication Number Publication Date
WO2019180788A1 true WO2019180788A1 (en) 2019-09-26

Family

ID=67988404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010871 WO2019180788A1 (en) 2018-03-19 2018-03-19 Salt concentration device and scale detection method for salt concentration device

Country Status (1)

Country Link
WO (1) WO2019180788A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11367209B2 (en) * 2020-10-23 2022-06-21 X Development Llc Visual detection of haloclines

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012170880A (en) * 2011-02-21 2012-09-10 Hitachi Plant Technologies Ltd Sea water desalination system, and sea water desalination method
JP2013022544A (en) * 2011-07-25 2013-02-04 Kubota Corp Membrane treatment device and method of operation
JP2015116538A (en) * 2013-12-18 2015-06-25 三菱重工業株式会社 Device and method of scale detection in concentrator and reproduction treatment system of water

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012170880A (en) * 2011-02-21 2012-09-10 Hitachi Plant Technologies Ltd Sea water desalination system, and sea water desalination method
JP2013022544A (en) * 2011-07-25 2013-02-04 Kubota Corp Membrane treatment device and method of operation
JP2015116538A (en) * 2013-12-18 2015-06-25 三菱重工業株式会社 Device and method of scale detection in concentrator and reproduction treatment system of water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11367209B2 (en) * 2020-10-23 2022-06-21 X Development Llc Visual detection of haloclines
US20220284612A1 (en) * 2020-10-23 2022-09-08 X Development Llc Visual detection of haloclines

Similar Documents

Publication Publication Date Title
Damtie et al. Removal of fluoride in membrane-based water and wastewater treatment technologies: Performance review
AU2015244268B2 (en) Osmotic separation systems and methods
Loganathan et al. Pilot-scale study on the treatment of basal aquifer water using ultrafiltration, reverse osmosis and evaporation/crystallization to achieve zero-liquid discharge
KR20150114507A (en) Osmotic separation systems and methods
Song et al. Evaluation of scaling potential in a pilot-scale NF–SWRO integrated seawater desalination system
JP6189205B2 (en) Concentrator scale detection device and method, water regeneration treatment system
JP2015188786A (en) Positive permeation processing system
JP2016016384A (en) Evaluation device and evaluation method for osmosis membrane module
JP5398695B2 (en) Desalination apparatus, method for monitoring membrane and operation method of desalination apparatus
JP2009285522A (en) Reverse osmosis membrane device
JP2021006335A (en) Oxidation risk evaluation method of separation membrane in separation membrane plant and fresh water generator
WO2019180788A1 (en) Salt concentration device and scale detection method for salt concentration device
Gasia-Bruch et al. Field experience with a 20,000 m3/d integrated membrane seawater desalination plant in Cyprus
WO2016035175A1 (en) Water treatment device and operating method for water treatment device
KR20140041995A (en) Water-purifying system with high recovery rate and method using membrane filtration for manufacturing purified water
JP2018108550A (en) Salt concentration device and method for detecting the scale of the salt concentration device
US20150321928A1 (en) Fresh water generation method (as amended)
US8337702B2 (en) Method for treating wastewater containing heavy metals
JP2005087948A (en) Method for detecting membrane damage of membrane filtration apparatus and device therefor
Ahmad et al. Experimental study of a cellulose triacetate spiral wound forward osmosis membrane for desalination process integration
TWI757581B (en) water treatment device
KR102082802B1 (en) Control method of sewage reuse and water treatment RO system using high pressure pump operation rate
JP2012130824A (en) Monitoring method for membrane
JP2005195499A (en) Sdi measuring method, sdi measuring instrument, and water production method using reverse osmosis membrane
Dethier Membrane fractionation of natural organic matter in surface water

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18911280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18911280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP